JP2011208201A - Method for manufacturing bearing parts, and bearing parts - Google Patents

Method for manufacturing bearing parts, and bearing parts Download PDF

Info

Publication number
JP2011208201A
JP2011208201A JP2010075861A JP2010075861A JP2011208201A JP 2011208201 A JP2011208201 A JP 2011208201A JP 2010075861 A JP2010075861 A JP 2010075861A JP 2010075861 A JP2010075861 A JP 2010075861A JP 2011208201 A JP2011208201 A JP 2011208201A
Authority
JP
Japan
Prior art keywords
less
carbides
cooling
steel
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010075861A
Other languages
Japanese (ja)
Other versions
JP5599211B2 (en
Inventor
Takeshi Torii
武史 鳥居
Yoshiki Mizuno
孝樹 水野
Riki Muto
力 武藤
Toshiyuki Morita
敏之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Aisin AW Co Ltd
Original Assignee
Daido Steel Co Ltd
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Aisin AW Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2010075861A priority Critical patent/JP5599211B2/en
Publication of JP2011208201A publication Critical patent/JP2011208201A/en
Application granted granted Critical
Publication of JP5599211B2 publication Critical patent/JP5599211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/62Low carbon steel, i.e. carbon content below 0.4 wt%

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing bearing parts, which can form a large amount of fine carbides in the surface region of the bearing parts by carburizing and quenching treatment, and thereby can obtain the bearing parts having the surface with high hardness and high strength.SOLUTION: A steel for the bearing parts has a composition including, by mass%, 0.15-0.25% C, 0.90-1.30% Si, 0.70-1.10% Mn, 0.030% or less P, 0.100% or less S, 0.01-0.50% Cu, 0.01-0.50% Ni, 0.20-0.50% Cr, 0.50% or less Mo, 0.30% or less Al, 0.05% or less N, so as to satisfy expression (1): [Si]+[Ni]+[Cu]-[Cr]>0.5, and the balance Fe with unavoidable impurities. The method for obtaining the bearing parts in which the fine carbides are formed so that carbides with the size of 1 μm or less occupy 95% or more includes: subjecting the steel to vacuum carburization treatment so that the carbon concentration in the surface enters into the range of more than 1.1 to 1.5%; then, air-cooling the steel to make the structure of the surface layer pearlite; and subsequently subjecting the resultant steel to induction hardening treatment to divide cementite.

Description

この発明は、軸受部品の製造方法及び軸受部品に関する。   The present invention relates to a bearing part manufacturing method and a bearing part.

従来、機械部品としての歯車は高い表面硬度が求められる一方で、芯部については所定の靭性を有することが求められ、そこでこのような歯車にあってはC含有量が0.2%程度の低C量の材料、代表的にはSCR420等のJIS鋼種を部品形状に加工した後、浸炭焼入れを施し、表面硬化処理して使用している。
従来、その浸炭の手法としては主としてガス浸炭が用いられている。このガス浸炭の場合、表面炭素濃度0.8%程度で硬さが最高値を示し、それ以上の高濃度の浸炭は困難である。
Conventionally, gears as machine parts are required to have high surface hardness, while the core part is required to have a predetermined toughness. Therefore, such gears have a low C content of about 0.2%. An amount of material, typically a JIS steel grade such as SCR420, is processed into a part shape, and then carburized and hardened and surface-hardened.
Conventionally, gas carburizing is mainly used as the carburizing method. In the case of this gas carburization, the hardness shows the maximum value at a surface carbon concentration of about 0.8%, and it is difficult to carburize at a higher concentration.

一方ベアリングボール等の軸受部品にあっては、芯部に到るまで大きな荷重が作用するため、更には硬さについても歯車部品に比べてより硬くする必要があることから、従来浸炭処理して表面硬さを硬くするというよりは、Cを多く含有した材料、代表的にはC量が1%程度のSUJ2等のJIS鋼種を部品形状に加工した後に焼入れ焼戻し処理して用いているのが実情である。   On the other hand, in bearing components such as bearing balls, a large load is applied until reaching the core, and the hardness needs to be harder than that of gear components. Rather than hardening the surface hardness, a material containing a large amount of C, typically SUJ2, such as SUJ2 with a C content of about 1%, is processed into a part shape and then used after quenching and tempering. It is a fact.

ところでベアリングボールやローラ等の軸受部品の硬さを、上記SUJ2を用いたものよりも更に硬くしたい場合、SUJ2よりもC含有量の更に高い材料を用いて軸受部品を構成することが考えられるが、もともとSUJ2自体材料的に硬い材料であり、C含有量を更に高含有量、例えば1.3%程度の高含有量とすると、材料硬さが硬くなり過ぎてその加工が困難化する。   By the way, when it is desired to make the hardness of bearing parts such as bearing balls and rollers harder than that using SUJ2, it is possible to construct the bearing parts using a material having a higher C content than SUJ2. Originally, SUJ2 itself is a material that is hard, and if the C content is set to a higher content, for example, about 1.3%, the material hardness becomes too hard and the processing becomes difficult.

例えばベアリングボールの場合、円滑な軸受機能のために高い真球度が求められ、従ってそのために高精度の精密な加工が必要となるが、材料が硬過ぎるとそのような加工が困難となり、また加工コストも著しく高いものとなってしまう。   For example, in the case of a bearing ball, high sphericity is required for a smooth bearing function, and thus high precision and precise processing is required. However, if the material is too hard, such processing becomes difficult. The processing cost is also extremely high.

そこで従来にあっては、軸受部品により一層の硬さを付与したい場合、そのための手段として窒化ないし浸炭窒化処理による表面硬化処理を施すことが行われている。
例えば下記特許文献1,特許文献2に、このような窒化処理を施すことで硬さを高める点が開示されている。
即ちこれら特許文献1,特許文献2には、軌道部材の製造方法として浸炭窒化工程の後に高周波焼入れ工程を行う点が示されている。
Therefore, conventionally, when it is desired to impart a further hardness to the bearing component, a surface hardening treatment by nitriding or carbonitriding is performed as a means for that purpose.
For example, the following Patent Document 1 and Patent Document 2 disclose that hardness is increased by performing such nitriding treatment.
That is, these Patent Documents 1 and 2 show that an induction hardening process is performed after the carbonitriding process as a manufacturing method of the raceway member.

しかしながらこのように窒化処理によって表面硬化処理を施した軸受部品の場合、焼入れによってマルテンサイト変態させたときに、マルテンサイト化しきれなかったオーステナイト即ち残留オーステナイトが多く生じてしまう。
この残留オーステナイトは、軸受部品を使用するうち次第にマルテンサイト化し、その際に体積膨張を起すために軸受部品が歪みによって変形を生じ、ベアリングボールの場合にはその真球度が損なわれてしまうといった問題を生ずる。
However, in the case of bearing parts subjected to surface hardening treatment by nitriding as described above, when martensite transformation is performed by quenching, a large amount of austenite that cannot be fully martensitic, that is, retained austenite, is generated.
This retained austenite gradually becomes martensite as the bearing parts are used, and the bearing parts are deformed due to distortion in order to cause volume expansion, and in the case of bearing balls, the sphericity is impaired. Cause problems.

ところで、浸炭の手法として上記のガス浸炭の他に、より高濃度浸炭が可能な真空浸炭が知られており、そこで例えば上記のSCR420材を用いた軸受部品に真空浸炭処理を施して表面に高濃度でCを導入し、焼入れ処理すること、またその際の焼入れとして高周波焼入れを用いることも考えられる。   By the way, as a carburizing technique, in addition to the above-mentioned gas carburizing, vacuum carburizing capable of higher concentration carburizing is known. For example, bearing parts using the above-mentioned SCR420 material are subjected to vacuum carburizing treatment to increase the surface. It is conceivable that C is introduced at a concentration and quenching is performed, and induction quenching is used as quenching.

浸炭焼入れを、浸炭処理に続いて直接急冷より焼入れする通常の方法で行った場合、部品の内部までマルテンサイト化するため、残留歪みが大きくなる問題があるが、浸炭処理した後に高周波焼入れを行った場合、高周波焼入れは部品の内部組織を変化させずに表面だけを硬化させることができるため、歪みが小さいといった利点がある。
この真空浸炭の場合、ガス浸炭に比べて浸炭厚み(浸炭深さ)を厚くすること、即ち表面硬化層を厚くすることができ、軸受部品としての使用も可能である。
When carburizing and quenching is performed by the usual method of quenching directly from quenching following carburizing treatment, there is a problem that the residual distortion becomes large because the inside of the part is martensitic, but induction hardening is performed after carburizing treatment. In this case, induction hardening has an advantage that distortion is small because only the surface can be hardened without changing the internal structure of the part.
In the case of this vacuum carburization, the carburization thickness (carburization depth) can be increased as compared with gas carburization, that is, the surface hardened layer can be increased, and it can be used as a bearing component.

しかしながらSCR420材は、炭化物を形成し易いCrを多く含んでいるため、真空浸炭にて表面に高濃度でCを導入したとき、浸炭の段階で粗大なCrの炭化物が生成し易く、その後の高周波焼入れの過程でCr炭化物が溶解せずに焼入れ後も残ってしまい、そしてこのCr炭化物を起点として破壊を生じ易く、却って強度の低下を招いてしまう問題が生ずる。   However, since the SCR420 material contains a large amount of Cr that easily forms carbides, when high concentration of C is introduced into the surface by vacuum carburizing, coarse Cr carbides are easily generated at the carburizing stage, and the subsequent high frequency In the quenching process, the Cr carbide does not dissolve and remains after quenching, and the Cr carbide tends to cause breakage, and the strength is reduced.

尚、本発明に対する他の先行技術として下記特許文献3,特許文献4,特許文献5に開示されたものがある。
但しこれら特許文献に開示のものはSi,Cu,Ni等の含有量が異なる等鋼の組成が本発明と異なっており、また炭化物生成の手法においても本発明と異なったもので、本発明とは別異のものである。
In addition, there exist some which were disclosed by the following patent document 3, patent document 4, and patent document 5 as another prior art with respect to this invention.
However, those disclosed in these patent documents are different from the present invention in the composition of steels having different contents such as Si, Cu, Ni, etc., and the method of generating carbides is also different from the present invention. Are different.

また下記特許文献6には表面硬化部品の製造方法及び表面硬化部品についての発明が示され、そこにおいて真空浸炭後に徐冷し、その後高周波焼入れする点が開示されているが、この特許文献6に開示のものは、本発明の鋼の特徴的な成分であるSiの含有量が実質的に本発明と異なっており(本発明より少ない)、本発明と別異のものである。   Patent Document 6 below discloses a method for producing a surface-hardened component and an invention about the surface-hardened component, where it is disclosed that annealing is performed after vacuum carburization and then induction hardening is performed. The disclosure is different from the present invention in that the content of Si, which is a characteristic component of the steel of the present invention, is substantially different from the present invention (less than the present invention).

更に下記特許文献7には浸炭焼入れ方法及び浸炭焼入れした動力伝達部材についての発明が示され、そこにおいて真空浸炭後に徐冷し、その後高周波焼入れする点が開示されているが、この特許文献7に開示のものにおいても鋼のSi含有量が少なく、鋼材組成において本発明とは異なったものである。   Furthermore, the following Patent Document 7 discloses an invention about a carburizing and quenching method and a carburized and quenched power transmission member, in which slow cooling is performed after vacuum carburizing, and then induction hardening is disclosed. Even in the disclosed one, the Si content of the steel is small, and the steel composition is different from the present invention.

また下記特許文献8には浸炭部品についての発明が示されているが、この特許文献8に開示のものは浸炭処理に続く焼入れの手法が本発明と全く異なっており、また部品表面の炭化物生成の手法においても本発明と異なり、本発明とは別異のものである。   Patent Document 8 below discloses an invention for carburized parts, but the one disclosed in Patent Document 8 is completely different from the present invention in the quenching method following carburizing treatment, and generates carbide on the surface of the parts. This method is also different from the present invention, unlike the present invention.

更に下記特許文献9には機械部品についての発明が示されているが、この特許文献9に開示のものは主として歯車を対象としたもので、軸受部品への適用に関しては言及が無く、本発明と別異のものである。   Further, the following patent document 9 discloses an invention relating to a machine part. However, what is disclosed in this patent document 9 is mainly intended for gears, and there is no mention regarding application to bearing parts. And something different.

特開2008−19482号公報JP 2008-19482 A 特開2008−63603号公報JP 2008-63603 A WO2006/118242号公報WO 2006/118242 WO2006/118243号公報WO 2006/118243 WO2007/034911号公報WO2007 / 034911 特開2005−48270号公報JP 2005-48270 A 特開平7−316640号公報JP 7-316640 A 特開2007−291486号公報JP 2007-291486 A 特開2008−76850号公報JP 2008-76850 A

本発明は以上のような事情を背景とし、浸炭焼入れ処理によって表面に微細な炭化物を多量に生成させ得、高硬度,高強度の軸受部品を得ることのできる軸受部品の製造方法及び軸受部品を提供することを目的としてなされたものである。   In view of the above circumstances, the present invention provides a bearing component manufacturing method and bearing component capable of producing a large amount of fine carbides on the surface by carburizing and quenching treatment and obtaining a bearing component having high hardness and high strength. It was made for the purpose of providing.

而して請求項1は軸受部品の製造方法に関するもので、質量%でC :0.15〜0.25%,Si:0.90〜1.30%,Mn:0.70〜1.10%,P :0.030%以下,S :0.100%以下,Cu:0.01〜0.50%,Ni:0.01〜0.50%,Cr:0.20〜0.50%,Mo:0.50%以下,Al:0.30%以下,N :0.05%以下で且つ下記式(1)の条件を満たし、
[Si]+[Ni]+[Cu]−[Cr]>0.5・・・式(1)
(但し式(1)中各元素記号は含有質量%を表す)
残部Fe及び不可避的不純物の組成を有する鋼を圧力2kPa以下の減圧条件で、浸炭の後の徐冷後の表面炭素濃度が1.1超〜1.5%の範囲内となるように真空浸炭処理を行った後、パーライト変態を起こす冷却速度で空冷による前記徐冷を行って表層の組織をパーライトとなし、しかる後パーライト組織中のセメンタイトを細かく分断させることで表面から0.1mmまでの範囲内に炭化物中1μm以下の炭化物が個数で95%以上を占める微細炭化物を生ぜしめる加熱及び冷却条件で高周波焼入れを行うことを特徴とする。
Thus, claim 1 relates to a method of manufacturing a bearing component, and in mass%, C: 0.15 to 0.25%, Si: 0.90 to 1.30%, Mn: 0.70 to 1.10%, P: 0.030% or less, S: 0.100% Hereinafter, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50%, Cr: 0.20 to 0.50%, Mo: 0.50% or less, Al: 0.30% or less, N: 0.05% or less, and the condition of the following formula (1) Meet,
[Si] + [Ni] + [Cu]-[Cr]> 0.5 (1)
(However, each element symbol in the formula (1) represents mass%)
Vacuum carburization of steel having the composition of the balance Fe and inevitable impurities so that the surface carbon concentration after slow cooling after carburizing is within the range of more than 1.1 to 1.5% under a reduced pressure condition of 2 kPa or less. After the treatment, the above-mentioned slow cooling by air cooling is performed at a cooling rate that causes pearlite transformation to make the surface structure pearlite, and then the cementite in the pearlite structure is finely divided to the range from the surface to 0.1 mm. It is characterized in that induction hardening is performed under heating and cooling conditions in which fine carbides in which the number of carbides of 1 μm or less in the carbides accounts for 95% or more are generated.

請求項2のものは、請求項1において、前記空冷による前記徐冷を5℃/s〜0.2℃/sの冷却速度で行い、前記高周波焼入れを加熱温度750〜850℃で行うことを特徴とする。   According to a second aspect of the present invention, in the first aspect, the slow cooling by the air cooling is performed at a cooling rate of 5 ° C./s to 0.2 ° C./s, and the induction hardening is performed at a heating temperature of 750 to 850 ° C. Features.

請求項3のものは、請求項1,2の何れかにおいて、前記鋼が質量%でNb:0.02〜0.20%,Ti:0.02〜0.20%,B :0.0005〜0.0100%の1種又は2種以上を更に含有したものであることを特徴とする。   A third aspect of the present invention is the method according to any one of the first and second aspects, wherein the steel is one or more of Nb: 0.02 to 0.20%, Ti: 0.02 to 0.20%, B: 0.0005 to 0.0100% in mass%. Is further contained.

請求項4のものは、請求項1〜3の何れかにおいて、前記真空浸炭を、前記徐冷後の表面炭素濃度が1.2%以上となるように行うことを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the vacuum carburization is performed such that a surface carbon concentration after the slow cooling is 1.2% or more.

請求項5は軸受部品に関するもので、表面炭素濃度が1.1超〜1.5%で、表面から0.1mmまでの範囲内にパーライト組織のセメンタイトが分断して生じた1μm以下の炭化物が個数で炭化物中95%以上を占める微細炭化物が生ぜしめてあることを特徴とする。   Claim 5 relates to a bearing component, and has a surface carbon concentration of more than 1.1 to 1.5%, and carbides of 1 μm or less generated by dividing cementite of pearlite structure within a range from the surface to 0.1 mm. It is characterized in that fine carbides occupying 95% or more of the carbides by number are formed.

請求項6のものは、請求項5において、質量%でC :0.15〜0.25%,Si:0.90〜1.30%,Mn:0.70〜1.10%,P :0.030%以下,S :0.100%以下,Cu:0.01〜0.50%,Ni:0.01〜0.50%,Cr:0.20〜0.50%,Mo:0.50%以下,Al:0.30%以下,N :0.05%以下で且つ下記式(1)の条件を満たし、
[Si]+[Ni]+[Cu]−[Cr]>0.5・・・式(1)
(但し式(1)中各元素記号は含有質量%を表す)
残部Fe及び不可避的不純物の組成を有し、真空浸炭とその後の冷却、及び高周波焼入れにより前記表面から0.1mmまでの範囲内に前記微細炭化物が生ぜしめてあることを特徴とする。
A sixth aspect of the present invention is the same as in the fifth aspect, wherein C: 0.15 to 0.25%, Si: 0.90 to 1.30%, Mn: 0.70 to 1.10%, P: 0.030% or less, S: 0.100% or less, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50%, Cr: 0.20 to 0.50%, Mo: 0.50% or less, Al: 0.30% or less, N: 0.05% or less and satisfying the condition of the following formula (1),
[Si] + [Ni] + [Cu]-[Cr]> 0.5 (1)
(However, each element symbol in the formula (1) represents mass%)
It has a composition of the remaining Fe and inevitable impurities, and the fine carbide is generated in a range from the surface to 0.1 mm by vacuum carburization, subsequent cooling, and induction hardening.

請求項7のものは、請求項5,6の何れかにおいて、前記炭化物は、マルテンサイト組織が50%以上を占めた組織の中に生ぜしめてあることを特徴とする。   A seventh aspect of the present invention is characterized in that, in any one of the fifth and sixth aspects, the carbide is formed in a structure in which a martensite structure occupies 50% or more.

請求項8のものは、請求項5〜7の何れかにおいて、前記鋼が質量%でNb:0.02〜0.20%,Ti:0.02〜0.20%,B :0.0005〜0.0100%の何れか1種若しくは2種以上を更に含有したものであることを特徴とする。   An eighth aspect of the present invention is the method according to any one of the fifth to seventh aspects, wherein the steel is in mass%, Nb: 0.02 to 0.20%, Ti: 0.02 to 0.20%, B: 0.0005 to 0.0100%. It further contains more than seeds.

請求項9のものは、請求項5〜8の何れかにおいて、前記表面炭素濃度が1.2%以上であることを特徴とする。   According to a ninth aspect of the present invention, in any one of the fifth to eighth aspects, the surface carbon concentration is 1.2% or more.

発明の作用・効果Effects and effects of the invention

以上のように本発明の軸受部品の製造方法は、低Cの鋼材を予め軸受部品形状に加工した後、真空浸炭を行ってその後徐冷し、しかる後高周波焼入れを行って表面を硬化処理し、軸受部品を得るものである。   As described above, the method for manufacturing a bearing component according to the present invention includes a low-C steel material processed into a bearing component shape in advance, then vacuum carburized and then gradually cooled, and then induction-hardened to harden the surface. To obtain bearing parts.

本発明では、真空浸炭処理により徐冷後の表面炭素濃度が1.1超〜1.5%となるように軸受部品の表面にCを導入し、その後の徐冷によって表面の組織をパーライト単相の組織とする。   In the present invention, C is introduced to the surface of the bearing component so that the surface carbon concentration after slow cooling becomes more than 1.1 to 1.5% by vacuum carburizing treatment, and then the surface texture is changed to pearlite by slow cooling. Assume phase organization.

そしてこれに続く高周波焼入れにより、パーライト組織中の層状に細く且つ長く伸びたセメンタイトを細かく分断し、その後の冷却にてマルテンサイト変態させ、焼入れを行う。これによって表面(表層)に微細な炭化物を無数に分散状態で生成せしめる。
そしてこのことによって、軸受部品の表面の炭化物を可及的に微細化し且つこれを多量に生成せしめ、軸受部品の表面硬度を従来に増して一層高く、また表面強度を一層高強度とする。
Subsequent to induction hardening, the thin and long cementite in the pearlite structure is finely divided and then cooled to cause martensite transformation and quenching. As a result, innumerable fine carbides are generated in a dispersed state on the surface (surface layer).
As a result, the carbide on the surface of the bearing part is made as fine as possible and a large amount of carbide is generated, so that the surface hardness of the bearing part is higher than before and the surface strength is further increased.

つまり本発明の製造方法は、軸受部品表面の炭化物を、パーライト組織中のセメンタイトを分断することによって細かく微細に析出させることを特徴としたものである。
本発明ではまた、浸炭処理の方法として真空浸炭の手法を用いる。
通常のガス浸炭の場合、表面炭素濃度は0.8%程度が限界であるが、本発明では真空浸炭を用いることにより、表面炭素濃度をこれよりも高濃度とすることができる。
ここで真空浸炭とは、一般的に、炉内の雰囲気を減圧して、浸炭ガスとして炭化水素系のガス(例えばメタン,プロパン,エチレン,アセチレン等)を直接炉内に挿入して、ガスが鋼の表面に接触して分解する活性な炭素によって、鋼の表面に炭素が供給される浸炭期に炭化物が生成して炭素が蓄えられ、続く拡散期に炭化物が分解し、蓄えられていた炭素がマトリックスに溶解することによって、炭素が内部に向って拡散していき浸炭する方法のことをいう。炭素の供給ルートは、炭化物経由のルートによるものに限らず、直接の溶解というルートを通るものも存在する。本発明では2kPa以下の減圧状態で行う。
このようになした場合、軸受部品の表面に微細な炭化物を多量に生成させることができ、このことが軸受部品の表面の高硬度化,高強度化に大きく寄与する。
That is, the manufacturing method of the present invention is characterized in that carbide on the surface of the bearing component is finely and finely precipitated by dividing cementite in the pearlite structure.
In the present invention, a vacuum carburizing technique is used as a carburizing process.
In the case of normal gas carburization, the surface carbon concentration is limited to about 0.8%, but in the present invention, the surface carbon concentration can be made higher by using vacuum carburization.
Here, vacuum carburizing is generally performed by reducing the atmosphere in the furnace and inserting a hydrocarbon-based gas (such as methane, propane, ethylene, acetylene, etc.) directly into the furnace as the carburizing gas. Active carbon that decomposes in contact with the surface of the steel generates carbon during the carburizing period when carbon is supplied to the surface of the steel, stores the carbon, and decomposes and stores the carbon during the subsequent diffusion period. This is a method in which carbon dissolves in the matrix and carbon diffuses inward and carburizes. The supply route of carbon is not limited to the route via the carbide, and there is also a route that passes through the route of direct dissolution. In this invention, it carries out in the pressure reduction state of 2 kPa or less.
In such a case, a large amount of fine carbides can be generated on the surface of the bearing component, which greatly contributes to increasing the hardness and strength of the surface of the bearing component.

但し鋼材として従来のSCR420等の鋼種を用いた場合、炭化物を成形し易いCrが多量に含まれているため、真空浸炭によって表面に多量のCを導入すると、浸炭処理の段階でCrが炭化物を形成してしまう。
この場合、その炭化物は粗大な炭化物となってしまう。そのような粗大な炭化物は軸受部品表面で異物となり、破壊の起点となって却って表面強度を低くしてしまう。
However, when steel grades such as the conventional SCR420 are used as steel materials, since a large amount of Cr that can easily form carbides is contained, if a large amount of C is introduced into the surface by vacuum carburization, Cr will be converted into carbides at the carburizing stage. Will form.
In this case, the carbide becomes coarse carbide. Such coarse carbides become foreign matter on the surface of the bearing component, and become the starting point of destruction, and on the contrary, lower the surface strength.

そこで本発明では、鋼材の組成を、炭化物形成し易いCrを少なくし、また炭化物を造らせ難いSiを多量に含有せしめ、真空浸炭の処理の際に炭化物を形成せず、真空浸炭によってCを高濃度で表面に導入した場合であっても、その後の徐冷によってパーライト単相組織となるように鋼材の組成を調整している。   Therefore, in the present invention, the composition of the steel material is reduced in Cr, which is easy to form carbide, contains a large amount of Si which is difficult to form carbide, does not form carbide during vacuum carburization, and C is obtained by vacuum carburization. Even when it is introduced into the surface at a high concentration, the composition of the steel material is adjusted so that a pearlite single phase structure is obtained by subsequent slow cooling.

本発明では、真空浸炭によって表面に高濃度でCを浸炭させた後の徐冷によってパーライト単相組織とする上で、浸炭後の冷却の速度を5℃/s〜0.2℃/sの範囲内とすることが望ましい。
冷却速度が0.2℃/sよりも遅くなると、粒界に粗大な炭化物が生成してしまい、本発明の目的である表面硬度,強度の高硬度化,高強度化を十分に実現できない。
一方冷却速度が5℃/sよりも速くなると、浸炭後の冷却によって焼きが入ってしまい、組織がマルテンサイト化してしまう。
In the present invention, a pearlite single phase structure is formed by slow cooling after carburizing C at a high concentration on the surface by vacuum carburization, and the cooling rate after carburizing is 5 ° C./s to 0.2 ° C./s. It is desirable to be within the range.
If the cooling rate is slower than 0.2 ° C./s, coarse carbides are generated at the grain boundaries, and the surface hardness, strength increase, and strength enhancement, which are the objects of the present invention, cannot be realized sufficiently.
On the other hand, if the cooling rate is higher than 5 ° C./s, the cooling after carburizing causes baking, and the structure becomes martensite.

以上のような浸炭処理を施した後、本発明では軸受部品表面を高周波焼入れ処理する。
この高周波による短時間加熱によって(加熱時間は20〜30秒程度)、パーライト組織中のセメンタイトを長手方向に細かく分断し、炭化物を微細化する。
After performing the carburizing treatment as described above, in the present invention, the surface of the bearing component is induction-hardened.
By heating for a short time with this high frequency (heating time is about 20 to 30 seconds), cementite in the pearlite structure is finely divided in the longitudinal direction to refine the carbide.

この高周波焼入れでは、軸受部品表面を加熱温度750〜850℃の範囲内とすることが望ましい。
850℃よりも高い温度になると、セメンタイトが分断するだけでなく、分断により生じた炭化物がマトリックスに溶け込んでしまい、本発明の目的を十分に達成できない。
他方750℃よりも低い温度であると、高周波加熱によって組織がオーステナイト化しないため、その後の冷却によって十分な焼きが入らない。即ち組織が良好にマルテンサイト化しない。
In this induction hardening, it is desirable that the surface of the bearing component is within a heating temperature range of 750 to 850 ° C.
When the temperature is higher than 850 ° C., not only the cementite is divided, but also carbides generated by the division are dissolved in the matrix, and the object of the present invention cannot be sufficiently achieved.
On the other hand, if the temperature is lower than 750 ° C., the structure does not become austenite by high-frequency heating, so that sufficient cooling does not occur by subsequent cooling. That is, the structure does not become martensite well.

即ち本発明では、通常の高周波焼入れでは1150℃以上の高温度の加熱を行うところを、750〜850℃の低い温度で加熱を行うのが良い。
尚、高周波焼入れの際の冷却は10℃/s以上とすること、好適には水冷とすることが望ましい。
That is, in the present invention, it is preferable to perform heating at a low temperature of 750 to 850 ° C. while heating at a high temperature of 1150 ° C. or higher in normal induction hardening.
In addition, it is desirable that the cooling during induction hardening is 10 ° C./s or more, preferably water cooling.

以上のような本発明の製造方法では、後の実施例の表中の表面炭素濃度の高さに示されているように(実施例における表面炭素濃度の高さはそのまま炭化物量の多さを示している)、軸受部品表面に多量の炭化物を生成させ得、軸受部品の硬度(表面硬度)及び強度を高硬度,高強度となすことができ、Cを1%程度含有したSUJ2に窒化処理を施したものと同程度の高硬度,高強度を有する軸受部品を得ることができる。   In the production method of the present invention as described above, as indicated by the height of the surface carbon concentration in the table of the later examples (the height of the surface carbon concentration in the examples is the same as the amount of carbide as it is. It is possible to generate a large amount of carbide on the surface of the bearing part, and the hardness (surface hardness) and strength of the bearing part can be increased to high hardness and strength, and nitriding is applied to SUJ2 containing about 1% of C It is possible to obtain a bearing component having the same high hardness and high strength as those subjected to.

しかも本発明の製造方法にて得た軸受部品は、従来の窒化処理により硬度,強度を高めた軸受部品のように、焼入れ後において残留オーステナイトを多量に残してしまうといった問題を生じず、従って使用を続けるうちに残留オーステナイトがマルテンサイト化して、その際の体積膨張により軸受部品に歪み及びこれによる変形をもたらすといった問題を解消でき、経時的な変寸量も小さく抑制することができる。
また本発明に従えば、表面硬化層の厚い軸受部品を得ることができ、その厚い浸炭層即ち表面硬化層によって、全体の強度を軸受部品として必要な高強度とすることができる。
Moreover, the bearing part obtained by the manufacturing method of the present invention does not cause a problem that a large amount of retained austenite remains after quenching, unlike the bearing part whose hardness and strength are increased by the conventional nitriding treatment. As a result, the problem that the retained austenite becomes martensite and the volume expansion at that time causes distortion and deformation due to the bearing component can be solved, and the amount of change over time can be reduced.
According to the present invention, a bearing component having a thick hardened surface layer can be obtained, and the thick carburized layer, that is, the hardened surface layer, can increase the overall strength required for the bearing component.

尚本発明では、鋼材が低Cの軟らかいものであるため、鋼材を軸受部品に加工する際、これに先立って球状化焼鈍しを行う必要がない。従ってその球状化焼鈍しによって丸く大きな炭化物を生成せしめてしまうこともない。   In the present invention, since the steel material is soft with low C, it is not necessary to perform spheroidizing annealing prior to processing the steel material into a bearing part. Therefore, round and large carbides are not generated by the spheroidizing annealing.

本発明では、上記鋼をNb,Ti,Bの何れか1種又は2種以上を上記範囲で含有したものとなしておくことができる。
また上記真空浸炭に際し、徐冷後の表面炭素濃度が1.2%以上となるように浸炭を行うことができる。
In the present invention, the steel may contain one or more of Nb, Ti, and B in the above range.
In the vacuum carburization, carburization can be performed so that the surface carbon concentration after slow cooling is 1.2% or more.

請求項5〜9は軸受部品に係るもので、この軸受部品は、表面に微細な炭化物が多量に生成していることによって、表面硬度及び強度を、高硬度及び高強度となすことができ、Cを1%程度含有したSUJ2に窒化処理を施したものと同程度の高硬度,高強度を有する軸受部品を得ることができる。
また残留オーステナイトに起因して、残留オーステナイトからのマルテンサイトへの変態により体積膨張によって歪み及びこれによる変形をもたらす問題を解消し、軸受部品を経時的な変寸量の小さいものとなすことができる。
Claims 5 to 9 relate to a bearing component, and this bearing component can make the surface hardness and strength high hardness and high strength by generating a large amount of fine carbides on the surface, A bearing component having the same high hardness and strength as those obtained by nitriding SUJ2 containing about 1% of C can be obtained.
In addition, due to residual austenite, the problem of distortion and deformation caused by volume expansion due to transformation from residual austenite to martensite can be eliminated, and the bearing component can be reduced in size over time. .

次に本発明における鋼材の各化学成分等の限定理由を以下に詳述する。
C :0.15〜0.25%
Cの含有量が下限値よりも少ないと、心部にフェライトが生成し、強度低下してしまう。一方上限値である0.25%を超えると加工性、特に被削性が劣化する。
またCの含有量が一定量を超えて多くなると鋼が硬くなり、軸受部品に加工する際に、場合によって球状化焼鈍処理が必要となる。その場合球状化焼鈍処理の際に丸くて大きい炭化物が生成してしまう。
Next, the reasons for limiting each chemical component of the steel material in the present invention will be described in detail below.
C: 0.15-0.25%
If the C content is less than the lower limit, ferrite is generated in the core and the strength is lowered. On the other hand, when the upper limit of 0.25% is exceeded, workability, particularly machinability, deteriorates.
Further, if the C content exceeds a certain amount, the steel becomes hard, and a spheroidizing annealing treatment is required in some cases when processing into bearing parts. In that case, round and large carbides are generated during the spheroidizing annealing treatment.

Si:0.90〜1.30%
本発明においてSiは真空浸炭後の冷却によって、組織をパーライト化させるために重要な成分である。Siの含有量が0.90%よりも少ないと、真空浸炭後の空冷の際に炭化物が生じ易くなってしまう。また焼入れ性が低下し、強度低下をもたらす。
一方Siの含有量が1.30%を超えて多量であると加工性、特に被削性が劣化する。
Siは、通常のガス浸炭の場合には粒界酸化を促進する元素であり、この粒界酸化層が衝撃強度や疲労強度を低下させる原因となる。但し本発明においては、真空浸炭(雰囲気圧力は、例えば2kPa以下)を用いることで、Siを含有しているにも拘わらず粒界酸化の問題が効果的に抑制される。
本発明において、Siのより望ましい範囲は、1.0〜1.3%である。
Si: 0.90 to 1.30%
In the present invention, Si is an important component for making the structure pearlite by cooling after vacuum carburization. If the Si content is less than 0.90%, carbides are likely to occur during air cooling after vacuum carburization. In addition, the hardenability is reduced and the strength is reduced.
On the other hand, if the Si content exceeds 1.30%, workability, particularly machinability, deteriorates.
Si is an element that promotes grain boundary oxidation in the case of ordinary gas carburization, and this grain boundary oxide layer causes a reduction in impact strength and fatigue strength. However, in the present invention, by using vacuum carburization (atmospheric pressure is, for example, 2 kPa or less), the problem of grain boundary oxidation is effectively suppressed even though Si is contained.
In the present invention, the more desirable range of Si is 1.0 to 1.3%.

Mn:0.70〜1.10%
Mnは脱酸材として鋼の溶製時に添加されるが、その含有量が1.10%を超えて多量になると加工性、特に被削性が劣化する。
一方含有量が0.70%未満であると芯部にフェライトが生成し、強度低下をもたらす。
Mn: 0.70 to 1.10%
Mn is added as a deoxidizing material when steel is melted, but if its content exceeds 1.10% and the amount increases, workability, particularly machinability deteriorates.
On the other hand, if the content is less than 0.70%, ferrite is generated in the core part, resulting in a decrease in strength.

P :0.030%以下
S :0.100%以下
これらは不純物であって、軸受部品の機械的性質にとって好ましくない成分であり、上記の上限値以下にその含有量を規制する。
特に靭性及び熱間加工性を必要とする場合においては、Sのより望ましい範囲は0.03%以下である。
P: 0.030% or less
S: 0.100% or less These are impurities and are undesirable components for the mechanical properties of the bearing parts, and their contents are regulated to the upper limit value or less.
Particularly when toughness and hot workability are required, a more desirable range of S is 0.03% or less.

Cu:0.01〜0.50%
Ni:0.01〜0.50%
Cu,Niは炭化物の生成を抑制する成分であり、それぞれ下限値である0.01%以上含有させる。
一方0.50%を超える多量の添加は、熱間加工性を低下させる。
Cuのより望ましい範囲は0.05〜0.3%であり、またNiのより望ましい範囲は0.04〜0.3%である。Cu,Niはそれぞれ0.05%,0.04%以上を含有させることで芯部強度を向上させることができる。
Cu: 0.01 to 0.50%
Ni: 0.01-0.50%
Cu and Ni are components that suppress the formation of carbides, and are each contained in a lower limit of 0.01% or more.
On the other hand, a large amount of addition exceeding 0.50% reduces hot workability.
A more desirable range of Cu is 0.05 to 0.3%, and a more desirable range of Ni is 0.04 to 0.3%. Cu and Ni can improve the core strength by containing 0.05% and 0.04% or more, respectively.

Cr:0.20〜0.50%
Crは炭化物の生成を促進する成分であり、0.50%を超えて多量に添加すると、浸炭後処理の際にCrが炭化物を形成してしまう。また本発明の目的とするパーライト単相の組織が得られなくなる。更に多量の添加は加工性、特に被削性を劣化させる。
一方0.20%未満であると焼入れ性が低下し、強度低下をもたらす。
Crのより望ましい範囲は0.2〜0.4%である。更に0.25%以上とすることで、芯部強度を向上させることができる。
Cr: 0.20 to 0.50%
Cr is a component that promotes the formation of carbides, and if it is added in a large amount exceeding 0.50%, Cr forms carbides during post-carburization treatment. Moreover, the pearlite single phase structure which is the object of the present invention cannot be obtained. Furthermore, a large amount of addition deteriorates workability, especially machinability.
On the other hand, if it is less than 0.20%, the hardenability is lowered and the strength is lowered.
A more desirable range of Cr is 0.2 to 0.4%. Furthermore, the core part intensity | strength can be improved by setting it as 0.25% or more.

Mo:0.50%以下
Moは焼入れ性を向上させる成分である。但し0.50%を超えて多量に添加すると、鋼の加工性、特に被削性が劣化する。
尚Moの添加量が0.01%未満であると焼入れ時にマルテンサイト変態が十分でなく、不完全焼入れとなって強度が低下するため、0.01%以上添加しておくことが望ましい。
Moのより望ましい範囲は0.05〜0.4%である。更に0.3%以下とすることで、炭化物の生成を抑制することができる。
Mo: 0.50% or less
Mo is a component that improves hardenability. However, if it is added in a large amount exceeding 0.50%, the workability of the steel, particularly the machinability, deteriorates.
If the addition amount of Mo is less than 0.01%, the martensite transformation is not sufficient at the time of quenching, and the strength is lowered due to incomplete quenching. Therefore, it is desirable to add 0.01% or more.
A more desirable range of Mo is 0.05 to 0.4%. Furthermore, the production | generation of a carbide | carbonized_material can be suppressed by setting it as 0.3% or less.

Al:0.30%以下
Alは脱酸剤として添加される。また結晶粒を微細化し強度を向上させる働きを有する。
但し0.30%を超えて多量に含有させると、鋼中にアルミナが形成されて強度の低下を招く。
尚結晶粒を微細化し強度を向上させる働きを確保する上で、Alを0.01%以上添加しておくことが望ましい。
Alのより望ましい範囲は0.01〜0.04%である。
Al: 0.30% or less
Al is added as a deoxidizer. It also has the function of making the crystal grains finer and improving the strength.
However, if it is contained in a large amount exceeding 0.30%, alumina is formed in the steel and the strength is reduced.
In order to secure the function of refining the crystal grains and improving the strength, it is desirable to add 0.01% or more of Al.
A more desirable range of Al is 0.01 to 0.04%.

N :0.05%以下
Nは結晶粒の粗大化を防止する作用を有する。この効果は0.05%程度で飽和するので、それ以下とする。
尚Nの含有量は0.002%以上としておくことが望ましい。これよりも含有量を更に低くするためにはコストが高くなってしまう。
Nのより望ましい範囲は0.01〜0.03%である。
N: 0.05% or less
N has an effect of preventing coarsening of crystal grains. Since this effect is saturated at about 0.05%, it should be less than that.
The N content is preferably 0.002% or more. In order to further reduce the content, the cost becomes high.
A more desirable range of N is 0.01 to 0.03%.

[Si]+[Ni]+[Cu]−[Cr]>0.5・・・式(1)
Si,Ni及びCuは炭化物の生成を抑制し、一方Crは増加させる。
本発明では、それらSi,Ni,Cu及びCrの添加量をバランスさせることによって、真空浸炭により高濃度浸炭した場合においても、その後の冷却によってパーライト組織単相を生成させることができる。
[Si] + [Ni] + [Cu]-[Cr]> 0.5 (1)
Si, Ni and Cu suppress the formation of carbides, while Cr increases.
In the present invention, by balancing the addition amounts of Si, Ni, Cu and Cr, even when high-concentration carburization is performed by vacuum carburization, a pearlite structure single phase can be generated by subsequent cooling.

表面炭素濃度:1.1超〜1.5%(質量%)
炭素濃度が1.1%以下であると軸受部品の表面を有効に高強度化することができない。一方表面炭素濃度を1.5%超としてもそれ以上の強度は向上せず、一方、浸炭時にグラファイトが付着するとともに、浸炭炉を汚染するので、1.5%を上限とした。
Surface carbon concentration: more than 1.1 to 1.5% (mass%)
If the carbon concentration is 1.1% or less, the surface of the bearing part cannot be effectively strengthened. On the other hand, even if the surface carbon concentration exceeds 1.5%, the strength is not improved further. On the other hand, graphite adheres during carburizing and contaminates the carburizing furnace, so 1.5% was made the upper limit.

真空浸炭後の冷却速度:5℃/s〜0.2℃/s
冷却速度が上限値よりも速いと組織化マルテンサイト化し、パーライトとならない。一方冷却速度が下限値よりも更に遅いと、粒界に粗大な炭化物を析出させてしまう。
冷却速度のより望ましい範囲は4℃/s〜0.4℃/sである。
Cooling rate after vacuum carburization: 5 ° C / s to 0.2 ° C / s
When the cooling rate is faster than the upper limit value, it becomes organized martensite and does not become pearlite. On the other hand, if the cooling rate is further slower than the lower limit value, coarse carbides are precipitated at the grain boundaries.
A more desirable range of the cooling rate is 4 ° C./s to 0.4 ° C./s.

高周波焼入れ温度:750〜850℃
焼入れ温度が下限値よりも低いとオーステナイト化せず、焼入れ不良となり強度が低下する。
一方上限値よりも高い温度であると、炭化物が溶けすぎて浸炭部品表面に炭化物が残存しなくなる。
Induction hardening temperature: 750-850 ° C
When the quenching temperature is lower than the lower limit value, austenite is not formed, and quenching becomes poor and the strength is lowered.
On the other hand, when the temperature is higher than the upper limit value, the carbide is excessively dissolved and the carbide does not remain on the surface of the carburized component.

実施例において行ったスラスト試験の方法の説明図である。It is explanatory drawing of the method of the thrust test performed in the Example. 実施例1についての走査形電子顕微鏡写真である。2 is a scanning electron micrograph of Example 1. FIG. 真空浸炭による浸炭及びガス浸炭による浸炭における浸炭深さと硬さとの関係を表した図である。It is a figure showing the relationship between the carburizing depth and the hardness in carburizing by vacuum carburizing and carburizing by gas carburizing.

次に本発明の実施形態を以下に詳述する。
表1に示す化学組成の鋼を溶製し、各材料を下記スラスト試験用の試験片形状に機械加工した。
この部品を900〜1050℃の温度条件、詳しくは表2の温度条件で真空浸炭した後、5℃/s〜0.2℃/sの冷却速度、詳しくは表2に示す冷却速度で冷却し、更にその後、表2に示す加熱条件及び10℃/s以上の冷却条件で冷却し、高周波焼入れを実施した。
そして得られた試験片について、以下の条件でスラスト試験を行い、疲労強度を評価した。
また併せて以下の条件で表面炭素濃度,表面硬さ,浸炭深さ,1μm以下の炭化物の比率の測定,残留オーステナイト量,変寸量の測定を行った。
それらの結果が表2に併せて示してある。
Next, embodiments of the present invention will be described in detail below.
Steels having chemical compositions shown in Table 1 were melted, and each material was machined into a test piece shape for the following thrust test.
This part was vacuum carburized under the temperature conditions of 900 to 1050 ° C., specifically the temperature conditions shown in Table 2, and then cooled at a cooling rate of 5 ° C./s to 0.2 ° C./s, specifically, the cooling rate shown in Table 2. Furthermore, after that, it cooled on the heating conditions shown in Table 2, and the cooling conditions of 10 degree-C / s or more, and induction hardening was implemented.
And about the obtained test piece, the thrust test was done on condition of the following, and fatigue strength was evaluated.
In addition, surface carbon concentration, surface hardness, carburization depth, the ratio of carbides of 1 μm or less, the amount of retained austenite, and the amount of deformation were measured under the following conditions.
The results are also shown in Table 2.

<真空浸炭>
アセチレンガスを用い、圧力1/100気圧以下の減圧下で900〜1050℃に保持する真空浸炭を行なった。
浸炭後、空冷を行って組織をパーライト単相とした。
<Vacuum carburizing>
Using acetylene gas, vacuum carburization was performed at 900 to 1050 ° C. under a reduced pressure of 1/100 atm or less.
After carburizing, air cooling was performed to make the structure a pearlite single phase.

<高周波焼入れ>
加熱温度750〜850℃に20〜30秒加熱し、その後10℃/s以上の冷却速度で冷却(具体的にはここでは水冷)を行った。
<Induction hardening>
Heating was performed at a heating temperature of 750 to 850 ° C. for 20 to 30 seconds, and then cooling (specifically, water cooling) was performed at a cooling rate of 10 ° C./s or more.

<表面炭素濃度の測定>
炭素濃度測定用の試験片の表面をスパーク放電発光分析法(JIS G 1253)により直接測定した。
<Measurement of surface carbon concentration>
The surface of the test piece for measuring the carbon concentration was directly measured by a spark discharge emission spectrometry (JIS G 1253).

<炭化物測定>
高周波焼入れ後の炭化物測定用の試験片の表層部を鏡面研磨し、ピクリン酸アルコール溶液で腐食してSEM(走査形電子顕微鏡)で観察を行い、観察される炭化物を10000倍にて面積0.1mm分観察し、断面におけるサイズが1μm以下の炭化物の全炭化物に対する比率(個数比率)を求めた。
<Carbide measurement>
The surface layer of the test piece for carbide measurement after induction hardening is mirror-polished, corroded with a picric acid alcohol solution, and observed with a SEM (scanning electron microscope). Observation was performed at 1 mm for 2 minutes, and a ratio (number ratio) of carbides having a cross-sectional size of 1 μm or less to all carbides was determined.

<表面硬さ測定>
JIS Z 2244に従い、高周波焼入後の試験片の表層部を鏡面研摩し、表面から0.05mmの位置を荷重2.94Nで測定したときの値を用いた。
<Surface hardness measurement>
According to JIS Z 2244, the surface layer part of the test piece after induction hardening was mirror-polished, and a value obtained by measuring a position 0.05 mm from the surface with a load of 2.94 N was used.

<浸炭深さ測定>
JIS G 0557に従い、ビッカース硬さ550HVを基準として有効硬化層深さを測定した。
<Carburization depth measurement>
In accordance with JIS G 0557, the effective hardened layer depth was measured based on Vickers hardness of 550 HV.

<残留γ量測定>
残留γ量はX線回折法を用いて測定した。
詳しくはCuターゲットにより発生させたX線をZrフィルターを通して試料に当て定量した。
回折面はγ相の(220)(311)、α相の(211)を用いた。
<Measurement of residual γ amount>
The amount of residual γ was measured using an X-ray diffraction method.
Specifically, the sample was quantified by applying X-rays generated by a Cu target to a sample through a Zr filter.
As the diffraction plane, γ-phase (220) (311) and α-phase (211) were used.

<変寸量>
φ10mm×100mmの部品を作製し、上記高周波焼入れ後において300℃×3時間の焼戻し(1000時間の使用に対応する)を行って径変化を測定し、変寸量を評価した。
<Size change>
A φ10 mm × 100 mm part was prepared, and after the induction hardening, tempering at 300 ° C. for 3 hours (corresponding to use for 1000 hours) was performed to measure the diameter change, and the amount of change was evaluated.

<スラスト試験>
図1に示しているように、中心部にφ28.3mmの穴10を有する、厚みが8.8mm、外径がφ63mmのディスク型の試験片12に対して、球形の3個の転動体14を接触させ、その状態で試験片12と転動体14との接触応力が下記の応力となるように転動体14を図中下向きに押圧し、その状態で押圧治具16を高速回転させて、試験片12が摩耗や表層のめくれ等によって壊れるまでの寿命を測定し、そして全体の10%が破壊する負荷回数L10にて疲労強度の評価を行った。
具体的な条件は以下の通りである。
・試験片:φ63(外径)−28.3(穴径)×8.8(厚み)mmのディスク型の試験片を真空浸炭高周波焼入後にラッピング加工(鏡面加工)
・転動体:3/8インチSUJ2ボール3個
・接触応力:Pmax=5.5GPa
・負荷回転速度1800rpm
・潤滑:タービン油#68油槽給油
・温度:常温
・評価:L10(10%が破壊する負荷回数)
<Thrust test>
As shown in FIG. 1, three spherical rolling elements 14 are formed on a disk-shaped test piece 12 having a hole 10 having a diameter of 28.3 mm and a thickness of 8.8 mm and an outer diameter of 63 mm. In this state, the rolling element 14 is pressed downward in the drawing so that the contact stress between the test piece 12 and the rolling element 14 becomes the following stress, and the pressing jig 16 is rotated at a high speed in this state, test piece 12 to determine the lifetime until broken by wear and surface of curling or the like, and 10% of the total was evaluated for fatigue strength at a load number L 10 to break.
Specific conditions are as follows.
-Specimen: Lapping process (mirror surface process) after vacuum carburizing induction hardening of a disk-shaped test specimen of φ63 (outer diameter)-28.3 (hole diameter) x 8.8 (thickness) mm
・ Rolling elements: 3/8 inch SUJ2 balls 3 pieces ・ Contact stress: Pmax = 5.5 GPa
・ Load rotation speed 1800rpm
・ Lubrication: Turbine oil # 68 oil tank lubrication ・ Temperature: normal temperature ・ Evaluation: L 10 (10% destruction load)

表2の結果に見られるように、Siが0.71%と低く、また式(1)の値が0.28で本発明の下限値よりも低い比較例1では、1μm以下の炭化物の割合が8%と低く、その結果疲労強度が低い。
またCrの含有量が0.80%で、本発明の上限値である0.50%よりも多く、また式(1)の値が0.30で本発明の下限値である0.5よりも低い比較例2では、微細(1μm以下)炭化物の割合が61%で低く、疲労強度が低い。
As can be seen from the results in Table 2, in Comparative Example 1 where Si is as low as 0.71% and the value of formula (1) is 0.28, which is lower than the lower limit of the present invention, the proportion of carbides of 1 μm or less is 8%. Low, resulting in low fatigue strength.
In Comparative Example 2, the Cr content is 0.80%, which is higher than the upper limit of 0.50% of the present invention, and the value of formula (1) is 0.30, which is lower than the lower limit of 0.5 of the present invention. (1 μm or less) The proportion of carbide is as low as 61%, and the fatigue strength is low.

また表面炭素濃度が0.70と低く、表面に炭化物が生成していない比較例3及び表面炭素濃度が0.85で低く、表面の微細炭化物が28%と少ない比較例4では、何れも疲労強度が低い。
更に高周波焼入れの際の加熱温度が710℃で低く、表面の微細炭化物の量が42%と少ない比較例5では疲労強度が低い。
更に高周波焼入れの加熱温度が910℃と高く、表面に炭化物の生成していない比較例6では疲労強度が低い。
In Comparative Example 3 where the surface carbon concentration is as low as 0.70 and no carbide is formed on the surface, and in Comparative Example 4 where the surface carbon concentration is as low as 0.85 and the amount of fine carbide on the surface is as low as 28%, fatigue is observed. Low strength.
Further, in Comparative Example 5 where the heating temperature during induction hardening is low at 710 ° C. and the amount of fine carbide on the surface is as low as 42%, the fatigue strength is low.
Furthermore, the heating temperature of induction hardening is as high as 910 ° C., and the fatigue strength is low in Comparative Example 6 where no carbide is generated on the surface.

比較例7は、JIS鋼種SUJ2を用いて試験片を作製し、これを焼入れ焼戻し(調質)処理したもので、この比較例7では表面硬さが本発明の実施例のものに比べて低く、更に変寸量,疲労強度ともに同じく本発明の実施例のものに比べて劣っている。   In Comparative Example 7, a test piece was prepared using JIS steel type SUJ2, and this was subjected to quenching and tempering (tempering) treatment. In Comparative Example 7, the surface hardness was lower than that of the example of the present invention. Furthermore, both the amount of change and the fatigue strength are inferior to those of the examples of the present invention.

比較例8は、比較例7の調質処理に代えてガス浸炭窒化処理し、高周波焼入れを施したもので、その窒化処理により表面にNが0.21%(表面炭素濃度の欄に括弧書きで記入)含有されている。この結果、この比較例8のものは表面硬さは十分であるが、残留オーステナイト量が多く、これに起因して変寸量が多くなっている。   In Comparative Example 8, instead of the tempering treatment of Comparative Example 7, gas carbonitriding was performed and induction hardening was performed, and N was 0.21% on the surface due to the nitriding treatment (filled in the surface carbon concentration column in parentheses) ) Is contained. As a result, the surface hardness of the comparative example 8 is sufficient, but the amount of retained austenite is large, and the amount of change is large due to this.

これに対し本発明の各実施例のものは、何れも表面に微細炭化物が多量に生成しており、表面硬さ,疲労強度とともに高く、また変寸量も小さく抑えられている。
また各実施例のものは、表面硬さが比較例8のSUJ2に窒化処理を施したものと同等レベルで得られている。
因みに図2(イ)は実施例1についての真空浸炭及び徐冷後の電子顕微鏡写真を、また(ロ)はその後の高周波焼入れ後の電子顕微鏡写真(何れも倍率は10000倍)を表している。
On the other hand, in each of the examples of the present invention, a large amount of fine carbides are formed on the surface, and the surface hardness and fatigue strength are high, and the amount of change is kept small.
In each example, the surface hardness was obtained at the same level as that obtained by subjecting SUJ2 of Comparative Example 8 to nitriding treatment.
Incidentally, FIG. 2 (a) shows an electron micrograph after vacuum carburization and slow cooling for Example 1, and (b) shows an electron micrograph after induction hardening (both magnifications are 10,000 times). .

図2(イ)から、真空浸炭及び徐冷後の組織が良好にパーライト単相の組織となっていること、また(ロ)よりその後高周波焼入れすることにより、セメンタイトの分断による微細な炭化物が細かく多数分散して生じていること(図2(ロ)中の粒状の白点が炭化物である)が、見て取れる。   From Fig. 2 (a), the structure after vacuum carburization and slow cooling is a pearlite single-phase structure well, and after (b) induction hardening, fine carbides due to cementite fragmentation are fine. It can be seen that a large number of the particles are dispersed (the granular white dots in FIG. 2B are carbides).

表2には真空浸炭を施して成る実施例の浸炭深さを示しているが、同表に示すようにこの真空浸炭ではガス浸炭による場合に比べて深い浸炭層が形成される。
真空浸炭の場合、ガス浸炭に比べて浸炭速度が早く、同じ時間だけ浸炭処理したとき浸炭層が深くなる。
ここで浸炭深さとは、ビッカース硬さが550HVとなる深さをいう。
Table 2 shows the carburization depth of the examples formed by vacuum carburization. As shown in the table, a deep carburized layer is formed in this vacuum carburization as compared with the case of gas carburization.
In the case of vacuum carburization, the carburization rate is faster than that of gas carburization, and the carburized layer becomes deeper when carburized for the same time.
Here, the carburization depth refers to a depth at which the Vickers hardness is 550 HV.

図3に、真空浸炭による浸炭とガス浸炭による浸炭とを比較して示しているが、図に示しているように真空浸炭の場合、ガス浸炭に比べてより深い浸炭深さが得られる。
尚この図3の結果は、SCR420を対象として950℃2時間の条件で真空浸炭,ガス浸炭及び焼入れを行ったときの結果を示したものである。
この結果から、真空浸炭によればガス浸炭に比べて深い浸炭深さが得られることが分る。
FIG. 3 shows a comparison between carburization by vacuum carburization and carburization by gas carburization. As shown in the figure, in the case of vacuum carburization, a deeper carburization depth can be obtained than by gas carburization.
The results of FIG. 3 show the results when vacuum carburizing, gas carburizing, and quenching are performed on SCR 420 under the condition of 950 ° C. for 2 hours.
From this result, it can be seen that deep carburization depth can be obtained by vacuum carburization as compared with gas carburization.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.

Claims (9)

質量%で
C :0.15〜0.25%
Si:0.90〜1.30%
Mn:0.70〜1.10%
P :0.030%以下
S :0.100%以下
Cu:0.01〜0.50%
Ni:0.01〜0.50%
Cr:0.20〜0.50%
Mo:0.50%以下
Al:0.30%以下
N :0.05%以下
で且つ下記式(1)の条件を満たし、
[Si]+[Ni]+[Cu]−[Cr]>0.5・・・式(1)
(但し式(1)中各元素記号は含有質量%を表す)
残部Fe及び不可避的不純物の組成を有する鋼を圧力2kPa以下の減圧条件で、浸炭の後の徐冷後の表面炭素濃度が1.1超〜1.5%の範囲内となるように真空浸炭処理を行った後、パーライト変態を起こす冷却速度で空冷による前記徐冷を行って表層の組織をパーライトとなし、しかる後パーライト組織中のセメンタイトを細かく分断させることで表面から0.1mmまでの範囲内に炭化物中1μm以下の炭化物が個数で95%以上を占める微細炭化物を生ぜしめる加熱及び冷却条件で高周波焼入れを行うことを特徴とする軸受部品の製造方法。
In mass%
C: 0.15-0.25%
Si: 0.90 to 1.30%
Mn: 0.70 to 1.10%
P: 0.030% or less
S: 0.100% or less
Cu: 0.01 to 0.50%
Ni: 0.01-0.50%
Cr: 0.20 to 0.50%
Mo: 0.50% or less
Al: 0.30% or less
N: 0.05% or less and satisfying the condition of the following formula (1),
[Si] + [Ni] + [Cu]-[Cr]> 0.5 (1)
(However, each element symbol in the formula (1) represents mass%)
Vacuum carburization of steel having the composition of the balance Fe and inevitable impurities so that the surface carbon concentration after slow cooling after carburizing is within the range of more than 1.1 to 1.5% under a reduced pressure condition of 2 kPa or less. After the treatment, the above-mentioned slow cooling by air cooling is performed at a cooling rate that causes pearlite transformation to make the surface structure pearlite, and then the cementite in the pearlite structure is finely divided to the range from the surface to 0.1 mm. A method for manufacturing a bearing component, comprising performing induction hardening under heating and cooling conditions in which fine carbides in which the number of carbides of 1 μm or less in the carbides accounts for 95% or more are generated.
請求項1において、前記空冷による前記徐冷を5℃/s〜0.2℃/sの冷却速度で行い、前記高周波焼入れを加熱温度750〜850℃で行うことを特徴とする軸受部品の製造方法。   2. A bearing part according to claim 1, wherein the slow cooling by the air cooling is performed at a cooling rate of 5 [deg.] C./s to 0.2 [deg.] C./s, and the induction hardening is performed at a heating temperature of 750 to 850 [deg.] C. Method. 請求項1,2の何れかにおいて、前記鋼が質量%で
Nb:0.02〜0.20%
Ti:0.02〜0.20%
B :0.0005〜0.0100%
の1種又は2種以上を更に含有したものであることを特徴とする軸受部品の製造方法。
In any one of Claims 1 and 2, the said steel is mass%.
Nb: 0.02-0.20%
Ti: 0.02-0.20%
B: 0.0005-0.0100%
1 or 2 types or more of these are further contained, The manufacturing method of the bearing components characterized by the above-mentioned.
請求項1〜3の何れかにおいて、前記真空浸炭を、前記徐冷後の表面炭素濃度が1.2%以上となるように行うことを特徴とする軸受部品の製造方法。   4. The method of manufacturing a bearing component according to claim 1, wherein the vacuum carburization is performed so that a surface carbon concentration after the slow cooling is 1.2% or more. 表面炭素濃度が1.1超〜1.5%で、表面から0.1mmまでの範囲内にパーライト組織のセメンタイトが分断して生じた1μm以下の炭化物が個数で炭化物中95%以上を占める微細炭化物が生ぜしめてあることを特徴とする軸受部品。   The surface carbon concentration is more than 1.1 to 1.5%, and fine particles of 1 μm or less generated by dividing the cementite of pearlite structure within the range from the surface to 0.1 mm account for 95% or more of the carbides. Bearing parts characterized by carbides. 請求項5において、質量%で
C :0.15〜0.25%
Si:0.90〜1.30%
Mn:0.70〜1.10%
P :0.030%以下
S :0.100%以下
Cu:0.01〜0.50%
Ni:0.01〜0.50%
Cr:0.20〜0.50%
Mo:0.50%以下
Al:0.30%以下
N :0.05%以下
で且つ下記式(1)の条件を満たし、
[Si]+[Ni]+[Cu]−[Cr]>0.5・・・式(1)
(但し式(1)中各元素記号は含有質量%を表す)
残部Fe及び不可避的不純物の組成を有し、真空浸炭とその後の冷却、及び高周波焼入れにより前記表面から0.1mmまでの範囲内に前記微細炭化物が生ぜしめてあることを特徴とする軸受部品。
In claim 5, in mass%
C: 0.15-0.25%
Si: 0.90 to 1.30%
Mn: 0.70 to 1.10%
P: 0.030% or less
S: 0.100% or less
Cu: 0.01 to 0.50%
Ni: 0.01-0.50%
Cr: 0.20 to 0.50%
Mo: 0.50% or less
Al: 0.30% or less
N: 0.05% or less and satisfying the condition of the following formula (1),
[Si] + [Ni] + [Cu]-[Cr]> 0.5 (1)
(However, each element symbol in the formula (1) represents mass%)
A bearing component having a composition of the balance Fe and inevitable impurities, wherein the fine carbide is generated within a range of 0.1 mm from the surface by vacuum carburization, subsequent cooling, and induction hardening.
請求項5,6の何れかにおいて、前記炭化物は、マルテンサイト組織が50%以上を占めた組織の中に生ぜしめてあることを特徴とする軸受部品。   7. The bearing part according to claim 5, wherein the carbide is formed in a structure in which a martensite structure occupies 50% or more. 請求項5〜7の何れかにおいて、前記鋼が質量%で
Nb:0.02〜0.20%
Ti:0.02〜0.20%
B :0.0005〜0.0100%
の何れか1種若しくは2種以上を更に含有したものであることを特徴とする軸受部品。
In any one of Claims 5-7, the said steel is mass%.
Nb: 0.02-0.20%
Ti: 0.02-0.20%
B: 0.0005-0.0100%
A bearing component characterized by further containing one or more of the above.
請求項5〜8の何れかにおいて、前記表面炭素濃度が1.2%以上であることを特徴とする軸受部品。   The bearing component according to claim 5, wherein the surface carbon concentration is 1.2% or more.
JP2010075861A 2010-03-29 2010-03-29 Manufacturing method of bearing parts and bearing parts Active JP5599211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075861A JP5599211B2 (en) 2010-03-29 2010-03-29 Manufacturing method of bearing parts and bearing parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075861A JP5599211B2 (en) 2010-03-29 2010-03-29 Manufacturing method of bearing parts and bearing parts

Publications (2)

Publication Number Publication Date
JP2011208201A true JP2011208201A (en) 2011-10-20
JP5599211B2 JP5599211B2 (en) 2014-10-01

Family

ID=44939557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075861A Active JP5599211B2 (en) 2010-03-29 2010-03-29 Manufacturing method of bearing parts and bearing parts

Country Status (1)

Country Link
JP (1) JP5599211B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382516A (en) * 2013-07-31 2013-11-06 江苏森威精锻有限公司 XC 45 steel high-frequency layer-by-layer heating induction quenching method
WO2014208562A1 (en) * 2013-06-26 2014-12-31 大同特殊鋼株式会社 Carburized component
WO2020144830A1 (en) * 2019-01-10 2020-07-16 日本製鉄株式会社 Mechanical component and mechanical component manufacturing method
WO2021057218A1 (en) * 2019-09-27 2021-04-01 南京钢铁股份有限公司 Continuously cast gcr15 bearing steel wire rod carbide network control method
CN115109899A (en) * 2022-06-27 2022-09-27 北京机电研究所有限公司 Heat treatment process of low-carbon alloy steel material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076125A (en) * 2002-08-21 2004-03-11 Komatsu Ltd Rolling member
JP2005048270A (en) * 2003-07-31 2005-02-24 Kobe Steel Ltd Method of producing surface hardened component, and surface hardened component
JP2008280610A (en) * 2007-04-09 2008-11-20 Daido Steel Co Ltd Carburized and high-frequency hardened part having high strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076125A (en) * 2002-08-21 2004-03-11 Komatsu Ltd Rolling member
JP2005048270A (en) * 2003-07-31 2005-02-24 Kobe Steel Ltd Method of producing surface hardened component, and surface hardened component
JP2008280610A (en) * 2007-04-09 2008-11-20 Daido Steel Co Ltd Carburized and high-frequency hardened part having high strength

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208562A1 (en) * 2013-06-26 2014-12-31 大同特殊鋼株式会社 Carburized component
US10428414B2 (en) 2013-06-26 2019-10-01 Daido Steel Co., Ltd. Carburized component
CN103382516A (en) * 2013-07-31 2013-11-06 江苏森威精锻有限公司 XC 45 steel high-frequency layer-by-layer heating induction quenching method
CN103382516B (en) * 2013-07-31 2015-03-25 江苏森威精锻有限公司 XC45 steel high-frequency layer-by-layer heating induction quenching method
WO2020144830A1 (en) * 2019-01-10 2020-07-16 日本製鉄株式会社 Mechanical component and mechanical component manufacturing method
WO2021057218A1 (en) * 2019-09-27 2021-04-01 南京钢铁股份有限公司 Continuously cast gcr15 bearing steel wire rod carbide network control method
CN115109899A (en) * 2022-06-27 2022-09-27 北京机电研究所有限公司 Heat treatment process of low-carbon alloy steel material

Also Published As

Publication number Publication date
JP5599211B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5305820B2 (en) Manufacturing method of carburized parts and steel parts
JP5432105B2 (en) Case-hardened steel and method for producing the same
JP5503344B2 (en) High-strength case-hardened steel parts and manufacturing method thereof
JP5202043B2 (en) Rolling parts and manufacturing method thereof
JP4688727B2 (en) Carburized parts and manufacturing method thereof
JP5556151B2 (en) Manufacturing method of bearing parts with excellent rolling fatigue characteristics under foreign environment
JP2010285689A (en) Carburized steel component excellent in low-cycle bending fatigue strength
JP2007284739A (en) Steel component and its production method
WO2014017074A1 (en) Nitrocarburizable steel, nitrocarburized part, and methods for producing said nitrocarburizable steel and said nitrocarburized part
JP5599211B2 (en) Manufacturing method of bearing parts and bearing parts
JP2009127095A (en) Case-hardening steel for power transmission component
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP2010255099A (en) Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment
JP6601358B2 (en) Carburized parts and manufacturing method thereof
JP2007332421A (en) Method of manufacturing soft-nitride part
JP2005042188A (en) Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment
JP2005325398A (en) High-strength gear and manufacturing method therefor
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP4821582B2 (en) Steel for vacuum carburized gear
JP2015127435A (en) Steel material having excellent flexural fatigue properties after carburization, production method thereof and carburization component
WO2017146057A1 (en) Cement steel component and steel material having excellent stability of rolling fatigue life, and method for manufacturing same
JP6146381B2 (en) Case-hardened steel for bearings with excellent rolling fatigue characteristics and method for producing the same
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP6881496B2 (en) Parts and their manufacturing methods
JP2009079253A (en) Shaft and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140812

R150 Certificate of patent or registration of utility model

Ref document number: 5599211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250