JP2011206751A - Fluid mixing apparatus and denitrification apparatus - Google Patents

Fluid mixing apparatus and denitrification apparatus Download PDF

Info

Publication number
JP2011206751A
JP2011206751A JP2010079600A JP2010079600A JP2011206751A JP 2011206751 A JP2011206751 A JP 2011206751A JP 2010079600 A JP2010079600 A JP 2010079600A JP 2010079600 A JP2010079600 A JP 2010079600A JP 2011206751 A JP2011206751 A JP 2011206751A
Authority
JP
Japan
Prior art keywords
fluid
spiral guide
flow passage
mixing
fluid mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010079600A
Other languages
Japanese (ja)
Inventor
Tetsuya Mori
哲哉 森
Seiichi Ito
誠一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010079600A priority Critical patent/JP2011206751A/en
Publication of JP2011206751A publication Critical patent/JP2011206751A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fluid mixing apparatus having a simple structure and capable of uniformly mixing a second fluid with a first fluid over the whole flowing passage when mixed by jetting the second fluid from a jetting port to the first fluid flowing in the flowing passage.SOLUTION: The fluid mixing apparatus mixes the second fluid B to the first fluid A by jetting the second fluid B from the jetting port 5 arranged in a flowing passage 4 where the first fluid A flows. This fluid mixing apparatus has a spiral guide vane 1 formed by projecting to the inner diameter side from a wall surface of the flowing passage 4 and having a spiral shaft in the communicating direction of the flowing passage 4, and this spiral guide vane 1 is constituted as a spiral guide vane of multiple rows provided in a plural number at the same position in the axis direction of the flowing passage 4, and in circumferentially different phases. A communicating opening area 7 continuing in the communicating direction of the flowing passage 4 is formed in the inner diameter side part of this plurality of spiral guide vanes. The jetting port 5 is arranged on the wall surface of the flowing passage 4 upstream of a position of the spiral guide vane 1.

Description

本発明は、第1流体が流通する流通路に、前記流通路に配置された噴出口から、第2流体を噴出して前記第1流体に前記第2流体を混合する流体混合装置、および、
燃焼機関から排出され流通路を流通する排ガスに対して還元剤を混合する流体混合装置を備え、前記流体混合装置により混合された混合ガスを触媒反応により脱硝する脱硝装置に関する。
The present invention is directed to a fluid mixing device that ejects a second fluid from a jet port disposed in the flow passage to the flow passage through which the first fluid flows, and mixes the second fluid with the first fluid, and
The present invention relates to a denitration apparatus that includes a fluid mixing device that mixes a reducing agent with exhaust gas discharged from a combustion engine and that flows through a flow passage, and denitrates the mixed gas mixed by the fluid mixing device by a catalytic reaction.

このような流体混合装置を備えた装置として、エンジン等の燃焼機関から排出された排ガスが流通する流通路に、アンモニアや尿素等の還元剤をガス又はミスト状に噴出させて、排ガスに還元剤を混合し、触媒還元作用により、排ガスに含まれる窒素酸化物を窒素と水に分解するように構成されている脱硝装置がある。
かかる脱硝装置は、流体混合装置において排ガスと還元剤が均一に混合されなければ、充分な窒素酸化物の分解性能が得られなかったり、触媒の劣化が局所的なものになり触媒の寿命が短くなったりするなどの問題が生じる。更に、脱硝装置において、流通路において第1流体に対して発生する圧力損失が大きければ、その流通路の上流側にある燃焼機関の運転に支障を与える場合がある。
As a device equipped with such a fluid mixing device, a reducing agent such as ammonia or urea is jetted in a gas or mist form into a flow passage through which exhaust gas discharged from a combustion engine such as an engine flows, and the reducing agent is discharged into the exhaust gas. There is a denitration device configured to decompose nitrogen oxides contained in exhaust gas into nitrogen and water by a catalytic reduction action.
In such a denitration device, if the exhaust gas and the reducing agent are not mixed uniformly in the fluid mixing device, sufficient decomposition performance of nitrogen oxides cannot be obtained, or catalyst deterioration becomes local, resulting in a short catalyst life. Problems such as becoming. Furthermore, in the denitration apparatus, if the pressure loss generated with respect to the first fluid in the flow passage is large, the operation of the combustion engine on the upstream side of the flow passage may be hindered.

このような脱硝装置に採用できる流体混合装置として、発明者らは、特許文献1に記載の流体混合装置を提案している。この文献に記載の技術は、流通路の流路断面における一部の領域に邪魔部を配置し、噴出口を、流通路の流路断面において邪魔部が配置された領域以外の開放領域又はその上流側に配置する(例えば、特許文献1を参照。)。   The inventors have proposed a fluid mixing apparatus described in Patent Document 1 as a fluid mixing apparatus that can be used in such a denitration apparatus. In the technique described in this document, a baffle portion is arranged in a part of the flow path cross section of the flow passage, and the ejection port is an open area other than the area where the baffle portion is arranged in the flow passage cross section of the flow passage or the It arrange | positions upstream (for example, refer patent document 1).

この技術では、第2流体を流通路全体に渡って良好に拡散させ、第1流体に対して第2流体を均一に混合することができる。また、このように噴出口と邪魔部とを配置すると、邪魔部を比較的小さくしても、第1流体に対して第2流体を均一に混合することができるので、流通路における第1流体に対する圧力損失の増加を抑制することができる。
しかし、上記のような構成の流体混合装置では、以下のような問題が発生することが判明した。
In this technique, the second fluid can be diffused well over the entire flow path, and the second fluid can be uniformly mixed with the first fluid. In addition, when the spout and the baffle are arranged in this way, the second fluid can be uniformly mixed with the first fluid even if the baffle is relatively small. The increase in pressure loss with respect to can be suppressed.
However, it has been found that the following problems occur in the fluid mixing apparatus configured as described above.

すなわち、上記技術では噴出口を設けるのに、流通路の流体流路内にその流通路を横断して供給管5を設け、この供給管5に設けられた噴出口6から第2流体を噴出する。そこで、エンジンから排出される排ガスのように、第1流体が腐食性を有するガスの場合は供給管5が腐食されるおそれがある。さらに、第1流体、第2流体の種類によっては、供給管5に設けられる噴出口6が、腐食生成物によって或いは反応生成物によって目詰まりする場合がある。   That is, in the technique described above, in order to provide the ejection port, the supply pipe 5 is provided in the fluid flow path of the flow path so as to cross the flow path, and the second fluid is ejected from the ejection port 6 provided in the supply pipe 5. To do. Therefore, when the first fluid is corrosive gas such as exhaust gas discharged from the engine, the supply pipe 5 may be corroded. Further, depending on the types of the first fluid and the second fluid, the jet port 6 provided in the supply pipe 5 may be clogged with a corrosion product or a reaction product.

このような問題点を解決するために、流通路を横断して設ける供給管自体を無くすることが考えられる。この場合は、噴出口を流通路の壁面に開口させることなる。しかしながら、このように噴出口を流通路の壁面に開口した場合は、第2流体の分布が流通路の噴出口設置側壁面付近に偏り、良好な混合状態を得ることができない。   In order to solve such a problem, it is conceivable to eliminate the supply pipe itself provided across the flow passage. In this case, the jet outlet is opened on the wall surface of the flow passage. However, when the outlet is opened in the wall surface of the flow passage in this way, the distribution of the second fluid is biased to the vicinity of the side wall surface of the outlet of the flow passage, and a good mixed state cannot be obtained.

そこで、前記流通路の壁面から内径側に突出して形成され、前記流通路の連通方向の螺旋軸を有する螺旋状案内羽根を備えるとともに、前記螺旋状案内羽根の内径側部位に、前記流通路の連通方向に連続する連通開放領域を形成し、前記螺旋状案内羽根の位置よりも上流側の流通路の壁面に、前記噴出口を設けた構成とし、前記第一流体と第二流体との混合状態を向上させることが考えられている(特許文献2参照)。   In view of this, a spiral guide vane is formed that protrudes from the wall surface of the flow passage toward the inner diameter side, and has a spiral axis in the communication direction of the flow passage, and at the inner diameter side portion of the spiral guide blade, A communication open region continuous in the communication direction is formed, and the jet port is provided on the wall surface of the flow path upstream of the position of the spiral guide vane, and the first fluid and the second fluid are mixed. It is considered to improve the state (see Patent Document 2).

特開2005−118622号公報JP 2005-118622 A 特開2009−127451号公報JP 2009-127451 A

しかし、上述のような構成を採用すると、前記第一流体と第二流体との混合状態を向上させることができるが、案内羽根により発生する圧力損失が流体供給の妨げになるため、圧力損失の低減にも限界があり、設計上の制約が生じるとともに、流体混合装置の管構造を複雑化し、製造コストが嵩むなどの問題が生じやすかった。また、さらに、前記第一流体と第二流体との混合状態を向上させたいという要求もあった。   However, when the configuration as described above is adopted, the mixing state of the first fluid and the second fluid can be improved, but the pressure loss generated by the guide vanes hinders the fluid supply. There is a limit to the reduction, and there are limitations on the design, and the tube structure of the fluid mixing apparatus is complicated, and problems such as an increase in manufacturing cost tend to occur. Further, there is a demand for improving the mixed state of the first fluid and the second fluid.

本発明の目的は、簡単な構成で、かつ、流通路を流通する第1流体に噴出口から第2流体を噴出して混合する際に、流通路全体に渡って第2流体構成に混合可能な流体混合装置を提供し、特に、このような流体混合装置を備えることで、窒素酸化物の分解性能及び触媒寿命を向上させ、且つ、燃焼機関の運転に支障を与えない脱硝装置を提供する点にある。   An object of the present invention is to have a simple configuration and when the second fluid is jetted from the outlet into the first fluid flowing through the flow passage and mixed with the second fluid configuration over the entire flow passage. In particular, by providing such a fluid mixing device, there is provided a denitration device that improves the decomposition performance and catalyst life of nitrogen oxides and does not hinder the operation of the combustion engine. In the point.

〔構成〕
上記目的を達成するための、本発明の流体混合装置の特徴構成は、
第1流体が流通する流通路に、前記流通路に配置された噴出口から、第2流体を噴出して前記第1流体に前記第2流体を混合する場合に、
前記流通路の壁面から内径側に突出して形成され、前記流通路の連通方向の螺旋軸を有する螺旋状案内羽根を前記流通路の軸方向における同一位置に複数、周方向で異なる位相で備えた多条の螺旋状案内羽根として構成されるとともに、前記複数の螺旋状案内羽根の内径側部位に前記流通路の連通方向に連続する連通開放領域を形成し、前記螺旋状案内羽根の位置よりも上流側の流通路の壁面に、前記噴出口を設けたことにある。
〔Constitution〕
In order to achieve the above object, the characteristic configuration of the fluid mixing apparatus of the present invention is as follows:
When the second fluid is ejected from the jet port arranged in the flow passage to the flow passage through which the first fluid flows, and the second fluid is mixed with the first fluid,
A plurality of spiral guide blades that protrude from the wall surface of the flow passage toward the inner diameter side and have a spiral axis in the communication direction of the flow passage are provided at the same position in the axial direction of the flow passage and in different phases in the circumferential direction. It is configured as a multi-row spiral guide vane, and forms a communication open region continuous in the communication direction of the flow passage at the inner diameter side portion of the plurality of spiral guide vanes, than the position of the spiral guide vane The jet port is provided on the wall surface of the upstream flow passage.

〔作用効果〕 [Function and effect]

この流体混合装置では、流通路の上流から下流に向かうに従って、第2流体の噴出口、螺旋状案内羽根が設けられる。そして、噴出口を流通路の壁面に設けることにより、上記のように、第2流体を供給するための管等が腐食して、その機能を発揮できなくなったり、噴出口が目詰まりする等の問題を発生することはない。   In this fluid mixing apparatus, the second fluid jet port and the spiral guide vane are provided from the upstream to the downstream of the flow passage. And by providing the jet outlet on the wall surface of the flow passage, as described above, the pipe for supplying the second fluid is corroded, and its function cannot be exhibited, or the jet outlet is clogged. There is no problem.

しかしながら、上記のように噴出口を壁面に設けることにより、第2流体の偏在が発生する問題が起こる可能性があるが、螺旋状案内羽根を設けることにより、噴出口が設けられている壁面側に偏在している第2流体を当該羽根で方向変換させつつ、流通路の全面に導いて拡散を促進し、偏在を解消することができる。さらに、この螺旋状案内羽根の内径側部位に、連通開放領域を形成することで、羽根により周方向に拡散された第2流体が当該開放領域に流入され、圧力損失を低減しながら十分な拡散混合を実現できる。   However, there is a possibility that the second fluid is unevenly distributed by providing the jet outlet on the wall surface as described above. However, by providing the spiral guide blade, the wall surface side on which the jet outlet is provided is provided. While the second fluid that is unevenly distributed is redirected by the blade, it is guided to the entire surface of the flow passage to promote diffusion and the uneven distribution can be eliminated. Furthermore, by forming a communication open region at the inner diameter side portion of the spiral guide vane, the second fluid diffused in the circumferential direction by the vane flows into the open region, and sufficient diffusion is achieved while reducing pressure loss. Mixing can be realized.

ここで、前記螺旋状案内羽根を多条とするから、前記流通路を流れる第一、第二流体が方向変換される作用力を受けた旋回流は、前記流通路の軸方向における同一位置で複数同時に方向変換され、前記第一第二流体は、特に効率良く撹拌されつつ下流側に流れる。そのため、混合効率の向上に寄与するとともに、前記螺旋状案内羽根の位置から下流側へ短い距離で混合作用を受けるだけで、十分な混合が可能となり、かつ、圧力損失を抑えることができる。   Here, since the spiral guide vanes are multi-striped, the swirling flow that has received an acting force that changes the direction of the first and second fluids flowing through the flow passage is at the same position in the axial direction of the flow passage. A plurality of the directions are changed at the same time, and the first second fluid flows downstream while being particularly efficiently stirred. Therefore, it contributes to the improvement of mixing efficiency, and sufficient mixing is possible and pressure loss can be suppressed only by receiving a mixing action at a short distance from the position of the spiral guide vane to the downstream side.

〔構成〕
また、前記多条の螺旋状案内羽根が、前記流通路の軸方向視で、全周にわたって、重なりなく設けられていることが好ましい。
〔Constitution〕
In addition, it is preferable that the multiple spiral guide blades are provided without overlapping over the entire circumference in the axial direction view of the flow passage.

〔作用効果〕
前記第一、第二流体が前記螺旋状案内羽根から方向変換された旋回流の撹拌混合作用は、下流側位置における前記螺旋状案内羽根の螺旋軸方向の重なりによらず十分に発生させられるので、流通路の螺旋軸方向視で、全周にわたって、重なりなく(例えば、2条であれば、1/2周の螺旋状案内羽根を2つを周方向に180°位相をずらせて配置した状態、4条であれば、1/4周の螺旋を4つを周方向に90°位相をずらせて配置した状態)設けられていれば、効率よくかつ簡単な構成で螺旋状案内羽根を形成することができる。
[Function and effect]
Since the stirring and mixing action of the swirl flow in which the first and second fluids are changed in direction from the spiral guide vane is sufficiently generated regardless of the overlap in the spiral axis direction of the spiral guide vane at the downstream position. , When viewed in the direction of the spiral axis of the flow passage, there is no overlap over the entire circumference (for example, if there are two strips, the two spiral guide vanes of 1/2 circumference are arranged 180 degrees out of phase in the circumferential direction) If it is 4, it is a state where four 1/4 spirals are arranged 90 ° out of phase in the circumferential direction). If provided, the spiral guide vanes are formed with an efficient and simple configuration. be able to.

〔構成〕
また、前記多条の螺旋状案内羽根の条数が、当該多条の螺旋状案内羽根より下流の位置である均一混合条件充足位置までの拡散混合距離に従って、前記拡散混合距離が短いほど、前記多条の螺旋状案内羽根の条数を多くする形態で前記均一混合条件充足位置における均一混合条件を満足するように決定されることが好ましい。
〔Constitution〕
Further, according to the diffusion mixing distance to the uniform mixing condition satisfaction position, which is the position downstream of the multiple spiral guide blades, the number of the spiral guide blades of the multiple stripes, the shorter the diffusion mixing distance, It is preferable to determine so as to satisfy the uniform mixing condition at the position where the uniform mixing condition is satisfied in the form in which the number of spiral guide blades is increased.

〔作用効果〕
先述のとおり、前記第一、第二流体が前記螺旋状案内羽根に衝突した状態から撹拌混合状態になるのであるが、均一とみなせる状態にまで混合されるには、ある程度の混合時間を要する。一方、逆に、混合された流体が触媒等の作用により反応する場合、その触媒の手前で均一な混合状態になっていることが求められる。前記第一、第二流体がその混合時間だけ前記螺旋状案内羽根から下流に流れて、均一とみなす状態(均一混合条件)になった位置(均一混合条件充足位置)までの距離(拡散混合距離)は、短いほど好ましいと考えられるが、現実的には、前記螺旋状案内羽根を設ける配管長さに応じて、その配管長さを有効に利用して混合することが好ましい。また、前記混合時間は、先述の混合効率の説明に基くと、前記螺旋状案内羽根の条数が多いほど効率よく混合できるので、混合時間が短くできることになる。
[Function and effect]
As described above, the first and second fluids change from the state of colliding with the spiral guide blades to the stirring and mixing state, but a certain amount of mixing time is required for mixing to a state that can be regarded as uniform. On the other hand, when the mixed fluid reacts by the action of a catalyst or the like, it is required that the mixed fluid be in a uniform mixed state before the catalyst. The distance (diffusion mixing distance) to the position (uniform mixing condition satisfaction position) where the first and second fluids flow downstream from the spiral guide vanes for the mixing time and are considered to be uniform (uniform mixing conditions). ) Is considered to be preferable as it is shorter. However, in practice, it is preferable to mix by effectively using the pipe length according to the pipe length provided with the spiral guide vanes. Further, based on the description of the mixing efficiency described above, the mixing time can be reduced more efficiently as the number of the spiral guide blades increases, so that the mixing time can be shortened.

そこで、拡散混合距離を基準にして再構成すると、前記拡散混合距離が短いほど、前記多条の螺旋状案内羽根の条数を多くし、前記均一混合条件充足位置における均一混合条件を満足するように決定することにより、前記螺旋状案内羽根を設ける配管長さを最大限有効利用しつつ、十分な混合状態を形成することができる。   Therefore, when reconstructing based on the diffusion mixing distance, the shorter the diffusion mixing distance is, the more the number of the spiral guide blades of the multiple stripes is increased, so that the uniform mixing condition at the uniform mixing condition satisfaction position is satisfied. Thus, a sufficiently mixed state can be formed while maximally effectively using the pipe length provided with the spiral guide blade.

〔構成〕
前記多条の螺旋状案内羽根の条数が4であり、前記連通開放領域の内径Dxと、軸心周りの周方向で隣接して位置する対となる羽根に関し、周方向後端の羽根位置と周方向先端の羽根位置との前記流通路の軸心方向における離間距離Lxとの比(Lx/Dx)が0.05以上0.5以下に設定される請求項1〜3のいずれか一項に記載の流体混合装置。
〔Constitution〕
The number of the spiral guide blades of the multiple strips is 4, and the blade position at the rear end in the circumferential direction with respect to the pair of blades adjacent to each other in the circumferential direction around the axial center and the inner diameter Dx of the communication open region The ratio (Lx / Dx) of the separation distance Lx in the axial center direction of the said flow path with the blade | wing position of the circumferential direction front-end | tip is set to 0.05 or more and 0.5 or less. The fluid mixing apparatus according to the item.

〔作用効果〕
前記多条の螺旋状案内羽根が4条であれば、前記流通路の径、長さに応じた適度なおおきさの螺旋状案内羽根を容易に配列することができ、かつ、十分高い混合効率を発揮させることができる条数となることが実験的にわかっている。条数は少ないと混合効率の向上が十分に見こめない場合が考えられる一方、条数が多いと、螺旋状案内羽根の配列形成が困難になるという事情による。また、前記螺旋状案内羽根の角度が前記連通開放領域の内径Dxと、周方向で隣接して位置する対となる羽根に関し、周方向後端の羽根位置と周方向先端の羽根位置との前記流通路の軸心方向における軸心周りの離間距離Lxとの比(Lx/Dx)が0.05以上0.5以下となるように設定してあると、螺旋状案内羽根を設ける領域を小さく、かつ、前記流通路を流れる第一、第二流体が方向変換される作用力を大きく発生させることができる。即ち、前記比(Lx/Dx)が小さすぎると、単なる邪魔板との差が少なくなり、圧力損失が大きくなるとともに、第一、第二流体が方向変換される作用力が得られにくく内燃機関って、混合能が得られにくい。一方、前記比(Lx/Dx)が大きすぎると、螺旋状案内羽根を設ける領域が前記流通路の軸心方向に長く広がり、やはり第一、第二流体が方向変換される作用力が得られにくくなり、混合能が得られにくくなるとともに拡散混合距離が長くなる。
[Function and effect]
If the number of spiral guide blades is four, the spiral guide blades having an appropriate size according to the diameter and length of the flow passage can be easily arranged, and the mixing efficiency is sufficiently high. It has been experimentally found that the number of stripes can be exhibited. When the number of strips is small, there may be a case where the mixing efficiency cannot be sufficiently improved. On the other hand, when the number of strips is large, it is difficult to form the arrangement of the spiral guide blades. Further, regarding the pair of blades adjacent to each other in the circumferential direction, the spiral guide blade has an inner diameter Dx of the communication open region, and the blade position at the rear end in the circumferential direction and the blade position at the front end in the circumferential direction. If the ratio (Lx / Dx) to the separation distance Lx around the axis in the axial direction of the flow path is set to be 0.05 or more and 0.5 or less, the area where the spiral guide blades are provided is reduced. In addition, it is possible to generate a large acting force that changes the direction of the first and second fluids flowing through the flow passage. That is, if the ratio (Lx / Dx) is too small, the difference from a mere baffle plate is reduced, the pressure loss is increased, and it is difficult to obtain an acting force that changes the direction of the first and second fluids. Therefore, it is difficult to obtain mixing ability. On the other hand, if the ratio (Lx / Dx) is too large, the region where the spiral guide vanes are provided extends long in the axial direction of the flow passage, and an acting force that changes the direction of the first and second fluids is obtained. It becomes difficult to obtain the mixing ability and the diffusion mixing distance becomes long.

〔構成〕
また、前記流通路の連通方向視で、前記流通路の全断面積に対する、前記連通開放領域の面積比が、3:11〜4:5の範囲とすることが好ましい。
〔Constitution〕
Moreover, it is preferable that the area ratio of the said communication open area | region with respect to the whole cross-sectional area of the said flow path shall be the range of 3: 11-4: 5 by the communication direction view of the said flow path.

〔作用効果〕
先述のように、さらに、この螺旋状案内羽根の内径側部位に、連通開放領域を形成することで、羽根により周方向に拡散された第2流体が当該開放領域に流入され、圧力損失を低減しながら十分な拡散混合を実現できる。
ここで、螺旋状案内羽根が前記流通路を覆う領域で、第一、第二流体のうち周方向に方向変換される部分と、方向変換されずに前記連通開放領域を通過する部分との間に発生するガス流の乱れが発生し、混合が促進される一面がある一方、逆に方向変換されるガス流の割合を多くしすぎると、圧力損失を増すことになる。具体的には、上記比率を、4:5より大きくすると、螺旋状案内羽根による混合能を得にくくなりがちであり、3:11より小さいと、圧力損失が増大する。
[Function and effect]
As described above, the communication fluid release region is formed in the inner diameter side portion of the spiral guide vane, so that the second fluid diffused in the circumferential direction by the vane flows into the open region, thereby reducing the pressure loss. Sufficient diffusive mixing can be achieved.
Here, in the region where the spiral guide vane covers the flow passage, between the portion of the first and second fluids whose direction is changed in the circumferential direction and the portion which passes through the communication open region without being changed in direction. On the other hand, there is one aspect in which the turbulence of the generated gas flow occurs and mixing is promoted. On the other hand, if the ratio of the gas flow to be redirected is excessively increased, the pressure loss is increased. Specifically, when the ratio is larger than 4: 5, it tends to be difficult to obtain the mixing ability by the spiral guide blades, and when it is smaller than 3:11, the pressure loss increases.

〔構成〕
本発明の脱硝装置の特徴構成は、燃焼機関から排出され流通路を流通する排ガスに対して還元剤を混合する流体混合装置を備え、前記流体混合装置により混合された混合ガスを触媒反応により脱硝する脱硝装置であって、
前記流体混合装置として、上記流体混合装置に、前記第1流体を前記排ガスとし、前記第2流体を前記還元剤とした点にある。
〔Constitution〕
The characteristic configuration of the denitration device of the present invention includes a fluid mixing device that mixes a reducing agent with the exhaust gas discharged from the combustion engine and flowing through the flow passage, and the mixed gas mixed by the fluid mixing device is denitrated by catalytic reaction. A denitration device that
As the fluid mixing device, the fluid mixing device is characterized in that the first fluid is the exhaust gas and the second fluid is the reducing agent.

〔作用効果〕
前記流体混合装置として、以上説明してきた流体混合装置を、前記第1流体を前記排ガスとし、前記第2流体を前記還元剤とした形態で備えることで、第1流体と第2流体との混合を十分且つ安定的に得て、その混合ガスを触媒部に導いて脱硝を良好に行うことができる。
[Function and effect]
As the fluid mixing device, the fluid mixing device described above is provided in a form in which the first fluid is the exhaust gas and the second fluid is the reducing agent, thereby mixing the first fluid and the second fluid. Can be obtained sufficiently and stably, and the mixed gas can be guided to the catalyst part to perform denitration well.

本願に係る脱硝装置の概略構成を示す図The figure which shows schematic structure of the denitration apparatus which concerns on this application 流体混合装置の概略構成を示す立断面図Elevated sectional view showing schematic configuration of fluid mixing device 本発明の流体混合装置に用いられる螺旋状案内羽根の詳細を示す図The figure which shows the detail of the helical guide blade used for the fluid mixing apparatus of this invention 螺旋状案内羽根による流体の混合状態を示す図The figure which shows the mixing state of the fluid by a spiral guide blade 比較例として用いられる案内羽根1bを示す図The figure which shows the guide blade 1b used as a comparative example 案内羽根1bによる流体の混合状態を示す図The figure which shows the mixing state of the fluid by the guide blade 1b 比較例として用いられる案内羽根1cを示す図The figure which shows the guide blade 1c used as a comparative example 案内羽根1cによる流体の混合状態を示す図The figure which shows the mixing state of the fluid by the guide blade 1c 比較例として用いられる案内羽根1dを示す図The figure which shows the guide blade 1d used as a comparative example 案内羽根1dによる流体の混合状態を示す図The figure which shows the mixing state of the fluid by the guide blade 1d 各案内羽根による流体の混合状態を示すグラフGraph showing fluid mixing state by each guide vane

以下、本願に係る流体混合装置100を備えた脱硝装置200を図面に基づいて説明する。
図1は、本願に係る脱硝装置200の構成を示す図であり、図2は、この脱硝装置200の一部に組込まれている本願に係る流体混合装置100の構成を模式的に示した図である。
図1に示すように、当該脱硝装置200は、燃焼機関201(図示する例にあっては、発電機202を回転駆動させるためのエンジン203)から排出される排ガスに、本願に係る流体混合装置100を使用して還元剤を混合し、当該流体混合装置100により均一に混合された混合ガスを、触媒204(還元触媒及び酸化触媒)が配設される触媒部205に導いて、排ガスを無害化するものである。従って、本構成にあっては、燃焼機関201からの排ガスが本願における第1流体Aに該当し、排ガスに混合される還元剤が第2流体Bとなる。ここで、排ガスには無害化対象の窒素酸化物が含まれ、この窒素酸化物を無害化するための還元剤は、具体的には尿素と水との混合物となる。これら還元剤はガス状態で流通路に供給してもよいし、ミスト状態で流通路に供給してもよい。
Hereinafter, a denitration apparatus 200 including the fluid mixing apparatus 100 according to the present application will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a denitration apparatus 200 according to the present application, and FIG. 2 is a diagram schematically showing a configuration of a fluid mixing apparatus 100 according to the present application incorporated in a part of the denitration apparatus 200. It is.
As shown in FIG. 1, the denitration apparatus 200 includes a fluid mixing apparatus according to the present application for exhaust gas discharged from a combustion engine 201 (in the illustrated example, an engine 203 for rotating the generator 202). 100 is used to mix the reducing agent, and the mixed gas uniformly mixed by the fluid mixing apparatus 100 is guided to the catalyst unit 205 where the catalyst 204 (reduction catalyst and oxidation catalyst) is disposed, and the exhaust gas is harmless. It is to become. Therefore, in this configuration, the exhaust gas from the combustion engine 201 corresponds to the first fluid A in the present application, and the reducing agent mixed with the exhaust gas becomes the second fluid B. Here, the exhaust gas contains nitrogen oxides to be rendered harmless, and the reducing agent for rendering the nitrogen oxides harmless is specifically a mixture of urea and water. These reducing agents may be supplied to the flow passage in a gas state, or may be supplied to the flow passage in a mist state.

図2に模式的に示すように、本願に係る流体混合装置100は、流通路4の壁面に設けられた噴出口5から、第1流体Aが流通する流通路4内に第2流体Bを噴出して、第1流体Aに第2流体Bを混合する構成とされている。ここで、第2流体Bの第1流体Aに対する量比(質量比)は、ほぼ、1:100000〜5:1000程度である。このように、第2流体Bの量が極めて少ないため、積極的な混合・攪拌を噴出口5の下流側で行わない場合は、第2流体Bの極端な偏在が触媒部205の入口部位でも残存することとなる。   As schematically shown in FIG. 2, the fluid mixing apparatus 100 according to the present application sends the second fluid B from the jet port 5 provided on the wall surface of the flow passage 4 into the flow passage 4 through which the first fluid A flows. The second fluid B is mixed with the first fluid A by being ejected. Here, the quantity ratio (mass ratio) of the second fluid B to the first fluid A is approximately 1: 100000 to 5: 1000. As described above, since the amount of the second fluid B is extremely small, when the active mixing / stirring is not performed on the downstream side of the ejection port 5, the extreme uneven distribution of the second fluid B may occur at the inlet portion of the catalyst unit 205. Will remain.

上記流通路4は、円形断面を有する管材内に形成された流路であり、上流側から受け入れた第1流体Aが流通し、上記第2流体Bと混合した後に、その混合ガスを下流側(具体的には断面形状が方形とされた触媒部入口205a)へ排出する。   The flow path 4 is a flow path formed in a pipe having a circular cross section, and after the first fluid A received from the upstream side is circulated and mixed with the second fluid B, the mixed gas is transferred to the downstream side. (To be specific, the catalyst section inlet 205a having a square cross section is discharged).

上記噴出口5は、流通路の壁面6に穿設されており、その開口から第2流体Bを、流通路4に噴出させる。この第2流体Bの噴出方向は、壁面6に対してほぼ直交する流通路4の径方向とされている。ここで、噴出口5の開口方向は実施形態で示すように径方向としてもよいし、径方向から上流側若しくは下流側に傾いた方向としてもよい。上流側に傾けた構造とすると、第2流体Bが第1流体Aに対向して噴出されることで、両流体の混合を促進できる。一方、下流側に傾けた構造とすると、第2流体Bを第1流体Aにより吸引して流通路4内に吸引することができる。この構成では、第2流体Bの噴出に要する動力を低減できる。本願にあっては、噴出口5より下流側に設けられる螺旋状案内羽根1により両流体の確実な混合を確保できるため、このように噴出口5を下流側に向ける場合も、混合の問題を確実に解消できる。   The jet outlet 5 is formed in the wall surface 6 of the flow passage, and the second fluid B is jetted into the flow passage 4 from the opening. The ejection direction of the second fluid B is the radial direction of the flow passage 4 substantially orthogonal to the wall surface 6. Here, the opening direction of the jet nozzle 5 may be a radial direction as shown in the embodiment, or may be a direction inclined from the radial direction to the upstream side or the downstream side. When the structure is inclined to the upstream side, the second fluid B is ejected to face the first fluid A, thereby promoting the mixing of both fluids. On the other hand, when the structure is inclined to the downstream side, the second fluid B can be sucked by the first fluid A and sucked into the flow passage 4. In this configuration, the power required for the ejection of the second fluid B can be reduced. In the present application, since both the fluids can be reliably mixed by the spiral guide blade 1 provided on the downstream side of the jet port 5, even when the jet port 5 is directed to the downstream side in this way, there is no problem of mixing. It can be surely solved.

また、上記噴出口5は、流通路4の周方向の一箇所に設けられているが、噴出口5を周方向で複数設け分散配置することも可能である。例えば、周方向の4箇所に90度ピッチで噴出口5を設けた場合、周方向で第2流体Bの分布を噴出箇所においてある程度確保できる。   Moreover, although the said jet nozzle 5 is provided in one place of the circumferential direction of the flow path 4, it is also possible to provide the jet nozzle 5 in multiple numbers in the circumferential direction, and to disperse | distribute it. For example, when the outlets 5 are provided at 90 ° pitches at four locations in the circumferential direction, the distribution of the second fluid B can be ensured to some extent at the ejection locations in the circumferential direction.

この流体混合装置100には、流通路4内の一部領域に螺旋状案内羽根1が配置されており(つまり、前記螺旋状案内羽根1の位置よりも上流側の流通路の壁面6に、前記噴出口5を設けた構成)、この螺旋状案内羽根1により、流通路4を流れる第1流体Aに旋回成分を与えることが可能となるとともに、流通路4の壁面6に沿って流れ易い第2流体Bを流通路4の壁面6に沿って旋回させ、周方向に分散させるとともに、第1流体Aとの混合を図る構成とされている。   In the fluid mixing device 100, the spiral guide vane 1 is arranged in a partial region in the flow passage 4 (that is, on the wall surface 6 of the flow passage upstream of the position of the spiral guide blade 1) The configuration in which the jet nozzle 5 is provided), and the spiral guide blade 1 makes it possible to give a swirling component to the first fluid A flowing through the flow passage 4 and to easily flow along the wall surface 6 of the flow passage 4. The second fluid B is swung along the wall surface 6 of the flow passage 4 and dispersed in the circumferential direction, and is mixed with the first fluid A.

前記螺旋状案内羽根1は、図3に示すように、前記流通路4の壁面6から内径側に突出して形成され、前記流通路4の連通方向の螺旋軸を有する螺旋状案内羽根を前記流通路4の螺旋軸方向における同一領域に4条の螺旋状案内羽根が、前記流通路4の螺旋軸方向視で、それぞれ流通路の1/4周を覆う部材として構成され、全周にわたって、90°ピッチで配置して前記流通路4の軸方向視で重なりなく設けられている。   As shown in FIG. 3, the spiral guide blade 1 is formed so as to protrude from the wall surface 6 of the flow passage 4 toward the inner diameter side, and the spiral guide blade 1 having a spiral axis in the communication direction of the flow passage 4 is passed through the flow passage. Four spiral guide vanes in the same region in the spiral axis direction of the path 4 are configured as members that cover ¼ circumference of the flow path as viewed in the spiral axis direction of the flow path 4, and are 90 They are arranged at a pitch and are provided so as not to overlap in the axial direction of the flow passage 4.

また、前記複数の螺旋状案内羽根1の内径側部位に前記流通路4の連通方向に連続する連通開放領域7を形成している。この連通開放領域7において、流体が下流側へ抵抗なく流れるように構成されている。本実施形態では、螺旋状案内羽根1が、螺旋軸方向に対して薄く、内径方向に長い方形の断面形状を有する板状体をコイル状に巻いた一部を用いるが、螺旋状案内羽根1を構成する構成材の断面形状は、流通路4の壁面6に沿って流れる混合流について、流通路4の連通方向を螺旋軸とする螺旋流を形成でき、螺旋流の一部が連通開放領域7に流入できればよく、その形状が板状体に限られるものではない。   In addition, a communication open region 7 that is continuous in the communication direction of the flow passage 4 is formed in the inner diameter side portion of the plurality of spiral guide vanes 1. In the communication open region 7, the fluid flows to the downstream side without resistance. In this embodiment, the spiral guide vane 1 is a part of a coiled plate-like body that is thin with respect to the spiral axis direction and has a rectangular cross-sectional shape that is long in the inner diameter direction. The cross-sectional shape of the constituent material that constitutes can be a spiral flow whose spiral axis is the communication direction of the flow passage 4 in the mixed flow that flows along the wall surface 6 of the flow passage 4, and a part of the spiral flow is a communication open region. The shape is not limited to the plate-like body.

前記螺旋状案内羽根1の角度は、前記連通開放領域の内径Dxと、周方向で隣接して位置する対となる羽根に関し、周方向後端の羽根位置と周方向先端の羽根位置との前記流通路の軸心方向における軸心周りの離間距離Lxとの比(Lx/Dx)が0.05以上0.5以下に設定され、前記流通路の連通方向視で、前記流通路の全断面積に対する、前記連通開放領域7の面積比が、3:11〜4:5程度とする。尚、以下の実施の形態における螺旋状案内羽根1の角度は、Lx/Dx=0.11としてある。(図3参照)   The angle of the spiral guide vane 1 is the above-described blade position at the rear end in the circumferential direction and the blade position at the front end in the circumferential direction with respect to the inner diameter Dx of the communication opening region and the pair of blades adjacent in the circumferential direction. The ratio (Lx / Dx) to the separation distance Lx around the axial center in the axial direction of the flow path is set to 0.05 or more and 0.5 or less, and the flow path is completely disconnected in the communication direction view of the flow path. The area ratio of the communication open region 7 to the area is set to about 3:11 to 4: 5. In the following embodiment, the angle of the spiral guide blade 1 is set to Lx / Dx = 0.11. (See Figure 3)

さて、図3は、この螺旋状案内羽根1を上流側から螺旋軸方向に見た図面であるが、この図からも判明するように、螺旋軸方向視でこの螺旋状案内羽根1は円環状となり、その内径側に連通開放領域7が形成されている。
今、流通路4の壁面6から螺旋状案内羽根1の内径端までの長さを羽根の突出高さh1と呼ぶと、この突出高さh1は、噴出口5から噴出される第2流体Bの拡散領域の流路横断方向の高さ(拡散高さと呼ぶ)hz(図4参照)に対して、少なくともその過半の高さとなるように構成されている。このように螺旋状案内羽根1の突出高さh1が設定されることで、噴出口5から噴出される第2流体Bの過半を螺旋流路内に取り込み方向変換して旋回を与え、第2流体を噴出口5が設けられている流通路4の周方向位相とは反対側の位相部位にまで導いて、流通路4内での第2流体Bの均等分散を図ることができる。
FIG. 3 is a view of the spiral guide blade 1 as viewed in the spiral axis direction from the upstream side. As can be seen from this drawing, the spiral guide blade 1 is annular when viewed in the spiral axis direction. Thus, a communication open area 7 is formed on the inner diameter side.
Now, when the length from the wall surface 6 of the flow passage 4 to the inner diameter end of the spiral guide blade 1 is referred to as the protrusion height h1 of the blade, the protrusion height h1 is the second fluid B ejected from the ejection port 5. The diffusion region is configured to have at least a majority of the height (referred to as diffusion height) hz (refer to FIG. 4) in the channel crossing direction. By setting the protruding height h1 of the spiral guide blade 1 in this way, a majority of the second fluid B ejected from the ejection port 5 is taken into the spiral flow path to give a turn, and the second The fluid can be guided to a phase portion on the opposite side to the circumferential phase of the flow passage 4 in which the jet nozzle 5 is provided, so that the second fluid B can be evenly distributed in the flow passage 4.

第2流体の均等分散
図4は、本実施形態の流体混合装置100の混合状態を、数値解析手法にてシミュレーションしたものであり、流通路6における螺旋状案内羽根1の下流100mm地点断面、および、200mm地点断面での第二流体の濃度分布を示す。(暗部で第二流体が高濃度に存在することが示されている)
FIG. 4 shows a simulation of the mixing state of the fluid mixing device 100 of the present embodiment by a numerical analysis method, and shows a cross section at a point 100 mm downstream of the spiral guide blade 1 in the flow path 6. The concentration distribution of the 2nd fluid in a 200 mm point cross section is shown. (It is shown that the second fluid is present at high concentration in the dark)

図4より、本発明の螺旋状案内羽根1を用いると、第2流体Bは噴出口5の配設側とは反対側まで案内されており、触媒部205の入口で第2流体Bが断面全体にほぼ均一に分散されていることが判る。   As shown in FIG. 4, when the spiral guide vane 1 of the present invention is used, the second fluid B is guided to the side opposite to the side where the jet nozzle 5 is disposed, and the second fluid B is cross-sectioned at the inlet of the catalyst unit 205. It can be seen that it is distributed almost uniformly throughout.

また、上記螺旋状案内羽根1を備えた流体混合装置100に代え比較として1条、軸方向にスリット部を有する螺旋状案内羽根1bを用いた流体混合装置100b(図5参照)、前記螺旋状案内羽根を一条全周の螺旋を形成するように配列した案内羽根1cを備えた流体混合装置100c(図7参照)、リング状邪魔板1dを設けた流体混合装置100d(図9参照)、を用意し、前記流体混合装置100b、100c、100dを用いた場合の流通路6における螺旋状案内羽根1の下流100mm地点断面、および、200mm地点断面での第二流体の濃度分布を、図6.8,10に示す。尚、各流体混合装置は、流通路4を内径51mmの管で構成し旋回羽根、邪魔板は、いずれも連通開放領域7が内径34mmに設けられている。また併せて、そのときの圧損と濃度分布との関係を調べた結果を表1に示すとともに、グラフ化して図11に示す。
尚、ここで、螺旋状案内羽根1b、案内羽根1cの螺旋軸に対する角度と前記流通路の連通方向視で、前記流通路の全断面積に対する、前記連通開放領域の面積比とは、前記螺旋状案内羽根1と同一になるよう設計してある。
Further, in place of the fluid mixing device 100 provided with the spiral guide blade 1, the fluid mixing device 100b (see FIG. 5) using one spiral guide spiral blade 1b having a slit portion in the axial direction is used as a comparison. A fluid mixing device 100c (see FIG. 7) provided with guide blades 1c in which guide blades are arranged so as to form a spiral around one line, and a fluid mixing device 100d (see FIG. 9) provided with a ring-shaped baffle plate 1d. FIG. 6 shows the concentration distribution of the second fluid in the cross section at the point of 100 mm downstream of the spiral guide blade 1 and the cross section at the point of 200 mm in the flow passage 6 when using the fluid mixing devices 100b, 100c and 100d. Shown in 8,10. In each fluid mixing device, the flow passage 4 is formed of a pipe having an inner diameter of 51 mm, and the swirl vane and the baffle plate are each provided with a communication open region 7 having an inner diameter of 34 mm. In addition, the results of examining the relationship between the pressure loss and the concentration distribution at that time are shown in Table 1 and are shown in a graph in FIG.
Here, the angle of the spiral guide vane 1b and the guide vane 1c with respect to the spiral axis and the area ratio of the communication open area to the entire cross-sectional area of the flow passage in the direction of communication of the flow passage are the spiral. It is designed to be the same as the shape guide blade 1.

表1および図11から、本発明の多条の螺旋状案内羽根1を用いた流体混合装置100によると、1条螺旋状案内羽根とみなせる1b、1c、1dの例に比べ、多条の螺旋状案内羽根1は、圧損および混合効率(濃度差)両方の面から好ましい状態であることが読み取れる。また、条数の差を比較すると、1、1bの比較より、螺旋状案内羽根の条数が増えるにしたがって、圧損および濃度差が低くなっていることがわかり、十分混合された均一混合条件を充足するために必要な拡散混合距離は螺旋状案内羽根1の条数が増えるに従って短くなっていることがわかり、前記流通路の長さ(多条の螺旋状案内羽根1より下流の位置である均一混合条件充足位置Mまでの拡散混合距離L、図2参照)に従って、前記拡散混合距離Lが短いほど、前記多条の螺旋状案内羽根1の条数を多くする形態で前記均一混合条件充足位置Mにおける均一混合条件を満足するように螺旋状案内羽根1の条数を決定すると、(具体的には流体混合装置100に所定の混合度(濃度差)が要求される拡散混合距離Lがわかれば、その混合度が実現される前記多条の螺旋状案内羽根1の条数を図11破線より求めることができる。)前記螺旋状案内羽根1を設ける配管(流通路4)長さを最大限有効利用しつつ、十分な混合状態を形成することができることがわかった。   From Table 1 and FIG. 11, according to the fluid mixing apparatus 100 using the multiple spiral guide vanes 1 of the present invention, the multiple spirals are compared to the examples of 1b, 1c, and 1d that can be regarded as the single spiral guide vanes. It can be read that the shape guide blade 1 is in a preferable state from the viewpoint of both pressure loss and mixing efficiency (concentration difference). Moreover, comparing the difference in the number of strips, it can be seen from the comparison of 1 and 1b that the pressure loss and the concentration difference are reduced as the number of strips of the spiral guide blades is increased. It can be seen that the diffusion mixing distance necessary for satisfying becomes shorter as the number of the spiral guide blades 1 increases, and the length of the flow path (the position downstream of the multiple spiral guide blades 1). According to the diffusion mixing distance L to the uniform mixing condition satisfaction position M (see FIG. 2), the shorter the diffusion mixing distance L is, the more the number of the spiral guide blades 1 is increased. When the number of strips of the spiral guide blade 1 is determined so as to satisfy the uniform mixing condition at the position M (specifically, the diffusion mixing distance L for which the fluid mixing device 100 is required to have a predetermined degree of mixing (concentration difference)). If you know, the degree of mixing The number of strips of the spiral guide blades 1 to be realized can be obtained from the broken line in Fig. 11.) While making the most effective use of the length of the pipe (flow passage 4) provided with the spiral guide blades 1, It has been found that a sufficiently mixed state can be formed.

1:螺旋状案内羽根
2:案内羽根部
3:隙間
4:流通路
5:噴出口
6:壁面
7:連通開放領域
100:流体混合装置
200:脱硝装置
201:燃焼機関
205:触媒部
205a:触媒部入口
A:第1流体
B:第2流体
1: spiral guide blade 2: guide blade portion 3: gap 4: flow passage 5: jet outlet 6: wall surface 7: communication open region 100: fluid mixing device 200: denitration device 201: combustion engine 205: catalyst portion 205a: catalyst Port A: First fluid B: Second fluid

Claims (6)

第1流体が流通する流通路に、前記流通路に配置された噴出口から、第2流体を噴出して前記第1流体に前記第2流体を混合する流体混合装置であって、
前記流通路の壁面から内径側に突出して形成され、前記流通路の連通方向の螺旋軸を有する螺旋状案内羽根を前記流通路の軸方向における同一領域に複数、周方向で異なる位相で備えた多条の螺旋状案内羽根として構成されるとともに、前記複数の螺旋状案内羽根の内径側部位に前記流通路の連通方向に連続する連通開放領域を形成し、
前記螺旋状案内羽根の位置よりも上流側の流通路の壁面に、前記噴出口を設けた流体混合装置。
A fluid mixing device that ejects a second fluid from a jet port disposed in the flow passage to the flow passage through which the first fluid flows, and mixes the second fluid with the first fluid,
A plurality of spiral guide blades that protrude from the wall surface of the flow passage toward the inner diameter side and have a helical axis in the communication direction of the flow passage are provided in the same region in the axial direction of the flow passage, in different phases in the circumferential direction. It is configured as a multi-row spiral guide blade, and forms a communication open region continuous in the communication direction of the flow passage in the inner diameter side portion of the plurality of spiral guide blades,
The fluid mixing apparatus which provided the said jet nozzle in the wall surface of the flow path upstream from the position of the said helical guide blade.
前記多条の螺旋状案内羽根が、前記流通路の軸方向視で、全周にわたって、重なりなく設けられている請求項1記載の流体混合装置。   The fluid mixing apparatus according to claim 1, wherein the multi-row spiral guide blades are provided without overlapping over the entire circumference in the axial direction of the flow passage. 前記多条の螺旋状案内羽根の条数が、当該多条の螺旋状案内羽根より下流の位置である均一混合条件充足位置までの拡散混合距離に従って、前記拡散混合距離が短いほど、前記多条の螺旋状案内羽根の条数を多くする形態で前記均一混合条件充足位置における均一混合条件を満足するように決定される請求項1または2記載の流体混合装置。   According to the diffusion mixing distance to the uniform mixing condition satisfaction position, which is a position downstream from the multiple spiral guide vanes, the more the multiple mixing spiral guide vanes, the shorter the diffusion mixing distance, The fluid mixing apparatus according to claim 1, wherein the fluid mixing device is determined so as to satisfy the uniform mixing condition at the position where the uniform mixing condition is satisfied in a form in which the number of spiral guide blades is increased. 前記多条の螺旋状案内羽根の条数が4であり、前記連通開放領域の内径Dxと、軸心周りの周方向で隣接して位置する対となる羽根に関し、周方向後端の羽根位置と周方向先端の羽根位置との前記流通路の軸心方向における離間距離Lxとの比(Lx/Dx)が0.05以上0.5以下に設定される請求項1〜3のいずれか一項に記載の流体混合装置。   The number of the spiral guide blades of the multiple strips is 4, and the blade position at the rear end in the circumferential direction with respect to the pair of blades adjacent to each other in the circumferential direction around the axial center and the inner diameter Dx of the communication open region The ratio (Lx / Dx) of the separation distance Lx in the axial center direction of the said flow path with the blade | wing position of the circumferential direction front-end | tip is set to 0.05 or more and 0.5 or less. The fluid mixing apparatus according to the item. 前記流通路の連通方向視で、前記流通路の全断面積に対する、前記連通開放領域の面積比が、3:11〜4:5の範囲とされる請求項1〜4のいずれか一項に記載の流体混合装置。   The area ratio of the said communication open area | region with respect to the total cross-sectional area of the said flow path by the communication direction view of the said flow path shall be the range of 3: 11-4: 5. The fluid mixing device as described. 燃焼機関から排出され流通路を流通する排ガスに対して還元剤を混合する流体混合装置を備え、前記流体混合装置により混合された混合ガスを触媒反応により脱硝する脱硝装置であって、
前記流体混合装置として、請求項1〜4のいずれか一項記載の流体混合装置に、前記第1流体を前記排ガスとし、前記第2流体を前記還元剤とした形態で備えた脱硝装置。
A denitration apparatus comprising a fluid mixing device that mixes a reducing agent with exhaust gas discharged from a combustion engine and flowing through a flow passage, and denitrating the mixed gas mixed by the fluid mixing device by catalytic reaction,
A denitration apparatus comprising the fluid mixing apparatus according to any one of claims 1 to 4 as the fluid mixing apparatus, wherein the first fluid is the exhaust gas and the second fluid is the reducing agent.
JP2010079600A 2010-03-30 2010-03-30 Fluid mixing apparatus and denitrification apparatus Pending JP2011206751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010079600A JP2011206751A (en) 2010-03-30 2010-03-30 Fluid mixing apparatus and denitrification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079600A JP2011206751A (en) 2010-03-30 2010-03-30 Fluid mixing apparatus and denitrification apparatus

Publications (1)

Publication Number Publication Date
JP2011206751A true JP2011206751A (en) 2011-10-20

Family

ID=44938445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079600A Pending JP2011206751A (en) 2010-03-30 2010-03-30 Fluid mixing apparatus and denitrification apparatus

Country Status (1)

Country Link
JP (1) JP2011206751A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104396A (en) * 2011-11-16 2013-05-30 Hino Motors Ltd Urea water mixing structure
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system
US10086333B2 (en) 2015-02-24 2018-10-02 Tenneco Automotive Operating Company Inc. Dual auger mixing system
CN111437708A (en) * 2020-05-15 2020-07-24 四川轻化工大学 Multifunctional VOC (volatile organic compound) gas barrier system
CN114575976A (en) * 2017-06-06 2022-06-03 康明斯排放处理公司 System and method for mixing exhaust gas and reductant in an aftertreatment system
JP7396141B2 (en) 2020-03-18 2023-12-12 栗田工業株式会社 mixer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224931U (en) * 1985-07-25 1987-02-16
JPH07284642A (en) * 1994-04-19 1995-10-31 Hisao Kojima Mixing element and production therefor
JPH1128337A (en) * 1997-07-11 1999-02-02 Hitachi Zosen Corp Method for supplying ammonia in denitration device
JP2001259393A (en) * 2000-03-23 2001-09-25 Snow Brand Milk Prod Co Ltd Method and device for agitating fluid substance
JP2007029936A (en) * 2005-07-22 2007-02-08 Anemosu:Kk Mixing element and static fluid mixer using the same
EP1982756A1 (en) * 2007-04-19 2008-10-22 Magneti Marelli Sistemi di Scarico S.p.a. An exhaust system of an internal combustion engine
JP2009127451A (en) * 2007-11-20 2009-06-11 Osaka Gas Co Ltd Fluid mixer and denitration device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224931U (en) * 1985-07-25 1987-02-16
JPH07284642A (en) * 1994-04-19 1995-10-31 Hisao Kojima Mixing element and production therefor
JPH1128337A (en) * 1997-07-11 1999-02-02 Hitachi Zosen Corp Method for supplying ammonia in denitration device
JP2001259393A (en) * 2000-03-23 2001-09-25 Snow Brand Milk Prod Co Ltd Method and device for agitating fluid substance
JP2007029936A (en) * 2005-07-22 2007-02-08 Anemosu:Kk Mixing element and static fluid mixer using the same
EP1982756A1 (en) * 2007-04-19 2008-10-22 Magneti Marelli Sistemi di Scarico S.p.a. An exhaust system of an internal combustion engine
JP2009127451A (en) * 2007-11-20 2009-06-11 Osaka Gas Co Ltd Fluid mixer and denitration device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104396A (en) * 2011-11-16 2013-05-30 Hino Motors Ltd Urea water mixing structure
US10086333B2 (en) 2015-02-24 2018-10-02 Tenneco Automotive Operating Company Inc. Dual auger mixing system
US10427099B2 (en) 2015-02-24 2019-10-01 Tenneco Automotive Operating Company Inc. Dual auger mixing system
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system
CN114575976A (en) * 2017-06-06 2022-06-03 康明斯排放处理公司 System and method for mixing exhaust gas and reductant in an aftertreatment system
CN114575976B (en) * 2017-06-06 2023-10-27 康明斯排放处理公司 System and method for mixing exhaust and reductant in an aftertreatment system
JP7396141B2 (en) 2020-03-18 2023-12-12 栗田工業株式会社 mixer
CN111437708A (en) * 2020-05-15 2020-07-24 四川轻化工大学 Multifunctional VOC (volatile organic compound) gas barrier system
CN111437708B (en) * 2020-05-15 2022-09-13 四川轻化工大学 Multifunctional VOC (volatile organic compound) gas barrier system

Similar Documents

Publication Publication Date Title
US9435240B2 (en) Perforated mixing pipe with swirler
US10427099B2 (en) Dual auger mixing system
JP2011206751A (en) Fluid mixing apparatus and denitrification apparatus
US9410464B2 (en) Perforated mixing pipe with swirler
EP2512642B1 (en) Mixing system for an exhaust gases after-treatment arrangement
US9828897B2 (en) Mixer for a vehicle exhaust system
WO2015164356A1 (en) Perforated mixing pipe with swirler
US20070274877A1 (en) Gas treatment appartatus
US11085346B2 (en) Mixer for a vehicle exhaust system
EP2465602A2 (en) Method and device for exhaust gas cleaning
JP5655046B2 (en) Mixing / vaporizing device
CN1985080A (en) Exhaust emission purifying apparatus for engine
US10273853B2 (en) Wire mesh mixing tube
WO2016191488A1 (en) Mixer assembly for exhaust aftertreatment system
JP2008049306A (en) Apparatus for mixing gas
EP3554677B1 (en) Multi-stage mixer
JP2009041371A (en) Exhaust emission control device and mixer unit of internal combustion engine
CN107980078B (en) Exhaust gas aftertreatment device for an internal combustion engine of a motor vehicle
EP3760846A1 (en) System for mixing a liquid spray into a gaseous flow and exhaust aftertreatment device comprising same
JP6542568B2 (en) Fluid mixing device and denitration device provided with fluid mixing device
JP2009127451A (en) Fluid mixer and denitration device
JPWO2019221224A1 (en) Exhaust purification device
CN109184863B (en) SCR mixing system and SCR mixer thereof
US9556773B2 (en) Multistage plate mixer
CN111188672A (en) Reductant nozzle with spiral channel design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140220