JP2011208144A - Polyethylene microporous film - Google Patents

Polyethylene microporous film Download PDF

Info

Publication number
JP2011208144A
JP2011208144A JP2011092804A JP2011092804A JP2011208144A JP 2011208144 A JP2011208144 A JP 2011208144A JP 2011092804 A JP2011092804 A JP 2011092804A JP 2011092804 A JP2011092804 A JP 2011092804A JP 2011208144 A JP2011208144 A JP 2011208144A
Authority
JP
Japan
Prior art keywords
weight
molecular weight
polyethylene
film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011092804A
Other languages
Japanese (ja)
Other versions
JP5611104B2 (en
Inventor
Youngkeun Lee
ヨンクン リ
Jang-Weon Rhee
ジャンウォン リ
Won Young Cho
ウォンヨン チョ
Jung Moon Sung
ジュンムン ソン
Byoung Cheon Jo
ビョンチョン ジョ
Chul-Ho Lee
チョルホ リ
In Hwa Jung
インハ チョン
Byung Rae Jung
ビョンレ チョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Energy Co Ltd
Original Assignee
SK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37291282&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2011208144(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SK Energy Co Ltd filed Critical SK Energy Co Ltd
Publication of JP2011208144A publication Critical patent/JP2011208144A/en
Application granted granted Critical
Publication of JP5611104B2 publication Critical patent/JP5611104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a high-density polyethylene microporous film having excellent physical properties and uniform void structure for improving problems due to increased in molecular weight and allowing use as a porous film for a battery.SOLUTION: The polyethylene microporous film is formed of a high-density polyethylene, which has weight average molecular weight 2×10to 5×10and contains 5 wt.% or less of molecules with molecular weight 1×10or less. In the polyethylene microporous film, tensile strength in each of the lateral direction and the longitudinal direction is 1,100 kg/cmor more, perforation strength is 0.22 N/μm or more, a gas permeability constant (Darcy's permeability constant) is 1.3×10Darcy or more, and a shrinkage factor in each of the longitudinal direction and the lateral direction is 5% or less.

Description

本発明は高密度ポリエチレン微細多孔膜に関する。より詳しくは圧出混錬性及び延伸性が優秀だけではなく高い生産性を持って、これを使う電池の性能と安全性を高めることができる高密度ポリエチレン微細多孔膜に関する。   The present invention relates to a high-density polyethylene microporous membrane. More specifically, the present invention relates to a high-density polyethylene microporous membrane that not only has excellent extruding kneadability and stretchability but also high productivity, and can improve the performance and safety of a battery using the same.

ポリオレフィン微細多孔膜(microporous film)はその化学的安全性と優秀な物性で各種電池用隔離膜(battery separator)、分離用フィルター及び微細濾過用分離膜(membrane)などで幅広く利用されている。   Polyolefin microporous films are widely used in various battery separators, separation filters, and microfiltration membranes because of their chemical safety and excellent physical properties.

ポリオレフィンから微細多孔膜を作る方法は大きく三種類で分類される。一番目はポリオレフィンを薄い纎維(thin fiber)で作って不織布(non woven fabric)形態で微細多孔膜を作る方法であり、二番目は厚いポリオレフィンフィルムを作った後、低温で延伸してポリオレフィンの結晶部分である薄板(lamella)の間に微細クラック(micro crack)を誘発させて微細空隙を形成させる乾式法である。三番目はポリオレフィンを高温で希釈液と混錬して単一相を作って冷却過程でポリオレフィンと希釈液を相分離させた後、希釈液部分を抽出させてポリオレフィンに空隙を作る湿式法である。   There are three main methods for producing microporous membranes from polyolefins. The first is a method of making a microporous membrane in the form of a non-woven fabric by making the polyolefin from a thin fiber, and the second is to make a thick polyolefin film and then drawing it at a low temperature to It is a dry method in which micro cracks are induced between thin plates (lamella) as crystal parts to form micro voids. The third is a wet method in which polyolefin is kneaded with a diluent at a high temperature to form a single phase, and after the polyolefin and diluent are phase separated in the cooling process, the diluent is extracted to create voids in the polyolefin. .

この中、三番目の湿式法は他の二つの方法と比べてフィルムの厚さが薄くて均一である薄膜のフィルムを作ることができ、物性も優秀でリチウムイオン電池など2次電池の隔離膜用で幅広く使われている。   Among these, the third wet method can produce a thin film with a thin and uniform film thickness compared to the other two methods, and it has excellent physical properties and is a separator for secondary batteries such as lithium ion batteries. Widely used for.

湿式法による一般的な多孔性フィルムの製造方法としはアメリカ特許第4,247,498号に記載されている。この特許にはポリエチレンとこれと合う混成液状化合物(compatible liquid)を使って、これら混合物を高温で混合して熱力学的単一相溶液を作った後、これを冷却させて冷却過程でポリエチレンと混成溶媒を固体/液体又は液体/液体で相分離させて、これを利用してポリオレフィン多孔膜を製造する技術が記載されている。   A general method for producing a porous film by a wet method is described in US Pat. No. 4,247,498. This patent uses polyethylene and compatible liquids to mix these mixtures at high temperatures to form a thermodynamic single-phase solution, which is then cooled and cooled with polyethylene during the cooling process. A technique for producing a polyolefin porous membrane by using a mixed solvent as a solid / liquid or liquid / liquid and performing phase separation is described.

アメリカ特許第4,335,193号にはポリオレフィンにジオクチルフタレート(dioctylphthalate)、液状パラフィン(liquid paraffin)などの有機液状化合物(organic liquid)と無機物(inorganic filler)を添加し加工した後、有機液状化合物と無機物をとり除いてポリオレフィン多孔膜を製造する技術が記述されており、これらの技術はアメリカ特許第5,641,565号等にも記述されている。   In US Pat. No. 4,335,193, an organic liquid compound such as dioctylphthalate or liquid paraffin and an inorganic filler are added to a polyolefin and processed, and then the organic liquid compound and the inorganic substance are removed. In addition, techniques for producing polyolefin porous membranes are described, and these techniques are also described in US Pat. No. 5,641,565.

しかし、このような方法はシリカなどの無機物を使うので無機物投入及び混錬過程が難しくて、後工程でこれを抽出およびとり除くための工程が加えられて工程が複雑になる共に延伸比を高めにくい短所がある。   However, since such a method uses an inorganic material such as silica, it is difficult to input and knead the inorganic material, and a process for extracting and removing this is added in the subsequent process, which complicates the process and hardly increases the stretch ratio. There are disadvantages.

アメリカ特許第4,539,256号にもポリエチレンと混成液状化合物を圧出加工し延伸した後、抽出して微細多孔フィルムを作る基本的な方法が記載されている。   U.S. Pat. No. 4,539,256 also describes a basic method for producing a microporous film by extruding and drawing a polyethylene and a hybrid liquid compound and then drawing.

二次電池の本格使用と共に、微細多孔膜の生産性とフィルムの特性を向上させるための努力が持続的に成り立って来た。代表的に重量平均分子量100万程度の超高分子量ポリオレフィン(UHMWPO)を使うとか、混合して組成物の分子量を高めて多孔膜の強度を高める方法がある。   Along with the full-scale use of secondary batteries, efforts to improve the productivity of microporous membranes and the characteristics of the films have continued. Typically, there are methods such as using ultra-high molecular weight polyolefin (UHMWPO) having a weight average molecular weight of about 1 million or mixing to increase the molecular weight of the composition to increase the strength of the porous film.

これと関連して、アメリカ特許第4,588,633号及び第4,873,034号に重量平均分子量50万以上のポリオレフィンとポリオレフィンを高温で溶かす事ができる溶媒を使って、2段階の溶媒抽出過程と延伸過程を通じて微細多孔膜を作る工程が紹介されている。しかし、この方法は超高分子量ポリオレフィンの短所である溶媒との混錬性及び圧出性を向上させるために圧出過程で過量の溶媒を使ってこれを1段階抽出して延伸した後に再び抽出する段階を経る。   In this context, US Pat. Nos. 4,588,633 and 4,873,034 use a polyolefin that has a weight average molecular weight of 500,000 or more and a solvent that can dissolve polyolefins at high temperatures, and are microporous through a two-stage solvent extraction process and a stretching process. The process of making a film is introduced. However, in this method, in order to improve the kneadability and extrudability with the solvent, which is a disadvantage of ultra-high molecular weight polyolefin, it is extracted once after being drawn and stretched in one step using an excessive amount of solvent in the extruding process. It goes through the stage to do.

アメリカ特許第5,051,183号には重量平均分子量70万以上の超高分子量ポリオレフィンを1%以上含有したポリオレフィン10〜50重量%とミネラルオイルなどの溶媒を90〜50重量%含有し、多分散指数(重量平均分子量/数平均分子量)が10〜300である組成物を使ったポリエチレン微細多孔膜が紹介されている。空隙を形成する方法は前記組成物を圧出してゲル状のシーツを作って、組成物の融点と融点+10℃の間の温度で延伸した後、溶媒を抽出して多孔膜を形成するのである。   US Pat. No. 5,051,183 contains 10 to 50% by weight of a polyolefin containing 1% or more of ultrahigh molecular weight polyolefin having a weight average molecular weight of 700,000 or more, 90 to 50% by weight of a solvent such as mineral oil, and the polydispersity index (weight). A polyethylene microporous membrane using a composition having an average molecular weight / number average molecular weight) of 10 to 300 has been introduced. In the method of forming voids, the composition is squeezed to form a gel-like sheet, stretched at a temperature between the melting point of the composition and the melting point + 10 ° C., and then the solvent is extracted to form a porous film. .

しかし、この方法は超高分子量ポリオレフィンを混合することと同時に分子量分布が広くなって分子量が大きいポリオレフィンを過糧含むようになる。このようになればこれらの分子による絡み合い(chain entanglement)がひどく発生して延伸性が非常に落ちるようになる。即ち、高延伸比及び早い延伸速度での破断や低延伸比での未延伸現象が発生することになる。   However, in this method, the ultra-high molecular weight polyolefin is mixed, and at the same time, the molecular weight distribution is widened to overfeed the polyolefin having a large molecular weight. If this happens, the chain entanglement due to these molecules is severely generated and the stretchability is greatly reduced. That is, a breakage at a high draw ratio and a fast draw speed and an unstretched phenomenon at a low draw ratio occur.

これを解決する方法は延伸温度を高めて延伸の時組成物を軟質性(soft)で作るとか延伸速度を延ばして組成物の温度を高めることと同一な効果を得るのである。しかし、このようにすれば逆に延伸の時、樹脂の配列(orientation)が少なくなって延伸効果が落ちて最終多孔膜の物性が低下する問題が起こる。   The method of solving this is to obtain the same effect as increasing the stretching temperature to make the composition soft when stretching, or increasing the stretching speed to increase the temperature of the composition. However, if this is done, on the contrary, when stretching, the orientation of the resin is reduced and the stretching effect is reduced, resulting in a problem that the physical properties of the final porous film are lowered.

また、分子量分布が広い樹脂で作られたフィルムは分子量分布が狭い樹脂で作られたフィルムと比べて分子量が小さい分子たちによる欠点(defect)が多く存在することになり、これによって衝撃強度(impact strength)、穿孔強度(puncture strength)などが低下する短所がある。   Also, a film made of a resin having a wide molecular weight distribution has more defects due to molecules having a lower molecular weight than a film made of a resin having a narrow molecular weight distribution. Strength, puncture strength, etc. are disadvantageous.

このような現象は微細多孔膜フィルムでも例外ではなくて、分子量分布が広くなれば微細多孔膜フィルムの一番重要な物性の中ひとつの穿孔強度が充分に高くならない。即ち、物性向上のために添加された超高分子量ポリオレフィンの効果が充分に現われなくなるのである。このような問題点は類似の技術である日本特開平06‐234876号、06‐212006号及びアメリカ特許第5,786,396号などにも存在する。   Such a phenomenon is no exception even in a microporous film, and if the molecular weight distribution is widened, one of the most important physical properties of the microporous film is not sufficiently high. That is, the effect of the ultrahigh molecular weight polyolefin added for improving the physical properties does not sufficiently appear. Such problems also exist in similar technologies such as Japanese Unexamined Patent Publication Nos. 06-234876 and 06-212006 and US Pat. No. 5,786,396.

一方、日本特開平09-3228号でもこれと類似の樹脂造成が使われており、縦方向(MD)及び横方向(TD)の延伸比均衡を合わせて物性を補完する方法が紹介されてある。   On the other hand, Japanese Patent Application Laid-Open No. 09-3228 uses a similar resin composition and introduces a method for complementing physical properties by matching the stretch ratio balance in the machine direction (MD) and the transverse direction (TD). .

日本特開平09-259858号ではポリエチレン微細多孔膜のシャットダウン(shutdown)温度(電池の異常作動で電池内部の温度が上がる場合発火、爆発などの事故を防止するために多孔膜が溶融されて空隙を阻んで電流の流れを阻んでくれる温度)を低めるために重量平均分子量が50万以上のポリエチレン70〜99重量%と重量平均分子量が1,000〜4,000である低分子量ポリエチレン1〜30重量%になった樹脂組成物10〜80重量%と溶媒20〜90重量%の溶液を製造してダイで圧出して冷凍させてゲル状組成物を作って延伸後残存溶媒を抽出する方法が紹介されている。   In Japanese Patent Laid-Open No. 09-259858, the shutdown temperature of a polyethylene microporous membrane (if the temperature inside the battery rises due to abnormal operation of the battery, the porous membrane is melted and voids are formed to prevent accidents such as ignition and explosion) In order to reduce the temperature that hinders the flow of electric current), 70 to 99% by weight of polyethylene having a weight average molecular weight of 500,000 or more and 1 to 30% by weight of low molecular weight polyethylene having a weight average molecular weight of 1,000 to 4,000. Introducing a method of producing 10% to 80% by weight resin composition and 20 to 90% solvent by weight, extruding with a die and freezing to form a gel composition and extracting the residual solvent after stretching Has been.

この技術では重量平均分子量が1,000〜4,000である低分子量ポリエチレンを使ってシャットダウン温度を低めることを特徴としている。しかし、この技術にも二つの問題が存在する。   This technique is characterized by lowering the shutdown temperature using low molecular weight polyethylene having a weight average molecular weight of 1,000 to 4,000. However, there are two problems with this technology.

即ち、低分子量分子の追加で分子量が低くなって分子量分布が広くなるので物性が低下する。実施例にこのような技術で製造されたポリエチレン多孔膜の引張強度は1,000〜1,200kg/cm程度で比較的に低い水準であることを示した。 That is, the addition of a low molecular weight molecule lowers the molecular weight and broadens the molecular weight distribution, thus lowering the physical properties. In the examples, it was shown that the tensile strength of the polyethylene porous membrane produced by such a technique was about 1,000 to 1,200 kg / cm 2, which was a relatively low level.

また、ポリオレフィンと希釈液あるいは溶媒を混練する過程は高い技術を要する。商業的には二軸圧出器(twin screw extruder)、混練器(kneader)及びバンバリーミキサー(banbury mixer)などが使われる。   In addition, the process of kneading polyolefin with a diluent or solvent requires a high technique. Commercially used are twin screw extruders, kneaders and banbury mixers.

前述した技術のように粘度が大きく違う(重量平均分子量が50万以上の超高分子ポリエチレンと重量平均分子量が1,000〜4,000である低分子量ポリエチレン)樹脂を溶媒と一緒に混合する場合、樹脂/溶媒の間の混練問題だけでなく、分子量が違う(溶融状態の粘度が大きく違う)二つの樹脂間の混練問題も発生する。   When the resin is mixed with a solvent, as in the technique described above, the viscosity is significantly different (ultra high molecular weight polyethylene having a weight average molecular weight of 500,000 or more and low molecular weight polyethylene having a weight average molecular weight of 1,000 to 4,000). In addition to the kneading problem between the resin / solvent, there also occurs a kneading problem between two resins having different molecular weights (the viscosities in the molten state differ greatly).

この場合最終フィルムにファインゲル(fine gel又はfish eye)が発生してフィルムの質が落ちることもある。これを解決する方法は溶融物の圧出器内滞留時間をふやす方法があるが、生産性が落ちる短所がある。   In this case, a fine gel (fine gel or fish eye) is generated in the final film, and the quality of the film may be lowered. A method for solving this problem is to increase the residence time of the melt in the extruder, but there is a disadvantage that the productivity is lowered.

アメリカ特許第5,830,554号には分子量分布が広い樹脂から発生する物性及び延伸性低下問題などを解決するために、重量平均分子量が50万から2百50万の間であり、重量平均分子量と数平均分子量の比が10以下の樹脂を5〜50重量%含む溶液を圧出‐延伸-抽出してポリオレフィン微細多孔膜を作る方法が記載されている。   In US Pat. No. 5,830,554, the weight average molecular weight is between 500,000 and 2500,000 in order to solve the problems of physical properties and stretchability degradation caused by resins having a wide molecular weight distribution. A method for producing a polyolefin microporous film by extruding-stretching-extracting a solution containing 5 to 50% by weight of a resin having a molecular weight ratio of 10 or less is described.

この方法は超高分子量樹脂の圧出で発生する粘度増加による圧出バラ付き問題を解決するために多量の溶媒を使い(望ましくは80〜90重量%)、従って空隙度が高くなって、多孔性フィルムの引張強度が800kg/cm以上(実施例950-1200kg/cm)で物性が大きく向上されなかった。 This method uses a large amount of solvent (preferably 80 to 90% by weight) in order to solve the problem of pressure variation due to the increase in viscosity generated by the pressure of ultrahigh molecular weight resin, so that the porosity becomes high and porous. The physical properties were not significantly improved when the tensile strength of the adhesive film was 800 kg / cm 2 or more (Example 950-1200 kg / cm 2 ).

アメリカ特許第6,566,012号でも重量平均分子量が50万以上の超高分子量ポリオレフィンや重量平均分子量が50万以上の超高分子量ポリオレフィンを含む樹脂組成物10〜40重量%と90〜60重量%の溶媒を圧出‐成形‐延伸‐抽出‐熱固定して電池用分離膜に適合なポリオレフィン微細多孔膜を製造する方法が記載されている。   In US Pat. No. 6,566,012, a resin composition containing 10 to 40 wt% and 90 to 60 wt% solvent containing an ultra high molecular weight polyolefin having a weight average molecular weight of 500,000 or more and an ultra high molecular weight polyolefin having a weight average molecular weight of 500,000 or more is used. A method for producing a polyolefin microporous membrane suitable for a battery separation membrane by extrusion-molding-stretching-extraction-heat setting is described.

前述したように前記従来技術は物性を増加させるために分子量が大きい樹脂を使ったが、使用樹脂の分子量の増加は付加的に圧出負荷増大、溶媒との圧出混錬性低下、延伸時の延伸の負荷増加、未延伸発生、延伸速度及び延伸比減少による生産性低下などの問題を誘発させることになる。   As described above, the conventional technology uses a resin having a large molecular weight in order to increase the physical properties. However, the increase in the molecular weight of the resin used additionally increases the pressure load, decreases the kneadability with the solvent, and stretches. This causes problems such as an increase in stretching load, occurrence of unstretching, a decrease in productivity due to a stretching speed and a decrease in the stretching ratio.

ここで本発明者たちは前述したような従来技術の問題点を解決するために幅広く研究を繰り返えした結果、ポリエチレンに含まれている低分子量ポリエチレン分子の含有量を特定含有量以下で調節することでポリエチレンに欠点が形成されることを防止することができるという事実に着目して本発明を完成した。   Here, as a result of repeating extensive research to solve the problems of the prior art as described above, the present inventors adjusted the content of low molecular weight polyethylene molecules contained in polyethylene below a specific content. Thus, the present invention has been completed by paying attention to the fact that defects can be prevented from being formed in polyethylene.

従って、本発明の目的は分子量増加による問題を改善する同時に電池用微細多孔膜でも使うことができる優秀な物性及び均一な空隙構造を持つ高密度ポリエチレン微細多孔膜を提供することにある。   Accordingly, an object of the present invention is to provide a high-density polyethylene microporous membrane having excellent physical properties and a uniform void structure that can be used in a microporous membrane for a battery while improving the problem caused by an increase in molecular weight.

前記目的を果たすための本発明によるポリエチレン微細多孔膜は分子量が1×10以下である分子の含有量が5重量%以下である重量平均分子量2×10〜5×10の高密度ポリエチレン(成分I)20〜50重量%と希釈液(成分II)80〜50重量%で成り立った組成物から製造されて、引張強度が横方向及び縦方向でそれぞれ1,100kg/cm以上、穿孔強度が0.22N/μm以上、気体透過度(Darcy's permeability constant)が1.3×10−5ダーシー(Darcy)以上であり収縮率が横方向及び縦方向にそれぞれ5%以下であることを特徴とする。 In order to achieve the above object, the polyethylene microporous membrane according to the present invention is a high density polyethylene having a weight average molecular weight of 2 × 10 5 to 5 × 10 5 having a molecular weight of 1 × 10 4 or less and a content of molecules of 5% by weight or less. Manufactured from a composition comprising 20 to 50% by weight of (Component I) and 80 to 50% by weight of diluent (Component II), and has a tensile strength of 1,100 kg / cm 2 or more in the transverse and longitudinal directions, respectively. The strength is 0.22 N / μm or more, the gas permeability (Darcy's permeability constant) is 1.3 × 10 −5 Darcy or more, and the shrinkage is 5% or less in the horizontal and vertical directions, respectively. And

下記実施例のように、本発明の高密度ポリエチレン微細多孔膜は圧出及び延伸が容易で安定した製品生産で生産性を高めることができ、生産された製品は気体透過度が高くてなおかつ引張強度及び穿孔強度が優秀で収縮率も少ないので電池用セパレーター及び各種フィルターで有効に使われることができる。本発明の単純な変形ないし変更はすべて本発明の領域に属することで本発明の具体的な保護範囲は特許請求の範囲によって明確になるのである。   As shown in the following examples, the high-density polyethylene microporous membrane of the present invention is easy to extrude and stretch and can improve productivity with stable product production. The produced product has high gas permeability and is tensile. Since it has excellent strength and perforation strength and has a low shrinkage rate, it can be used effectively in battery separators and various filters. All simple variations and modifications of the present invention belong to the scope of the present invention, and the specific scope of protection of the present invention is defined by the claims.

以下、本発明を次のようにもっと詳しく説明する。前述したように、本発明は、分子量増加による問題を改善する同時に電池用微細多孔膜に適用できるように圧出混錬性及び延伸性が優秀な高密度ポリエチレン微細多孔膜を提供する。本発明で使われるポリエチレンからポリエチレン微細多孔膜を作る基本理論は次のようになる。ポリエチレンと類似な分子構造を持つ低分子量有機物質(以下、希釈液だとする)はポリエチレンが溶ける高温でポリエチレンと熱力学的単一相(single phase)を形成する。これら熱力学的単一相を成したポリエチレンと希釈液溶液を常温で冷凍させれば冷却過程でポリエチレンと希釈液の相分離が起こる。   Hereinafter, the present invention will be described in more detail as follows. As described above, the present invention provides a high-density polyethylene microporous membrane excellent in extrusion kneadability and stretchability so that it can be applied to a microporous membrane for a battery while improving the problem due to an increase in molecular weight. The basic theory for making a polyethylene microporous membrane from polyethylene used in the present invention is as follows. A low molecular weight organic substance (hereinafter referred to as a diluent) having a molecular structure similar to polyethylene forms a thermodynamic single phase with polyethylene at a high temperature at which polyethylene dissolves. If these polyethylene and diluent solutions that form these thermodynamic single phases are frozen at room temperature, phase separation between polyethylene and diluent occurs during the cooling process.

相分離される各相は、ポリエチレンの結晶部分である薄板(lamella)を中心に成り立ったポリエチレン多含有相(polyethylene rich phase)と、常温でも希釈液にとけてある少量のポリエチレンと希釈液で成り立った希釈液多含有相(diluent rich phase)で成り立つ。冷却後希釈液を有機溶剤で抽出すればポリエチレン多孔膜が作られるようになるのである。   Each phase to be phase-separated consists of a polyethylene rich phase centered on a lamella, which is a crystalline part of polyethylene, and a small amount of polyethylene and diluent that are dissolved in the diluent at room temperature. It consists of a diluent rich phase. If the diluted solution is extracted with an organic solvent after cooling, a polyethylene porous membrane can be produced.

従って、微細多孔膜の基本構造は相分離過程で決まる。即ち、相分離後作られた希釈液多含有相の大きさ及び構造によって最終的に微細多孔膜の空隙大きさ及び構造が決まることになる。また、微細多孔膜の基本物性は希釈液が抽出される過程から作られるポリエチレンの結晶構造に影響を受ける。   Therefore, the basic structure of the microporous membrane is determined by the phase separation process. That is, the size and structure of the microporous membrane are finally determined by the size and structure of the diluted liquid-rich phase produced after phase separation. In addition, the basic physical properties of the microporous membrane are affected by the crystal structure of polyethylene produced from the process of extracting the diluent.

本発明者たちの研究結果、次のような事実を見つけた。即ち、優秀な微細多孔膜を作るためには希釈液多含有相にできるだけ少ない量のポリエチレンが存在しなければならないし希釈液が抽出される過程でポリエチレンに欠点が作られてはいけないというのであり、これに最大の影響を与えることはポリエチレンに含まれている低分子量ポリエチレン分子である。   As a result of the study by the present inventors, the following facts were found. In other words, in order to produce an excellent microporous membrane, as little polyethylene as possible should be present in the dilute rich phase, and no defects should be created in the process of extracting the dilute. It is the low molecular weight polyethylene molecules contained in polyethylene that have the greatest effect on this.

これを基にして低分子量物質が少ないポリエチレンを使って製品を生産した結果、従来の発明より分子量が小さな樹脂でも優秀な物性及び均一な空隙構造を持つポリエチレン微細多孔膜を作ることができ、加工性も大きく向上された。   As a result of producing products using polyethylene with a low low molecular weight substance based on this, a polyethylene microporous film having excellent physical properties and a uniform void structure can be made even with a resin having a lower molecular weight than the conventional invention, and processed. The characteristics were also greatly improved.

本発明による高密度ポリエチレン微細多孔膜は重量平均分子量が2×10〜5×10であり、分子量が1×10以下である分子の含有量が5重量%以下である高密度ポリエチレン(成分I)20〜50重量%と希釈液(成分II)80〜50重量%の造成物で成り立った造成物を溶融圧出してシーツ(sheet)形態の成形物を作った後、これを延伸してフィルムを作って希釈液を抽出した後、乾燥及び熱固定して製造される。 The high-density polyethylene microporous membrane according to the present invention has a weight average molecular weight of 2 × 10 5 to 5 × 10 5 and a molecular weight of 1 × 10 4 or less. After forming a sheet-form molded product by melt-extruding a composition composed of 20 to 50% by weight of component I) and 80 to 50% by weight of diluent (component II), the sheet was stretched. After the film is formed and the diluted solution is extracted, it is manufactured by drying and heat setting.

特に、本発明の高密度ポリエチレン微細多孔膜は引張強度が横方向及び縦方向でそれぞれ1,100kg/cm以上、穿孔強盗が0.22N/μm以上、気体透過度(Darcy's permeability constant)が1.3×10−5ダーシー(Darcy)以上、収縮率が横方向及び縦方向でそれぞれ5%以下であることを特徴とする。 In particular, the high-density polyethylene microporous membrane of the present invention has a tensile strength of 1,100 kg / cm 2 or more in the transverse and longitudinal directions, a perforation robbery of 0.22 N / μm or more, and a gas permeability (Darcy's permeability constant) of 1. .3 × 10 −5 Darcy or more and shrinkage is 5% or less in the horizontal direction and the vertical direction, respectively.

一般的に、商業的に使われるポリエチレンは必ず分子量分布が存在して、重量平均分子量が1×10を超えるポリエチレンにも分子量が数千である分子が一部存在する。商業的にポリエチレンの一般的用途であるブローンフィルムとブローモールディングなどの用途では低分子量分子たちは分子量が大きい樹脂の加工性を向上させる役割をするからこれら低分子量物質はポリエチレン生産工程中意図的に作られて来た。 In general, polyethylene used commercially has a molecular weight distribution, and some polyethylene having a weight average molecular weight of more than 1 × 10 6 has a molecular weight of several thousand. In applications such as blown film and blow molding, which are common uses of polyethylene commercially, low molecular weight molecules play a role in improving the processability of resins with large molecular weights, so these low molecular weight materials are intentionally used during the polyethylene production process. It has been made.

しかし、ポリエチレン微細多孔膜を作る工程ではこれら低分子量物質はポリエチレン多含有相でポリエチレン結晶部分である薄板の完成度を落として、薄板の間を連結してくれるタイ分子(Tie molecule)の数を落としてポリエチレン全体の強度を低下させるようになる。   However, in the process of making a polyethylene microporous film, these low molecular weight substances reduce the completeness of the thin plate that is a polyethylene crystal part in the polyethylene-rich phase, and the number of tie molecules that connect the thin plates is reduced. Drop the strength of the entire polyethylene.

また、希釈液と親和力が高くて希釈液多含有相に多く存在するようになって抽出後空隙の界面(interface)部分に存在するようになり、これは空隙の界面を不完全にさせて空隙度を落とす要因として作用する。このような現象は分子量1×10以下の分子で現われて、その含有量が5重量%を超過する時に現われる。 In addition, it has a high affinity with the diluent and is present in a large amount in the diluent-rich phase, and is present in the interface portion of the void after extraction, which causes the void interface to be incomplete and voids. Acts as a factor to reduce the degree. Such a phenomenon appears in molecules having a molecular weight of 1 × 10 4 or less and appears when the content exceeds 5% by weight.

従来技術で通常的に使われるポリエチレン微細多孔膜の素材はいろんな種類のポリエチレン(低密度ポリエチレン、線形低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン等)とポリプロピレンなどがある。   There are various types of polyethylene (such as low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, and high-density polyethylene) and polypropylene that are commonly used in the prior art.

しかし、高密度ポリエチレンを除いたポリエチレンとポリプロピレンの場合はポリマーの構造規則性(structural regularity)を落として樹脂自体結晶部分の薄板完成度を下げて厚さを薄くする。また、重合反応中コモノマーが存在するようになれば、コモノマーの反応性がエチレン対比落ちるので低分子量の分子がたくさん生産されることになる。   However, in the case of polyethylene and polypropylene excluding high-density polyethylene, the structural regularity of the polymer is dropped to reduce the thin plate completeness of the crystal part of the resin itself, thereby reducing the thickness. In addition, if the comonomer is present during the polymerization reaction, the reactivity of the comonomer is lower than that of ethylene, and many low molecular weight molecules are produced.

従って、本発明で使われる高密度ポリエチレンは重量平均分子量が2×10〜5×10で、分子量が1×10以下の分子の含有量が5重量%以下である。 Therefore, the high-density polyethylene used in the present invention has a weight average molecular weight of 2 × 10 5 to 5 × 10 5 and a content of molecules having a molecular weight of 1 × 10 4 or less is 5% by weight or less.

また、前記高密度ポリエチレンは望ましくはコモノマーの含有量が2重量%以下であるのが良い。前記コモノマーにプロピレン、ブテン‐1、ヘキセン‐1、4‐メチルペンテン‐1、オクテン‐1などのアルファオレフィンが使われることができるが、より望ましくは反応性が相対的に高いプロピレン、ブテン‐1、ヘキセン‐1又は4‐メチルペンテン‐1が適当である。   The high-density polyethylene desirably has a comonomer content of 2% by weight or less. As the comonomer, alpha olefins such as propylene, butene-1, hexene-1, 4-methylpentene-1, octene-1, etc. can be used. Hexene-1 or 4-methylpentene-1 are suitable.

一方、多孔膜の最終物性のためには分子量が大きい高密度ポリエチレンを使った方が良いが、分子量が大きい場合、圧出過程で粘度増加による圧出器の負荷増加、希釈液との大きい粘度差による混錬性低下が発生されて、圧出されるシーツの表面形状も荒くなる。   On the other hand, it is better to use high-density polyethylene with a high molecular weight for the final physical properties of the porous film. However, when the molecular weight is high, the load on the presser increases due to an increase in viscosity during the press-out process, and the viscosity with the diluent increases. The kneadability deterioration due to the difference is generated, and the surface shape of the extruded sheet becomes rough.

これを解決する方法は圧出温度を高めるとかスクリューコンパウンドのスクリュー構造(screw configuration)をせん断率(shear rate)が高くなるようにすることや、この場合樹脂の烈火(deterioration)が発生され物性が減少される。   The solution to this problem is to increase the extrusion temperature or to increase the shear rate of the screw structure of the screw compound, or in this case, the resin has a deterioration and the physical properties are increased. Will be reduced.

また、樹脂の分子量増加は分子間の練れ増加によってシーツの強制が増加してこれによって延伸負荷が増加してシーツを固定するクリップ(clip)ですべりが発生することがある。また、シーツの強度増加によって低延伸比で未延伸が発生することがある。しかし、延伸比の増加は生産される微細多孔膜の収縮率が高くなって延伸器クリップの負荷も増加するので大きく高めることは難しい。   In addition, the increase in the molecular weight of the resin may increase the forcing of the sheet due to the increase in kneading between molecules, thereby increasing the stretching load and causing slippage in the clip that fixes the sheet. Further, unstretching may occur at a low stretch ratio due to an increase in sheet strength. However, it is difficult to increase the stretch ratio because the shrinkage rate of the produced microporous membrane increases and the load on the stretcher clip also increases.

これを解決する方法は延伸温度を高めて延伸シーツを軟質性で作るとか延伸速度を遅くして組成物の温度を高めることと同一な効果を得るのである。しかし、このようにすれば、逆に延伸樹脂の配列(orientation)が少なくなり延伸効果が落ちて最終多孔膜の物性が低下する問題が起こる。延伸速度の減少は生産性も低下させるので望ましくない。   A method for solving this has the same effect as increasing the stretching temperature to make the stretched sheet soft, or slowing the stretching speed to increase the temperature of the composition. However, if it does in this way, the orientation (orientation) of stretched resin will decrease and the stretching effect will fall and the physical property of a final porous film will fall. Decreasing the drawing speed is undesirable because it also reduces productivity.

従って、本発明では前記高密度ポリエチレンの低分子量部分が充分少ない、即ち分子量1×10以下である部分が5重量%以下の高密度ポリエチレンを使う場合、重量平均分子量が5×10以下でも電池用分離膜などに使われるように十分な物性を持つことができることを分かった。 Accordingly, in the present invention, when high density polyethylene having a sufficiently low low molecular weight portion of the high density polyethylene, that is, a portion having a molecular weight of 1 × 10 4 or less is 5% by weight or less, even if the weight average molecular weight is 5 × 10 5 or less. It has been found that it has sufficient physical properties to be used for battery separation membranes.

ここで、前記高密度ポリエチレンの重量平均分子量が2×10未満では十分な物性を持つことができないので、本発明で使われる高密度ポリエチレンは2×10〜5×10の重量平均分子量を持つのが選択される。 Here, if the weight average molecular weight of the high density polyethylene is less than 2 × 10 5 , sufficient physical properties cannot be obtained, so the high density polyethylene used in the present invention has a weight average molecular weight of 2 × 10 5 to 5 × 10 5. Is selected to have

このような分子量と分子量分布を持つ高密度ポリエチレンは延伸性も優秀で低倍率延伸でも優秀な空隙構造を持って、延伸クリップの負荷が少ないので延伸しやすくなって生産性も増大される。   High-density polyethylene having such a molecular weight and molecular weight distribution has excellent stretchability and an excellent void structure even at low magnification stretching. Since the load of the stretching clip is small, stretching is facilitated and productivity is increased.

本発明で使われる希釈液は圧出加工温度で樹脂と単一相を成すすべての有機液状化合物(organic liquid)が可能である。その例としてノナン(nonane)、デカン(decane)、デカリン(decalin)、パラフィンオイル(paraffin oil)などの脂肪族(aliphatic)あるいは環形炭化水素(cyclic hydrocarbon)とフタル酸ジブチル(dibutyl phthalate)、フタル酸ジオクチル(dioctyl phthalate)などのフタル酸エステル(phthalic acid ester)がある。   The diluent used in the present invention can be any organic liquid that forms a single phase with the resin at the extrusion temperature. Examples include nonane, decane, decalin, paraffin oil and other aliphatic (aliphatic) or cyclic hydrocarbons, dibutyl phthalate, and phthalic acid. There are phthalic acid esters such as dioctyl phthalate.

望ましくは人体に無害であり、沸騰点が高くて、揮発成分が少ないパラフィンオイルが適当であり、さらに望ましくは40℃での動粘度(kinetic viscosity)が20〜200cStであるパラフィンオイルが適当である。   A paraffin oil that is harmless to the human body, has a high boiling point, and has a small amount of volatile components is suitable. More preferably, a paraffin oil having a kinetic viscosity at 40 ° C. of 20 to 200 cSt is suitable. .

パラフィンオイルの動粘度が200cStを超過すれば圧出工程での動粘度が高くて負荷上昇、シーツ及びフィルムの表面不良などの問題が発生することがあり、抽出工程では抽出が難しくなり、生産性が落ち、残留するオイルによる透過度の減少などの問題が発生することもある。パラフィンオイルの動粘度が20cSt未満なら圧出器内で溶融ポリエチレンとの粘度差によって圧出加工の時混錬が難しくなる。   If the kinematic viscosity of paraffin oil exceeds 200 cSt, the kinematic viscosity in the extruding process may be high, which may cause problems such as increased load, surface defects of sheets and films, and extraction becomes difficult in the extraction process. And a problem such as a decrease in permeability due to residual oil may occur. If the kinematic viscosity of the paraffin oil is less than 20 cSt, kneading during the extrusion process becomes difficult due to the difference in viscosity from the molten polyethylene in the extruder.

使われる高密度ポリエチレンと希釈液の造成は高密度ポリエチレンが20〜50重量%で希釈液が80〜50重量%であるのが望ましい。前記高密度ポリエチレンの含有量が50重量%を超過すれば(即ち、希釈液が50重量%未満であれば)空隙度が減少して空隙の大きさが小さくなるので、空隙の間の相互連結(interconnection)が少なくなって透過度が大きく落ちる事になる。   It is desirable that the high-density polyethylene and the diluent used are 20 to 50% by weight of the high-density polyethylene and 80 to 50% by weight of the diluent. If the content of the high-density polyethylene exceeds 50% by weight (that is, if the diluent is less than 50% by weight), the porosity is reduced and the size of the voids is reduced. (Interconnection) is reduced and the transmittance is greatly reduced.

一方、前記高密度ポリエチレンの含有量が20重量%未満であれば(即ち、希釈液が80重量%を超過すれば)ポリエチレンと希釈液の混錬性が低下されポリエチレンが希釈液に熱力学的に混錬できなくなってゲル形態に圧出されて延伸の時、破断及び厚さのバラ付きなどの問題を起こすことになる。   On the other hand, if the content of the high-density polyethylene is less than 20% by weight (that is, if the diluent exceeds 80% by weight), the kneadability between the polyethylene and the diluent is reduced, and the polyethylene is added to the diluent. It becomes impossible to knead and is extruded into a gel form, and when stretched, problems such as breakage and variation in thickness occur.

前記組成物には必要な場合酸化安定剤、UV安定剤、帯電防止剤など特定機能向上のための一般的添加剤などがさらに添加されることもある。   If necessary, general additives for improving specific functions such as an oxidation stabilizer, a UV stabilizer, and an antistatic agent may be further added to the composition.

前記組成物は希釈液とポリエチレンとの混錬のためにデザインされた二軸コンパウンド、混錬器あるいはバンバリーミキサー(banbury mixer)などを利用して溶融圧出してシーツ形態の成形物を作る。ポリエチレンとオイルは事前にブルレンディングされコンパウンドに投入されるとか分離された供給器(feeder)からそれぞれ投入されることができる。溶融物からシーツ形態の成形物を作る方法には一般的にキャスティング(casting)又はカレンティング(calendaring)などの方法が使われている。   The composition is melt-extruded using a biaxial compound, a kneader, or a banbury mixer designed for kneading the diluent and polyethylene to form a sheet-like molded product. Polyethylene and oil can each be fed from a blender that has been pre-blended and fed into the compound or separated. In general, a method such as casting or calendaring is used as a method for producing a sheet-like molded product from a melt.

次に、延伸過程はテンタータイプ(tenter type)の同時延伸で行われるのが望ましい。ロールタイプ(roll type)の延伸は延伸過程でフィルム表面に傷ができるなどの欠点がある。ここで延伸比は縦方向、横方向それぞれ3倍以上であり、総延伸比は25〜50倍であるのが望ましい。   Next, the stretching process is preferably performed by a tenter type simultaneous stretching. Roll type stretching has drawbacks such as scratches on the film surface during the stretching process. Here, the stretching ratio is preferably 3 times or more in the longitudinal direction and the transverse direction, and the total stretching ratio is preferably 25 to 50 times.

片方方向の延伸比が3倍未満の場合は片方方向の配向が十分ではなくて同時に縦方向及び横方向間の物性均衡が割れて引張強度及び穿孔強度などが低下されることになる。また、総延伸比が25倍未満であれば未延伸が発生して、50倍を超過すると延伸中に破断が発生する可能性が高くて、最終的にフィルムの収縮率が増加する短所がある。   When the stretch ratio in one direction is less than 3 times, the orientation in one direction is not sufficient, and at the same time, the physical property balance between the longitudinal direction and the transverse direction is broken, and the tensile strength, the piercing strength, and the like are lowered. In addition, if the total stretch ratio is less than 25 times, unstretching occurs, and if it exceeds 50 times, there is a high possibility of breakage during stretching, and there is a disadvantage that the shrinkage rate of the film eventually increases. .

この時、前記延伸温度は使われたポリエチレンの融点と希釈液の濃度及び種類によって変わる。最適延伸温度は前記フィルム成形物内のポリエチレン結晶部分の30〜80重量%が溶ける温度範囲で選択されることが望ましい。   At this time, the stretching temperature varies depending on the melting point of the polyethylene used and the concentration and type of the diluent. The optimum stretching temperature is preferably selected within a temperature range in which 30 to 80% by weight of the polyethylene crystal portion in the film molding is melted.

前記延伸温度が前記フィルム成形物内ポリエチレンの結晶部分の30重量%が溶ける温度より低い温度範囲で選択されればフィルムの延伸性(softness)がないので、延伸の時破断が発生する可能性が高い同時に未延伸も発生する。   If the stretching temperature is selected in a temperature range lower than the temperature at which 30% by weight of the crystalline portion of polyethylene in the film molding is melted, there is no softness of the film. At the same time, unstretched occurs.

一方、前記延伸温度が結晶部分の80重量%が溶ける温度より高い温度範囲で選択されれば延伸し易くて未延伸発生は少ないが、部分的な過延伸で厚さ偏差が発生して、樹脂の配向効果が少なくなり物性が大きく落ちるようになる。一方、温度による結晶部分の溶ける程度はフィルム成形物の示差走査熱量計(DSC、differencial scanning calorimetry)分析から得られることができる。   On the other hand, if the stretching temperature is selected in a temperature range higher than the temperature at which 80% by weight of the crystal part is melted, it is easy to stretch and the occurrence of unstretching is small. The orientation effect is reduced and the physical properties are greatly reduced. On the other hand, the degree of melting of the crystal portion due to temperature can be obtained from differential scanning calorimetry (DSC) analysis of the film molding.

このように延伸されたフィルムは有機溶媒を使って抽出及び乾燥する。本発明で使用可能な有機溶媒は特別に限定されずに樹脂圧出に使われた希釈液を抽出し出すことができるどんな溶剤でも使用可能だが、望ましくは抽出効率が高くて乾燥が早いメチルエチルケトン、メチレンクロライド、ヘキサンなどが望ましい。   The film thus stretched is extracted and dried using an organic solvent. The organic solvent that can be used in the present invention is not particularly limited, and any solvent that can extract the diluent used for resin extrusion can be used, but preferably methyl ethyl ketone having high extraction efficiency and quick drying, Methylene chloride, hexane, etc. are desirable.

抽出方法は沈積(immersion)方法、溶剤スプレー(solvent spray)方法及び超音波(ultrasonic)法などの一般的なすべての溶媒抽出方法がそれぞれあるいは複合的に使われることができる。抽出の時、残留希釈液の含有量は1重量%以下でなければならない。残留希釈液が1重量%を超過すれば物性が低下されてフィルムの透過度が減少する。   As the extraction method, all common solvent extraction methods such as an immersion method, a solvent spray method and an ultrasonic method can be used individually or in combination. At the time of extraction, the content of residual diluent must be 1% by weight or less. If the residual diluent exceeds 1% by weight, the physical properties are lowered and the transmittance of the film is reduced.

残留希釈液の量(抽出率)は抽出温度と抽出時間によって大きく左右される。抽出温度は希釈液と溶剤の溶解度増加のために温度が高いのが良いが溶剤の沸騰(boiling)による安全性問題を考慮すれば40℃以下が望ましい。   The amount (extraction rate) of the residual diluted solution greatly depends on the extraction temperature and the extraction time. The extraction temperature should be high in order to increase the solubility of the diluent and the solvent, but is preferably 40 ° C. or less in view of safety problems due to boiling of the solvent.

抽出温度が希釈液の凝固点以下ならば抽出効率が大きく落ちるので希釈液の凝固点よりは必ず高くなければならない。抽出時間は生産されるフィルムの厚さによって違うが、10〜30μm厚さの一般的な微細多孔膜を生産する場合には2〜4分が適当である。   If the extraction temperature is lower than or equal to the freezing point of the diluent, the extraction efficiency will drop greatly, so it must be higher than the freezing point of the diluent. Although the extraction time varies depending on the thickness of the film to be produced, 2 to 4 minutes is suitable for producing a general microporous film having a thickness of 10 to 30 μm.

乾燥されたフィルムは最後に残留応力をとり除いて最終フィルムの収縮率を減少させるために熱固定段階を経る。熱固定はフィルムを固定させ熱を加えて、収縮しようとするフィルムを強制で取ることによって残留応力をとり除くことになる。熱固定温度は高い方が収縮率を低めることに有利だが、過度に高い場合にはフィルムが部分的にとけて形成された微細多孔が塞がって透過度が低下されることになる。   The dried film is finally subjected to a heat setting step in order to remove residual stress and reduce the shrinkage of the final film. In the heat setting, the residual stress is removed by fixing the film, applying heat, and forcibly removing the film to be shrunk. A higher heat setting temperature is advantageous for lowering the shrinkage rate. However, when the heat setting temperature is excessively high, the fine pores formed by partially dissolving the film are blocked and the permeability is lowered.

望ましい熱固定温度はフィルムの結晶部分の10〜30重量%が溶ける温度範囲で選択されることが望ましい。前記熱固定温度が前記フィルムの結晶部分の10重量%が溶ける温度より低い温度範囲内で選択されればフィルム内ポリエチレン分子の再配列(reorientation)の不備でフィルムの残留応力除去効果がなく、フィルムの結晶部分の30重量%が溶ける温度より高い温度範囲で選択されれば部分的溶融によって微細多孔が塞がって透過度が低下されることになる。   The desired heat setting temperature is preferably selected within a temperature range in which 10 to 30% by weight of the crystalline portion of the film is melted. If the heat setting temperature is selected within a temperature range lower than the temperature at which 10% by weight of the crystalline portion of the film is melted, there is no effect of removing the residual stress of the film due to insufficient reorientation of polyethylene molecules in the film. If the temperature is selected in a temperature range higher than the temperature at which 30% by weight of the crystal portion is melted, the fine porosity is blocked by partial melting and the permeability is lowered.

ここで、熱固定時間は熱固定温度が高い場合には逆に短くしなければならないし、熱固定温度が低い場合には長くすることができる。一番望ましくは、フィルムの結晶部分の10〜20重量%が溶ける温度範囲では5分から20分、20〜30重量%が溶ける温度範囲では1分から5分位が適当である。   Here, the heat setting time must be shortened when the heat setting temperature is high, and can be increased when the heat setting temperature is low. Most preferably, 5 to 20 minutes is suitable for the temperature range in which 10 to 20% by weight of the crystalline portion of the film is melted, and 1 to 5 minutes is suitable for the temperature range in which 20 to 30% by weight is melted.

前述したように製造された本発明の高密度ポリエチレン微細多孔膜は次のような物性を持つ。
(1)引張強度が横方向及び縦方向でそれぞれ1,100kg/cm以上である。
引張強度が1,100kg/cm未満である場合は微細多孔膜使用過程で多孔膜の破断が発生することがある。特に電池用セパレーターに使われる場合高速の電池組み立て過程で加えられるテンションによって多孔膜の破断が発生する。本発明によるポリエチレン微細多孔膜は引張強度が1,100kg/cm以上で組み立て過程での破断を最小化することができる。
The high-density polyethylene microporous membrane of the present invention produced as described above has the following physical properties.
(1) The tensile strength is 1,100 kg / cm 2 or more in the transverse direction and the longitudinal direction, respectively.
When the tensile strength is less than 1,100 kg / cm 2 , the porous membrane may break during the process of using the microporous membrane. In particular, when used in battery separators, the porous membrane breaks due to the tension applied during the high-speed battery assembly process. The polyethylene microporous membrane according to the present invention has a tensile strength of 1,100 kg / cm 2 or more and can minimize breakage during the assembly process.

(2)穿孔強度が0.22N/μm以上である。
穿孔強度はシャープな物質に対するフィルムの強度を現わすことで、電池用セパレーターに使われる場合穿孔強度が十分でなければ電極の表面異常や電池使用中に発生するデンドライト(dendrite)によってフィルムが破れて短絡(short)が発生する。
商業的に使われる電池用セパレーターは破断点の重さが350g以下である場合、短絡による安全性が問題になる。本発明による穿孔強度が0.22N/μmを超えるフィルムは、現在商業的に広く使われているセパレーターフィルムの中で一番薄い16μm厚さのフィルムが使われる場合、破断点の重さが350g以上なので安全に使われることができる。
(2) The perforation strength is 0.22 N / μm or more.
The perforation strength expresses the strength of the film against sharp materials, and when used in battery separators, if the perforation strength is not sufficient, the film is torn due to electrode surface abnormalities or dendrite generated during battery use. A short circuit occurs.
When battery separators for commercial use have a weight at break of 350 g or less, safety due to short circuit becomes a problem. The film having a perforation strength of more than 0.22 N / μm according to the present invention has a breakage weight of 350 g when the thinnest film of 16 μm thickness is used among the separator films widely used at present. So it can be used safely.

(3)気体透過度(Darcy´s permeability constant)が1.3×10−5ダーシー(Darcy)以上である。
気体透過度が1.3×10−5ダーシー以下である場合は多孔膜としての効率が大きく落ちることになる。特に気体透過度が1.3×10−5ダーシーを超えなければ、電池用セパレーターとして使われる場合電池の充放電特性が悪くなって寿命が短くなる。本発明による気体透過度が1.3×10−5ダーシー以上のフィルムは電池の高効率充放電など充放電特性と低温特性及び寿命が優秀である。
(3) Gas permeability (Darcy's permeability constant) is 1.3 * 10 < -5 > Darcy (Darcy) or more.
When the gas permeability is 1.3 × 10 −5 Darcy or less, the efficiency as a porous membrane is greatly reduced. In particular, when the gas permeability does not exceed 1.3 × 10 −5 Darcy, when used as a battery separator, the charge / discharge characteristics of the battery deteriorate and the life is shortened. A film having a gas permeability of 1.3 × 10 −5 Darcy or more according to the present invention has excellent charge / discharge characteristics such as high-efficiency charge / discharge of the battery, low-temperature characteristics, and life.

(4)収縮率が横方向及び縦方向にそれぞれ5%以下である。
収縮率はフィルムを105℃で10分間放置した後測定することで、収縮率が高ければ高温の用途では使うことができなくなる。特に、電池用セパレーターの場合、収縮率が5%を超えれば電池自体の発熱によってセパレーターが収縮されて電極がお互いに触れ合うようになって短絡が発生することになる。
(4) The shrinkage rate is 5% or less in each of the horizontal direction and the vertical direction.
The shrinkage rate is measured after leaving the film at 105 ° C. for 10 minutes. If the shrinkage rate is high, the film cannot be used in high temperature applications. In particular, in the case of a battery separator, if the shrinkage rate exceeds 5%, the separator shrinks due to the heat generated by the battery itself, and the electrodes come into contact with each other, causing a short circuit.

本発明によるフィルムは収縮率が横方向及び縦方向それぞれ5%以下で電池用セパレーターとして安全に使われることができる。このような物性的特性外にも本発明の高密度ポリエチレン微細多孔膜は圧出混錬性及び延伸性が優秀である。   The film according to the present invention can be safely used as a battery separator with a shrinkage rate of 5% or less in each of the horizontal and vertical directions. In addition to these physical properties, the high-density polyethylene microporous membrane of the present invention is excellent in extrusion kneadability and stretchability.

以下、次のような実施例を通じて本発明をもっと具体的に説明するがこの実施例に本発明の範囲が限定されることではない。   Hereinafter, the present invention will be described more specifically with reference to the following examples. However, the scope of the present invention is not limited to these examples.

[実施例]
ポリエチレンの分子量及び分子量分布の測定はポリマーラブ(Polymer Lab.)社の高温GPC(Gel Permeation Chromatography)で測定された。そして希釈液の粘度はキヤノン社のCAV−4自動粘度計(Automatic Viscometer)で測定した。
[Example]
The molecular weight and molecular weight distribution of polyethylene were measured by high temperature GPC (Gel Permeation Chromatography) manufactured by Polymer Lab. The viscosity of the diluted solution was measured with a Canon CAV-4 automatic viscometer.

ポリエチレンと希釈液はφ=30mmである二軸コンパウンダーで混錬された。圧出温度は160〜240℃であり、残留時間(residence time)は3分だった。圧出された溶融物はT字形ダイで圧出物をキャスティングロ−ル(casting roll)によって厚さ600〜1200μmのシーツに成形され、これらを延伸に使った。   The polyethylene and diluent were kneaded with a biaxial compounder with φ = 30 mm. The extrusion temperature was 160-240 ° C., and the residence time was 3 minutes. The extruded melt was formed into a sheet having a thickness of 600 to 1200 μm by a casting roll using a T-shaped die, and these were used for stretching.

溶融及び混錬不良によるゲルの存在可否を分かるために200μm厚さのフィルムを別に製作して2000cm面積中のゲルの数を数えた。微細多孔膜の品質に影響を与えないためには2000cm当りゲルの数が50個以下でなければならない。 In order to determine the presence or absence of gels due to poor melting and kneading, a film having a thickness of 200 μm was separately manufactured and the number of gels in an area of 2000 cm 2 was counted. In order not to affect the quality of the microporous membrane, the number of gels per 2000 cm 2 must be 50 or less.

成形されたシーツは温度による結晶部分が溶ける現象を分析するために示差走査熱量計(DSC)分析を行った。分析条件は試料の重さが5mg、スキャニング速度(scanning rate)が10℃/minであった。   The formed sheets were subjected to differential scanning calorimetry (DSC) analysis in order to analyze the phenomenon that the crystal part melts due to temperature. The analysis conditions were a sample weight of 5 mg and a scanning rate of 10 ° C./min.

シーツの延伸はテンタータイプのラブ延伸器(lab. Stretcher)から延伸比、延伸温度、延伸速度を変化させて同時延伸で行われた。延伸温度は示差走査熱量計(DSC)の結果を参考してフィルム成形物内のポリエチレン結晶部分の30〜80重量%が溶ける温度範囲で決めた。   Sheets were stretched simultaneously from a tenter type lab stretcher (lab. Stretcher) by changing the stretching ratio, stretching temperature, and stretching speed. The stretching temperature was determined in the temperature range in which 30 to 80% by weight of the polyethylene crystal portion in the film molding was dissolved with reference to the results of a differential scanning calorimeter (DSC).

5枚のシーツを延伸してクリップでのすべり及び延伸破断が発生しない延伸成功率性を測定した。希釈液の抽出はメチレンクロライドを使って沈積方法で実施した。熱固定は希釈液が抽出されたフィルムを空気中で乾燥させた後、フィルムをフレームに固定させて熱風オーブン(convection oven)で温度と時間を変化させながら実施した。   Five sheets were stretched to measure the success rate of stretching without slipping and stretching breakage. Extraction of the diluted solution was performed by a deposition method using methylene chloride. The heat setting was performed by drying the film from which the diluted solution was extracted in air, fixing the film to a frame, and changing the temperature and time in a hot air oven (convection oven).

製造されたフィルムは微細多孔膜で一番重要な物性である引張強度、穿孔強度、気体透過度及び収縮率を測定して、その結果を下記の表1に示した。
※物性測定方法
(1)引張強度はASTM D882で測定された。
(2)穿孔強度は直径0.5mmのピンが120mm/minの速度でフィルムを破断させる時の強度として測定された。
(3)気体透過度は空隙測定機(porometer:PMI社のCFP‐1500‐AEL)で測定された。一般的に気体透過度はGurley numberで表示されるが、Gurley numberはフィルム厚さの影響が補正されてないのでフィルム自らの空隙構造による相対的透過度が分かりにくい。これを解決するために本発明ではDarcy's透過度定数を使った。Darcy's透過度定数は下記の数学式1から得られる。本発明では窒素を使った。
(数1)
C=(8FTV)/(πD(P−1))
ここでC=Darcy's透過度定数、F=流速、T=試料厚さ、V=気体の粘度(0.185 for N)、D=試料直径、P=圧力。本発明では100〜200psi領域でDarcy's透過度定数の平均値を使った。
(4)収縮率はフィルムを105℃で10分間放置した後縦方向及び横方向の収縮率を%で測定した。
The produced film was measured for the most important physical properties of the microporous membrane, namely tensile strength, perforation strength, gas permeability and shrinkage, and the results are shown in Table 1 below.
* Physical property measurement method (1) The tensile strength was measured by ASTM D882.
(2) The perforation strength was measured as the strength when a pin having a diameter of 0.5 mm breaks the film at a speed of 120 mm / min.
(3) The gas permeability was measured with a void meter (PFP CFP-1500-AEL). In general, the gas permeability is expressed as a Gurley number, but since the influence of the film thickness is not corrected, the relative permeability due to the void structure of the film itself is difficult to understand. To solve this, the present invention uses Darcy's permeability constant. Darcy's permeability constant can be obtained from Equation 1 below. In the present invention, nitrogen was used.
(Equation 1)
C = (8FTV) / (πD 2 (P 2 −1))
Where C = Darcy's permeability constant, F = flow velocity, T = sample thickness, V = gas viscosity (0.185 for N 2 ), D = sample diameter, P = pressure. In the present invention, the average value of Darcy's permeability constant was used in the range of 100 to 200 psi.
(4) Shrinkage was measured by the percentage of shrinkage in the vertical and horizontal directions after the film was left at 105 ° C. for 10 minutes.

[実施例1]
成分Iで重量平均分子量が3.0×10であり、分子量が10以下の分子の含有量が4.2重量%で、コモノマーが含まれてない高密度ポリエチレンが使われた。成分IIでは40℃動粘度が95cStであるパラフィンオイルが使われた。成分Iと成分IIの含有量はそれぞれ30重量%、70重量%だった。
[Example 1]
A high-density polyethylene having a weight average molecular weight of 3.0 × 10 5 and a content of molecules having a molecular weight of 10 4 or less of 4.2% by weight and containing no comonomer was used. For component II, paraffin oil having a kinematic viscosity at 40 ° C. of 95 cSt was used. The contents of component I and component II were 30% by weight and 70% by weight, respectively.

延伸はポリエチレンの結晶部分が30%溶ける温度である115℃で、延伸比36倍(縦方向×横方向=6×6)、延伸速度2.0m/minで成り立った。希釈液が抽出されたフィルムは空気中の乾燥過程を経った後、フレームに固定してフィルムの結晶部分が20重量%溶ける温度である120℃で15分間熱固定された。得られた最終フィルムの厚さは20±2μmであった。   Stretching was performed at 115 ° C., where 30% of the polyethylene crystal part was melted, at a stretch ratio of 36 times (longitudinal direction × transverse direction = 6 × 6), and at a stretching speed of 2.0 m / min. The film from which the diluted solution was extracted passed through a drying process in the air, and was then fixed to a frame and heat-fixed at 120 ° C. for 15 minutes, at which the crystal portion of the film was dissolved by 20% by weight. The final film thickness obtained was 20 ± 2 μm.

[実施例2]
成分Iで重量平均分子量が4.0×10であり、分子量が10以下の分子の含有量が3.9重量%で、コモノマーでブテン‐1が0.5重量%使われた高密度ポリエチレンが使われたことを除き前記実施例1と同一に実施された。実施例1のように延伸結晶部分がとけた割合を30重量%で合わせるために延伸温度は114.5℃にした。また熱固定温度も実施例1のように結晶が溶ける程度を20重量%で合わせるために119℃にした。
[Example 2]
A weight average molecular weight of 4.0 × 10 5 in component I, at a content of molecular weight of 10 4 or less molecules 3.9 wt%, high density butene-1 was used 0.5 wt% comonomer The same procedure as in Example 1 except that polyethylene was used. As in Example 1, the stretching temperature was set to 114.5 ° C. in order to match the ratio of the stretched crystal portion melted at 30% by weight. Also, the heat setting temperature was set to 119 ° C. in order to adjust the degree of crystal melting at 20 wt% as in Example 1.

[実施例3]
成分Iで重量平均分子量が4.7×10であり、分子量が10以下の分子の含有量が1.2重量%で、コモノマーを含まない高密度ポリエチレンが使われた。延伸はポリエチレンの結晶部分が40重量%溶ける温度である117℃で行われたことを除き前記実施例1と同一に実施された。
[Example 3]
A weight average molecular weight of 4.7 × 10 5 in component I, the content of molecular weight of 10 4 or less molecules with 1.2 wt% high-density polyethylene containing no comonomer was used. The stretching was performed in the same manner as in Example 1 except that the stretching was performed at 117 ° C., which is a temperature at which 40% by weight of the polyethylene crystal part was melted.

[実施例4]
成分Iで重量平均分子量が3.0×10であり、分子量が10以下の分子の含有量が4.5重量%で、コモノマーでブテン‐1が1.5重量%使われた高密度ポリエチレンが使われた。成分IIとしては40℃動粘度が70cStであるパラフィンオイルが使われた。成分Iと成分IIの含有量はそれぞれ40重量%、60重量%だった。これを除き前記実施例1と同一に実施された。実施例1のように延伸結晶部分が溶ける割合を30重量%で合わせるために延伸温度は116℃にした。また熱固定温度も実施例1のように結晶が溶ける程度を20重量%で合わせるために118℃にした。
[Example 4]
A weight average molecular weight of 3.0 × 10 5 in component I, at a content of molecular weight of 10 5 or less molecule 4.5 wt%, high density butene-1 was used 1.5 wt% comonomer Polyethylene was used. As component II, paraffin oil having a kinematic viscosity at 40 ° C. of 70 cSt was used. The contents of component I and component II were 40% by weight and 60% by weight, respectively. Except this, the procedure was the same as in Example 1. As in Example 1, the stretching temperature was set to 116 ° C. in order to match the proportion at which the stretched crystal portion was dissolved at 30% by weight. Further, the heat setting temperature was set to 118 ° C. in order to adjust the degree of crystal melting as in Example 1 to 20 wt%.

[実施例5]
成分Iでは実施例3と同一に重量平均分子量が4.7×10で、分子量が10以下の分子の含有量が1.2重量%で、コモノマーを含まない高密度ポリエチレンが使われた。成分IIでは40℃動粘度が120cStであるパラフィンオイルが使われた。成分Iと成分IIの含有量はそれぞれ40重量%、60重量%だった。
[Example 5]
For component I, high-density polyethylene having a weight average molecular weight of 4.7 × 10 5 , a molecular weight of 10 4 or less and a content of 1.2% by weight and no comonomer was used as in Example 3. . For component II, paraffin oil having a kinematic viscosity at 40 ° C. of 120 cSt was used. The contents of component I and component II were 40% by weight and 60% by weight, respectively.

延伸はポリエチレンの結晶部分が 30重量%溶ける温度である117℃で、延伸比36倍(縦方向×横方向=6×6)、延伸速度2.0m/minで成り立った。熱固定はフィルムの結晶部分が10%溶ける温度である115℃で15分間熱固定された。   Stretching was performed at 117 ° C., which is a temperature at which 30% by weight of the crystalline portion of polyethylene was melted, at a stretch ratio of 36 times (longitudinal direction × transverse direction = 6 × 6), and at a stretching speed of 2.0 m / min. The heat setting was carried out for 15 minutes at 115 ° C., which is the temperature at which the crystal part of the film melts 10%.

[実施例6]
成分Iでは実施例3と同一に重量平均分子量が4.7×10で、分子量が10以下の分子の含有量が1.2重量%で,コモノマーを含まない高密度ポリエチレンが使われた。成分IIでは40℃動粘度が30cStであるパラフィンオイルが使われた。成分Iと成分IIの含有量はそれぞれ20重量%、80重量%だった。
[Example 6]
For component I, high-density polyethylene having a weight average molecular weight of 4.7 × 10 5 and a molecular weight of 10 4 or less was 1.2% by weight and containing no comonomer, as in Example 3. . For component II, paraffin oil having a kinematic viscosity at 40 ° C. of 30 cSt was used. The contents of Component I and Component II were 20% by weight and 80% by weight, respectively.

延伸はポリエチレンの結晶部分が30重量%溶ける温度である113℃で、延伸比49倍(縦方向×横方向=7×7)、延伸速度2.0m/minで成り立った。熱固定はフィルムの結晶部分が20%溶ける温度である120℃で5分間熱固定された。   Stretching was performed at 113 ° C., a temperature at which 30% by weight of the polyethylene crystal part was melted, at a stretch ratio of 49 times (longitudinal direction × transverse direction = 7 × 7), and at a stretching speed of 2.0 m / min. The heat setting was carried out for 5 minutes at 120 ° C., which is a temperature at which the crystal part of the film melts 20%.

[実施例7]
延伸温度がポリエチレン結晶の60重量%が溶ける温度である122℃であり、延伸比が25倍(縦方向×横方向=5×5)である
のを除き実施例3と同一に実施された。
[Example 7]
The stretching temperature was 122 ° C., which is the temperature at which 60% by weight of the polyethylene crystal melts, and the same procedure as in Example 3 was performed except that the stretching ratio was 25 times (longitudinal direction × lateral direction = 5 × 5).

[実施例8]
成分Iで実施例4と同一に重量平均分子量が3.5×10で、分子量が10以下の分子の含有量が4.5重量%で、コモノマーでブテン‐1が1.5重量%使われた高密度ポリエチレンが使われた。成分IIでは40℃動粘度が160cStであるパラフィンオイルが使われた。
[Example 8]
Component I has the same weight average molecular weight of 3.5 × 10 5 as in Example 4, the content of molecules having a molecular weight of 10 4 or less is 4.5% by weight, and comonomer is 1.5% by weight of butene-1. The used high density polyethylene was used. For component II, paraffin oil having a kinematic viscosity at 40 ° C. of 160 cSt was used.

成分Iと成分IIの含有量はそれぞれ30重量%、70重量%だった。延伸はポリエチレンの結晶部分が50重量%溶ける温度である120℃で、延伸比25倍(縦方向×横方向=5×5)、延伸速度2.0m/minで成り立った。熱固定はフィルムの結晶部分が20重量%溶ける温度である118℃で15分間熱固定された。   The contents of Component I and Component II were 30% by weight and 70% by weight, respectively. Stretching was performed at 120 ° C., a temperature at which 50% by weight of the crystalline portion of polyethylene was melted, at a stretch ratio of 25 times (longitudinal direction × transverse direction = 5 × 5), and at a stretching speed of 2.0 m / min. The heat setting was carried out for 15 minutes at 118 ° C., which is the temperature at which the crystalline part of the film melts 20% by weight.

[実施例9]
成分Iと成分IIは実施例3と等しく使われた。成分Iと成分IIの含有量はそれぞれ50重量%、50重量%だった。延伸はポリエチレンの結晶部分が30重量%溶ける温度である119℃で、延伸比36倍(縦方向×横方向=6×6)、延伸速度10.0m/minで成り立った。熱固定はフィルムの結晶部分が30重量%溶ける温度である123℃で5分間熱固定された。
[Example 9]
Components I and II were used equally as in Example 3. The contents of Component I and Component II were 50% by weight and 50% by weight, respectively. Stretching was performed at 119 ° C., where 30% by weight of the crystalline portion of polyethylene was melted, at a stretch ratio of 36 times (longitudinal direction × transverse direction = 6 × 6), and at a stretching speed of 10.0 m / min. The heat setting was carried out for 5 minutes at 123 ° C., which is a temperature at which 30% by weight of the crystalline portion of the film was dissolved.

[実施例10]
成分Iで実施例4と同一に重量平均分子量が3.5×10で、分子量が10以下の分子の含有量が4.5重量%で、コモノマーでブテン‐1が1.5重量%使われた高密度ポリエチレンが使われた。成分IIでは40℃動粘度が95cStであるパラフィンオイルが使われた。成分Iと成分IIの含有量はそれぞれ20重量%、80重量%だった。延伸はポリエチレンの結晶部分が30重量%溶ける温度である112℃で、延伸比36倍(縦方向×横方向=6×6)、延伸速度2.0m/minで成り立った。熱固定はフィルムの結晶部分が25重量%溶ける温度である119℃で15分間熱固定された。
[Example 10]
Component I has the same weight average molecular weight of 3.5 × 10 5 as in Example 4, the content of molecules having a molecular weight of 10 4 or less is 4.5% by weight, and comonomer is 1.5% by weight of butene-1. The used high density polyethylene was used. For component II, paraffin oil having a kinematic viscosity at 40 ° C. of 95 cSt was used. The contents of Component I and Component II were 20% by weight and 80% by weight, respectively. Stretching was performed at 112 ° C., a temperature at which 30% by weight of the crystalline portion of polyethylene was melted, at a stretch ratio of 36 times (longitudinal direction × transverse direction = 6 × 6), and at a stretching speed of 2.0 m / min. The heat setting was carried out for 15 minutes at 119 ° C., which is a temperature at which 25% by weight of the crystalline portion of the film was melted.

[実施例11]
成分Iと成分II及びその含有量は実施例3と同一に使われた。延伸はポリエチレンの結晶部分が30重量%溶ける温度である115℃で、延伸比49倍(縦方向×横方向=7×7)、延伸速度2.0m/minで成り立った。熱固定はフィルムの結晶部分が10重量%溶ける温度である115℃で20分間熱固定された。
[Example 11]
Components I and II and their contents were used in the same manner as in Example 3. Stretching was performed at 115 ° C., which is a temperature at which 30% by weight of the crystalline portion of polyethylene was melted, at a stretch ratio of 49 times (longitudinal direction × transverse direction = 7 × 7), and a stretching speed of 2.0 m / min. The heat setting was carried out for 20 minutes at 115 ° C., which is a temperature at which 10% by weight of the crystalline portion of the film was melted.

[比較例1]
成分Iで重量平均分子量が1.8×10で、分子量が10以下の分子の含有量が22.0重量%であり、コモノマーでブテン‐1が0.5重量%使われた高密度ポリエチレンが使われたことを除き前記実施例1と等しく実施された。実施例1のように延伸時結晶部分がとけた割合を30重量%で合わせるために延伸温度は114.5℃にしてまた熱固定温度も実施例1のように結晶が溶ける程度を20重量%で合わせるために119℃にした。
[Comparative Example 1]
A high density of component I having a weight average molecular weight of 1.8 × 10 5 , a molecular weight of 10 4 or less, 22.0% by weight, and 0.5% by weight of butene-1 as a comonomer Performed identically to Example 1 except that polyethylene was used. As in Example 1, the stretching temperature was 114.5 ° C. in order to match the ratio of the crystal part melted during stretching at 30% by weight, and the heat setting temperature was 20% by weight to the extent that the crystal melted as in Example 1. 119 ° C.

[比較例2]
成分Iで重量平均分子量が2.1×10で、分子量が10以下の分子の含有量が15.0重量%であり、コモノマーでブテン‐1が1.5重量%使われた高密度ポリエチレンが使われたことを除き前記実施例1と同一に実施された。実施例1のように延伸時結晶部分がとけた割合を30重量%で合わせるために延伸温度は114℃にしてまた熱固定温度も実施例1のように結晶が溶ける程度を20重量%で合わせるために118℃にした。
[Comparative Example 2]
A high density of component I having a weight average molecular weight of 2.1 × 10 5 , a molecular weight of 10 4 or less, and a content of 15.0% by weight and 1.5% by weight of butene-1 as a comonomer The same procedure as in Example 1 except that polyethylene was used. As in Example 1, the stretching temperature is adjusted to be 114 ° C. in order to match the ratio of the crystal part melted during stretching at 30% by weight, and the heat setting temperature is adjusted to 20% by weight to adjust the degree of crystal melting as in Example 1. Therefore, the temperature was set to 118 ° C.

[比較例3]
成分Iで重量平均分子量が5.7×10で、分子量が10以下の分子の含有量が9.0重量%であり、コモノマーでブテン‐1が0.8重量%使われた高密度ポリエチレンが使われたことを除き前記実施例1と等しく実施された。実施例1のように延伸時結晶がとけた割合を30重量%で合わせるために延伸温度は114.5℃にしてまた熱固定温度も実施例1のように結晶が溶ける程度を20重量%で合わせるために119℃にした。
[Comparative Example 3]
Component I has a weight average molecular weight of 5.7 × 10 5 , a molecular weight of 10 4 or less, a content of 9.0% by weight, and a comonomer of 0.8% by weight of butene-1 Performed identically to Example 1 except that polyethylene was used. As in Example 1, the stretching temperature was adjusted to 114.5 ° C. in order to match the proportion of the crystal melted during stretching at 30% by weight, and the heat setting temperature was set at 20% by weight to the extent that the crystal melted as in Example 1. It was 119 ° C. to match.

[比較例4]
成分Iの含有量が60重量%、成分IIの含有量が40重量%であり、延伸温度が延伸の時結晶部分が溶ける割合が30%である120℃であることを除き前記実施例3と同一に実施された。
[Comparative Example 4]
Example 3 with the exception that the content of component I is 60% by weight, the content of component II is 40% by weight, and the stretching temperature is 120 ° C. where the proportion of the crystalline portion that dissolves during stretching is 30%. Performed identically.

[比較例5]
成分Iの含有量が13重量%で、成分IIの含有量が87重量%であるのを除き比較例4と同一に実施された。延伸結晶部分がとけた割合を30重量%で合わせるために延伸温度は112℃にした。
[Comparative Example 5]
The procedure was the same as that of Comparative Example 4 except that the content of component I was 13% by weight and the content of component II was 87% by weight. The stretching temperature was 112 ° C. in order to match the proportion of the stretched crystal portion dissolved at 30% by weight.

[比較例6]
延伸温度がポリエチレンの結晶が5重量%溶ける温度である110℃であることを除き前記実施例3と同一に実施した。
[Comparative Example 6]
The stretching was performed in the same manner as in Example 3 except that the stretching temperature was 110 ° C., which is a temperature at which 5% by weight of polyethylene crystals were dissolved.

[比較例7]
延伸温度がポリエチレンの結晶が85重量%溶ける温度である125℃であることを除き前記実施例3と同一に実施された。
[Comparative Example 7]
The drawing was performed in the same manner as in Example 3 except that the drawing temperature was 125 ° C., which was a temperature at which 85% by weight of polyethylene crystals were dissolved.

[比較例8]
成分Iで重量平均分子量が5.1×10で、分子量が10以下の分子の含有量が9.4重量%であり、コモノマーを含まない高密度ポリエチレンが使われた。延伸比が16倍(縦方向×横方向=4×4)であることを除き実施例1と同一に実施した。
[Comparative Example 8]
Weight average molecular weight of 5.1 × 10 5 in component I, the content of molecular weight of 10 4 or less molecules was 9.4% by weight, high density polyethylene containing no comonomer was used. The same operation as in Example 1 was performed except that the draw ratio was 16 times (longitudinal direction × transverse direction = 4 × 4).

[比較例9]
成分Iで重量平均分子量が5.1×10で、分子量が10以下の分子の含有量が9.4重量%であり、コモノマーを含まない高密度ポリエチレンが使われた。延伸比が56.25倍(縦方向×横方向=7.5×7.5)であることを除き実施例1と等しく実施した。
[Comparative Example 9]
Weight average molecular weight of 5.1 × 10 5 in component I, the content of molecular weight of 10 4 or less molecules was 9.4% by weight, high density polyethylene containing no comonomer was used. The same procedure as in Example 1 was performed except that the stretch ratio was 56.25 times (longitudinal direction × transverse direction = 7.5 × 7.5).

[比較例10]
熱固定をフィルムの結晶部分が35重量%溶ける温度である127℃から15分間実施したことを除き実施例3と等しく実施した。前記実施例及び比較例の実験条件及びこれから得られた結果を下記表1〜4に整理して示した。
[Comparative Example 10]
The heat setting was carried out in the same manner as in Example 3 except that the heat setting was carried out for 15 minutes from 127 ° C., which is a temperature at which 35% by weight of the crystalline portion of the film was dissolved. The experimental conditions of the examples and comparative examples and the results obtained therefrom are shown in Tables 1 to 4 below.

Figure 2011208144
Figure 2011208144

Figure 2011208144
Figure 2011208144

Figure 2011208144
Figure 2011208144

Figure 2011208144
Figure 2011208144

Claims (3)

分子量が1×10以下である分子の含有量が5重量%以下である重量平均分子量2×10〜5×10の高密度ポリエチレン(成分I)20〜50重量%と、
希釈液(成分II)80〜50重量%と、を含む組成物から製造されて、
引張強度が横方向及び縦方向でそれぞれ1,100kg/cm以上、穿孔強度が0.22N/μm以上、気体透過度(Darcy's permeability constant)が1.3×10−5ダーシー(Darcy)以上であり、収縮率が横方向及び縦方向にそれぞれ5%以下であることを特徴とする高密度ポリエチレン微細多孔膜。
20 to 50% by weight of high-density polyethylene (component I) having a weight average molecular weight of 2 × 10 5 to 5 × 10 5 having a molecular weight of 1 × 10 4 or less and a content of molecules of 5% by weight or less;
A dilute solution (component II) 80 to 50% by weight,
The tensile strength is 1,100 kg / cm 2 or more in the transverse direction and the longitudinal direction, the perforation strength is 0.22 N / μm or more, and the gas permeability (Darcy's permeability constant) is 1.3 × 10 −5 Darcy or more. A high-density polyethylene microporous membrane having a shrinkage rate of 5% or less in each of the horizontal and vertical directions.
前記成分Iは2重量%以下のコモノマーを含み、前記コモノマーはプロピレン、ブテン‐1、ヘキセン‐1又は4‐メチルペンテン‐1であることを特徴とする請求項1に記載の高密度ポリエチレン微細多孔膜。   2. The high density polyethylene microporous structure according to claim 1, wherein the component I contains 2% by weight or less of a comonomer, and the comonomer is propylene, butene-1, hexene-1 or 4-methylpentene-1. film. 前記成分IIは40℃動粘度が20〜200cStであるパラフィンオイルを含んでいることを特徴とする請求項1に記載の高密度ポリエチレン微細多孔膜。   The high-density polyethylene microporous membrane according to claim 1, wherein the component II contains paraffin oil having a kinematic viscosity at 40 ° C of 20 to 200 cSt.
JP2011092804A 2004-06-11 2011-04-19 Polyethylene microporous membrane Active JP5611104B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20040043030 2004-06-11
KR10-2004-0043030 2004-06-11
KR10-2004-0073451 2004-09-14
KR1020040073451A KR100683845B1 (en) 2004-06-11 2004-09-14 Microporous high density polyethylene film and preparing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007526972A Division JP4829233B2 (en) 2004-06-11 2005-04-18 Production method of polyethylene microporous membrane

Publications (2)

Publication Number Publication Date
JP2011208144A true JP2011208144A (en) 2011-10-20
JP5611104B2 JP5611104B2 (en) 2014-10-22

Family

ID=37291282

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007526972A Active JP4829233B2 (en) 2004-06-11 2005-04-18 Production method of polyethylene microporous membrane
JP2011092804A Active JP5611104B2 (en) 2004-06-11 2011-04-19 Polyethylene microporous membrane

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007526972A Active JP4829233B2 (en) 2004-06-11 2005-04-18 Production method of polyethylene microporous membrane

Country Status (4)

Country Link
JP (2) JP4829233B2 (en)
KR (2) KR100683845B1 (en)
CN (1) CN101001904B (en)
DE (1) DE602005010431D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540795A (en) * 2005-05-16 2008-11-20 エスケー エナジー シーオー., エルティーディー. Polyethylene microporous membrane produced by liquid-liquid phase separation and method for producing the same
JP2020535595A (en) * 2018-07-26 2020-12-03 エルジー・ケム・リミテッド Crosslinked polyolefin separation membrane and its manufacturing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943236B1 (en) * 2006-02-14 2010-02-18 에스케이에너지 주식회사 Microporous polyolefin film with improved meltdown property and preparing method thereof
CN103030863B (en) * 2012-12-28 2018-04-06 广东美联新材料股份有限公司 A kind of air-permeable masterbatch and the method using master batch manufacture ventilated membrane
KR101611229B1 (en) 2013-01-31 2016-04-11 제일모직 주식회사 Method for manufacturing separator, the separator, and battery using the separator
KR101674985B1 (en) * 2014-07-31 2016-11-11 삼성에스디아이 주식회사 Composition for separator, separator formed by using the composition, and battery using the separator
CN104201313B (en) * 2014-08-21 2016-09-28 上海市凌桥环保设备厂有限公司 The lithium ion battery method of PP film with the composite diaphragm modification of PTFE film
CN104183807B (en) * 2014-08-21 2016-09-28 上海市凌桥环保设备厂有限公司 The lithium ion battery method of PE film with the composite diaphragm modification of PTFE film
WO2018173904A1 (en) * 2017-03-22 2018-09-27 東レ株式会社 Microporous polyolefin membrane and battery including same
KR102038953B1 (en) 2018-04-10 2019-10-31 주식회사 어스텍 Polyethylene microporous membrane for lithium secondary battery by mechanochemical activation treatment and method for manufacturing the same
CN115674628B (en) * 2022-12-30 2023-05-02 四川卓勤新材料科技有限公司 Polyethylene ultra-thin film and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212006A (en) * 1993-01-19 1994-08-02 Asahi Chem Ind Co Ltd Polyethylene millipore membrane
JPH06240043A (en) * 1992-12-21 1994-08-30 Mitsubishi Kasei Corp Production of porous resin molding
JPH07118430A (en) * 1993-10-26 1995-05-09 Tonen Chem Corp Production of polyolefin finely porous film
JPH1160789A (en) * 1997-08-08 1999-03-05 Asahi Chem Ind Co Ltd Production of microporous film
US5928582A (en) * 1996-03-19 1999-07-27 Xenon Research, Inc. Microporous membranes, method of manufacture
JP2000017100A (en) * 1998-07-03 2000-01-18 Asahi Chem Ind Co Ltd Preparation of polyethylene micro-porous membrane
JP2002284918A (en) * 2001-03-23 2002-10-03 Tonen Chem Corp Polyolefin microporous film, method for producing the same and use thereof
JP2002338730A (en) * 2001-05-18 2002-11-27 Asahi Kasei Corp Microporous film made of polyethylene and cell obtained using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248461A (en) * 1989-01-13 1993-09-28 Stamicarbon B.V. Process of making microporous films of UHMWPE
EP0603500B1 (en) * 1992-12-21 1998-09-09 Mitsubishi Chemical Corporation Porous film or sheet, battery separator and lithium battery
JP3486785B2 (en) * 1994-11-11 2004-01-13 旭化成ケミカルズ株式会社 Battery separator and method of manufacturing the same
US5759678A (en) 1995-10-05 1998-06-02 Mitsubishi Chemical Corporation High-strength porous film and process for producing the same
US5853638A (en) 1997-06-27 1998-12-29 Samsung General Chemicals Co., Ltd. Process for producing stretched porous film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240043A (en) * 1992-12-21 1994-08-30 Mitsubishi Kasei Corp Production of porous resin molding
JPH06212006A (en) * 1993-01-19 1994-08-02 Asahi Chem Ind Co Ltd Polyethylene millipore membrane
JPH07118430A (en) * 1993-10-26 1995-05-09 Tonen Chem Corp Production of polyolefin finely porous film
US5928582A (en) * 1996-03-19 1999-07-27 Xenon Research, Inc. Microporous membranes, method of manufacture
JPH1160789A (en) * 1997-08-08 1999-03-05 Asahi Chem Ind Co Ltd Production of microporous film
JP2000017100A (en) * 1998-07-03 2000-01-18 Asahi Chem Ind Co Ltd Preparation of polyethylene micro-porous membrane
JP2002284918A (en) * 2001-03-23 2002-10-03 Tonen Chem Corp Polyolefin microporous film, method for producing the same and use thereof
JP2002338730A (en) * 2001-05-18 2002-11-27 Asahi Kasei Corp Microporous film made of polyethylene and cell obtained using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540795A (en) * 2005-05-16 2008-11-20 エスケー エナジー シーオー., エルティーディー. Polyethylene microporous membrane produced by liquid-liquid phase separation and method for producing the same
JP2020535595A (en) * 2018-07-26 2020-12-03 エルジー・ケム・リミテッド Crosslinked polyolefin separation membrane and its manufacturing method
JP2022075879A (en) * 2018-07-26 2022-05-18 エルジー・ケム・リミテッド Crosslinked polyolefin separation film and method for manufacturing the same
JP7072646B2 (en) 2018-07-26 2022-05-20 エルジー・ケム・リミテッド Cross-linked polyolefin separation membrane and its manufacturing method
US11718723B2 (en) 2018-07-26 2023-08-08 Lg Chem, Ltd. Crosslinked polyolefin separator and manufacturing method therefor

Also Published As

Publication number Publication date
CN101001904B (en) 2010-11-24
KR20060121802A (en) 2006-11-29
KR100675572B1 (en) 2007-01-30
DE602005010431D1 (en) 2008-11-27
KR100683845B1 (en) 2007-02-15
JP4829233B2 (en) 2011-12-07
JP2008501847A (en) 2008-01-24
JP5611104B2 (en) 2014-10-22
CN101001904A (en) 2007-07-18
KR20050118061A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP5611104B2 (en) Polyethylene microporous membrane
JP4889733B2 (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
JP5128488B2 (en) Polyolefin microporous membrane having excellent melt fracture characteristics and method for producing the same
US8323547B2 (en) Microporous polyethylene film manufactured according to liquid-liquid phase separation and method of producing the same
JP2008540794A6 (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
KR100943697B1 (en) Microporous polyethylene film having excellent physical properties, productivity and quality consistency, and method for preparing the same
US7947752B2 (en) Method of producing microporous high density polyethylene film
KR20090055067A (en) Microporous polyethylene film possessing good mechanical properties and thermal stability
KR20140051181A (en) Method of manufacturing a microporous polyethylene film
JP2008506003A (en) Polyethylene microporous membrane and method for producing the same
TW201840666A (en) Microporous polyolefin membrane and battery including same
JP4682347B2 (en) Method for producing polyolefin microporous membrane
KR101004580B1 (en) Microporous polyethylene film through liquid-liquid phase separation mechanism and preparing method thereof
KR100976121B1 (en) Microporous high density polyethylene film and preparing method thereof
JP5097817B2 (en) Polyolefin microporous membrane
JP7470297B2 (en) Polyolefin microporous membrane and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R150 Certificate of patent or registration of utility model

Ref document number: 5611104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250