JP2011206659A - Device and method for treating hazardous substance - Google Patents

Device and method for treating hazardous substance Download PDF

Info

Publication number
JP2011206659A
JP2011206659A JP2010075973A JP2010075973A JP2011206659A JP 2011206659 A JP2011206659 A JP 2011206659A JP 2010075973 A JP2010075973 A JP 2010075973A JP 2010075973 A JP2010075973 A JP 2010075973A JP 2011206659 A JP2011206659 A JP 2011206659A
Authority
JP
Japan
Prior art keywords
carbide
mixed
heat treatment
substance
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010075973A
Other languages
Japanese (ja)
Other versions
JP5379058B2 (en
Inventor
Masaaki Hosomi
正明 細見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREENING LABORATORY CO Ltd
Original Assignee
GREENING LABORATORY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREENING LABORATORY CO Ltd filed Critical GREENING LABORATORY CO Ltd
Priority to JP2010075973A priority Critical patent/JP5379058B2/en
Publication of JP2011206659A publication Critical patent/JP2011206659A/en
Application granted granted Critical
Publication of JP5379058B2 publication Critical patent/JP5379058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To treat a hazardous substance included in polluted soil etc. by checking the transfer of the substance to an exhaust gas.SOLUTION: The polluted soil 16 containing a hazardous substance and a carbide 18 which catches fire and heats, and can adsorb the hazardous substance, are mixed by a mixer 36. The mixed soil 20 is produced and introduced into a heating treatment part 14 inside a heating furnace 12. The heating furnace 12 includes an air suction port 22 for heating treatment, and the sucked air passes through the heating treatment part 14. The air for heating treatment is supplied to the carbide 18 included in the mixed soil 20 as heating air, and at the same time, works to make an adsorption of the hazardous substance included in the air, into the porous adsorption part of the carbide 18. Then, the air passing through the heating treatment part 14, is exhausted from a discharge port 24 of the heating furnace 12. The discharge port 24 is connected to a duct 26, to the end part of which a blower 30 for suction is fitted, and a carbide-based adsorption material 28 is set in place between the discharge port 24 of the duct 26 and the blower 30.

Description

本発明は、有害物質処理装置及び有害物質処理方法に関する。   The present invention relates to a hazardous substance processing apparatus and a hazardous substance processing method.

従来、PCBやダイオキシン類の有害物質が含有された汚染土壌や汚染底質の多くは、図8に示す方法で処理されていた。即ち、汚染土壌又は汚染底質60を加熱炉62に投入し、加熱炉62の内部で間接加熱(400℃〜700℃)して、有害物質を熱分解や揮発させて土壌や底質から除去する。浄化された土壌や底質64は、加熱炉62から取り出され再利用される。一方、間接加熱により熱分解され、揮発した有害物質は、排ガス処理部66に送られ、排ガス処理部66内の高温燃焼や過熱水蒸気分解等の加熱分解手段で処理される。   Conventionally, most of contaminated soil and contaminated sediment containing PCBs and dioxins harmful substances have been treated by the method shown in FIG. That is, the contaminated soil or the contaminated sediment 60 is put into the heating furnace 62 and indirectly heated (400 ° C. to 700 ° C.) inside the heating furnace 62 to remove harmful substances from the soil and sediment by pyrolysis and volatilization. To do. The purified soil and sediment 64 are taken out from the heating furnace 62 and reused. On the other hand, harmful substances that have been thermally decomposed and volatilized by indirect heating are sent to the exhaust gas processing unit 66, where they are processed by thermal decomposition means such as high-temperature combustion or superheated steam decomposition in the exhaust gas processing unit 66.

しかし、この処理方法では、間接加熱や高温燃焼等で多くのエネルギーが消費されるという問題がある。
そこで、エネルギーの消費を減らし、効率的に浄化する技術が提案されている(特許文献1)。
However, this processing method has a problem that much energy is consumed by indirect heating, high-temperature combustion, or the like.
Therefore, a technique for reducing energy consumption and purifying efficiently has been proposed (Patent Document 1).

特許文献1によれば、図9に示すように、ダイオキシン類が含有された汚染土壌60を加熱炉62で加熱し、酸化分解させて無害化する。このとき、汚染土壌60に例えばモンモリロナイト、或いはモンモリロナイト特有のX線回析像を有するベントナイト、酸性白土、活性白土などのスメクタイト族の粘土鉱物68を混合し、加熱炉62に一緒に供給して酸化分解処理をさせる。 According to Patent Document 1, as shown in FIG. 9, the contaminated soil 60 containing dioxins is heated in a heating furnace 62 to be oxidatively decomposed and rendered harmless. At this time, smectite clay mineral 68 such as montmorillonite or bentonite having an X-ray diffraction image peculiar to montmorillonite, acid clay or activated clay is mixed with contaminated soil 60 and supplied to heating furnace 62 together for oxidation. Let the decomposition process.

この方法は、汚染土壌60の原因が焼却飛灰に基づく場合、つまり、土壌中に含有する有害物質が、主にポリ塩化ジベンゾ−パラ−ジオキシン(PCDD)やポリ塩化ジベンゾフラン(PCDF)である場合には有効である。 In this method, when the cause of the contaminated soil 60 is based on incinerated fly ash, that is, the harmful substances contained in the soil are mainly polychlorinated dibenzo-para-dioxin (PCDD S ) or polychlorinated dibenzofuran (PCDF S ). It is effective in some cases.

しかし、汚染土壌60の原因が、ポリ塩化ビフェニル(PCB)に基づく場合、つまり、土壌に高濃度のPCBが含まれる場合、加熱炉62内の雰囲気が酸化的であり、かつ、加熱温度が400℃〜500℃である場合には、PCDFが副生成され、毒性が増加する可能性がある。 However, when the cause of the contaminated soil 60 is based on polychlorinated biphenyl (PCB S ), that is, when the soil contains a high concentration of PCB S , the atmosphere in the heating furnace 62 is oxidative and the heating temperature When the temperature is from 400 ° C. to 500 ° C., PCDF S is produced as a by-product, which may increase toxicity.

PCDFの副生成を抑制する方法としては、加熱温度を600℃以上の高温にするか、加熱炉62内の雰囲気を還元的にする必要がある。しかし、加熱温度を600℃以上の高温にする場合には、加熱に必要なエネルギーが増大し、処理コストが高くなる。一方、加熱炉62内の雰囲気を還元的にする場合には、汚染土壌60中に有機物由来のタールが発生し、加熱炉62が目詰まりする可能性がある。また、排ガス処理部66で多くのエネルギーが消費される。 As a method for suppressing the by-production of PCDF S , it is necessary to increase the heating temperature to 600 ° C. or higher, or to reduce the atmosphere in the heating furnace 62. However, when the heating temperature is set to a high temperature of 600 ° C. or higher, the energy required for heating increases and the processing cost increases. On the other hand, when the atmosphere in the heating furnace 62 is reduced, tar derived from organic matter is generated in the contaminated soil 60 and the heating furnace 62 may be clogged. Further, a lot of energy is consumed in the exhaust gas processing unit 66.

特開2008−92547号公報JP 2008-92547 A

本発明は、上記事実に鑑み、汚染土壌等に含有された有害物質を、排ガスへの移行を抑制して処理することを目的とする。   In view of the above facts, an object of the present invention is to treat harmful substances contained in contaminated soil and the like while suppressing the shift to exhaust gas.

請求項1に記載の発明に係る有害物質処理装置は、PCB又はダイオキシン類の少なくとも一方の有害物質が含有された汚染土壌、汚染底質又は焼却後の灰である汚染焼却廃棄物と、着火されて発熱すると共に前記有害物質を吸着可能な炭化物とを混合する混合装置と、前記混合装置から、混合土壌、混合底質又は混合焼却廃棄物が投入され、前記炭化物が着火されて発熱し前記有害物質を加熱処理する加熱処理部が設けられた加熱炉と、前記加熱炉の吸引口から吸引した加熱処理用の空気を、前記加熱処理部の前記炭化物の間を通過させた後、前記加熱炉の排出口から排出させる空気吸引装置と、を有することを特徴としている。   The hazardous substance processing apparatus according to the first aspect of the present invention is ignited with contaminated incineration waste that is contaminated soil, contaminated sediment, or ash after incineration containing at least one of PCB and dioxin hazardous substances. The mixing device that mixes the carbides that generate heat and adsorb the harmful substances, and the mixing device, mixed soil, mixed sediment or mixed incineration waste is input, and the carbides are ignited to generate heat and the harmful A heating furnace provided with a heat treatment unit for heat-treating a substance, and air for heat treatment sucked from a suction port of the heating furnace are passed between the carbides of the heat treatment unit, and then the heating furnace And an air suction device for discharging from the discharge port.

請求項1に記載の発明によれば、混合装置において、有害物質が含有された汚染土壌、汚染底質又は汚染焼却廃棄物と、着火されて発熱すると共に有害物質を吸着可能な炭化物とが混合され、混合土壌、混合底質又は混合焼却廃棄物が生成される。   According to the first aspect of the present invention, in the mixing device, contaminated soil, contaminated sediment or incinerated waste containing harmful substances are mixed with carbides that are ignited and generate heat and can adsorb harmful substances. And mixed soil, mixed sediment or mixed incineration waste is generated.

そして、加熱炉の加熱処理部に、混合土壌、混合底質又は混合焼却廃棄物が投入される。加熱処理部には、空気吸引装置により吸引口から吸引された加熱処理用の空気が導入される。加熱処理用の空気は、加熱処理部で着火されて発熱する炭化物の間を通過して、排出口から排出される。   And mixed soil, mixed sediment, or mixed incineration waste is thrown into the heat treatment part of a heating furnace. Heat treatment air sucked from the suction port by the air suction device is introduced into the heat treatment unit. The air for heat treatment passes between the carbides that are ignited by the heat treatment portion and generates heat, and is discharged from the discharge port.

これにより、吸引口側の炭化物に着火して炭化物を発熱させれば、炭化物に吸着された有害物質が熱分解されると共に、混合土壌等に含有された有害物質も熱分解される。   Thus, if the carbide on the suction side is ignited to generate heat, the harmful substance adsorbed on the carbide is thermally decomposed and the harmful substance contained in the mixed soil is also thermally decomposed.

熱分解された有害物質、副生成された有害物質及び熱分解されずに揮発した一部の有害物質等は、炭化物の間を通過する空気と共に排出口側に移動する。そして移動途中で、排出口側の未着火の炭化物に吸着される。   The thermally decomposed harmful substances, the by-produced harmful substances, and some harmful substances volatilized without being thermally decomposed move to the outlet side together with the air passing between the carbides. In the middle of the movement, it is adsorbed by unignited carbide on the outlet side.

この結果、有害物質を、炭化物に吸着したまま炭化物の発熱で熱分解できる。また、揮発された有害物質や熱分解により副生成された有害物質等は、加熱処理部内で未着火の炭化物に順次吸着させることができ、有害物質の排出口から排出される空気(排ガス)への移行を抑制できる。
なお、炭化物は、有害物質を吸着可能で、かつ、有害物質を吸着したまま着火されて赤熱する物質であればよく、例えばプラスチック製、ヤシガラ、活性炭、下水汚泥等が挙げられる。
As a result, harmful substances can be thermally decomposed by the heat generated by the carbides while adsorbed on the carbides. In addition, volatilized harmful substances and harmful substances by-produced by thermal decomposition can be sequentially adsorbed to unignited carbides in the heat treatment section, and into the air (exhaust gas) discharged from the discharge port of the harmful substances Can be suppressed.
In addition, the carbide | carbonized_material should just be a substance which can adsorb | suck a harmful substance, and it is ignited and adsorb | sucks red while adsorbing a harmful substance, for example, plastics, coconut husk, activated carbon, sewage sludge etc. are mentioned.

請求項2に記載の発明は、請求項1に記載の有害物質処理装置において、前記空気吸引装置は、ブロワと、前記ブロワと前記排出口の間を連結する通風路とを有し、前記通風路には、前記炭化物の発熱に伴い熱分解又は揮発された、前記有害物質や副生成物質を吸着する吸着手段が設けられていることを特徴としている。   According to a second aspect of the present invention, in the hazardous substance processing apparatus according to the first aspect, the air suction device includes a blower and a ventilation path connecting the blower and the discharge port. The path is provided with an adsorbing means for adsorbing the harmful substances and by-product substances that are pyrolyzed or volatilized with the heat generation of the carbide.

請求項2に記載の発明によれば、排出口と空気吸引装置の間の通風路に設けられた吸着手段により、排出口から排出される空気に含まれた有害物質が吸着される。これにより、加熱炉から大気に放出される有害物質を低減できる。   According to the second aspect of the present invention, the toxic substance contained in the air discharged from the discharge port is adsorbed by the adsorption means provided in the ventilation path between the discharge port and the air suction device. As a result, harmful substances released from the heating furnace to the atmosphere can be reduced.

請求項3に記載の発明は、請求項2に記載の有害物質処理装置において、前記吸着手段は、炭化物系吸着材であることを特徴としている。
これにより、炭化物系吸着材が有する無数の多孔質部で、有害物質及びその副生成物質等を吸着保持できる。
According to a third aspect of the present invention, in the hazardous substance processing apparatus according to the second aspect, the adsorbing means is a carbide-based adsorbent.
Thereby, a toxic substance, its by-product substance, etc. can be adsorbed and held by the countless porous part which a carbide type adsorbent has.

請求項4に記載の発明は、請求項3に記載の汚染物質処理装置において、前記炭化物は、前記有害物質及び前記副生成物質を吸着処理させた前記炭化物系吸着材であることを特徴としている。   According to a fourth aspect of the present invention, in the contaminant treatment apparatus according to the third aspect, the carbide is the carbide-based adsorbent obtained by adsorbing the harmful substance and the by-product substance. .

即ち、有害物質及び副生成物質等を吸着処理させた炭化物系吸着材を、着火されて発熱すると共に、有害物質を吸着する炭化物として使用する。これにより、炭化物の有効利用ができる。   That is, a carbide-based adsorbent obtained by adsorbing harmful substances and by-product substances is used as a carbide that is ignited to generate heat and adsorb harmful substances. Thereby, the carbide can be effectively used.

請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の有害物質処理装置において、前記加熱処理部に投入された前記混合土壌、前記混合底質又は前記混合焼却廃棄物の前記吸引口側の端部には、前記炭化物の着火手段が設けられていることを特徴としている。   Invention of Claim 5 is a hazardous substance processing apparatus of any one of Claims 1-4. WHEREIN: The said mixed soil, the said mixed sediment, or the said mixed incineration waste thrown into the said heat processing part The carbide is ignited at the end on the suction port side.

請求項5に記載の発明によれば、着火手段により、加熱処理部に投入された混合土壌、混合底質又は混合焼却廃棄物に混合された炭化物が、吸引口側の端部から着火され発熱を開始する。これにより、炭化物が発熱しながら、吸引口側から排出口側に向けて、有害物質を順次熱分解する。即ち、炭化物の自己発熱による内部加熱で熱分解が進行し、外部からの加熱エネルギーの投入を必要としない。   According to the invention described in claim 5, the carbide mixed in the mixed soil, the mixed sediment, or the mixed incineration waste introduced into the heat treatment unit is ignited from the end on the suction port side and generates heat. To start. Thereby, while the carbides generate heat, harmful substances are sequentially pyrolyzed from the suction port side to the discharge port side. That is, thermal decomposition proceeds by internal heating due to self-heating of carbide, and it is not necessary to input heating energy from the outside.

請求項6に記載の発明に係る有害物質処理方法は、PCB又はダイオキシン類の少なくとも一方の有害物質が含有された汚染土壌、汚染底質又は焼却後の灰である汚染焼却廃棄物と、着火されて発熱すると共に前記有害物質を吸着可能な炭化物とを混合装置で混合する混合工程と、混合土壌、混合底質又は混合焼却廃棄物を加熱炉の加熱処理部に投入し、空気吸引装置により、前記加熱炉の吸引口から吸引された加熱処理用の空気を、前記炭化物の間を通過させながら前記炭化物に着火させ、前記炭化物の発熱で前記有害物質を加熱処理する加熱処理工程と、前記加熱処理工程で熱分解又は揮発された前記有害物質及び副生成物質を、前記空気吸引装置で加熱炉の排出口から吸引し、吸着処理用の炭化物系吸着材に吸着させる吸着工程と、を有することを特徴としている。   The hazardous substance processing method according to the invention of claim 6 is ignited with contaminated incineration waste which is contaminated soil, contaminated sediment or ash after incineration containing at least one of PCB and dioxin harmful substances. The mixing step of mixing the carbide that can absorb the harmful substances with the mixing device, the mixed soil, the mixed bottom sediment or the mixed incineration waste is put into the heat treatment part of the heating furnace, and the air suction device A heat treatment step of igniting the carbide while passing the air for heat treatment sucked from the suction port of the heating furnace, and heat-treating the harmful substance by heat generation of the carbide; and the heating An adsorption step in which the harmful substances and by-product substances pyrolyzed or volatilized in the treatment step are sucked from the discharge port of the heating furnace by the air suction device and adsorbed to the carbide-based adsorbent for adsorption treatment. It is characterized in that.

即ち、混合工程で汚染土壌等と炭化物が混合され、加熱処理工程で炭化物を吸引口側から着火して発熱させ有害物質を加熱処理する。同時に、熱分解され又は揮発した有害物質を排出口側の炭化物に吸着させる。最後に、吸着工程で排出口から排出された有害物質を炭化物系吸着材に吸着させる。
この結果、有害物質を、炭化物で吸着したまま炭化物の発熱で熱分解でき、有害物質の排ガスへの移行を抑制して、有害物質を処理することができる。
That is, contaminated soil and carbides are mixed in the mixing step, and the carbides are ignited from the suction port side to generate heat and heat the harmful substances in the heat treatment step. At the same time, thermally decomposed or volatilized harmful substances are adsorbed on the carbide on the outlet side. Finally, harmful substances discharged from the discharge port in the adsorption step are adsorbed on the carbide-based adsorbent.
As a result, the harmful substance can be thermally decomposed by the heat generated from the carbide while adsorbed on the carbide, and the harmful substance can be treated while suppressing the transfer of the harmful substance to the exhaust gas.

請求項7に記載の発明は、請求項6に記載の有害物質処理方法において、前記吸着工程で使用され、前記有害物質及び前記副生成物質が吸着された前記炭化物系吸着材を、前記混合工程で混合される前記炭化物として使用することを特徴としている。
これにより、吸着工程で使用した炭化物系吸着材の有効利用ができる。
The invention according to claim 7 is the hazardous substance processing method according to claim 6, wherein the carbide-based adsorbent used in the adsorption step and adsorbed with the harmful substance and the by-product substance is mixed in the mixing step. It is characterized by using as said carbide mixed with.
Thereby, the carbide type adsorbent used in the adsorption step can be effectively used.

請求項8に記載の発明は、請求項6又は7に記載の有害物質処理方法において、前記加熱処理工程において、混合土壌、混合底質又は混合焼却廃棄物に混合された前記炭化物を、前記吸引口側から着火させ加熱処理を開始し、熱分解又は揮発された前記有害物質及び前記副生成物質を、前記排出口側の前記炭化物に順次吸着させることを特徴としている。   The invention according to claim 8 is the hazardous substance processing method according to claim 6 or 7, wherein the suction of the carbide mixed with the mixed soil, the mixed sediment, or the mixed incineration waste in the heat treatment step. The heat treatment is started by igniting from the mouth side, and the harmful substance and the by-product substance which are pyrolyzed or volatilized are sequentially adsorbed on the carbide on the outlet side.

これにより、汚染土壌等に含まれた有害物質を、排出口側の前記炭化物に順次吸着保持させながら加熱処理が進行するため、有害物質の排ガスへの移行を抑制して、処理することができる。   As a result, the heat treatment proceeds while causing the harmful substances contained in the contaminated soil and the like to be sequentially adsorbed and held on the carbide on the discharge port side, so that the transfer of the harmful substances to the exhaust gas can be suppressed and processed. .

本発明は、上記構成としてあるので、汚染土壌等に含有された有害物質を、排ガスへの移行を抑制して処理することができる。   Since the present invention is configured as described above, harmful substances contained in contaminated soil and the like can be treated while suppressing the shift to exhaust gas.

本発明の実施の形態に係る有害物質処理装置の基本構成を示す図である。It is a figure which shows the basic composition of the harmful substance processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る有害物質処理装置の効果検証実験に使用した実験装置の基本構成を示す図である。It is a figure which shows the basic composition of the experimental apparatus used for the effect verification experiment of the harmful substance processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る有害物質処理装置の効果検証実験の実験結果の一例を示す図である。It is a figure which shows an example of the experimental result of the effect verification experiment of the harmful substance processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る有害物質処理装置の効果検証実験の実験結果の一例を示す図である。It is a figure which shows an example of the experimental result of the effect verification experiment of the harmful substance processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る有害物質処理装置の効果検証実験の実験結果の一例を示す図である。It is a figure which shows an example of the experimental result of the effect verification experiment of the harmful substance processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る有害物質処理装置の効果検証実験の実験結果の一例を示す図である。It is a figure which shows an example of the experimental result of the effect verification experiment of the harmful substance processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る有害物質処理装置の効果検証実験の実験結果の一例を示す図である。It is a figure which shows an example of the experimental result of the effect verification experiment of the harmful substance processing apparatus which concerns on embodiment of this invention. 従来例の有害物質処理装置の基本構成を示す図である。It is a figure which shows the basic composition of the harmful substance processing apparatus of a prior art example. 従来例の有害物質処理装置の基本構成を示す図である。It is a figure which shows the basic composition of the harmful substance processing apparatus of a prior art example.

(第1の実施の形態)
図1に示すように、第1の実施の形態に係る有害物質処理装置10は、混合装置36を有している。混合装置36は、PCB又はダイオキシン類の少なくとも一方の有害物質が含有された汚染土壌16と、着火されて発熱すると共に有害物質を吸着可能な炭化物18とを混合して混合土壌20を生成する。
(First embodiment)
As shown in FIG. 1, the hazardous substance processing apparatus 10 according to the first embodiment includes a mixing apparatus 36. The mixing device 36 mixes the contaminated soil 16 containing at least one harmful substance of PCB or dioxins with the carbide 18 that is ignited and generates heat and can adsorb the harmful substance to generate the mixed soil 20.

混合土壌20は、混合土壌20を加熱処理する加熱炉12に投入される。加熱炉12は耐熱部材で中空状に成形され、内部に設けられた加熱処理部14で、混合土壌20が加熱処理される。   The mixed soil 20 is put into a heating furnace 12 that heats the mixed soil 20. The heating furnace 12 is formed into a hollow shape with a heat-resistant member, and the mixed soil 20 is heat-treated by the heat treatment unit 14 provided inside.

加熱炉12の一方の端部には、加熱処理用の空気を吸引する吸引口22が設けられ、吸引口22から加熱処理部14に加熱処理用の空気が吸引される。吸引された空気は、加熱処理部14を通過した後、加熱炉12に設けられた排出口24から排出される。このとき、加熱処理用の空気は、加熱処理部14で着火され発熱する炭化物18の間を通過し、炭化物18に発熱用の空気を供給する。同時に、空気中に含まれた有害物質を炭化物18の多孔質の吸着部に吸着させる。   A suction port 22 that sucks air for heat treatment is provided at one end of the heating furnace 12, and air for heat treatment is sucked into the heat treatment unit 14 from the suction port 22. The sucked air passes through the heat treatment unit 14 and is then discharged from the discharge port 24 provided in the heating furnace 12. At this time, the heat treatment air passes between the carbides 18 that are ignited by the heat treatment unit 14 and generate heat, and supplies the heat generation air to the carbides 18. At the same time, harmful substances contained in the air are adsorbed on the porous adsorption portion of the carbide 18.

排出口24にはダクト26が連結され、ダクト26の端部には加熱処理用の空気を吸引するブロワ30が取り付けられている。ダクト26の排出口24側とブロワ30側の間には、炭化物系吸着材28が設けられている。即ち、ブロワ30を稼動させれば、吸引口22、加熱処理部14、排出口24、ダクト26、炭化物系吸着材28の順に空気を吸引する。   A duct 26 is connected to the discharge port 24, and a blower 30 that sucks air for heat treatment is attached to an end of the duct 26. A carbide adsorbent 28 is provided between the discharge port 24 side and the blower 30 side of the duct 26. That is, when the blower 30 is operated, air is sucked in the order of the suction port 22, the heat treatment unit 14, the discharge port 24, the duct 26, and the carbide-based adsorbent 28.

炭化物系吸着材28は、混合土壌20の加熱処理に伴い熱分解又は揮発され、吸引空気と共に排出口24から排出された、有害物質や副生成物質を大気に放出する前に吸着する。
そして、有害物質が除去された浄化土壌21は、加熱炉12の土壌取出口34から取り出される。
The carbide-based adsorbent 28 is thermally decomposed or volatilized with the heat treatment of the mixed soil 20 and adsorbs before releasing harmful substances and by-product substances discharged from the discharge port 24 together with the suction air to the atmosphere.
Then, the purified soil 21 from which harmful substances have been removed is taken out from the soil outlet 34 of the heating furnace 12.

この構成により、ブロワ30を稼動させながら、吸引口22側から混合土壌20に混合された炭化物18に着火すれば、炭化物18が発熱を開始する。この発熱で混合土壌20に混合された汚染土壌16が加熱され、汚染土壌20に含有された有害物質が熱分解される。このとき、有害物質の一部は熱分解されずに揮発する。熱分解され又は揮発された有害物質の一部は、混合土壌20から脱着し、炭化物18の間を通過する空気と共に排出口24側(未着火側)に移動する。このとき、移動途中で未着火の排出口24側の炭化物に吸着される。   With this configuration, if the carbide 18 mixed in the mixed soil 20 is ignited from the suction port 22 side while the blower 30 is operating, the carbide 18 starts to generate heat. With this heat generation, the contaminated soil 16 mixed with the mixed soil 20 is heated, and harmful substances contained in the contaminated soil 20 are thermally decomposed. At this time, some of the harmful substances are volatilized without being thermally decomposed. A part of the pyrolyzed or volatilized harmful substance is desorbed from the mixed soil 20 and moves to the outlet 24 side (unignition side) together with the air passing between the carbides 18. At this time, it is adsorbed to the unignited carbide on the discharge port 24 side during the movement.

この結果、汚染土壌16に含有された有害物質の吸引空気への移行を抑制して、有害物質を低減させることができる。
なお、有害物質を含有する汚染土壌を例に説明したが、これに限定されることなく、有害物質を含有する汚染底質、又は有害物質を含有する焼却された後の灰である汚染焼却廃棄物でもよい。即ち、汚染底質と、着火されて発熱すると共に有害物質を吸着可能な炭化物とを混合した混合底質、又は汚染焼却廃棄物と、着火されて発熱すると共に有害物質を吸着可能な炭化物とを混合した混合焼却廃棄物でもよい。
As a result, the transfer of harmful substances contained in the contaminated soil 16 to the suction air can be suppressed, and the harmful substances can be reduced.
In addition, although the contaminated soil containing a hazardous substance was explained as an example, it is not limited to this, the polluted incineration disposal which is the polluted sediment containing the hazardous substance or the ash containing the hazardous substance after incineration It can be a thing. That is, mixed bottom sediment mixed with contaminated sediment and carbide that is ignited and generates heat and adsorbs harmful substances, or contaminated incineration waste, and carbide that is ignited and generates heat and adsorbs harmful substances. Mixed incineration waste may be used.

次に、有害物質処理方法について説明する。
有害物質処理方法は、図1に示す有害物質処理装置を用いて下記の手順で実行される。
先ず、混合工程を実行する。混合工程は、混合装置36で、PCB又はダイオキシン類の少なくとも一方の有害物質が含有された、汚染土壌、汚染底質又は汚染焼却廃棄物16と、着火されて発熱すると共に有害物質を吸着可能な炭化物18とを混合する。
Next, the hazardous substance processing method will be described.
The hazardous substance processing method is executed by the following procedure using the hazardous substance processing apparatus shown in FIG.
First, a mixing process is performed. In the mixing process, the mixing device 36 ignites the contaminated soil, the contaminated sediment or the contaminated incineration waste 16 containing at least one of PCB and dioxins, and can absorb the harmful substances. Carbide 18 is mixed.

次に、加熱処理工程を実行する。加熱処理工程は、混合工程で生成された混合土壌、混合底質又は混合焼却廃棄物20を、加熱炉12の加熱処理部14に投入する。そして、投入された混合土壌、混合底質又は混合焼却廃棄物20を、加熱処理部14で加熱処理する。具体的には、混合土壌、混合底質又は混合焼却廃棄物に含まれた炭化物20を、吸引口22側から着火して発熱させる。   Next, a heat treatment process is performed. In the heat treatment step, the mixed soil, the mixed sediment, or the mixed incineration waste 20 generated in the mixing step is charged into the heat treatment unit 14 of the heating furnace 12. Then, the input mixed soil, mixed sediment, or mixed incineration waste 20 is heat-treated by the heat treatment unit 14. Specifically, the carbide 20 contained in the mixed soil, mixed sediment or mixed incineration waste is ignited from the suction port 22 side to generate heat.

このとき、ブロワ30で炭化物18の周囲に空気を通過させながら炭化物18を発熱させる。これにより、混合土壌、混合底質又は混合焼却廃棄物20を吸引口22側から加熱処理し、熱分解又は揮発された有害物質及び副生成物質を、排出口24側の未燃焼の炭化物18に吸着させることができる。   At this time, the carbide 18 generates heat while allowing air to pass around the carbide 18 by the blower 30. Thereby, the mixed soil, the mixed sediment or the mixed incineration waste 20 is heated from the suction port 22 side, and the thermally decomposed or volatilized harmful substances and by-products are turned into the unburned carbide 18 on the discharge port 24 side. Can be adsorbed.

次に、吸着工程を実行する。吸着工程は、ブロワ30で吸引され、排出口24から排出された有害物質及び副生成物質を、吸着処理用の炭化物系吸着材28に吸着させる。   Next, an adsorption process is performed. In the adsorption process, harmful substances and by-product substances sucked by the blower 30 and discharged from the discharge port 24 are adsorbed on the carbide-based adsorbent 28 for adsorption treatment.

この結果、有害物質を、炭化物18で吸着したまま炭化物18の発熱で熱分解できる。また、揮発された有害物質、熱分解により副生成された有害物質等は、排出口24側の炭化物18が吸着保持するため、吸引空気(排ガス)に含まれる有害物質の量を低減することができる。   As a result, harmful substances can be thermally decomposed by the heat generated by the carbide 18 while adsorbed by the carbide 18. In addition, the harmful substances volatilized and the by-products generated by thermal decomposition are adsorbed and retained by the carbide 18 on the discharge port 24 side, so that the amount of harmful substances contained in the suction air (exhaust gas) can be reduced. it can.

なお、既に吸着工程で使用されて有害物質及び副生成物質が吸着された炭化物系吸着材28を、混合工程で着火され発熱する炭化物18として使用することができる。これにより、炭化物系吸着材28を有効利用できる。   The carbide-based adsorbent 28 that has already been used in the adsorption process and has adsorbed harmful substances and by-product substances can be used as the carbide 18 that is ignited and generates heat in the mixing process. Thereby, the carbide type adsorbent 28 can be used effectively.

次に、効果について実証実験データを用いて説明する。
図2に実験装置40を示す。実験装置40は、中空の円筒状とされ、鉛直方向に設けられた加熱炉12を有している。加熱炉12の内部には、加熱処理部14が設けられ、加熱処理部14には、加熱炉12の外部で汚染土壌と炭化物を混合して生成された混合土壌20が投入されている。
Next, the effect will be described using demonstration experiment data.
FIG. 2 shows an experimental apparatus 40. The experimental device 40 has a hollow cylindrical shape and has a heating furnace 12 provided in the vertical direction. A heat treatment unit 14 is provided inside the heating furnace 12, and mixed soil 20 generated by mixing contaminated soil and carbide outside the heating furnace 12 is input to the heat treatment unit 14.

加熱炉12の上面には、加熱処理用の空気の吸引口22が設けられ、加熱炉12の底面には、排出口24が設けられている。加熱炉12の底面には砂利層42が設けられ、砂利層42の上に混合土壌20が投入されている。混合土壌20の上には、着火用の木炭44が載せられている。木炭44は、実験開始時にバーナで着火される。   An air suction port 22 for heat treatment is provided on the upper surface of the heating furnace 12, and a discharge port 24 is provided on the bottom surface of the heating furnace 12. A gravel layer 42 is provided on the bottom surface of the heating furnace 12, and the mixed soil 20 is put on the gravel layer 42. An ignition charcoal 44 is placed on the mixed soil 20. The charcoal 44 is ignited by a burner at the start of the experiment.

吐出口24にはダクト26が接続され、ダクト26の先端には加熱処理用の空気を吸引する吸引ポンプ38が取り付けられている。ダクト26には、揮発された有害物質や熱分解により副生成された有害物質等を吸着する、炭化物系吸着材28が設けられている。なお、炭化物系吸着材28は、効果検証のため、実験条件(後述するRUN1、2)によっては、取り外している。   A duct 26 is connected to the discharge port 24, and a suction pump 38 that sucks air for heat treatment is attached to the tip of the duct 26. The duct 26 is provided with a carbide-based adsorbent 28 that adsorbs volatilized harmful substances and harmful substances by-produced by thermal decomposition. The carbide-based adsorbent 28 is removed depending on the experimental conditions (RUN1 and RUN2, which will be described later) for effect verification.

また、ダクト26には、炭化物系吸着材28と吸引ポンプ38の間に、加熱された空気を冷却する冷却部42、吸引する空気に含まれる有害物質を吸着するために直列に3段に配置された吸着剤(XAD1〜3)45、加熱処理用の空気量を計測する流量計46がそれぞれ取り付けられている。   Also, the duct 26 is arranged in three stages in series between the carbide-based adsorbent 28 and the suction pump 38 in order to adsorb the harmful substances contained in the air to be sucked and the cooling unit 42 for cooling the heated air. The adsorbents (XAD 1 to 3) 45 and the flow meter 46 for measuring the amount of air for heat treatment are attached.

実験は、先ず、加熱処理時間を30分とした予備実験(RUN1)を行った。実験条件は、混合土壌20に混合された炭化物の重量割合(混合土壌質量に対する炭化物質量の割合)を20%とし、混合土壌20を通過する加熱処理用の空気の平均速度は42mm/秒とした。吸着剤45は取り外した状態とした。
また、砂利層42の深さは20mm、加熱処理部14に投入された混合土壌20の深さは80mmとした。
なお、混合土壌20に混合された炭化物の重量割合は、汚染土壌の種類や汚染の程度、使用する炭化物の種類等により適宜、最適値が決定される。
In the experiment, first, a preliminary experiment (RUN1) was performed with a heat treatment time of 30 minutes. The experimental conditions were that the weight ratio of the carbide mixed in the mixed soil 20 (the ratio of the amount of the carbonized substance to the mixed soil mass) was 20%, and the average speed of the heat treatment air passing through the mixed soil 20 was 42 mm / second. . The adsorbent 45 was removed.
Moreover, the depth of the gravel layer 42 was 20 mm, and the depth of the mixed soil 20 thrown into the heat processing part 14 was 80 mm.
The weight ratio of the carbide mixed in the mixed soil 20 is appropriately determined depending on the type of contaminated soil, the degree of contamination, the type of carbide used, and the like.

図3〜図5に実験結果の一例を示す。
図3は、加熱処理部14の内部に投入された混合土壌20sの、着火されてから30分間の温度変化を示している。横軸は着火されてからの経過時間であり、縦軸は計測点の温度である。なお、着火は、木炭44がバーナで加熱されて赤熱された状態とし、実験はこの状態からスタートした。
Examples of experimental results are shown in FIGS.
FIG. 3 shows the temperature change of the mixed soil 20s thrown into the heat treatment unit 14 for 30 minutes after being ignited. The horizontal axis is the elapsed time since ignition, and the vertical axis is the temperature at the measurement point. The ignition was performed in a state where the charcoal 44 was heated by the burner and reddish, and the experiment started from this state.

図3において、破線で示す特性T1は、混合土壌20の上面から20mm下方の混合土壌20の温度変化を、2点鎖線で示す特性T2は、混合土壌20の上面から40mm下方の混合土壌20の温度変化を、破線で示す特性T3は、混合土壌20の上から60mm下方の混合土壌20の温度変化を、1点鎖線で示す特性T4は、混合土壌20の上から80mm下方(砂利層42との境界)の混合土壌20の温度変化を、実線で示す特性T5は、測定点T1〜T4の平均温度を、それぞれ示している。   In FIG. 3, a characteristic T1 indicated by a broken line indicates a temperature change of the mixed soil 20 20 mm below the upper surface of the mixed soil 20, and a characteristic T2 indicated by a two-dot chain line indicates that the mixed soil 20 is 40 mm below the upper surface of the mixed soil 20. A characteristic T3 indicated by a broken line indicates a temperature change of the mixed soil 20 60 mm below from the top of the mixed soil 20, and a characteristic T4 indicated by a one-dot chain line indicates a temperature change 80 mm below the top of the mixed soil 20 (with the gravel layer 42 and The characteristic T5 which shows the temperature change of the mixed soil 20 of (boundary of) is shown by the continuous line has shown the average temperature of the measurement points T1-T4, respectively.

時間経過と共に特性T1〜T5は徐々に上昇しており、特性T2が最も温度が高く(750℃程度まで上昇)、特性T4が最も温度が低い。平均温度は、約400℃〜450℃であった。特性T1の温度上昇が小さいのは、吸引空気で冷却されたためと思われる。なお、温度測定点は、混合土壌20の中の土壌部であり、赤熱した炭化物の内部は、より高温と推定される。   The characteristics T1 to T5 gradually increase with the lapse of time, the characteristic T2 has the highest temperature (up to about 750 ° C.), and the characteristic T4 has the lowest temperature. The average temperature was about 400 ° C to 450 ° C. The reason why the temperature rise of the characteristic T1 is small is thought to be due to cooling with suction air. In addition, a temperature measurement point is a soil part in the mixed soil 20, and the inside of the red-heated carbide is estimated to be a higher temperature.

図4に、PCBの濃度変化の測定結果を示す。横軸は吸引空気が通過する代表的な計測場所を示し、縦軸はPCB総量(μg)を示している。
なお、結果の棒グラフは、PCBに含まれる塩素の数ごとに積み重ねた総量を示したものであり、記号aは塩素の数が1個、記号bは2個、記号cは3個、記号dは4個、記号eは5個、記号fは6個、記号gは7個、記号hは8個、記号iは9個、記号jは10個の特性基を有するPCBであることを示す。
FIG. 4 shows the measurement result of the PCB concentration change. The horizontal axis indicates a typical measurement place through which the suction air passes, and the vertical axis indicates the total amount of PCB (μg).
The resulting bar graph shows the total amount stacked for each number of chlorine contained in the PCB. Symbol a is one chlorine, symbol b is two, symbol c is three, symbol d Indicates 4 PCBs, 5 symbol e, 6 symbol f, 7 symbol g, 8 symbol h, 9 symbol i, and 10 symbol j PCB. .

結果から、棒グラフP1に示すように、加熱処理前の汚染土壌に含まれていたPCB総量は455μgであった。加熱処理後には、棒グラフP2に示すように、混合土壌20の上部半分(試料上層)のPCB総量は30μg、棒グラフP3に示すように、混合土壌20下部半分(試料上層)のPCB総量は240μg、棒グラフP4に示すように、砂利のPCB総量は10μg以下、棒グラフP5、P6に示すように、吸着剤(XAD1〜3)45で吸着された吸引空気中のPCB総量は10μg以下となっている。なお、XAD3は全く吸着は見られなかったので、記載を省略した。   From the results, as shown in the bar graph P1, the total amount of PCB contained in the contaminated soil before the heat treatment was 455 μg. After the heat treatment, as shown in the bar graph P2, the total PCB amount in the upper half (sample upper layer) of the mixed soil 20 is 30 μg, and as shown in the bar graph P3, the PCB total amount in the lower half of the mixed soil 20 (sample upper layer) is 240 μg, As shown in the bar graph P4, the total PCB amount of gravel is 10 μg or less, and as shown in the bar graphs P5 and P6, the total PCB amount in the suction air adsorbed by the adsorbents (XAD1 to 3) 45 is 10 μg or less. Since XAD3 did not adsorb at all, the description was omitted.

この結果から、PCBは、加熱処理されても、吸引空気側には移行していないことが分かる。また、混合土壌20の上部半分では大きく低減しているが、混合土壌20の下部半分では、未だ十分には熱分解されてない。これは、加熱処理時間が短く、混合土壌20の下部半分までは熱分解が進んでいないためと推定される。加熱処理時間を長くした確認実験を別途行った。確認実験の結果については、後述する。   From this result, it can be seen that even if the PCB is heat-treated, it does not move to the suction air side. Moreover, although it is reducing greatly in the upper half of the mixed soil 20, it is not yet fully thermally decomposed in the lower half of the mixed soil 20. This is presumably because the heat treatment time is short and the thermal decomposition has not progressed to the lower half of the mixed soil 20. A separate confirmation experiment with a longer heat treatment time was conducted. The result of the confirmation experiment will be described later.

図5に、ダイオキシン類の濃度変化の測定結果を示す。横軸は計測場所を示し、縦軸はダイオキシン類総量(pg)を示している。なお、棒グラフは、検出されたダイオキシン類の種類ごとに記号a〜jで区分けして、積層した結果である。
ここに、記号aはダイオキシン類のTCDDsを、記号bはPCDDsを、記号cはHCDDsを、記号dはHCDDs、記号eはOCDDを、記号fはTCDFsを、記号gはPCDFsを、記号hはHCDFsを、記号iはHCDFs、記号jはOCDFを、それぞれ示す。
In FIG. 5, the measurement result of the density | concentration change of dioxins is shown. The horizontal axis indicates the measurement location, and the vertical axis indicates the total amount of dioxins (pg). Note that the bar graph is a result of stacking by dividing the detected dioxins by symbols a to j.
Here, symbol a is T 4 CDDs of dioxins, symbol b is P 5 CDDs, symbol c is H 6 CDDs, symbol d is H 7 CDDs, symbol e is O 8 CDD, and symbol f is T 4. CDFs, symbol g represents P 5 CDFs, symbol h represents H 6 CDFs, symbol i represents H 7 CDFs, and symbol j represents O 8 CDF.

結果から、棒グラフD1に示すように、処理前には、汚染土壌のダイオキシン類総量は約19万pgであった。処理後には、棒グラフD2に示すように混合土壌20の上部半分のダイオキシン類総量は8万pg、棒グラフD3に示すように混合土壌20の下部半分のダイオキシン類総量は15.5万pg、棒グラフD4に示すように砂利のダイオキシン類総量は0.2万pg以下、棒グラフD5、D6に示すように吸引空気中のダイオキシン類総量は0.2万pg以下となっている。   From the results, as shown in the bar graph D1, the total amount of dioxins in the contaminated soil was about 190,000 pg before the treatment. After the treatment, the total amount of dioxins in the upper half of the mixed soil 20 is 80,000 pg as shown in the bar graph D2, and the total amount of dioxins in the lower half of the mixed soil 20 is 15,000 pg, as shown in the bar graph D3, the bar graph D4. The total amount of dioxins in gravel is 220,000 pg or less, and the total amount of dioxins in suction air is 220,000 pg or less as shown in bar graphs D5 and D6.

この結果から、ダイオキシン類は、加熱処理されても吸引空気側に移行していないことが分かる。また、混合土壌20の上部半分では半分以下に低減しているが、混合土壌20の下部半分では、十分には熱分解されていない。しかし、ダイオキシン類の低減に関しても、PCBの場合と同様に、後述するように加熱処理時間を長くすることで、満足すべき結果を得ることができる。   From this result, it can be seen that dioxins are not transferred to the suction air side even when the heat treatment is performed. Moreover, although it has reduced to half or less in the upper half of the mixed soil 20, it is not fully thermally decomposed in the lower half of the mixed soil 20. However, with respect to the reduction of dioxins, as in the case of PCB, satisfactory results can be obtained by increasing the heat treatment time as described later.

図6は、図2と同じ実験装置を使用し、加熱処理時間を長くした確認実験の結果である。加熱処理部14の内部に投入された混合土壌20が着火されてから、120分間の各部の温度変化を示している。横軸は着火されてからの経過時間であり、縦軸は計測点の温度である。   FIG. 6 shows the result of a confirmation experiment using the same experimental apparatus as in FIG. 2 and extending the heat treatment time. The temperature change of each part for 120 minutes is shown after the mixed soil 20 thrown into the inside of the heat treatment part 14 is ignited. The horizontal axis is the elapsed time since ignition, and the vertical axis is the temperature at the measurement point.

温度計測点も、図3と同じであり、破線で示す特性T1は、混合土壌20の上面から20mm下方の混合土壌20の温度変化を、2点鎖線で示す特性T2は、混合土壌20の上面から40mm下方の混合土壌20の温度変化を、破線で示す特性T3は、混合土壌20の上から60mm下方の混合土壌20の温度変化を、1点鎖線で示す特性T4は、混合土壌20の上から80mm下方(砂利層42との境界)の混合土壌20の温度変化を、実線で示す特性T5は、測定点T1〜T4の平均温度を示している。   The temperature measurement points are also the same as in FIG. 3, and the characteristic T1 indicated by the broken line indicates the temperature change of the mixed soil 20 20 mm below the upper surface of the mixed soil 20, and the characteristic T2 indicated by the two-dot chain line indicates the upper surface of the mixed soil 20. The characteristic T3 indicated by a broken line indicates the temperature change of the mixed soil 20 below 40 mm from the top, and the characteristic T4 indicated by the one-dot chain line indicates the temperature change of the mixed soil 20 below 60 mm from above the mixed soil 20 by the dotted line. The characteristic T5 which shows the temperature change of the mixed soil 20 80 mm below (boundary with the gravel layer 42) from the solid line shows the average temperature of the measurement points T1 to T4.

個々の温度変化は、炭化物の局部的な密度の違い、温度計測点の炭化物との距離違い等により若干の違いがあるが、大きな傾向は予想通り、下層の温度上昇、及び平均温度の上昇が確認された。
即ち、混合土壌20の上層の特性T1、T2は、時間経過と共に急激に上昇した後、着火後90分程度まで500℃〜600℃の温度を維持しており、その後、着火後120分まで徐々に低下し300℃前後に到達する。
Individual temperature changes are slightly different due to differences in local density of carbides, distances from the carbide at the temperature measurement point, etc., but as expected, the major trends are as follows: confirmed.
That is, the characteristics T1 and T2 of the upper layer of the mixed soil 20 rapidly increase with time, and maintain a temperature of 500 ° C. to 600 ° C. until about 90 minutes after ignition, and then gradually until 120 minutes after ignition. And reaches around 300 ° C.

混合土壌20の下層の特性T3、T4は、着火直後の温度上昇は緩やかで、特性T4は着火後90分の時点で急激に上昇している。そして、着火後120分の時点で、300℃程度に達している。平均温度は、約300℃〜400℃程度であった。 In the characteristics T3 and T4 in the lower layer of the mixed soil 20, the temperature rise immediately after ignition is moderate, and the characteristic T4 increases rapidly at 90 minutes after ignition. And at about 120 minutes after ignition, the temperature reaches about 300 ° C. The average temperature was about 300 ° C to 400 ° C.

図7に、着火後120分経過後の、各部におけるPCB濃度の測定結果を示す。横軸は実験条件を示し、縦軸はPCB収支を示している。
ここに、RUN1は、上述した予備実験の結果であり、空気空塔速度42mm/sec、処理時間30分、炭吸着カラム無しの条件であり、RUN2は、空気空塔速度50mm/sec、処理時間120分、炭吸着カラム無しの条件であり、RUN3は、空気空塔速度42mm/sec、処理時間120分、炭吸着カラム有り、の各条件を示す。なお、RUN1〜3は、いずれも炭化物の混合割合は20%とした。
In FIG. 7, the measurement result of the PCB density | concentration in each part after progress for 120 minutes after ignition is shown. The horizontal axis shows the experimental conditions, and the vertical axis shows the PCB balance.
Here, RUN1 is the result of the preliminary experiment described above, and the air superficial velocity is 42 mm / sec, the processing time is 30 minutes, and no charcoal adsorption column is used. RUN2 is the air superficial velocity of 50 mm / sec, the processing time. RUN3 indicates each condition of an air superficial velocity of 42 mm / sec, a processing time of 120 minutes, and a charcoal adsorption column. In all of RUN 1 to 3, the mixing ratio of carbide was 20%.

即ち、処理前(着火前)に汚染土壌に含有されていたPCBは、RUN1の条件では約40%が分解され、約50%が試料下層に、約7%が試料上層に含有されている。
これに対し、RUN2の条件では、約60%が分解され、約25%が排ガスに、約5%が氷冷部に、約10%が砂利に含有されている。
RUN3の条件では、約90%が分解され、残りの約10%が排ガス、炭吸着カラム、試料の下層に、試料の上層にそれぞれ含有されている。
That is, about 40% of the PCB contained in the contaminated soil before treatment (before ignition) is decomposed under the condition of RUN1, about 50% is contained in the lower layer of the sample, and about 7% is contained in the upper layer of the sample.
On the other hand, under the condition of RUN2, about 60% is decomposed, about 25% is contained in the exhaust gas, about 5% is contained in the ice-cooled part, and about 10% is contained in gravel.
Under the condition of RUN3, about 90% is decomposed, and the remaining about 10% is contained in the exhaust gas, the charcoal adsorption column, the lower layer of the sample, and the upper layer of the sample.

このことから、RUN2の条件では、処理時間を30分から120分に長くすることで、分解量が40%から60%に増加している。しかし、空気空塔速度を42mm/secから50mm/secまで上げたことで、炭化物に吸着されずに排ガスに含まれる量が増加している。
そこで、RUN3の条件のごとく、空気空塔速度を42mm/secとし、炭吸着カラムを設け、排ガスに含まれたPCBを回収し、加熱源として再利用し付着したPCBを熱分解することで、約90%の分解を実現できることが確認された。
From this, under the condition of RUN2, the amount of decomposition increases from 40% to 60% by increasing the processing time from 30 minutes to 120 minutes. However, increasing the air superficial velocity from 42 mm / sec to 50 mm / sec increases the amount contained in the exhaust gas without being adsorbed by the carbide.
Therefore, as in the condition of RUN3, the air superficial velocity is set to 42 mm / sec, a charcoal adsorption column is provided, the PCB contained in the exhaust gas is recovered, and reused as a heating source to thermally decompose the attached PCB, It was confirmed that about 90% decomposition could be realized.

10 有害物質処理装置
12 加熱炉
14 加熱処理部
16 汚染土壌(汚染土壌、汚染底質又は汚染焼却廃棄物)
18 炭化物
20 混合土壌
22 吸引口
24 排出口
26 ダクト(通風路、空気吸引装置)
28 炭化物系吸着材(吸着手段)
30 ブロワ(空気吸引装置)
36 混合装置
10 Toxic Substance Treatment Equipment 12 Heating Furnace 14 Heat Treatment Unit 16 Contaminated Soil (Contaminated Soil, Contaminated Sediment or Contaminated Incineration Waste)
18 Carbide 20 Mixed soil 22 Suction port 24 Discharge port 26 Duct (ventilation path, air suction device)
28 Carbide-based adsorbent (adsorption means)
30 Blower (Air suction device)
36 Mixing equipment

Claims (8)

PCB又はダイオキシン類の少なくとも一方の有害物質が含有された汚染土壌、汚染底質又は焼却後の灰である汚染焼却廃棄物と、着火されて発熱すると共に前記有害物質を吸着可能な炭化物とを混合する混合装置と、
前記混合装置から、混合土壌、混合底質又は混合焼却廃棄物が投入され、前記炭化物が着火されて発熱し前記有害物質を加熱処理する加熱処理部が設けられた加熱炉と、
前記加熱炉の吸引口から吸引した加熱処理用の空気を、前記加熱処理部の前記炭化物の間を通過させた後、前記加熱炉の排出口から排出させる空気吸引装置と、
を有する有害物質処理装置。
Mixing contaminated soil containing contaminated soil, contaminated sediment, or ash after incineration, and carbides that are ignited and generate heat and can adsorb the harmful substances, containing PCB or dioxin harmful substances A mixing device to
From the mixing device, mixed soil, mixed sediment or mixed incineration waste is charged, and the carbide is ignited to generate heat, and a heating furnace provided with a heat treatment unit for heat-treating the harmful substances,
An air suction device for letting the air for heat treatment sucked from the suction port of the heating furnace pass through between the carbides of the heat treatment unit, and then discharge the air from the discharge port of the heating furnace;
Hazardous substance treatment equipment.
前記空気吸引装置は、ブロアと、前記ブロアと前記排出口の間を連結する通風路とを有し、前記通風路には、前記炭化物の発熱に伴い熱分解又は揮発された、前記有害物質や副生成物質を吸着する吸着手段が設けられている請求項1に記載の有害物質処理装置。 The air suction device includes a blower and a ventilation path that connects the blower and the discharge port, and the ventilation path is thermally decomposed or volatilized due to heat generation of the carbides. The hazardous substance processing apparatus according to claim 1, further comprising an adsorption means for adsorbing the by-product substance. 前記吸着手段は、炭化物系吸着材である請求項2に記載の有害物質処理装置。   The hazardous substance processing apparatus according to claim 2, wherein the adsorption means is a carbide-based adsorbent. 前記炭化物は、前記有害物質及び前記副生成物質を吸着処理させた前記炭化物系吸着材である請求項3に記載の有害物質処理装置。   The hazardous substance processing apparatus according to claim 3, wherein the carbide is the carbide-based adsorbent obtained by adsorbing the harmful substance and the by-product substance. 前記加熱処理部に投入された前記混合土壌、前記混合底質又は前記混合焼却廃棄物の前記吸引口側の端P部には、前記炭化物の着火手段が設けられている請求項1〜4のいずれか1項に記載の有害物質処理装置。   5. The carbide igniting means is provided at an end P portion on the suction port side of the mixed soil, the mixed sediment, or the mixed incineration waste charged into the heat treatment unit. The hazardous substance processing apparatus according to any one of claims. PCB又はダイオキシン類の少なくとも一方の有害物質が含有された汚染土壌、汚染底質又は汚染焼却廃棄物と、着火されて発熱すると共に前記有害物質を吸着可能な炭化物とを混合装置で混合する混合工程と、
混合土壌、混合底質又は混合焼却廃棄物を加熱炉の加熱処理部に投入し、空気吸引装置により、前記加熱炉の吸引口から吸引された加熱処理用の空気を、前記炭化物の間を通過させながら前記炭化物に着火させ、前記炭化物の発熱で前記有害物質を加熱処理する加熱処理工程と、
前記加熱処理工程で熱分解又は揮発された前記有害物質及び副生成物質を、前記空気吸引装置で加熱炉の排出口から吸引し、吸着処理用の炭化物系吸着材に吸着させる吸着工程と、
を有する有害物質処理方法。
Mixing process of mixing contaminated soil, contaminated sediment or incinerated waste containing at least one hazardous substance of PCB or dioxins with carbide that is ignited and generates heat and can adsorb the harmful substance in a mixing device. When,
The mixed soil, mixed sediment or mixed incineration waste is put into the heat treatment section of the heating furnace, and the air for heat treatment sucked from the suction port of the heating furnace is passed between the carbides by the air suction device. A heat treatment step of igniting the carbide while heating, and heat-treating the harmful substance by heat generation of the carbide,
An adsorption process in which the harmful substances and by-product substances pyrolyzed or volatilized in the heat treatment process are sucked from a discharge port of a heating furnace with the air suction device and adsorbed to a carbide-based adsorbent for adsorption treatment,
A method for treating hazardous substances.
前記吸着工程で使用され、前記有害物質及び前記副生成物質が吸着された前記炭化物系吸着材を、前記混合工程で混合される前記炭化物として使用する請求項6に記載の有害物質処理方法。   The hazardous substance processing method according to claim 6, wherein the carbide-based adsorbent used in the adsorption step and adsorbed with the harmful substance and the by-product substance is used as the carbide mixed in the mixing step. 前記加熱処理工程において、混合土壌、混合底質又は混合焼却廃棄物に混合された前記炭化物を、前記吸引口側から着火させ加熱処理を開始し、熱分解又は揮発された前記有害物質及び前記副生成物質を、前記排出口側の前記炭化物に順次吸着させる請求項6又は7に記載の有害物質処理方法。   In the heat treatment step, the carbide mixed in the mixed soil, the mixed sediment or the mixed incineration waste is ignited from the suction port side, and the heat treatment is started, and the harmful substances and pyrolysis or volatilized by the pyrolysis or volatilization are started. The hazardous substance processing method according to claim 6 or 7, wherein the product substance is sequentially adsorbed on the carbide on the discharge port side.
JP2010075973A 2010-03-29 2010-03-29 Hazardous substance processing apparatus and hazardous substance processing method Expired - Fee Related JP5379058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075973A JP5379058B2 (en) 2010-03-29 2010-03-29 Hazardous substance processing apparatus and hazardous substance processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075973A JP5379058B2 (en) 2010-03-29 2010-03-29 Hazardous substance processing apparatus and hazardous substance processing method

Publications (2)

Publication Number Publication Date
JP2011206659A true JP2011206659A (en) 2011-10-20
JP5379058B2 JP5379058B2 (en) 2013-12-25

Family

ID=44938365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075973A Expired - Fee Related JP5379058B2 (en) 2010-03-29 2010-03-29 Hazardous substance processing apparatus and hazardous substance processing method

Country Status (1)

Country Link
JP (1) JP5379058B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302909A (en) * 1991-03-28 1992-10-26 Nippon Steel Corp Method and apparatus for treating waste
JPH0942642A (en) * 1995-07-24 1997-02-14 Osaka Gas Eng Kk Disposal equipment and use thereof
JPH09192641A (en) * 1996-01-19 1997-07-29 Mitsubishi Heavy Ind Ltd Treatment of contaminated soil
JP2001241623A (en) * 2000-02-28 2001-09-07 ▲将▼ ▲高▼野 Burning method and device of waste containing waste plastic
JP2002153838A (en) * 2000-11-21 2002-05-28 Hitachi Zosen Corp Method for treating activated carbon with dioxins adsorbed
JP2002364824A (en) * 2001-06-08 2002-12-18 Kobe Steel Ltd Stoker type incinerator and method of treating incinerated ash
JP2003053310A (en) * 2001-08-22 2003-02-25 Nkk Corp Method of treating fly ash
JP2003120910A (en) * 2001-10-16 2003-04-23 Meidensha Corp Heat treating equipment and its treating facility
JP2004323287A (en) * 2003-04-24 2004-11-18 Ube Ind Ltd Method for treating substance containing volatile substance
JP2005172386A (en) * 2003-12-15 2005-06-30 Nitsushiyoo Kiko:Kk Incinerating melting cooling method
JP2008062168A (en) * 2006-09-06 2008-03-21 Nikko Co Ltd Heating clarification apparatus of contaminated soil
JP2008194546A (en) * 2006-03-15 2008-08-28 Kobe Ie Service Kk Treatment method of waste refuse incineration fly ash
JP2009262067A (en) * 2008-04-25 2009-11-12 Metawater Co Ltd Roasting treatment method for incineration residue

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302909A (en) * 1991-03-28 1992-10-26 Nippon Steel Corp Method and apparatus for treating waste
JPH0942642A (en) * 1995-07-24 1997-02-14 Osaka Gas Eng Kk Disposal equipment and use thereof
JPH09192641A (en) * 1996-01-19 1997-07-29 Mitsubishi Heavy Ind Ltd Treatment of contaminated soil
JP2001241623A (en) * 2000-02-28 2001-09-07 ▲将▼ ▲高▼野 Burning method and device of waste containing waste plastic
JP2002153838A (en) * 2000-11-21 2002-05-28 Hitachi Zosen Corp Method for treating activated carbon with dioxins adsorbed
JP2002364824A (en) * 2001-06-08 2002-12-18 Kobe Steel Ltd Stoker type incinerator and method of treating incinerated ash
JP2003053310A (en) * 2001-08-22 2003-02-25 Nkk Corp Method of treating fly ash
JP2003120910A (en) * 2001-10-16 2003-04-23 Meidensha Corp Heat treating equipment and its treating facility
JP2004323287A (en) * 2003-04-24 2004-11-18 Ube Ind Ltd Method for treating substance containing volatile substance
JP2005172386A (en) * 2003-12-15 2005-06-30 Nitsushiyoo Kiko:Kk Incinerating melting cooling method
JP2008194546A (en) * 2006-03-15 2008-08-28 Kobe Ie Service Kk Treatment method of waste refuse incineration fly ash
JP2008062168A (en) * 2006-09-06 2008-03-21 Nikko Co Ltd Heating clarification apparatus of contaminated soil
JP2009262067A (en) * 2008-04-25 2009-11-12 Metawater Co Ltd Roasting treatment method for incineration residue

Also Published As

Publication number Publication date
JP5379058B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP6333478B2 (en) Furnace equipment
KR20110129845A (en) Dioxin treatability and treatability equipment structure
JP4928876B2 (en) Heat purification equipment for contaminated soil
JP2008049207A (en) Heat treatment apparatus of contaminant
JP5379058B2 (en) Hazardous substance processing apparatus and hazardous substance processing method
JP2007045648A (en) Method for reducing organochlorine compound in exhaust gas in cement manufacturing equipment
JP2007045648A5 (en)
JP5634961B2 (en) Sludge treatment method
WO2007108468A1 (en) Method of soil treatment and soil treating apparatus
JP2001025757A (en) Cleaning device for contaminated soil containing volatile organic compounds
JP2009066492A (en) System for making contaminated soil harmless
JP2009183932A (en) Organic compound pyrolytic apparatus
JP5116322B2 (en) Organic pollutant emission reduction method
JP6417157B2 (en) Cement kiln exhaust gas treatment method
JPH11314073A (en) Process of turning incineration ash harmless
JP2006075677A (en) Treatment method and treatment device for contaminant
JP5425166B2 (en) Organic pollutant emission reduction method
JP4733659B2 (en) Heat treatment method and heat treatment apparatus for waste containing organic halogen compounds
JP4891887B2 (en) Heat treatment method and heat treatment apparatus for waste containing organic halogen compound using platinum catalyst device or palladium catalyst device
JP2000266332A (en) Heat storage type exhaust gas treating method and device thereof
JP3753309B2 (en) Waste treatment equipment
JP4478965B1 (en) Carbonization equipment
CA2965626C (en) Furnace apparatus
JP4336260B2 (en) Pollution treatment method
KR20040083230A (en) Carbonization gas combustion system and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees