JP2011205983A - Chemical-spreading vehicle - Google Patents

Chemical-spreading vehicle Download PDF

Info

Publication number
JP2011205983A
JP2011205983A JP2010077736A JP2010077736A JP2011205983A JP 2011205983 A JP2011205983 A JP 2011205983A JP 2010077736 A JP2010077736 A JP 2010077736A JP 2010077736 A JP2010077736 A JP 2010077736A JP 2011205983 A JP2011205983 A JP 2011205983A
Authority
JP
Japan
Prior art keywords
nozzle
air
chemical
spray
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010077736A
Other languages
Japanese (ja)
Other versions
JP5568355B2 (en
Inventor
Yoshihiko Miyahara
佳彦 宮原
Tomomichi Mizukami
智道 水上
Takanobu Yoshida
隆延 吉田
Yasuharu Inooku
康治 猪之奥
Tomohiko Ota
智彦 太田
Mikio Kanemitsu
幹雄 金光
Keiichi Azuma
恵一 東
Kazuyasu Yuasa
一康 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaho Industry Co Ltd
Maruyama Manufacturing Co Ltd
National Agriculture and Food Research Organization
Original Assignee
Yamaho Industry Co Ltd
Maruyama Manufacturing Co Ltd
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaho Industry Co Ltd, Maruyama Manufacturing Co Ltd, National Agriculture and Food Research Organization filed Critical Yamaho Industry Co Ltd
Priority to JP2010077736A priority Critical patent/JP5568355B2/en
Publication of JP2011205983A publication Critical patent/JP2011205983A/en
Application granted granted Critical
Publication of JP5568355B2 publication Critical patent/JP5568355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catching Or Destruction (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chemical-spreading vehicle exhibiting excellent attaching ability and/or reaching ability in addition to the inhibition of the occurrence of drift phenomena.SOLUTION: The chemical-spreading vehicle 1 is equipped with an air passage 5 communicating an air-sucking opening 6 installed in the rear part of a vehicle body 2 carrying a chemical tank 3, with air-jetting openings 7 opened at a part in the perimeter direction of the vehicle body of from one side of a vehicle body 2 through the upper side to the other side. A blower 9 is arranged in the air passage 5, and a plurality of nozzles A, B is arranged in line in the air-jetting openings 7 so that each of the droplet-jetting direction may be radially outward. As the nozzles, gas-unmixing type nozzles B and gas-mixing type nozzles A are used, and the gas-mixing type nozzles A and the gas-unmixing type nozzles B in a mixed state are arranged in the perimeter direction of the vehicle body.

Description

本発明は、薬液タンクを搭載してノズルから薬液を農作物に噴霧する薬液散布車に関するものである。   TECHNICAL FIELD The present invention relates to a chemical solution sprayer that mounts a chemical solution tank and sprays a chemical solution from a nozzle onto agricultural products.

従来、この種の薬液散布車はスピードスプレーヤ(SS)と俗称され、例えば下記の特許文献1に記載されたものが知られている。この薬液散布車は、薬液タンクを搭載した車体の後部に設けられた空気吸入口と、車体の一側方から上方を経て他側方に至る車体周方向の部分に開口した空気吹出口とを連通する通風路を備えていて、通風路に送風機が配備され、空気吹出口に複数のノズルがそれぞれの液滴噴出方向を車体走行方向と直角の放射状外向きにして車体周方向に列設されている。それら複数のノズルはいずれも、図13および図14(a)に示すような慣用ノズルCが使用されている。このような慣用ノズルCは薬液に気体を混合しない非混気式構造が採用されていて、比較的細粒の噴霧滴を中空円錐形の噴霧パターンRとして高速で噴射し、さらに薬液散布車の送風により加速されて放出するようになっている。従って、この薬液散布車は、農作物の全体に隈なく噴霧滴を付着させる尺度の付着性能と、薬液散布車からできるだけ遠くに噴霧滴を飛ばす尺度の到達性が共に優れているとされている。   Conventionally, this type of chemical solution spraying vehicle is commonly referred to as a speed sprayer (SS), and for example, one described in Patent Document 1 below is known. This chemical spray vehicle has an air suction port provided at the rear of the vehicle body on which a chemical solution tank is mounted, and an air outlet opening in the circumferential direction of the vehicle body from one side of the vehicle body to the other side. A ventilation passage is provided, and a blower is provided in the ventilation passage, and a plurality of nozzles are arranged at the air outlet in the circumferential direction of the vehicle body with each droplet ejection direction being radially outward perpendicular to the vehicle body traveling direction. ing. For each of the plurality of nozzles, a conventional nozzle C as shown in FIGS. 13 and 14A is used. Such a conventional nozzle C adopts a non-mixed structure in which no gas is mixed with the chemical liquid, and sprays relatively fine spray droplets as a hollow cone spray pattern R at a high speed. It is accelerated and discharged by air blowing. Therefore, it is said that this chemical spray vehicle is excellent in both the adhesion performance of the scale that allows spray droplets to adhere to the entire crop and the reachability of the scale for spraying spray droplets as far as possible from the chemical spray vehicle.

しかしながら、慣用ノズルCは液体のみを噴口から噴射するので、噴射された噴霧滴の径は例えば100μm以下と極めて細かくなる。そのために、噴霧滴が空気中に浮遊しやすく、噴霧滴が風に乗って飛散する、いわゆるドリフト現象により遠方まで到達し、或る種の薬液散布が禁止されている隣の菜園に無為に噴霧されるおそれがある。かかる不具合を防ぐためには、やむなく噴射量を少なくして薬液を散布しなければならず、作業性の低い薬液散布にならざるを得なかったのである。   However, since the conventional nozzle C injects only the liquid from the injection port, the diameter of the sprayed spray droplet is extremely small, for example, 100 μm or less. For this reason, spray droplets tend to float in the air, spray droplets fly on the wind, reach the distance by the so-called drift phenomenon, and spray unnecessarily on the adjacent vegetable garden where certain chemical spraying is prohibited There is a risk of being. In order to prevent such inconveniences, it was necessary to spray the chemical liquid with a reduced injection amount, and it was necessary to spray the chemical liquid with low workability.

特開2000−51754号公報JP 2000-51754 A

そこで、図14(b)に示すようなドリフト低減ノズルDが薬液散布車に使用されている。このドリフト低減ノズルDは混気式構造を持ち、噴霧平均粒径200〜300μm程度の粗大粒子を中空円錐形の噴霧パターンSとして低速で噴射するようになっている。この薬液散布車によれば、ドリフト低減ノズルDから粗大粒子が低速で噴霧され、これが薬液散布車の送風により加速されて放出されるので、ドリフト現象は発生しにくい。しかしながら、付着性能および到達性ともに慣用ノズルCより大きく劣り、実用性に欠けるという問題点があった。   Therefore, a drift reduction nozzle D as shown in FIG. The drift reduction nozzle D has an air-mixing structure, and coarse particles having an average spray particle size of about 200 to 300 μm are jetted as a hollow cone spray pattern S at a low speed. According to this chemical spray vehicle, coarse particles are sprayed from the drift reduction nozzle D at a low speed, and this is accelerated and released by the blowing of the chemical spray vehicle, so that the drift phenomenon is unlikely to occur. However, both the adhesion performance and reachability are significantly inferior to those of the conventional nozzle C, and there is a problem that it lacks practicality.

本発明は、上記した従来の問題点に鑑みてなされたものであって、ドリフト現象の発生を抑止できることに加えて、付着性能および/または到達性が優れている薬液散布車の提供を目的とする。   The present invention has been made in view of the above-described conventional problems, and in addition to being able to suppress the occurrence of a drift phenomenon, it is an object of the present invention to provide a chemical spray vehicle that has excellent adhesion performance and / or reachability. To do.

上記目的を達成するために、本発明に係る薬液散布車は、薬液タンクを搭載した車体の後部に設けられた空気吸入口と、車体の一側方から上方を経て他側方に至る車体周方向の部分に開口した空気吹出口とを連通する通風路を備えていて、通風路に送風機が配備され、空気吹出口に複数のノズルがそれぞれの液滴噴出方向を放射状外向きにして車体周方向に列設されている薬液散布車において、前記ノズルとして、内部に導液路を有するノズル本体と、導液路の先端に設けられて噴口を有する噴板と、導液路の他端に形成されて薬液タンクからの導液管と接続される接続口部とを備え、噴口の軸心方向に視て扁平形状の噴霧パターンで液滴を噴口から噴き出す非混気式ノズル、および、内部に導液路を有するノズル本体と、導液路の先端に設けられて噴口を有する噴板と、導液路の他端に形成されて薬液タンクからの導液管と接続される接続口部と、噴板と接続口部との間のノズル本体に形成されて導液路に空気を取り入れる空気取入口部とを備え、噴口の軸心方向に視て扁平形状の噴霧パターンで液滴を噴口から噴き出す混気式ノズルを用いるとともに、前記混気式ノズルと前記非混気式ノズルとを車体周方向に混在させて配置した構成にしてある。   In order to achieve the above object, a chemical spray vehicle according to the present invention includes an air suction port provided at a rear portion of a vehicle body equipped with a chemical solution tank, and a vehicle body periphery extending from one side of the vehicle body to the other side through the upper side. A ventilation passage that communicates with the air outlet opening in the direction portion, a blower is provided in the ventilation passage, and a plurality of nozzles are arranged in the air outlet around the vehicle body with their respective droplet ejection directions radially outward. In the chemical spray vehicle arranged in the direction, as the nozzle, a nozzle body having a liquid guide path therein, a nozzle plate provided at the tip of the liquid guide path and having a nozzle hole, and the other end of the liquid guide path A non-mixing type nozzle that includes a connection port portion that is formed and connected to a liquid guide pipe from a chemical tank, and that ejects liquid droplets from the nozzle port in a flat spray pattern when viewed in the axial direction of the nozzle port, and the inside A nozzle body with a liquid guide channel on the tip and the tip of the liquid guide channel Formed on the nozzle body between the injection plate and the connection port portion, the connection port portion formed at the other end of the liquid introduction path and connected to the liquid introduction pipe from the chemical liquid tank. An air intake port for taking air into the liquid guide path, and using an air-mixing nozzle that ejects liquid droplets from the nozzle port in a flat spray pattern when viewed in the axial direction of the nozzle port, and The non-air-mixing nozzle is arranged in a mixed manner in the vehicle body circumferential direction.

また、前記構成において、非混気式ノズルの液滴噴出方向を、混気式ノズルの液滴噴出方向に対し車体走行方向後向きに傾けた方向とするように設定したものである。   Further, in the above configuration, the droplet ejection direction of the non-air-mixing nozzle is set to be a direction inclined backward in the vehicle body traveling direction with respect to the droplet ejection direction of the air-mixing nozzle.

そして、前記した各構成において、混気式ノズルおよび非混気式ノズルから噴き出される液滴の噴霧パターンの当該扁平形状の長径方向が車体周方向を向くように、混気式ノズルおよび非混気式ノズルをそれぞれ配置したものである。   In each configuration described above, the mixed-type nozzle and the non-mixed nozzle are arranged so that the major axis direction of the flat shape of the spray pattern of the droplets ejected from the mixed-type nozzle and the non-mixed-type nozzle faces the vehicle body circumferential direction. Each of the pneumatic nozzles is arranged.

更に、前記した各構成において、混気式ノズルと非混気式ノズルとを車体周方向に交互に配置したものである。   Further, in each of the above-described configurations, the mixed air nozzle and the non-air mixed nozzle are alternately arranged in the vehicle body circumferential direction.

本発明に係る薬液散布車によれば、扁平形状の噴霧パターンで液滴を噴口から噴き出す非混気式ノズルと、扁平形状の噴霧パターンで液滴を噴口から噴き出す混気式ノズルとが車体周方向に混在して配置されているので、混気式ノズルからの低速の大粒液滴は、薬液散布車の送風により加速されて空気吹出口から放出される。また、非混気式ノズルから噴射された高速の中粒液滴も薬液散布車の送風により加速されて空気吹出口から放出される。従って、付着性能および/または到達性が高くなる。一方、非混気式ノズルからの中粒液滴は混気式ノズルからの大粒液滴と混じりあって大粒化されやすく、これによりドリフト現象の発生が抑止されるという効果を奏する。   According to the chemical spray vehicle according to the present invention, the non-mixing type nozzle that ejects liquid droplets from the nozzle holes with a flat spray pattern and the mixed gas nozzle that ejects liquid droplets from the nozzle holes with a flat spray pattern are arranged around the vehicle body. Since they are mixedly arranged in the direction, the low-speed large droplets from the air-mixing nozzle are accelerated by the air blown from the chemical liquid spraying vehicle and discharged from the air outlet. In addition, high-speed medium droplets ejected from the non-air-mixing nozzle are also accelerated by the air blown by the chemical liquid spraying vehicle and discharged from the air outlet. Therefore, adhesion performance and / or reachability are increased. On the other hand, the medium droplets from the non-air-mixing nozzle are mixed with the large droplets from the air-mixing nozzle and are easily increased in size, thereby producing the effect of suppressing the occurrence of the drift phenomenon.

また、非混気式ノズルの液滴噴出方向を、混気式ノズルの液滴噴出方向に対し車体走行方向後向きに傾けた方向にしたものでは、混気式ノズルから噴射された液滴が空気吹出口から車体走行方向と直角の外向きに放出され、非混気式ノズルから噴射された液滴が車体走行方向後向きに放出されるので、各ノズルから噴射された液滴は車体走行方向に関して互いに重なることなく散布される。これら重ならない液滴の散布範囲を合計すると、従来の慣用ノズルやドリフト低減ノズルに匹敵する車体走行方向に広範囲の散布を行なうこととなる。また、非混気式ノズルからの中粒液滴は薬液散布車の送風により十分に加速されることなく放出されるので、ドリフト現象の発生を抑制することができる。   In addition, in the case where the droplet ejection direction of the non-air-mixing nozzle is inclined backward in the vehicle body traveling direction with respect to the droplet ejection direction of the air-mixing nozzle, the droplets ejected from the air-mixing nozzle are air Since the liquid droplets ejected from the air outlet to the right direction in the vehicle traveling direction and ejected from the non-mixed nozzles are ejected backward in the vehicle body traveling direction, the liquid droplets ejected from each nozzle are related to the vehicle traveling direction. Dispersed without overlapping each other. When the spraying ranges of these non-overlapping droplets are summed up, a wide range of spraying is performed in the vehicle traveling direction comparable to conventional nozzles and drift reduction nozzles. Further, since the medium droplets from the non-air-mixing type nozzle are discharged without being sufficiently accelerated by the air blown by the chemical solution spraying wheel, the occurrence of the drift phenomenon can be suppressed.

そして、混気式ノズルおよび非混気式ノズルから噴き出される液滴の噴霧パターンの当該扁平形状の長径方向が車体周方向を向くように、混気式ノズルおよび非混気式ノズルをそれぞれ配置したものでは、異なるノズルの液滴噴出方向を車体走行方向にずらしやすくなる。これにより、車体走行方向に関して噴霧パターンの重なりをいっそう回避することができ、各ノズルからの噴き出される液滴の特性を損なわせることなく、車体走行方向に広範囲の散布を行なうことができる。   Then, the air-mixing nozzle and the non-air-mixing nozzle are arranged so that the major axis direction of the flat shape of the spray pattern of the droplets ejected from the air-mixing nozzle and the non-air-mixing nozzle is directed to the vehicle body circumferential direction. In this case, it becomes easy to shift the droplet ejection direction of different nozzles in the vehicle body traveling direction. Thereby, it is possible to further avoid the overlapping of the spray patterns with respect to the traveling direction of the vehicle body, and to spread a wide range in the traveling direction of the vehicle body without impairing the characteristics of the droplets ejected from each nozzle.

更に、混気式ノズルと非混気式ノズルとを車体周方向に交互に配置したものでは、各ノズルからの噴霧パターンの混在を均一にしながらに散布を行なうことができる。   Further, in the case where the air-mixing nozzle and the non-air-mixing nozzle are alternately arranged in the vehicle body circumferential direction, the spraying can be performed while the mixture of the spray patterns from each nozzle is made uniform.

本発明の実施形態1に係る薬液散布車の側面図である。It is a side view of the chemical | medical solution dispersion truck which concerns on Embodiment 1 of this invention. 前記薬液散布車の背面図である。It is a rear view of the said chemical | medical solution dispersion wheel. 前記薬液散布車に用いる混気式ノズルを示し、(a)は平断面図、(b)は正面図である。The air-mixing type nozzle used for the said chemical | medical solution dispersion wheel is shown, (a) is a plane sectional view, (b) is a front view. 前記薬液散布車に用いる非混気式ノズルを示し、(a)は平断面図、(b)は正面図である。The non-air-mixing type nozzle used for the said chemical | medical solution dispersion wheel is shown, (a) is a plane sectional view, (b) is a front view. 前記薬液散布車の動作態様を示す平面態様図である。It is a plane aspect figure which shows the operation | movement aspect of the said chemical | medical solution dispersion wheel. 前記実施形態1の薬液散布車と比較例1の薬液散布車の液体散布による付着性能試験の結果を示すグラフの図である。It is a figure which shows the result of the adhesion performance test by the liquid dispersion | distribution of the chemical | medical solution dispersion truck of the said Embodiment 1, and the chemical | medical solution dispersion truck of the comparative example 1. FIG. 前記実施形態1の薬液散布車と比較例1の薬液散布車の液体散布によるドリフト試験の結果を示すグラフの図である。It is a figure which shows the result of the drift test by the liquid dispersion | distribution of the chemical | medical solution dispersion truck of the said Embodiment 1, and the chemical | medical solution dispersion truck of the comparative example 1. 前記実施形態1の薬液散布車と比較例1の薬液散布車の液体散布により被験者の身体各部に付着した液体の被覆面積率を示すグラフの図である。It is a figure which shows the covering area rate of the liquid adhering to each part of a test subject's body by the liquid dispersion | distribution of the chemical | medical solution dispersion truck of the said Embodiment 1 and the chemical | medical solution dispersion truck of the comparative example 1. FIG. 本発明の実施形態2,4,5に用いる非混気式ノズルを示し、(a)は平断面図、(b)は正面図である。The non-air mixing type nozzle used for Embodiment 2, 4, 5 of this invention is shown, (a) is a plane sectional view, (b) is a front view. (a)〜(d)は実施形態2〜5に係る薬液散布車の動作態様をそれぞれ示す平面態様図である。(A)-(d) is a plane | planar aspect figure which each shows the operation | movement aspect of the chemical | medical solution dispersion vehicle which concerns on Embodiment 2-5. 本発明の実施形態4,5に用いる混気式ノズルを示し、(a)は平断面図、(b)は正面図である。The mixed-type nozzle used for Embodiment 4 and 5 of this invention is shown, (a) is a plane sectional view, (b) is a front view. 本発明の実施形態6に係る薬液散布車の背面図である。It is a rear view of the chemical | medical solution dispersion truck which concerns on Embodiment 6 of this invention. 比較例1の薬液散布車に用いる慣用ノズルを示し、(a)は平断面図、(b)は正面図である。The conventional nozzle used for the chemical | medical solution dispersion vehicle of the comparative example 1 is shown, (a) is a plane sectional view, (b) is a front view. (a)〜(d)は比較例1〜4に係る薬液散布車の動作態様をそれぞれ示す平面態様図である。(A)-(d) is a plane | planar aspect figure which each shows the operation | movement aspect of the chemical | medical solution dispersion vehicle which concerns on Comparative Examples 1-4.

本発明の実施形態を図面に基づいて説明する。尚、以下に述べる実施形態は本発明を具体化した一例に過ぎず、本発明の技術的範囲を限定するものでない。
[実施形態1].
図1は本発明の実施形態1に係る薬液散布車の側面図、図2は前記薬液散布車の背面図である。
各図において、この実施形態1に係る薬液散布車1は、例えば4輪を有する車体2の前後略中央部に薬液タンク3を搭載している。薬液タンク3の後方位置にはエンジン11が搭載されている。車体2のケーシング後部は、後ろ向きに細くなるコーン状の風ガイド部材10とつながっている。風ガイド部材10にはエンジン11の駆動軸12を通す軸穴(符号付け省略)が形成されている。風ガイド部材10から後方に突出した駆動軸12の先端に、送風機9が取り付けられている。風ガイド部材10および送風機9の周囲には外周ケース4が配備され、風ガイド部材10の外周面および送風機9の先端と外周ケース4の内周面との間が通風路5となっている。
Embodiments of the present invention will be described with reference to the drawings. The embodiment described below is merely an example embodying the present invention, and does not limit the technical scope of the present invention.
[Embodiment 1].
FIG. 1 is a side view of a chemical spray vehicle according to Embodiment 1 of the present invention, and FIG. 2 is a rear view of the chemical spray vehicle.
In each of the drawings, the chemical liquid spraying vehicle 1 according to the first embodiment has a chemical liquid tank 3 mounted at a substantially central portion in the front and rear of a vehicle body 2 having four wheels, for example. An engine 11 is mounted behind the chemical liquid tank 3. The rear portion of the casing of the vehicle body 2 is connected to a cone-shaped wind guide member 10 that narrows backward. The wind guide member 10 is formed with a shaft hole (not shown) for passing the drive shaft 12 of the engine 11. A blower 9 is attached to the tip of the drive shaft 12 protruding rearward from the wind guide member 10. An outer peripheral case 4 is provided around the wind guide member 10 and the blower 9, and a ventilation path 5 is formed between the outer peripheral surface of the wind guide member 10 and the tip of the blower 9 and the inner peripheral surface of the outer case 4.

また、外周ケース4の前側周縁部と風ガイド部材10との間は、空気吹出口7となっている。すなわち、空気吹出口7は、車体2の一側方15Aから上方15Cを経て他側方15Bに至る車体周方向に開口している。外周ケース4後側の中央開口部は空気吸入口6となっており、空気吸入口6は通風カバー8で通風可能に被われている。従って、この空気吸入口6と空気吹出口7は通風路5を介して連通している。薬液タンク3は、薬液を送るポンプ14の吸込側と接続され、ポンプ14の吐出側は導液管13の一端部と接続されている。導液管13の他端部は、空気吹出口7内に配備された背面視円弧状の導液管16と接続されている。導液管16には、複数の導液管25,25,25,・・・が周方向に適宜間隔で分岐接続されている。各導液管25の先端には、混気式ノズルAまたは非混気式ノズルBが接続される。これらの混気式ノズルAと非混気式ノズルBは車体周方向に交互に配置されている。この薬液散布車1は、走行速度が例えば約1〜19km/hであり、送風量が例えば約300〜900m3/minである。 An air outlet 7 is provided between the front peripheral edge of the outer case 4 and the wind guide member 10. That is, the air outlet 7 is opened in the vehicle body circumferential direction from one side 15A of the vehicle body 2 to the other side 15B through the upper 15C. A central opening on the rear side of the outer case 4 is an air suction port 6, and the air suction port 6 is covered with a ventilation cover 8 so as to allow ventilation. Therefore, the air inlet 6 and the air outlet 7 communicate with each other via the ventilation path 5. The chemical liquid tank 3 is connected to the suction side of the pump 14 that sends the chemical liquid, and the discharge side of the pump 14 is connected to one end of the liquid guide pipe 13. The other end portion of the liquid guide pipe 13 is connected to a liquid guide pipe 16 having an arc shape in rear view provided in the air outlet 7. A plurality of liquid guide pipes 25, 25, 25,... Are branched and connected to the liquid guide pipe 16 at appropriate intervals in the circumferential direction. An air-mixing nozzle A or a non-air-mixing nozzle B is connected to the tip of each liquid guide tube 25. These air-mixing nozzles A and non-air-mixing nozzles B are alternately arranged in the vehicle body circumferential direction. The chemical spray vehicle 1 has a traveling speed of, for example, about 1 to 19 km / h, and an air flow rate of, for example, about 300 to 900 m 3 / min.

混気式ノズルAは、図3に示すように、内部を導液路19が縦貫するノズル本体20と、導液路19の先端に設けられた円板状の噴板22と、導液路19の他端に形成されて導液管25と連通する接続口部23と、噴板22と接続口部23との間のノズル本体20に形成されて導液路19に空気を取り入れる空気取入口部35とを備えている。噴板22は円板中心部に噴口21を有している。噴板22はO−リング33を挟んだ状態でキャップ34によりノズル本体20の先端に固定される。導液路19の末端には、開口30を有するオリフィス部材32が装着されている。ノズル本体20の接続口部23は、パッキン27および二孔パッキン28とともにジョイント部材24の一端側開口内に装入され、キャップ26により固定されている。導液路19内におけるオリフィス部材32出側のノズル本体20の内壁には、導液路19内に空気などの気体を取り込むための空気取入口部35が形成されている。ジョイント部材24の他端側開口には、パッキン29が挿入されて導液管25が接続される。   As shown in FIG. 3, the air-mixing nozzle A includes a nozzle body 20 in which a liquid guide path 19 extends vertically, a disc-shaped injection plate 22 provided at the tip of the liquid guide path 19, and a liquid guide path. 19 is formed in the other end of the connection port 23 communicating with the liquid guide pipe 25 and the nozzle body 20 between the jet plate 22 and the connection port part 23 to take in air into the liquid guide path 19. And an inlet 35. The nozzle plate 22 has a nozzle hole 21 at the center of the disk. The jet plate 22 is fixed to the tip of the nozzle body 20 by a cap 34 with an O-ring 33 interposed therebetween. An orifice member 32 having an opening 30 is attached to the end of the liquid guide path 19. The connection port portion 23 of the nozzle body 20 is inserted into the opening on one end side of the joint member 24 together with the packing 27 and the two-hole packing 28, and is fixed by the cap 26. An air intake port 35 for taking a gas such as air into the liquid guide path 19 is formed on the inner wall of the nozzle body 20 on the outlet side of the orifice member 32 in the liquid guide path 19. A packing 29 is inserted into the opening on the other end side of the joint member 24 to connect the liquid introduction pipe 25.

この混気式ノズルAは、噴板22の膨らみ部の長手方向と直角の方向に視て扇形状(噴霧角度:30〜45°程度、図2参照)で、且つ、噴口21の軸心Z方向に視て扁平形状(図3(b)参照)である噴霧パターンPとして、農薬液などの液滴を噴口21から噴き出すようになっている。また、混気式ノズルAは、ノズル本体20の途中で気体を薬液に混入させて噴射するタイプであり、ノズル本体20の中心線(1点鎖線Zで示す)上に薬液が直進噴射される。混気式ノズルAは、薬液噴霧量が例えば2〜5L/min程度であり、使用時噴霧圧力が例えば1.0〜2.0 MPa程度であり、空気混入量が例えば噴霧薬液量の約0.2〜1.5倍であり、果樹園等での散布量が例えば300〜500L/10アール(散布幅4〜5m程度、作業速度0.5〜0.8m/s程度)である。薬液散布車用の従来の慣用ノズルC(図13参照)が平均噴霧粒径90〜100μm程度の微細な噴霧粒子を噴射するのに対し、混気式ノズルAは、その混気方式と、噴板22の特徴構造と、噴口21の特徴形状とからなる粗大粒子噴霧発生機構により、平均噴霧粒径300〜400μm程度の粗大な噴霧粒子を噴射する。混気式ノズルAは、その液滴噴出方向が車体走行方向(矢印Y方向)と直交する方向の外向きとなるように、薬液散布車1の導液管25に取り付けられる。   The air-mixing nozzle A has a fan shape (spray angle: about 30 to 45 °, see FIG. 2) when viewed in a direction perpendicular to the longitudinal direction of the bulge portion of the jet plate 22 and the axis Z of the nozzle 21. As a spray pattern P having a flat shape (see FIG. 3B) when viewed in the direction, droplets such as agrochemical liquid are ejected from the nozzle 21. The air-mixing nozzle A is a type in which a gas is mixed into the chemical liquid and injected in the middle of the nozzle main body 20, and the chemical liquid is linearly injected onto the center line (indicated by a one-dot chain line Z) of the nozzle main body 20. . The air-mixing nozzle A has a chemical spray amount of, for example, about 2 to 5 L / min, an in-use spray pressure of, for example, about 1.0 to 2.0 MPa, and an aeration amount of, for example, about 0 of the spray chemical amount. It is .2 to 1.5 times, and the application amount in the orchard or the like is, for example, 300 to 500 L / 10 are (spreading width of about 4 to 5 m, working speed of about 0.5 to 0.8 m / s). Whereas the conventional nozzle C (see FIG. 13) for a chemical spray vehicle sprays fine spray particles having an average spray particle size of about 90 to 100 μm, the air-mixing nozzle A has its air-mixing method and jet Coarse spray particles having an average spray particle size of about 300 to 400 μm are ejected by the coarse particle spray generation mechanism including the characteristic structure of the plate 22 and the characteristic shape of the nozzle hole 21. The air-mixing nozzle A is attached to the liquid guide tube 25 of the chemical liquid spraying vehicle 1 so that the droplet ejection direction is outward in the direction orthogonal to the vehicle body traveling direction (arrow Y direction).

非混気式ノズルBは、図4に示すように、内部に導液路19Aを有するノズル本体20Aと、導液路19Aの先端に設けられて噴口21Aを有する噴板22Aと、導液路19Aの他端に形成されて導液管25と連通する接続口部23とを備えている。ノズル本体20Aの先端部はジョイント部材24の軸心(1点鎖線Gで示す)から15度屈曲して形成されている。ノズル本体20Aの基部に形成された大径開口部には、開口30Aを有するオリフィス部材32Aが装入されO−リング31によりシールされている。他の構成要素は、前述した混気式ノズルAに用いたものと同じである。   As shown in FIG. 4, the non-air-mixing nozzle B includes a nozzle body 20A having a liquid guide path 19A therein, a nozzle plate 22A provided at the tip of the liquid guide path 19A and having a nozzle 21A, and a liquid guide path. A connection port portion 23 formed at the other end of 19A and communicating with the liquid guide tube 25 is provided. The tip of the nozzle body 20A is formed by bending 15 degrees from the axis of the joint member 24 (shown by a one-dot chain line G). An orifice member 32A having an opening 30A is inserted into a large-diameter opening formed at the base of the nozzle body 20A and sealed by an O-ring 31. The other components are the same as those used for the mixed air nozzle A described above.

この非混気式ノズルBのノズル本体20Aは、その液滴噴出方向が、混気式ノズルAの液滴噴出方向(矢印Yと直角の方向外向き)に対し車体走行方向後向き(矢印Y方向の逆方向)に例えば15度傾くように、薬液散布車1の導液管25に取り付けられる。この非混気式ノズルBは、噴板22Aの膨らみ部の長手方向と直角の方向に視て扇形状(噴霧角度:30〜45°程度、図2参照)で、且つ、噴口21Aの軸心Z方向に視て扁平形状(図4(b)参照)である噴霧パターンQとして、農薬液などの液滴を噴口21Aから噴き出すようになっている。非混気式ノズルBにおける、薬液噴霧量、使用時噴霧圧力、および果樹園等での散布量は混気式ノズルAの場合とほぼ同じである。この非混気式ノズルBは、その非混気方式と、噴板22Aの特徴構造と、噴口21Aの特徴形状とからなる粗大粒子噴霧発生機構により、平均噴霧粒径200〜300μm程度(混気式ノズルAの場合よりもやや細かい)の粗大な噴霧粒子を噴射する。   The nozzle body 20A of the non-air-mixing nozzle B has a droplet ejection direction backward (in the direction of the arrow Y) with respect to the droplet ejection direction of the air-mixing nozzle A (outward in the direction perpendicular to the arrow Y). And attached to the liquid guide pipe 25 of the chemical liquid dispersion wheel 1 so as to be inclined by 15 degrees, for example. The non-air-mixing nozzle B has a fan shape (spray angle: about 30 to 45 °, see FIG. 2) when viewed in a direction perpendicular to the longitudinal direction of the bulge portion of the jet plate 22A, and the axial center of the nozzle 21A. As a spray pattern Q having a flat shape (see FIG. 4B) as viewed in the Z direction, droplets such as agrochemical liquid are ejected from the nozzle 21A. In the non-air-blown nozzle B, the chemical spray amount, the spray pressure during use, and the spray amount in the orchard etc. are substantially the same as in the case of the air-mix nozzle A. This non-air-mixing nozzle B has an average spray particle size of about 200 to 300 μm (air-mixing) due to the non-air-mixing method, the coarse particle spray generation mechanism comprising the characteristic structure of the injection plate 22A and the characteristic shape of the injection hole 21A. Coarse spray particles that are slightly finer than the case of the type nozzle A are sprayed.

混気式ノズルAおよび非混気式ノズルBは、それぞれから噴き出される液滴の噴霧パターンP,Qの扁平形状の長径方向(矢印Wで示す)が車体周方向に沿うようにそれぞれ配置される。但し、これらのノズルA,Bは、噴板22,22Aの膨らみ部の長手方向が車体前後方向(矢印Fで示す)から10度傾くようにそれぞれ配置されている。これにより、隣り合うノズルA,Bからの噴霧パターンP,Qが互いに平行となって干渉しないようにされている。   The mixed type nozzle A and the non-mixed type nozzle B are arranged so that the major axis direction (indicated by the arrow W) of the flat shape of the spray patterns P and Q of the droplets ejected from the respective nozzles is along the circumferential direction of the vehicle body. The However, these nozzles A and B are respectively arranged so that the longitudinal direction of the bulges of the jet plates 22 and 22A is inclined by 10 degrees from the longitudinal direction of the vehicle body (indicated by the arrow F). Thus, the spray patterns P and Q from the adjacent nozzles A and B are parallel to each other so as not to interfere with each other.

上記のように構成された薬液散布車1の作用を以下に説明する。上記の薬液散布車1は、図5に示すように、果樹園等での薬剤散布作業に使用される。この場合、粒径の大きな噴霧滴を噴霧パターンPとして車体進行方向と直角の方向に噴射する混気式ノズルAと、噴霧パターンPよりもやや細かい粒径の噴霧滴を噴霧パターンQとして車体進行方向と直角の方向に対し15度斜め後方に噴射する非混気式ノズルBとが導液管25,25,25,・・・にそれぞれ車体周方向に交互に装着されている。この場合、混気式ノズルAからは噴霧平均粒径300〜400μm程度の非常に粗大な粒子が多く噴射される。一方、非混気式ノズルBからは噴霧平均粒径200〜300μm程度の粗大な粒子が多く噴射される。尚、図5では理解をしやすくするために、車体2の左側にのみ噴霧パターンP,Qを1つずつ記載したが、実際には噴霧パターンP,Q,P,Q,P,Q,・・・が車体2の一側方15Aから上方15Cを経て他側方15Bにわたって現われることは言うまでもない。後述する図10および図14についても同じである。   The operation of the chemical liquid spraying vehicle 1 configured as described above will be described below. As shown in FIG. 5, the chemical solution spray vehicle 1 is used for a chemical spraying operation in an orchard or the like. In this case, the air-fueled nozzle A that injects spray droplets having a large particle diameter as a spray pattern P in a direction perpendicular to the vehicle body traveling direction, and the vehicle body travels by using spray droplets having a slightly smaller particle diameter than the spray pattern P as a spray pattern Q. .. Are alternately mounted in the circumferential direction of the vehicle body on the liquid guide pipes 25, 25, 25,.... In this case, a lot of very coarse particles having a spray average particle diameter of about 300 to 400 μm are ejected from the air-mixing nozzle A. On the other hand, a large amount of coarse particles having a spray average particle diameter of about 200 to 300 μm are ejected from the non-air-mixing nozzle B. In FIG. 5, for ease of understanding, spray patterns P and Q are shown only on the left side of the vehicle body 2 one by one. However, in actuality, spray patterns P, Q, P, Q, P, Q,. Needless to say,... Appears from one side 15A of the vehicle body 2 to the other side 15B via the upper side 15C. The same applies to FIGS. 10 and 14 described later.

この実施形態1の薬液散布車1によれば、混気式ノズルAからの低速噴霧の大粒子(P)は、薬液散布車1の送風により加速されて空気吹出口7の全周から側方に放出される。一方、非混気式ノズルBからの高速噴霧の中粒子(Q)は、斜め後方に噴霧されるため、薬液散布車1の送風により十分に加速されることなく放出される。このため、非混気式ノズルBからの高速中粒子はドリフトが抑制され、付着性と到達性が安定する。そして、噴霧の広がりは、2種類の噴霧パターンP,Qの噴霧域が合計されることにより、後述の慣用ノズルCやドリフト低減ノズルDにも相当する車体走行方向の広い範囲をカバーでき、付着性が向上するのである。
この組合せは、薬液散布車1の送風機9が比較的低風量の時でも、到達性の低い混気式ノズルAからの低速噴霧の大粒子が送風により加速される一方、非混気式ノズルBからの高速中粒子は送風により加速されない。従って、付着性と到達性およびドリフトの相反する要素が適度のバランスとなり、ドリフトを抑制できるものの中では最も付着性能が高い構成となる。すなわち、この実施形態1の薬液散布車1が全実施形態うちで最も優れた構成と言える。
According to the chemical liquid spraying vehicle 1 of the first embodiment, the large particles (P) of the low-speed spray from the air-mixing nozzle A are accelerated by the air blown from the chemical liquid spraying vehicle 1 and sideways from the entire circumference of the air outlet 7. To be released. On the other hand, since the medium particles (Q) of the high-speed spray from the non-air-mixing nozzle B are sprayed obliquely rearward, they are released without being sufficiently accelerated by the blowing of the chemical liquid spraying vehicle 1. For this reason, drift of the high-speed medium particles from the non-mixing nozzle B is suppressed, and adhesion and reachability are stabilized. The spread of the spray can cover a wide range in the vehicle body traveling direction corresponding to the later-described conventional nozzle C and drift reduction nozzle D by adding the spray areas of the two types of spray patterns P and Q together. The property is improved.
In this combination, even when the blower 9 of the chemical solution spraying vehicle 1 has a relatively low air volume, large particles of the low-speed spray from the low-reachability mixed-type nozzle A are accelerated by blowing, while the non-mixed-type nozzle B High-speed medium particles from are not accelerated by blowing. Therefore, the elements in which adhesion, reachability, and drift conflict are in an appropriate balance, and the structure having the highest adhesion performance among those capable of suppressing drift. That is, it can be said that the chemical solution spray vehicle 1 of the first embodiment is the most excellent configuration among all the embodiments.

そこで、実施形態1の薬液散布車1を用いて、噴霧薬液の付着性能試験、ドリフト試験、作業者被曝試験、および防除効果試験を行なった。薬液散布車1は市販車(丸山製作所社製の品番A-α602、タンク容量600L、風量300〜600m3/minの範囲で可変)を転用した。対照機として、現地ほ場慣用の薬液散布車(タンク容量1000L、風量740m3/minおよび490m3/minの2段切替)に、後で詳述する慣用ノズルCを装着したものを比較例1として用いた。設定散布量は現地ほ場の慣行である450L/10アール(有効散布幅5m、散布速度0.7m/s程度)とした。 Then, the chemical | medical solution dispersion | distribution vehicle 1 of Embodiment 1 was used, and the spraying chemical | medical solution adhesion performance test, the drift test, the worker exposure test, and the prevention | control effect test were done. The chemical spray vehicle 1 was diverted from a commercial vehicle (product number A-α602 manufactured by Maruyama Seisakusho Co., Ltd., tank capacity 600 L, variable in the range of air volume 300 to 600 m 3 / min). As a comparative example, a conventional chemical spraying vehicle (tank capacity 1000 L, air flow 740 m 3 / min and two-stage switching of 490 m 3 / min) mounted with a conventional nozzle C, which will be described in detail later, is used as a control machine as Comparative Example 1 Using. The set spray rate was 450 L / 10 ares (effective spray width 5 m, spray speed 0.7 m / s), which is the practice of the local field.

「付着試験」:
岩手農研センターわい化栽培リンゴ園に試験区(樹間5m×列間5m×列長45m×3列、樹高約4m、品種:ふじ)内の付着測定樹(1樹)の樹冠内に、高さが地上から0.5m、1.5m、2.5m、3.5mの4段階それぞれで、樹幹中心と同中心から前後左右0.5m離れた位置の計16箇所に、感水紙を水平上下・垂直左右面を水付着面として設置した。試験では対象3樹列総ての両側から清水を散布し、散布後速やかに感水紙を回収し、液滴付着状況を標準付着度指標に基づいて目視で指数化し、集計した。
実施形態1の薬液散布車1による付着度指数は、図6に示すように、300〜500m3/minの低風量時でも、比較例1の薬液散布車を用いた場合と概ね同等レベルであり、同等レベルの付着性能を確保できることが確認された。
"Adhesion test":
In the canopy apple orchard at the Iwate Agricultural Research Center, within the crown of the measurement tree (1 tree) in the test area (5m between trees x 5m between rows x 45m x 3 rows, tree height approx. 4m, variety: Fuji) Water sensitive paper is placed at a total of 16 locations at a height of 0.5 m, 1.5 m, 2.5 m, and 3.5 m from the ground, and 0.5 m away from the center of the trunk. Horizontal top / bottom and vertical left / right surfaces were installed as water adhesion surfaces. In the test, fresh water was sprayed from both sides of all three target trees, water sensitive paper was collected immediately after spraying, and the droplet adhesion status was visually indexed and tabulated based on the standard adhesion index.
As shown in FIG. 6, the adhesion index by the chemical spray vehicle 1 of the first embodiment is almost the same level as when the chemical spray vehicle of Comparative Example 1 is used even at a low air volume of 300 to 500 m 3 / min. It was confirmed that the same level of adhesion performance could be secured.

「ドリフト試験」:
散布ほ場境界から風下方向に距離10〜30mの地点に感水紙を風下方向5m間隔で直線上に配置した測定列を3列(間隔を5m以上確保)設置した。全樹列に散布後、回収した感水紙から画像処理により試験面全体面積に対する付着液斑の被覆面積率を測定した。
実施形態1の薬液散布車1によれば、図7に示すように、どの距離においても、ドリフトを比較例1の薬液散布車を用いた場合の概ね半分以下に抑制することができた。このように、実施形態1の薬液散布車1は付着性能とドリフト低減効果の双方に優れていることがわかる。
"Drift test":
Three measurement rows (with a space of 5 m or more) were installed in which water sensitive paper was arranged on a straight line at intervals of 5 m in the leeward direction at a distance of 10 to 30 m from the spray field boundary in the leeward direction. After spraying on the whole tree rows, the coverage area ratio of the adhered liquid spots relative to the entire area of the test surface was measured by image processing from the collected water sensitive paper.
According to the chemical solution spraying vehicle 1 of the first embodiment, as shown in FIG. 7, the drift can be suppressed to approximately half or less when the chemical solution spraying vehicle of Comparative Example 1 is used at any distance. Thus, it turns out that the chemical | medical solution dispersion vehicle 1 of Embodiment 1 is excellent in both adhesion performance and the drift reduction effect.

「作業者被曝」:
オペレータの頭頂部、顔面(帽子前縁)、後頭部(帽子後縁)、左肩、右肩、背中、腹部、左ひざ、右ひざの各測定点に感水紙を貼付し、散布後回収した感水紙から試験面全体面積に対する付着液斑の被覆面積率を測定した。
実施形態1の薬液散布車1によれば、被曝測定部位の感水紙への付着液斑被覆面積率は、図8に示すように、比較例1の薬液散布車による場合の半分以下に抑制され、実施形態1の薬液散布車1の使用により作業者被曝も抑制できることが確認された。
"Worker exposure":
Sensation collected after spraying and applying water-sensitive paper to each measurement point on the top of the operator's head, face (front edge of hat), back of head (back edge of hat), left shoulder, right shoulder, back, abdomen, left knee, and right knee. The coverage area ratio of the adhesion liquid spots with respect to the whole test surface area was measured from water paper.
According to the chemical spray vehicle 1 of the first embodiment, as shown in FIG. 8, the coverage ratio of the adhesion liquid spots on the water-sensitive paper at the exposed measurement site is suppressed to less than half that in the case of the chemical spray vehicle of Comparative Example 1. In addition, it was confirmed that the use of the chemical solution disperser 1 according to Embodiment 1 can also suppress the worker exposure.

「防除効果試験」:
前記の園地に、実施形態1の薬液散布車1で風量600m3/min、500m3/min、300m3/minの3試験区を設置し、これら3試験区と、比較例1の薬液散布車を用いた現地慣行防除区において、殺ダニ剤の2回の散布(1回目の1ヶ月後に2回目の散布を行なった)によるナミハダニに対する防除効果を調査した。
実施形態1の薬液散布車1を用いた殺ダニ剤散布による防除効果は、ほぼ1頭/葉以下と、少発生条件ながら、比較例1の薬液散布車を用いた場合と概ね同等であった。特に、薬液散布車1による風量500m3/minの条件での防除効果は、比較例1の薬液散布車(風量740m3/min)を用いた場合と大きな差が無く、低風量時においても防除効果を維持できた。
"Control effect test":
In the garden, the chemical spray vehicle 1 of the first embodiment is installed with three test zones with an air volume of 600 m 3 / min, 500 m 3 / min, and 300 m 3 / min. These three test zones and the chemical spray vehicle of Comparative Example 1 are installed. In the local customary control zone using the mitochondrion, the control effect against the spider mite was investigated by the two spraying of the acaricide (the second spraying was performed one month after the first one).
The control effect by the acaricide spraying using the chemical spray vehicle 1 of the first embodiment is almost the same as the case of using the chemical spray vehicle of Comparative Example 1 with almost 1 head / leaf or less, although the occurrence condition is small. . In particular, the control effect under the condition of an air volume of 500 m 3 / min by the chemical spray vehicle 1 is not much different from the case of using the chemical spray vehicle (the air volume of 740 m 3 / min) of Comparative Example 1 and is controlled even at a low air flow rate. The effect was maintained.

[実施形態2].
尚、上記の実施形態1では、車体走行方向と直交する方向から後ろ向きに傾けた非混気式ノズルBを使用したが、本発明はそれに限定されるものでなく、非混気式ノズルBに替え、例えば図9に示す非混気式ノズルB1を用いることもできる。この非混気式ノズルB1は、ノズル本体20Bが直線状に形成されるとともに直線状の導液路19を有していて、オリフィス部材32AおよびO−リング31を省略したこと以外、非混気式ノズルBの構成と同じである。また、非混気式ノズルB1からの噴霧パターンは非混気式ノズルBからの噴霧パターンQとほとんど同じであり、図10(a)に示すように、車体走行方向(矢印Y方向)と直角の方向外向きに噴射される。この場合、非混気式構造を採る非混気式ノズルB1からは噴霧平均粒径200〜300μm程度の粗大な粒子が多く噴射される。
[Embodiment 2].
In the first embodiment, the non-air mixture type nozzle B inclined backward from the direction orthogonal to the vehicle body traveling direction is used. However, the present invention is not limited to this, and the non-air mixture type nozzle B is used. In other words, for example, the non-mixing nozzle B1 shown in FIG. 9 can be used. This non-air-mixing nozzle B1 is non-air-mixing except that the nozzle body 20B is formed in a straight line and has a straight liquid introduction path 19, and the orifice member 32A and the O-ring 31 are omitted. The configuration of the type nozzle B is the same. Further, the spray pattern from the non-mixing nozzle B1 is almost the same as the spray pattern Q from the non-mixing nozzle B, and is perpendicular to the vehicle body running direction (arrow Y direction) as shown in FIG. It is jetted outward. In this case, a large amount of coarse particles having a spray average particle diameter of about 200 to 300 μm are ejected from the non-air mixture type nozzle B1 adopting a non-air mixture type structure.

この実施形態2の薬液散布車1によれば、混気式構造で低速噴霧である混気式ノズルAからの大粒子と、非混気式構で高速噴霧である非混気式ノズルB1の中粒子とが重なり、薬液散布車1の送風により加速されて空気吹出口7の全周から側方に放出される。そのため、非混気式ノズルB1からの高速中粒子が十分に加速されるので付着性と到達性が優れる。しかしながら、加速された中粒子がドリフトとなる傾向がある。また、噴霧の広がりは慣用ノズルCからのコーンタイプの噴霧パターンR(図14(a))と比べて車体走行方向に幾分狭くなる。   According to the chemical solution spraying vehicle 1 of the second embodiment, large particles from the mixed-type nozzle A that is a low-speed spray with a mixed-type structure and a non-mixed-type nozzle B1 that is a high-speed spray with a non-mixed type structure. The middle particles overlap, and are accelerated by the air blown from the chemical solution spraying vehicle 1 and discharged laterally from the entire circumference of the air outlet 7. Therefore, the high-speed medium particles from the non-mixing nozzle B1 are sufficiently accelerated, so that the adhesion and reachability are excellent. However, the accelerated medium particles tend to drift. Further, the spread of the spray is somewhat narrower in the vehicle body traveling direction than the cone-type spray pattern R (FIG. 14A) from the conventional nozzle C.

[実施形態3].
この実施形態3の薬液散布車1は、図10(b)に示すように、全ての非混気式ノズルB,B,B,・・・を車体走行方向に180度反転させて導液管25,25,25,・・・に取り付けたこと以外は、実施形態1と同様に構成されている。
この実施形態3の薬液散布車1によれば、混気式ノズルAからの低速噴霧の大粒子は、薬液散布車の送風により加速されて空気吹出口7の全周から側方に放出される。一方、非混気式ノズルBからの高速噴霧の中粒子が、空気吹出口7の全周から斜め前方に噴霧されるため、薬液散布車1の送風によっては十分に加速されず、さらに薬液散布車1の走行に伴う空気流による空気抵抗を受けることになる。このため、非混気式ノズルBからの高速中粒子は、ドリフトは抑制されるが、到達性が損なわれ噴霧の広がりも小さくなる。このため、付着性および到達性が実施形態1と比べて幾分劣る。
[Embodiment 3].
As shown in FIG. 10 (b), the chemical solution spraying vehicle 1 of Embodiment 3 inverts all non-air-mixing nozzles B, B, B,. Except for being attached to 25, 25, 25,..., The configuration is the same as in the first embodiment.
According to the chemical liquid spraying vehicle 1 of the third embodiment, the large particles of the low-speed spray from the air-mixing nozzle A are accelerated by the air blown by the chemical liquid spraying vehicle and discharged from the entire circumference of the air outlet 7 to the side. . On the other hand, since the medium particles of the high-speed spray from the non-mixing nozzle B are sprayed diagonally forward from the entire circumference of the air outlet 7, the air is not sufficiently accelerated by the air blown by the chemical spray vehicle 1, and the chemical spray is further performed. Air resistance due to the air flow accompanying the traveling of the vehicle 1 is received. For this reason, the high-speed intermediate particles from the non-mixing nozzle B are suppressed from drifting, but reachability is impaired and the spread of the spray is also reduced. For this reason, adhesion and reachability are somewhat inferior to those of the first embodiment.

[実施形態4].
上記の実施形態1〜3では、混気式ノズルとして混気式ノズルAを用いた例を示したが、本発明では混気式ノズルAに替えて、例えば図11および図10(c)に示す混気式ノズルA1を用いることも可能である。この混気式ノズルA1はノズル本体20Aの先端部がジョイント部材24の軸心Gから15度傾いて形成され、これに伴って導液路19Aの軸心Zもジョイント部材24の軸心Gから15度傾いている。他の構成は実施形態2と同様である。この混気式ノズルA1からは噴霧平均粒径300〜400μm程度の非常に粗大な粒子が多く噴射される。
従って、この実施形態4の薬液散布車1によれば、混気式ノズルA1からの低速噴霧の大粒子は、斜め後方に噴霧されるため薬液散布車の送風により十分に加速されることなく放出される。一方、非混気式ノズルB1からの高速噴霧の中粒子は、薬液散布車の送風により十分に加速されて空気吹出口7の全周から側方に放出される。このため、混気式ノズルA1からの低速噴霧の大粒子はドリフトしにくいが、実施形態1と比べると幾分到達性に劣る。また、非混気式ノズルBからの高速中粒子は十分加速されるため到達性は大きくなるが、実施形態1と比べると幾分ドリフトを生じやすくなる。
[Embodiment 4].
In the first to third embodiments, an example in which the mixed air nozzle A is used as the mixed air nozzle has been shown. However, in the present invention, instead of the mixed air nozzle A, for example, FIG. 11 and FIG. It is also possible to use the air-mixing nozzle A1 shown. The air-mixing nozzle A1 is formed such that the tip of the nozzle body 20A is inclined 15 degrees from the axis G of the joint member 24. Accordingly, the axis Z of the liquid guide channel 19A is also from the axis G of the joint member 24. Tilt 15 degrees. Other configurations are the same as those of the second embodiment. A lot of very coarse particles having a spray average particle diameter of about 300 to 400 μm are ejected from the air-mixing nozzle A1.
Therefore, according to the chemical liquid spraying vehicle 1 of the fourth embodiment, the large particles of the low-speed spray from the air-mixing nozzle A1 are sprayed obliquely rearward, so that they are released without being sufficiently accelerated by the blowing of the chemical liquid spraying vehicle. Is done. On the other hand, the middle particles of the high-speed spray from the non-air-mixing nozzle B1 are sufficiently accelerated by the air blown by the chemical solution spraying vehicle and discharged sideways from the entire circumference of the air outlet 7. For this reason, large particles of the low-speed spray from the air-mixing nozzle A1 are less likely to drift, but are somewhat inferior in reachability as compared with the first embodiment. In addition, the high-speed medium particles from the non-mixing nozzle B are sufficiently accelerated and reachability is increased, but somewhat drift is likely to occur as compared with the first embodiment.

[実施形態5].
この実施形態5の薬液散布車1は、図10(d)に示すように、全ての混気式ノズルA1,A1,A1,・・・を車体走行方向に180度反転させて導液管25,25,25,・・・に取り付けたこと以外、実施形態4と同様に構成されている。
従って、この実施形態5の薬液散布車1によれば、混気式ノズルA1からの低速噴霧の大粒子が斜め前方に噴霧されるため、薬液散布車の送風により十分に加速されることなく、さらに薬液散布車の走行に伴う空気流による抵抗を受ける。一方、非混気式ノズルBからの高速噴霧の中粒子は、薬液散布車の送風により十分に加速されて空気吹出口7の全周から側方に放出される。このため、混気式ノズルA1からの低速噴霧の大粒子はドリフトしにくいが、到達性に劣ることとなり同時に噴霧の広がりも小さくなる。このため、実施形態1と比べると付着性および到達性が幾分劣る。また、非混気式ノズルB」の高速中粒子は十分加速されて到達性が大きくなるが、実施形態1と比べると幾分ドリフトを生じやすくなる。
[Embodiment 5].
As shown in FIG. 10 (d), the chemical spray vehicle 1 of the fifth embodiment is configured to invert all the air-fuel mixture type nozzles A1, A1, A1,. , 25, 25,..., Except that they are configured in the same manner as in the fourth embodiment.
Therefore, according to the chemical spray vehicle 1 of the fifth embodiment, the large particles of the low-speed spray from the air-mixing nozzle A1 are sprayed obliquely forward, so that they are not sufficiently accelerated by the blowing of the chemical spray vehicle, In addition, it is subject to resistance from the airflow associated with the traveling of the chemical spray vehicle. On the other hand, the medium particles of the high-speed spray from the non-air-mixing nozzle B are sufficiently accelerated by the air blown by the chemical solution spraying wheel and discharged sideways from the entire circumference of the air outlet 7. For this reason, large particles of the low-speed spray from the air-mixing nozzle A1 are less likely to drift, but the reachability is inferior and the spread of the spray is also reduced. For this reason, compared with Embodiment 1, adhesion and reachability are somewhat inferior. Further, the high-speed medium particles of the non-mixing nozzle B ”are sufficiently accelerated and reachability is increased, but somewhat drift is likely to occur as compared with the first embodiment.

[比較例1].
これまで薬液散布車に使用されてきた慣用ノズルCを図13に示す。この慣用ノズルCは非混気式構造であり、内部に導液路を有するノズル本体72の先端に、噴口74を有する噴板73がO−リング33とともにキャップ34で固定され、ノズル本体72の他端に取り付けられたジョイント部材75がキャップ26で導液管25に接続されている。ノズル本体72内には、導液路内を流れる薬液を回転させて噴口74に送る液旋回部材76が配備されている。薬液散布車に取り付けられた状態で、噴口74の軸心は車体走行方向と直角の方向を向いている。この慣用ノズルCからは、中空円錐形いわゆるコーン形の噴霧パターンRで噴口74から噴霧滴が噴射される。噴霧平均粒径は90〜100μm程度であり、比較的細かい粒子が多い。
従って、この実施形態1の薬液散布車によれば、非混気式構造の慣用ノズルCから細かい粒子が高速で噴霧され、さらに薬液散布車の送風により加速されて空気吹出口7の全周から側方に放出される。このため、付着性および到達性ともに優れるが、ドリフトが大量に発生しやすい。
[Comparative Example 1].
FIG. 13 shows a conventional nozzle C that has been used in a chemical solution sprayer. This conventional nozzle C has a non-mixed structure, and a nozzle plate 73 having a nozzle hole 74 is fixed together with an O-ring 33 at the tip of a nozzle main body 72 having a liquid introduction path inside, and the nozzle main body 72 has A joint member 75 attached to the other end is connected to the liquid guide pipe 25 by a cap 26. In the nozzle main body 72, a liquid swiveling member 76 that rotates the chemical liquid flowing in the liquid introduction path and sends it to the nozzle hole 74 is provided. The shaft center of the nozzle hole 74 is oriented in a direction perpendicular to the traveling direction of the vehicle body in a state where it is attached to the chemical spraying wheel. From this conventional nozzle C, spray droplets are ejected from the nozzle hole 74 in a so-called cone-shaped spray pattern R having a hollow cone shape. The spray average particle diameter is about 90 to 100 μm, and there are many relatively fine particles.
Therefore, according to the chemical liquid spraying vehicle of the first embodiment, fine particles are sprayed at high speed from the conventional nozzle C having a non-mixed structure, and further accelerated by the air blown by the chemical liquid spraying vehicle, from the entire circumference of the air outlet 7. Released to the side. For this reason, both adhesion and reachability are excellent, but a large amount of drift is likely to occur.

[比較例2].
この比較例2は、図14(b)に示すように、全ての慣用ノズルC,C,C,・・・をドリフト低減ノズルD,D,D,・・・に替えたこと以外、比較例1と同様の構成にされている。これらのドリフト低減ノズルDは混気式構造であり、主に噴霧平均粒径200〜300μm程度の粗大粒子を中空円錐形いわゆるコーン形の噴霧パターンSで低速に噴射する。
従って、この比較例2の薬液散布車によれば、混気式構造のドリフト低減ノズルDから粗大粒子が低速で噴霧され、これが薬液散布車の送風により加速されて空気吹出口7の全周から側方に放出される。このため、ドリフトは発生しにくいが、付着性および到達性とも慣用ノズルCより劣る。
[Comparative Example 2].
As shown in FIG. 14B, this comparative example 2 is a comparative example, except that all the conventional nozzles C, C, C,... Are replaced with drift reduction nozzles D, D, D,. 1 is configured in the same manner. These drift reduction nozzles D have an air-mixing structure, and mainly spray coarse particles having an average spray particle size of about 200 to 300 μm at a low speed with a so-called cone-shaped spray pattern S.
Therefore, according to the chemical solution spraying vehicle of Comparative Example 2, coarse particles are sprayed at a low speed from the drift reducing nozzle D having the mixed gas structure, and this is accelerated by the air blown by the chemical solution spraying vehicle, and from the entire circumference of the air outlet 7. Released to the side. For this reason, drift does not easily occur, but both adhesion and reachability are inferior to those of the conventional nozzle C.

[比較例3].
この比較例3は、図14(c)に示すように、全ての慣用ノズルC,C,C,・・・を既述の混気式ノズルA,A,A,・・・に替えたこと以外、比較例1と同様の構成にされている。
従って、この比較例3の薬液散布車によれば、混気式構造を採る混気式ノズルAから非常に粗大な粒子が低速で噴霧され、これが薬液散布車の送風により加速されて空気吹出口7の全周から側方に放出される。このため、ドリフトは発生しにくいが、薬液の到達性は劣る。また、コーン形の噴霧パターンSであるドリフト低減ノズルDと比べると、混気式ノズルAが扇形状の噴霧パターンPであることで噴霧の密度が高く、速度もやや速いために到達性は勝る。しかしながら、混気式ノズルAは噴霧の広がりが車体走行方向に狭いため、付着性が劣る場合がある。従って、慣用ノズルCと比較すると、付着性および到達性ともに劣る。
[Comparative Example 3].
In Comparative Example 3, as shown in FIG. 14 (c), all the conventional nozzles C, C, C,... Are replaced with the above-described mixed-type nozzles A, A, A,. Other than that, the configuration is the same as that of Comparative Example 1.
Therefore, according to the chemical liquid spraying vehicle of Comparative Example 3, very coarse particles are sprayed at a low speed from the mixed gas type nozzle A having the mixed gas structure, and this is accelerated by the air blown by the chemical liquid spraying vehicle, and the air outlet 7 is discharged sideways from the entire circumference. For this reason, drift does not easily occur, but the reachability of the chemical solution is poor. Compared with the drift reduction nozzle D, which is a cone-shaped spray pattern S, the air-mixing nozzle A has a fan-shaped spray pattern P, so that the spray density is high and the speed is slightly high, so that reachability is superior. . However, the air-fueled nozzle A may have poor adhesion because the spread of spray is narrow in the vehicle body traveling direction. Therefore, compared with the conventional nozzle C, both adhesion and reachability are inferior.

[比較例4].
この比較例4は、図14(d)に示すように、全ての慣用ノズルC,C,C,・・・を既述の非混気式ノズルB,B,B,・・・に替えたこと以外、比較例1と同様の構成にされている。
従って、この比較例4の薬液散布車によれば、非混気式構造を採る非混気式ノズルBから粗大な粒子が高速で噴霧され、これが薬液散布車の送風により若干加速されるのみで空気吹出口7の全周から斜め後方に放出される。このため、ドリフトは比較的発生しにくいが、噴霧の速度が速いため到達性に優れる。しかし、噴霧の広がりがコーン形の噴霧パターンRおよび噴霧パターンSよりも走行方向に狭いために付着性が劣る。
[Comparative Example 4].
In this comparative example 4, as shown in FIG. 14 (d), all the conventional nozzles C, C, C,... Were replaced with the non-mixing nozzles B, B, B,. Except for this, the configuration is the same as in Comparative Example 1.
Therefore, according to the chemical spray vehicle of Comparative Example 4, coarse particles are sprayed at high speed from the non-mixed nozzle B having a non-mixed structure, and this is only slightly accelerated by the blowing of the chemical spray vehicle. It is discharged obliquely backward from the entire circumference of the air outlet 7. For this reason, drift hardly occurs, but the reachability is excellent because the spraying speed is high. However, since the spread of the spray is narrower in the traveling direction than the cone-shaped spray pattern R and spray pattern S, the adhesion is poor.

[実施形態6].
実施形態6の薬液散布車1は、図12に示すように、ノズルN,N,N,・・・の外方位置に、複数の風向板ユニット40,40,40,・・・を配備したこと以外は、実施形態1〜5と同様に構成されている。各ノズルNは、既述した混気式ノズルA,A1または非混気式ノズルB,B1のいずれかである。各風向板ユニット40は、車体2に取り付けられた枢支軸41と、枢支軸41に回動自在に支持されて左右方向に揺動する風向板42と、風向板42を揺動駆動させるモータなどの駆動源43とを備えている。更に、それぞれの風向板ユニット40の駆動源43を駆動させて各風向板42の揺動角度を個別に制御する制御装置44を備えている。
[Embodiment 6].
As shown in FIG. 12, the chemical spray vehicle 1 of the sixth embodiment is provided with a plurality of wind direction plate units 40, 40, 40,... Outside the nozzles N, N, N,. Except for this, the configuration is the same as in the first to fifth embodiments. Each nozzle N is any one of the mixed air nozzles A and A1 or the non-air mixed nozzles B and B1 described above. Each wind direction plate unit 40, a pivot shaft 41 attached to the vehicle body 2, a wind direction plate 42 that is rotatably supported by the pivot shaft 41 and swings in the left-right direction, and drives the wind direction plate 42 to swing. And a drive source 43 such as a motor. Furthermore, the control apparatus 44 which drives the drive source 43 of each wind direction board unit 40 and controls the rocking | swiveling angle of each wind direction board 42 separately is provided.

この実施形態6の薬液散布車1によれば、制御装置44が各風向板ユニット40の風向板42の揺動角度をそれぞれ調整する。例えば、園地内で最も外側の樹列45Aと外から2列目の樹列45Bの間を走行しながら散布作業を行なう場合を考える。この場合、制御装置44は、例えば車進行方向左側の風向板ユニット40,40,40の各風向板42を駆動して斜め横向きにする。これにより、空気吹出口7から多量の送風が2列目の樹列45Bに勢いよく送られ、薬液の散布を確実に行なうことができる。一方で、制御装置44は、車進行方向右側の風向板ユニット40,40,40の各風向板42を駆動して垂直向きに立てる。これにより、最外側の樹列45Aに向けて、非常に弱い送風を送ったり、あるいは空気吹出口7を閉鎖して送風を止めたりする。従って、樹列45Aの外側の隣接地に他者の園地が在るような場合でも、当該他者の園地に薬液を至らしめるという不具合を解消することができる。すなわち、種々の散布作業の態様を応用性よく自在に選択することができる。
この実施形態ではノズルN,N,N,・・・列の左右側方位置に風向板42を3枚ずつ設けた例を示したが、風向板42の設置枚数は前記に限るものでない。また、ノズルN,N,N,・・・列の上方位置に風向板42,42,42・・・を配備してもよい。そして、前記では、各風向板42の揺動角度を個別に制御するようにしたが、風向板42,42,42・・・をグループ分けし、グループ毎の風向板42,42,42・・・を同じ制御形態で揺動させるようにしても構わない。
According to the chemical solution spray vehicle 1 of the sixth embodiment, the control device 44 adjusts the swing angle of the wind direction plate 42 of each wind direction plate unit 40. For example, consider a case where the spraying operation is performed while traveling between the outermost tree row 45A and the second tree row 45B from the outside in the garden. In this case, the control device 44 drives each wind direction plate 42 of the wind direction plate units 40, 40, 40 on the left side in the vehicle traveling direction, for example, so as to be inclined sideways. As a result, a large amount of air is sent from the air outlet 7 to the second row of trees 45B vigorously, and the chemical solution can be reliably sprayed. On the other hand, the control device 44 drives each wind direction plate 42 of the wind direction plate units 40, 40, 40 on the right side in the vehicle traveling direction to stand in the vertical direction. Thereby, very weak ventilation is sent toward the outermost tree row 45A, or the ventilation is stopped by closing the air outlet 7. Therefore, even when another person's garden is in the adjacent land outside the tree line 45A, it is possible to solve the problem that the chemical solution reaches the other person's garden. That is, various modes of spraying work can be freely selected with good applicability.
In this embodiment, an example is shown in which three wind direction plates 42 are provided at the left and right side positions of the nozzles N, N, N,..., But the number of installed wind direction plates 42 is not limited to the above. Moreover, you may arrange | position the wind direction plates 42, 42, 42 ... in the upper position of a nozzle N, N, N, ... row | line | column. In the above description, the swing angle of each wind direction plate 42 is individually controlled. However, the wind direction plates 42, 42, 42... Are grouped, and the wind direction plates 42, 42, 42,. -May be swung in the same control form.

尚、上記した実施形態1〜6においては、混気式ノズルと非混気式ノズルとを車体周方向に交互に配置したが、本発明では必ずしもこれらを交互に配置しなければならないものでなく、車体周方向に「混在」させても構わない。このような混気式ノズルと非混気式ノズルとを車体周方向に配置する態様としての「混在」には、例えば、混気式ノズルを2個並べ、続いて非混気式ノズルを2個並べ、次に混気式ノズルを1個、非混気式ノズルを1個並べるといった態様も含まれる。無論、「交互」は「混在」に含まれる概念である。   In the first to sixth embodiments described above, the mixed-type nozzles and the non-mixed-type nozzles are alternately arranged in the vehicle body circumferential direction. However, in the present invention, these are not necessarily arranged alternately. Alternatively, it may be “mixed” in the vehicle body circumferential direction. In the “mixing” as a mode in which such an air-mixing nozzle and a non-air-mixing nozzle are arranged in the circumferential direction of the vehicle body, for example, two air-mixing nozzles are arranged, and then 2 non-air-mixing nozzles are arranged. A mode is also included in which a single air-mixing nozzle and a non-air-mixing nozzle are arranged next. Of course, “alternating” is a concept included in “mixed”.

1 薬液散布車
2 車体
3 薬液タンク
5 通風路
6 空気吸入口
7 空気吹出口
9 送風機
15A 一側方
15B 他側方
15C 上方
19,19A 導液路
20,20A,20B ノズル本体
21,21A 噴口
22,22A 噴板
23 接続口部
24 ジョイント部材
25 導液管
35 空気取入口部
A,A1 混気式ノズル
B,B1 非混気式ノズル
G 1点鎖線
P 噴霧パターン
Q 噴霧パターン
W 矢印
Y 矢印
Z 軸心
DESCRIPTION OF SYMBOLS 1 Chemical liquid dispersion | distribution vehicle 2 Car body 3 Chemical liquid tank 5 Ventilation path 6 Air inlet 7 Air blower outlet 9 Blower 15A One side 15B Other side 15C Upper 19, 19A Liquid guide path 20, 20A, 20B Nozzle main body 21, 21A Nozzle 22 , 22A Spray plate 23 Connection port 24 Joint member 25 Liquid introduction pipe 35 Air intake port A, A1 Mixed air nozzle B, B1 Non-air mixed nozzle G Dash-dotted line P Spray pattern Q Spray pattern W Arrow Y Arrow Z Axis

Claims (4)

薬液タンクを搭載した車体の後部に設けられた空気吸入口と、車体の一側方から上方を経て他側方に至る車体周方向の部分に開口した空気吹出口とを連通する通風路を備えていて、通風路に送風機が配備され、空気吹出口に複数のノズルがそれぞれの液滴噴出方向を放射状外向きにして車体周方向に列設されている薬液散布車において、
前記ノズルとして、
内部に導液路を有するノズル本体と、導液路の先端に設けられて噴口を有する噴板と、導液路の他端に形成されて薬液タンクからの導液管と接続される接続口部とを備え、噴口の軸心方向に視て扁平形状の噴霧パターンで液滴を噴口から噴き出す非混気式ノズル、
および、
内部に導液路を有するノズル本体と、導液路の先端に設けられて噴口を有する噴板と、導液路の他端に形成されて薬液タンクからの導液管と接続される接続口部と、噴板と接続口部との間のノズル本体に形成されて導液路に空気を取り入れる空気取入口部とを備え、噴口の軸心方向に視て扁平形状の噴霧パターンで液滴を噴口から噴き出す混気式ノズルを用いるとともに、
前記非混気式ノズルと前記混気式ノズルとを車体周方向に混在させて配置したことを特徴とする薬液散布車。
Provided with an air passage that communicates an air inlet provided at the rear of the vehicle body equipped with a chemical tank and an air outlet opening in the circumferential direction of the vehicle body from one side of the vehicle body to the other side In the chemical spray vehicle in which a blower is provided in the ventilation path, and a plurality of nozzles are arranged in the circumferential direction of the vehicle body with the plurality of nozzles radially outward at the air outlet,
As the nozzle,
Nozzle body having a liquid guide path therein, a nozzle plate provided at the tip of the liquid guide path and having a nozzle hole, and a connection port formed at the other end of the liquid guide path and connected to the liquid guide pipe from the chemical tank A non-air-mixing nozzle that ejects liquid droplets from the nozzle hole in a flat spray pattern as viewed in the axial direction of the nozzle hole,
and,
Nozzle body having a liquid guide path therein, a nozzle plate provided at the tip of the liquid guide path and having a nozzle hole, and a connection port formed at the other end of the liquid guide path and connected to the liquid guide pipe from the chemical tank And an air intake portion that is formed in the nozzle body between the nozzle plate and the connection port portion and takes air into the liquid guide path, and drops in a flat spray pattern as viewed in the axial direction of the nozzle port Using an air-mixing nozzle that spouts out the nozzle,
A non-air-mixing nozzle and the air-mixing nozzle are arranged so as to be mixed in the vehicle body circumferential direction.
非混気式ノズルの液滴噴出方向を、混気式ノズルの液滴噴出方向に対し車体走行方向後向きに傾けた方向とするように設定したことを特徴とする請求項1に記載の薬液散布車。 2. The chemical solution spraying according to claim 1, wherein the liquid droplet ejection direction of the non-air mixture type nozzle is set to be a direction inclined backward in the vehicle body traveling direction with respect to the liquid droplet ejection direction of the air mixture type nozzle. car. 混気式ノズルおよび非混気式ノズルから噴き出される液滴の噴霧パターンの当該扁平形状の長径方向が車体周方向を向くように、混気式ノズルおよび非混気式ノズルをそれぞれ配置したことを特徴とする請求項1または請求項2に記載の薬液散布車。 The mixed-type nozzle and the non-mixed-type nozzle are respectively arranged so that the major axis direction of the flat shape of the spray pattern of the droplets ejected from the mixed-type nozzle and the non-mixed-type nozzle faces the vehicle body circumferential direction. The medicinal solution spraying vehicle according to claim 1 or 2, characterized in that. 混気式ノズルと非混気式ノズルとを車体周方向に交互に配置したことを特徴とする請求項1から請求項3のいずれか一項に記載の薬液散布車。 4. The chemical spray vehicle according to claim 1, wherein the mixed air nozzle and the non-air mixed nozzle are alternately arranged in a circumferential direction of the vehicle body. 5.
JP2010077736A 2010-03-30 2010-03-30 Chemical sprayer Active JP5568355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077736A JP5568355B2 (en) 2010-03-30 2010-03-30 Chemical sprayer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077736A JP5568355B2 (en) 2010-03-30 2010-03-30 Chemical sprayer

Publications (2)

Publication Number Publication Date
JP2011205983A true JP2011205983A (en) 2011-10-20
JP5568355B2 JP5568355B2 (en) 2014-08-06

Family

ID=44937821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077736A Active JP5568355B2 (en) 2010-03-30 2010-03-30 Chemical sprayer

Country Status (1)

Country Link
JP (1) JP5568355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105961362A (en) * 2016-06-21 2016-09-28 新昌县三新空调风机有限公司 Multifunctional intelligent management equipment and method for tea orchard

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181478U (en) * 1987-05-15 1988-11-22
JPH08266958A (en) * 1994-12-02 1996-10-15 Spraying Syst Co Air assist spraying spray nozzle
JP2003023824A (en) * 2001-07-10 2003-01-28 Bio Oriented Technol Res Advancement Inst Attaching and detaching structure of implement
JP2003092971A (en) * 2001-09-26 2003-04-02 Shiyooshin:Kk Speed sprayer
JP2007308481A (en) * 2006-04-18 2007-11-29 Ishihara Sangyo Kaisha Ltd Method for spraying agrochemical over plant body or soil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181478U (en) * 1987-05-15 1988-11-22
JPH08266958A (en) * 1994-12-02 1996-10-15 Spraying Syst Co Air assist spraying spray nozzle
JP2003023824A (en) * 2001-07-10 2003-01-28 Bio Oriented Technol Res Advancement Inst Attaching and detaching structure of implement
JP2003092971A (en) * 2001-09-26 2003-04-02 Shiyooshin:Kk Speed sprayer
JP2007308481A (en) * 2006-04-18 2007-11-29 Ishihara Sangyo Kaisha Ltd Method for spraying agrochemical over plant body or soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105961362A (en) * 2016-06-21 2016-09-28 新昌县三新空调风机有限公司 Multifunctional intelligent management equipment and method for tea orchard

Also Published As

Publication number Publication date
JP5568355B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
KR102265854B1 (en) Method and apparatus for spraying ground surfaces
ES2606211T3 (en) Guide air ring and corresponding coating procedure
EP1926559B1 (en) Multiple discharge orifice spray nozzle
JP2017036011A (en) Multiple rotor type helicopter and chemical agent aerial spraying method using the same
BRPI0913688B1 (en) rotary spray and coating product spraying process
JP2011502784A5 (en)
KR20090090982A (en) Unmanned helicopter
JP2917019B1 (en) Air spray gun coating equipment
US20100123020A1 (en) Paint spray gun with paint jet deflection
JP2021505803A (en) Spraying device for spraying vehicles
US20090178812A1 (en) Systems and methods using vacuum-induced mixing with a venturi nozzle
JP5568355B2 (en) Chemical sprayer
JP5096773B2 (en) Liquid spray method and traveling spray apparatus using two-way injection nozzle
CN111729770A (en) Atomizing nozzle
JP2917013B1 (en) Painting gun equipment
JP2009033989A (en) Self-propelled pest control machine
JP2000504990A (en) Spray device and method for agricultural and others
JP3799573B2 (en) Fire fighting head
WO2009139069A1 (en) Assembled-type mist nozzle and fire-extinguishing equipment including the mist nozzle
CN219923362U (en) Air-assisted spraying device and movable platform
JPH0889151A (en) Liquid chemical spraying tube structure
JP2018069110A (en) Chemical spray mechanism of speed sprayer
AU2002356080B2 (en) A nozzle
JP2016096770A (en) Jet pipe of spreader
JP3653594B2 (en) Fire fighting head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5568355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250