JP2011205968A - Method for producing influenza vaccine by cell culture - Google Patents

Method for producing influenza vaccine by cell culture Download PDF

Info

Publication number
JP2011205968A
JP2011205968A JP2010076957A JP2010076957A JP2011205968A JP 2011205968 A JP2011205968 A JP 2011205968A JP 2010076957 A JP2010076957 A JP 2010076957A JP 2010076957 A JP2010076957 A JP 2010076957A JP 2011205968 A JP2011205968 A JP 2011205968A
Authority
JP
Japan
Prior art keywords
virus
influenza virus
cells
strain
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010076957A
Other languages
Japanese (ja)
Inventor
Naruhiro Sato
成大 佐藤
Reiko Tsutsumi
玲子 堤
Daisuke Minegishi
大輔 峯岸
Novita Sah Bandar Ivo
ノヴィタ サー バンダー イヴォ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate Medical University
Original Assignee
Iwate Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate Medical University filed Critical Iwate Medical University
Priority to JP2010076957A priority Critical patent/JP2011205968A/en
Publication of JP2011205968A publication Critical patent/JP2011205968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a viral strain having high proliferation ability suitable for producing an influenza virus vaccine by a cell culture method, and to provide a method for efficiently producing the vaccine using the influenza viral strain.SOLUTION: A method for selecting an influenza viral strain having high proliferation ability is provided, comprising the following process: species of influenza virus, after diluted, is inoculated into TR7 cells to make a culture (first-generation subculture) of the resultant cells; and further, a virus-containing liquid obtained by the culture is diluted and then inoculated into TR7 cells (NITE AP-922) to make a culture of the resultant virus; and the latter procedure (subculture) is repeated several times.

Description

本発明は、高増殖能を有するインフルエンザウイルス株を選択する方法、該方法により得られたインフルエンザウイルス株の細胞培養による増殖方法、及び、該増殖方法により得られるインフルエンザウイルスワクチンの製造方法等に関する。 The present invention relates to a method for selecting an influenza virus strain having a high proliferation ability, a method for growing an influenza virus strain obtained by the method by cell culture, a method for producing an influenza virus vaccine obtained by the growth method, and the like.

昨今の情勢から、高病原性トリインフルエンザ、ブタインフルエンザ及び従来型の季節性インフルエンザ等に対して、迅速にワクチン生産を行なえるシステムの構築が焦眉の急となっている。   From the recent situation, it has become urgent to build a system that can rapidly produce vaccines against highly pathogenic avian influenza, swine influenza, and conventional seasonal influenza.

これまでにも、このようなインフルエンザワクチンの生産に使用することを目的とした細胞株の開発が試みられてきた。例えば、特表2000−507448号公報(WO97/37001:特許文献1)には、MDCK細胞株(ATCC CCL34株)から馴化によって無血清培地での懸濁(浮遊)培養が可能なMDCK-33016株及びそれを用いるウイルス生産方法が記載されている。又、米国特許第6825036号明細書(特許文献2)には、同様にMDCK細胞株(ATCC CCL34株)から樹立された、無血清培地での浮遊培養が可能なB-702株及びそれを用いるウイルス生産方法が記載されている。   In the past, the development of cell lines intended for use in the production of such influenza vaccines has been attempted. For example, in Japanese translation of PCT publication No. 2000-507448 (WO97 / 37001: Patent Document 1), MDCK-33016 strain capable of suspension (floating) culture in a serum-free medium by acclimation from an MDCK cell strain (ATCC CCL34 strain). And virus production methods using the same are described. In addition, US Pat. No. 6,852,036 (Patent Document 2) similarly uses the B-702 strain that is established from the MDCK cell line (ATCC CCL34 line) and can be suspended in a serum-free medium, and the same. Virus production methods are described.

更に、”Suspension MDCK Cell Culture on EX-CELL MDCK Serum-Free Medium”, SAFC Biosciences Technical Bulletin (2006)(非特許文献1)には、付着性であるMDCK細胞株(ATCC CCL34株)を無血清培地で6〜7回継代培養することによって、浮遊性細胞へ馴化することが記載されている。又、Vaccine, Vol.26, pp6852-6858(2008)(非特許文献2)には、MDCK-33016株にA/熊本/102/2002(H3N2)を接種してウイルスを生産する例が記載されている。   Furthermore, “Suspension MDCK Cell Culture on EX-CELL MDCK Serum-Free Medium”, SAFC Biosciences Technical Bulletin (2006) (Non-patent Document 1) includes an adherent MDCK cell line (ATCC CCL34) as a serum-free medium. It is described that the cells are adapted to suspension cells by subculture for 6-7 times. Also, Vaccine, Vol.26, pp6852-6858 (2008) (Non-patent Document 2) describes an example in which MDCK-33016 strain is inoculated with A / Kumamoto / 102/2002 (H3N2) to produce virus. ing.

本発明者らによっても、MDCK細胞株(ATCC CCL34株)から浮遊性のTR7細胞株が作製された(Reiko Tsutsumi, Shigemi Fujisaki, Masanori Shozushima, Koichi Saito and Shigehiro Sato, Cytotechnology (2006), 52:71-85 “Anoikis-resistant MDCK cells carrying susceptibilities to TNF-α and verotoxin that are suitable for influenza virus cultivation”:非特許文献3)。 The present inventors also produced a floating TR7 cell line from the MDCK cell line (ATCC CCL34 line) (Reiko Tsutsumi, Shigemi Fujisaki, Masanori Shozushima, Koichi Saito and Shigehiro Sato, Cytotechnology (2006), 52:71. -85 “Anoikis-resistant MDCK cells carrying susceptibilities to TNF-α and verotoxin that are suitable for influenza virus cultivation”: Non-patent document 3).

又、現在インフルエンザウイルスワクチン株はその年の流行株に合わせて公的機関が選定を行っている。近年話題の高病原性トリインフルエンザワクチン製造に使用するワクチン株はその病原性の強さ故に使用可能な株が限られている。すなわち、NIBSCがH5N1ワクチン株として3株を供給している。これらの株は卵で増殖性のよいプエルトリコ株由来の6本の遺伝子とヒトから分離したH5N1型インフルエンザウイルス由来の2本の遺伝子の計8本のRNAをもつ reassortant virus (合併結合ウイルス) である。ヒト由来ウイルスRNAはNA遺伝子と高病原性に直接関与するHA遺伝子である。後者は配列を改変して病原性を減弱させてある。これらのワクチン株は従来の発育鶏卵を用いたワクチン製造に適しており哺乳動物培養細胞に感染させた場合には増殖性が良くないことが世界中で指摘されている。 Currently, influenza virus vaccine strains are selected by public institutions according to the epidemic strains of the year. In recent years, vaccine strains used for the production of highly pathogenic avian influenza vaccines have been limited in number because of their strong pathogenicity. That is, NIBSC supplies three strains as H5N1 vaccine strains. These strains are reassortant viruses (combined binding viruses) with a total of 8 RNAs, 6 genes from the Puerto Rican strain with good egg growth and 2 genes from the H5N1 influenza virus isolated from humans. . Human-derived viral RNA is an NA gene and an HA gene that is directly involved in high pathogenicity. The latter modifies the sequence to reduce virulence. It has been pointed out all over the world that these vaccine strains are suitable for the production of vaccines using conventional embryonated chicken eggs and are not proliferative when infected with cultured mammalian cells.

この現実を克服するために河岡らはプエルトリコ株由来6本の遺伝子の塩基配列を改変して高増殖性ウイルスを得る努力を報告している(非特許文献4)。 In order to overcome this reality, Kawaoka et al. Have reported efforts to obtain highly proliferative viruses by modifying the base sequences of six genes derived from Puerto Rico strains (Non-patent Document 4).

特表2000−507448号公報JP 2000-507448 米国特許第6825036号明細書US Pat. No. 6,852,036

SAFC Biosciences Technical Bulletin (2006)SAFC Biosciences Technical Bulletin (2006) Vaccine, Vol.26, pp6852-6858(2008)Vaccine, Vol.26, pp6852-6858 (2008) Cytotechnology (2006), 52:71-85Cytotechnology (2006), 52: 71-85 Murakami, S. et al., J Virol. 2008 Nov; 82(21): 10502-9. Epub 2008Murakami, S. et al., J Virol. 2008 Nov; 82 (21): 10502-9. Epub 2008

本発明が解決しようとする課題は、細胞培養法によるインフルエンザウイルスワクチン製造に適する高い増殖能をもつウイルス株を選択し、そのようにして選択されたウイルス株をMDCK由来TR7細胞を利用して増殖させてワクチンを効率よく生産すること等である。   The problem to be solved by the present invention is to select a virus strain having a high growth ability suitable for producing an influenza virus vaccine by a cell culture method, and proliferate the virus strain thus selected using MDCK-derived TR7 cells. For example, to produce vaccines efficiently.

本発明者によって、上記のTR7細胞株は、造腫瘍性が極めて低く、親株MDCK細胞よりもインフルエンザウイルスの増殖が亢進しておりインフルエンザウイルスの感染による細胞死が遅延している細胞であることが確認された。 According to the present inventors, the above-mentioned TR7 cell line is a cell that has extremely low tumorigenicity, has a higher influenza virus growth than the parental MDCK cell, and is delayed in cell death due to influenza virus infection. confirmed.

その結果、本発明者は、上記TR7細胞は無血清培地を利用して大量且つ迅速に増殖ができ、更に、適当な成長因子(上皮成長因子(EGF)等)を添加することでより効率よく増殖し、付着培養することでより利点が得られることを見出した。本発明者は更に、ウイルスの遺伝子改変は行わないで細胞増殖性の高いウイルス株を選択できる方法を見出した。 As a result, the present inventor can proliferate the TR7 cells in a large amount and rapidly using a serum-free medium, and more efficiently by adding an appropriate growth factor (such as epidermal growth factor (EGF)). It has been found that more advantages can be obtained by growing and adherent culture. The present inventor has further found out a method capable of selecting a virus strain having a high cell growth ability without performing genetic modification of the virus.

即ち、本発明は以下に示す各態様に係るものである。
[態様1]種インフルエンザウイルス液を希釈した後にTR7細胞に接種して培養(継代1代目)し、更に、この培養後に得られたウイルス含有液を希釈した後にTR7細胞(NITE AP-922)に接種して培養する操作(継代培養)を繰り返すことによって、高増殖能を有するインフルエンザウイルス株を選択する方法。
[態様2]インフルエンザウイルスがH5N1インフルエンザウイルス株 又はH1N1インフルエンザウイルス株である、態様1記載の方法。
[態様3]継代培養を継代2代目、継代3代目、又は継代4代目まで繰り返す、態様1又は2記載の方法。
[態様4]各継代培養に用いるウイルス含有液の希釈率が100倍〜10,000倍である、請求項1〜3のいずれか一項に記載の方法。
[態様5]各継代培養を4〜6日間行なう、態様1〜4のいずれか一項に記載の方法。
[態様6]態様1〜5のいずれか一項の方法で選択された高増殖能を有するインフルエンザウイルス株。
[態様7]請求項6に記載の高増殖能を有するインフルエンザウイルス株をTR7細胞に接種し、無血清培地により細胞培養して該ウイルスを増殖させることからなる、インフルエンザウイルスワクチンの製造方法。
[態様8]無血清培地に成長因子を含むことを特徴とする、態様7記載の製造方法。
[態様9]成長因子が上皮成長因子(EGF)である、態様8記載の製造方法。
That is, the present invention relates to each aspect shown below.
[Aspect 1] TR7 cells (NITE AP-922) are prepared after diluting the seed influenza virus solution and inoculating and culturing the cells by inoculating TR7 cells (passage 1), and further diluting the virus-containing solution obtained after this culture. A method for selecting an influenza virus strain having a high growth ability by repeating the operation of inoculating and culturing (subculture).
[Aspect 2] The method according to Aspect 1, wherein the influenza virus is H5N1 influenza virus strain or H1N1 influenza virus strain.
[Aspect 3] The method according to Aspect 1 or 2, wherein the subculture is repeated until the second passage, the third passage, or the fourth passage.
[Aspect 4] The method according to any one of claims 1 to 3, wherein the dilution ratio of the virus-containing solution used for each subculture is 100 to 10,000 times.
[Aspect 5] The method according to any one of Aspects 1 to 4, wherein each subculture is performed for 4 to 6 days.
[Aspect 6] An influenza virus strain having a high proliferation ability selected by the method according to any one of Aspects 1 to 5.
[Aspect 7] A method for producing an influenza virus vaccine, comprising inoculating TR7 cells with the influenza virus strain having high proliferation ability according to claim 6 and culturing the cells in a serum-free medium to proliferate the virus.
[Aspect 8] The production method according to Aspect 7, wherein the serum-free medium contains a growth factor.
[Aspect 9] The production method according to Aspect 8, wherein the growth factor is epidermal growth factor (EGF).

本発明方法によって、細胞培養法によるインフルエンザウイルスワクチン製造に適する高増殖能をもつウイルス株を選択し、そして、そのようにして選択されたウイルス株をMDCK由来TR7細胞を利用して増殖させてワクチンを容易に、且つ、効率よく大量に生産することが可能となった。   According to the method of the present invention, a virus strain having a high growth ability suitable for the production of an influenza virus vaccine by a cell culture method is selected, and the virus strain thus selected is propagated using MDCK-derived TR7 cells to produce a vaccine. Can be easily and efficiently mass-produced.

MDCK E1M1 10<-4>のプレートの各穴のウイルス液をそれぞれ希釈して、E1M2 10<-4>(10-4 ), E1M2 10<-3>(10-3), E1M2 10<-2>(10-2)の計3枚に継代する操作を示す。Dilute the virus solution in each well of the MDCK E1M1 10 <-4> plate to obtain E1M2 10 <-4> (10 -4 ), E1M2 10 <-3> (10 -3 ), E1M2 10 <-2 > Indicates the operation to pass to a total of 3 (10 -2 ). 実施例1におけるNIBRG 121についての継代結果のグラフを示す。The graph of the passage result about NIBRG 121 in Example 1 is shown. 実施例1におけるNIBRG 121についての継代結果のグラフを示す。The graph of the passage result about NIBRG 121 in Example 1 is shown. 実施例1におけるNIBRG 12についての継代結果のグラフを示す。The graph of the passage result about NIBRG 12 in Example 1 is shown. 実施例1におけるNIBRG 12についての継代結果のグラフを示す。The graph of the passage result about NIBRG 12 in Example 1 is shown. 実施例1におけるNIBRG 23についての継代結果のグラフを示す。The graph of the passage result about NIBRG 23 in Example 1 is shown. 実施例1におけるNIBRG 14についての継代結果のグラフを示す。The graph of the passage result about NIBRG14 in Example 1 is shown. 高い増殖能を有するNIBRG 14のプラーク形成能についての継代結果を示す。The passage result about the plaque formation ability of NIBRG 14 having high proliferation ability is shown.

本発明は、種インフルエンザウイルス液を希釈した後にTR7細胞に接種して培養(継代1代目)し、更に、この培養後に得られたウイルス含有液を希釈した後にTR7細胞に接種して培養する操作(継代培養)を数回繰り返すことによって、高増殖能を有するインフルエンザウイルス株を選択する方法に係る。 In the present invention, the seed influenza virus solution is diluted and then inoculated and cultured in the TR7 cells (passage 1st passage), and the virus-containing solution obtained after this culture is diluted and then inoculated and cultured in the TR7 cells. The present invention relates to a method for selecting an influenza virus strain having a high growth ability by repeating the operation (passage culture) several times.

TR7細胞は、ATCCから購入したMDCK細胞( CCL 34)を50μg/ ml MEP(メタロエンドペプチダーゼmetalloendopeptidase: Streptomyces griseus 由来)を含むEagle's MEM (Gibco社製)培地で6ヶ月間培養(1週間に2回medium changeを行った)して生残した浮遊細胞を6M−4と名付けた。6M-4細胞を0.3%の軟寒天(Difco社製Agar Noble)培地(MEM)で培養し、10日後、増殖してきたコロニーを選ぶことによって作製された細胞株である。 For TR7 cells, MDCK cells (CCL 34) purchased from ATCC are cultured for 6 months in Eagle's MEM (Gibco) medium containing 50 μg / ml MEP (metalloendopeptidase: derived from Streptomyces griseus) (twice a week). The floating cells that survived the medium change were named 6M-4. This is a cell line prepared by culturing 6M-4 cells in 0.3% soft agar (Difco Agar Noble) medium (MEM) and selecting colonies that had grown after 10 days.

尚、上記のTR7細胞は、平成22年(2010年)3月30日付けで、〒292−0818千葉県木更津市かずさ鎌足2−5−8 独立行政法人製品評価技術基盤機構 特許微生物寄託センターに寄託され、受領番号NITE AP-922が付与されている。   The above TR7 cells are dated March 30, 2010, 2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture 292-0818, Japan. And has been given the receipt number NITE AP-922.

インフルエンザウイルスに特に制限はないが、季節性インフルエンザに加えて、特に、NIBRG12, NIBRG14 及び NIBRG 23株等のH5N1インフルエンザウイルス株 (トリ型)又はNIBRG 121株等のH1N1インフルエンザウイルス株(ブタ型)を挙げることが出来る。 Influenza virus is not particularly limited, but in addition to seasonal influenza, H5N1 influenza virus strain (bird type) such as NIBRG12, NIBRG14 and NIBRG 23 strain or H1N1 influenza virus strain (swine type) such as NIBRG 121 strain I can list them.

種インフルエンザウイルス液はNIBSC(National Institute for Biological Standards and Control)等の公的機関からから入手可能なインフルエンザウイルスワクチン株を孵化鶏卵の漿尿膜腔に接種する等の当業者に公知の任意の方法で増殖させることによって調製(漿尿液)することが出来る。 Seed influenza virus solution can be obtained by any method known to those skilled in the art, such as inoculating the chorioallantoic cavity of an embryonated chicken with an influenza virus vaccine strain available from a public organization such as NIBSC (National Institute for Biological Standards and Control). Can be prepared (choremic fluid).

高増殖能を有するインフルエンザウイルス株とは、以下に記載するHA価で示した値として、例えば、128以上、好ましくは256以上、より好ましくは512以上を有するような細胞株をいう。   The influenza virus strain having a high growth ability refers to a cell strain having, for example, 128 or more, preferably 256 or more, more preferably 512 or more as a value indicated by the HA titer described below.

各継代培養に用いるウイルス含有液(培養液)の希釈率はウイルスの種類などに応じて当業者が適宜決めることが出来るが、通常、約100倍〜約10,000倍であり、高い希釈率のほうが好ましい。尚、各代目の継代培養に用いるウイルス含有液の希釈率が全て同じである必要はなく、適宜、調整することが出来る。 The dilution ratio of the virus-containing solution (culture solution) used for each subculture can be appropriately determined by those skilled in the art according to the type of virus, but is usually about 100 times to about 10,000 times, and is a high dilution. Rate is preferred. In addition, it is not necessary that the dilution ratios of the virus-containing liquid used for the subculture of each generation are the same, and can be adjusted as appropriate.

各継代培養の条件及び各操作は当業者に周知の任意の方法(例えば、非特許文献3に記載の方法)に従い実施することが出来、通常、4〜6日間程度の培養によってコンフルエント状態に達する。このような継代培養を継代2代目、継代3代目、又は継代4代目まで繰り返すことが好ましい。 Conditions for each subculture and each operation can be carried out according to any method well known to those skilled in the art (for example, the method described in Non-Patent Document 3). Reach. It is preferable to repeat such subculture until the second passage, the third passage, or the fourth passage.

以上の方法を実施することによって、本明細書の実施例に記載されているような高増殖能を有するインフルエンザウイルス株を選択することが出来る。従って、本発明は、このようなインフルエンザウイルス株、及び該インフルエンザウイルス株をTR7細胞に接種し、無血清培地により細胞培養して該ウイルスを増殖させることからなる、インフルエンザウイルスワクチンの製造方法にも係るものである。 By carrying out the above method, an influenza virus strain having a high growth ability as described in the examples of the present specification can be selected. Therefore, the present invention also relates to a method for producing an influenza virus vaccine, which comprises inoculating such an influenza virus strain and TR7 cells with the influenza virus strain and culturing the cell in a serum-free medium to proliferate the virus. It is concerned.

細胞培養方法及びワクチン製造におけるウイルス不活化(βプロピオラクトン、UVC照射等)自体は当業者に公知の任意の方法で実施することが出来る。例えば、無血清培地に上皮成長因子(EGF)のような成長因子を含ませることが出来る。更に、浮遊培養法、マイクロキャリアー培養法、及び接着(付着)培養法等の当業者に公知の任意の培養法で実施することが出来る。 Virus inactivation (β-propiolactone, UVC irradiation, etc.) itself in cell culture methods and vaccine production can be carried out by any method known to those skilled in the art. For example, a growth factor such as epidermal growth factor (EGF) can be included in the serum-free medium. Furthermore, any culture method known to those skilled in the art such as suspension culture method, microcarrier culture method, and adhesion (attachment) culture method can be used.

以下に実施例を参照して本発明を具体的に説明するが、これらは単に本発明の説明のために提供されているものである。従って、これらの実施例は、本願で開示する発明の範囲を限定し、又は制限するものではない。本発明では、特許請求の範囲の請求項に記載された技術的思想に基づく様々な実施形態が可能であることは当業者には容易に理解される。   The present invention will be described in detail with reference to the following examples, which are merely provided for explaining the present invention. Accordingly, these examples do not limit or limit the scope of the invention disclosed herein. It is easily understood by those skilled in the art that various embodiments based on the technical idea described in the claims can be made in the present invention.

実験方法
ウイルス
NIBSC(National Institute for Biological Standards and Control)から購入した3種のH5N1(トリ型)インフルエンザウイルスワクチン株 NIBRG12, NIBRG14 及び NIBRG 23株、1種類のH1N1(ブタ型)インフルエンザウイルスワクチン株 NIBRG121を用いた。
experimental method
Virus
Three H5N1 (bird type) influenza virus vaccine strains NIBRG12, NIBRG14 and NIBRG 23 strains purchased from NIBSC (National Institute for Biological Standards and Control) and one type of H1N1 (swine type) influenza virus vaccine strain NIBRG121 were used.

孵化鶏卵でウイルスの一次増殖
孵化鶏卵(10日卵)を小岩井農場(岩手県)から購入し、上記ウイルス原液 (E0)をPBS(-) (リン酸緩衝液(Mg, Ca 不含))で100倍に希釈したものを漿尿膜腔に200μl接種した。NIBRG12, NIBRG14 および NIBRG 23株については各ウイルスとも5個づつ接種した。NIBRG121株については卵1個に倍希釈液を100μl接種した。接種後48時間後に組織の硬化と感染を止めたるため卵を冷蔵庫に移し一晩以上放置した。漿尿液を回収し、同一ウイルスを接種したものは集めてウイルスプール液(E1)とした。
Primary growth of virus in embryonated eggs <br/> Incubated eggs (10-day eggs) were purchased from Koiwai Farm (Iwate Prefecture), and the virus stock solution (E0) was added to PBS (-) (phosphate buffer (Mg, Ca-free). 200 μl was inoculated into the chorioallantoic cavity. NIBRG12, NIBRG14 and NIBRG 23 were inoculated with 5 of each virus. For NIBRG121 strain, 100 μl of double dilution was inoculated into one egg. Forty-eight hours after inoculation, the eggs were transferred to a refrigerator and left overnight for more than one hour to stop tissue hardening and infection. The chorioallantoic fluid was collected and those inoculated with the same virus were collected and used as a virus pool solution (E1).

ウイルス濃度の測定
ニワトリ保存血(日本バイオテスト研究所)をPBS(-)を用いて3回遠心洗浄(1,600rpm 10 分)する。遠心毎に赤血球表面の白血球層を除去する。 血球沈殿を 1 ml取り、200 mlのPBS(-)中に添加して0.5%(V/V) 赤血球懸濁液を作製する。その後血球計数機(NIHON KOHDEN)で血球数を測定して3x107RBC/mlに調整し検査に用いる。96穴 U字 プレートの各穴に PBS(-) 50 μlを添加し、検査ウイルス液を A1,B1, C1, D1, E1, F1, G1, H1に50 μl を添加する。各行1から11まで混合しながら2倍希釈系列をつくり、11穴の攪拌後の50μlは捨てる。12穴はコントロールとする。血球赤血球懸濁液を各穴に50 μl添加したあと水平式シェイカーで30秒攪拌する。1時間から2時間後に目視観察する。凝集反応陽性の穴の位置を記録して、その穴の検体希釈倍数をHA価とよびウイルス濃度とする。即ち、陽性反応が A2までであればHA価4、A5までであれば32などである。
Measurement of virus concentration The chicken preserved blood (Nippon Biotest Laboratories) is washed three times with PBS (-) (1,600 rpm for 10 minutes). The leukocyte layer on the erythrocyte surface is removed at each centrifugation. Take 1 ml of blood cell pellet and add to 200 ml of PBS (-) to make 0.5% (V / V) erythrocyte suspension. Then, the blood cell count is measured with a blood cell counter (NIHON KOHDEN), adjusted to 3 × 10 7 RBC / ml, and used for the test. Add 50 μl of PBS (-) to each well of the 96-well U-shaped plate, and add 50 μl of the test virus solution to A1, B1, C1, D1, E1, F1, G1, H1. Make a 2-fold dilution series while mixing from each row 1 to 11, and discard 50 μl after stirring 11 holes. 12 holes are for control. Add 50 μl of erythrocyte suspension to each well, and then stir for 30 seconds on a horizontal shaker. Visually observe after 1 to 2 hours. Record the position of the positive agglutination hole, and use the specimen dilution factor in that hole as the HA value and virus concentration. That is, if the positive reaction is up to A2, the HA value is 4, and if up to A5, it is 32.

プラーク形成能検査
6穴マイクロプレートの細胞を培養し、コンフルエント状態になった日に感染実験を行う。アガロース (DIfco Agarose Noble, BD) 2% (W/V) 水溶液をあらかじめオートクレーブし、45度の保温水槽に置く。トリプシン含有(SIGMA 93630、2μg/ml )2xMEMを37度保温水槽に置く。ウイルスの10倍希釈系列を トリプシン含有MEMで作製する。細胞の培養液をすて PBS(-)で一回洗浄する。各希釈ウイルス液250μlを細胞に添加して37度CO2恒温槽に置く。15分毎にマイクロプレートを傾斜攪拌する。90分後に、上記で保温しておいたアガロース液と2xMEMを等量混和して、多少冷ましたあと各穴に3 ml添加して25度で置く。アガロースが固まったら37度CO2恒温槽に入れて7日間放置する。7日後に1%ゲンチアナ紫を含む10%ホルマリン液を添加して2日間放置する。ホルマリン溶液およびゲルをすて水洗する。
Plaque formation test
Culture 6-well microplate cells and conduct infection experiments on the day of confluence. Agarose (DIfco Agarose Noble, BD) 2% (W / V) Aqueous solution is autoclaved in advance and placed in a 45 ° C water bath. Place 2 × MEM containing trypsin (SIGMA 93630, 2 μg / ml) in a 37 ° C. water bath. Make a 10-fold dilution series of virus in trypsin-containing MEM. Rinse the cell culture with PBS (-) once. Add 250 μl of each diluted virus solution to the cells and place in a 37 ° C. CO 2 thermostat. Stir the microplate every 15 minutes. After 90 minutes, mix an equal amount of the agarose solution and 2xMEM that have been kept warm above, add some 3 ml to each well after cooling down and place at 25 degrees. When the agarose has hardened, place it in a 37 ° C CO 2 constant temperature bath and leave it for 7 days. After 7 days, add 10% formalin solution containing 1% gentian purple and leave for 2 days. Rinse the formalin solution and gel with water.

準備
種ウイルスのストック液を作るためにNIBSCから購入した NIBRG12, NIBRG14, NIBRG23及びNIBRG121ウイルス液(E0)を希釈して上記のとおり、それぞれ孵化鶏卵に接種した。採取したウイルス液を 種インフルエンザウイルス液(E1)とした。E1をニワトリ赤血球を用いてHA価を測定した結果、512 (NIBRG12), 512 (NIBRG14), 256 (NIBRG23)及び1024 (NIBRG121) であった(陽性コントロール:診断用抗原のHA価512)。これらは充分に高力価ウイルス液と判断できる値であった。
Preparation The NIBRG12, NIBRG14, NIBRG23 and NIBRG121 virus solutions (E0) purchased from NIBSC to make seed virus stock solutions were diluted and inoculated into hatched chicken eggs, respectively, as described above. The collected virus solution was designated as a seed influenza virus solution (E1). As a result of measuring HA titer of E1 using chicken erythrocytes, it was 512 (NIBRG12), 512 (NIBRG14), 256 (NIBRG23), and 1024 (NIBRG121) (positive control: HA titer of diagnostic antigen 512). These were values that could be judged to be sufficiently high titer virus solutions.

手順
(1)MDCKおよびTR7細胞を12穴マイクロプレートに播種(約 5x104/ml)し、当業者に周知の定法(例えば、非特許文献3に記載の方法)に従い、コンフルエント状態にした後、培地除去し, 生理食塩水で洗浄後次の操作に進んだ。
(2) E1の10倍のウイルス希釈系列溶液( MEM-トリプシン)を作成し、10-2、10-3、10-4希釈液1 ml を各プレートに図の要領で添加した。継代一代目ということで接種ウイルス量の少ない方からそれぞれ、E1M1(-4), E1M1(-3), E1M1(-2), 及びE1T1(-4), E1T1(-3), E1T1(-2) とした。
(3)4日ないし6日目になると感染が進行し、保持日数を増やしてもウイルス産生量は増加しなくなった。その時点で培養液の一部を HA価測定用に分取した。
(4)同時に 継代2代目用に準備した MDCKおよび TR7細胞に上記の各穴のウイルス液を希釈し、10-2(10<-2>)、10-3(10<-3>)、10-4(10<-4>)となるように接種した(図1)。具体的操作は 96 wellプレートを用いてE1M1 10-4の24 wellのそれぞれの100倍希釈溶液を作成した。あらかじめ 1 mlのMEM-トリプシン溶液を添加した24穴の細胞に10μl, 100μl 添加した場合をそれぞれ E1M2(-4 to -4)、E1M2(-4 to -3) とした。E1M2(-4 to -2)には E1M110-4プレートの各穴から10 μlを移した。
(5)同様の操作を継代3代目用に準備した MDCK及びTR7細胞についても実施した。
以上の各操作のイメージを表1に示す。又、以上の操作で得られた結果を図2〜図8に示す。
Procedure (1) After seeding MDCK and TR7 cells in a 12-well microplate (about 5 × 10 4 / ml) and making them confluent according to a standard method known to those skilled in the art (for example, the method described in Non-Patent Document 3), After removing the medium and washing with physiological saline, it proceeded to the next operation.
(2) A 10-fold virus dilution series solution (MEM-trypsin) of E1 was prepared, and 1 ml of 10 −2 , 10 −3 , and 10 −4 dilutions were added to each plate as illustrated. From the first passage, the ones with the least amount of inoculated virus are E1M1 (-4), E1M1 (-3), E1M1 (-2), and E1T1 (-4), E1T1 (-3), E1T1 (- 2).
(3) On the 4th or 6th day, the infection progressed, and the virus production did not increase even if the retention days were increased. At that time, a part of the culture solution was collected for measurement of HA value.
(4) simultaneously diluting the virus solution of each well in the MDCK and TR7 cells prepared above for passaging second generation, 10-2 (10 <-2>), 10-3 (10 <-3>), 10 -4 (10 <-4>) was inoculated (Fig. 1). Specifically, 96-well plates were used to prepare 100-fold diluted solutions of 24 wells of E1M1 10-4 . E1M2 (-4 to -4) and E1M2 (-4 to -3) were respectively added to the 24-well cells to which 1 ml of MEM-trypsin solution had been added in advance. To E1M2 (-4 to -2), 10 μl was transferred from each hole of the E1M110 -4 plate.
(5) The same operation was performed on MDCK and TR7 cells prepared for the third passage.
Table 1 shows an image of each operation described above. Moreover, the result obtained by the above operation is shown in FIGS.

これらの図に示された結果から、どのウイルス株も継代1代目では MDCKおよび TR7細胞ともウイルス産生量は低く E1液の HA価には全く及ばないが、継代2代目になると MDCK細胞に比べて TR7細胞でのウイルス産生量は高くなり、平均値で差が見られるようになる(図中で横線 : 統計処理で有意)ことが判明した(図2、図4、図6、図7)。又、E1M2ではHA価の中値のウイルス液もE1M3へと継代すると低値になってしまうことが判った(図3、図5)。 From the results shown in these figures, the virus production of all virus strains was low in MDCK and TR7 cells at the first passage, and did not reach the HA value of E1 solution at all. In comparison, the amount of virus production in TR7 cells was high, and it was found that there was a difference in mean values (horizontal line: significant in statistical processing in the figure) (FIG. 2, FIG. 4, FIG. 6, FIG. 7). ). In addition, it was found that with E1M2, a virus solution with a medium HA value becomes low when subcultured to E1M3 (FIGS. 3 and 5).

インフルエンザウイルス A/H5N1ワクチン株NIBRG14株の細胞高増殖性株の選択:HA価による評価結果(図7)を以下の表2(継代1代目と継代2代目の比較)及び表3(継代1代目と継代3代目の比較)にまとめた。各数値はn=24の結果から得られた平均(Mean)、標準偏差(SD)、最小値(Min)、最大値(Max)、t-テスト有意検定(Unpaired t-test)、及び、F分布検定(F)を示す。ここで、収量の平均値が MDCKよりTR7が大きいこと及び両群に有意差があることはTR7細部株が産生能の高いことを反映していると思われる。更に、特筆すべきは、値の分散(平均値からの隔たりの大きさ)の程度を示す数値であるF分布に MDCKとTR7の間で有意差が見られるということであり、この結果は、統計処理上は両群(細胞そのもの)に質的な差が存在し、測定の分散の程度が偶然の結果とは考えられないということを意味している。従って、TR7細胞を使用することによって初めて高増殖性ウイルスが効率よく選択できたものと考えられる。 Selection of highly proliferative cell lines of influenza virus A / H5N1 vaccine strain NIBRG14: Evaluation results by HA titer (Fig. 7) are shown in Table 2 (comparison between passage 1 and passage 2) and Table 3 (passage). Comparison between the 1st generation and the 3rd generation). Each value is the mean (Mean), standard deviation (SD), minimum value (Min), maximum value (Max), t-test significance test (Unpaired t-test), and F Distribution test (F) is shown. Here, it seems that the fact that the average value of yield is higher in TR7 than MDCK and that there is a significant difference between the two groups reflects the high productivity of the TR7 strain. In addition, it should be noted that there is a significant difference between MDCK and TR7 in the F distribution, which is a numerical value indicating the degree of variance (the distance from the average value). In statistical processing, there is a qualitative difference between the two groups (the cells themselves), which means that the degree of dispersion of the measurement is not considered a coincidence. Therefore, it is considered that a highly proliferative virus could be efficiently selected only by using TR7 cells.

本発明方法で選択した高増殖性ウイルス株は、プラーク形成能(図8)で示されるように、購入したNIBRG14(E0)を本発明者によって孵化鶏卵で増殖した (E1)と比較すると細胞増殖性が格段に大きいものである。本発明者は高増殖株の遺伝子配列を決定しており、ワクチン株として抗原性に関与する HA および NAタンパク質に相当する配列には変異はないことを確認しているので、このような高増殖性ウイルス株はワクチン株として非常に有用であると考えられる。   The hyperproliferative virus strains selected by the method of the present invention showed cell growth as compared with the purchased NIBRG14 (E0) grown in embryonated chicken eggs by the present inventors (E1), as shown by the plaque forming ability (FIG. 8). The sex is much greater. Since the present inventor has determined the gene sequence of the high-growth strain and confirmed that there is no mutation in the sequence corresponding to the HA and NA proteins involved in antigenicity as a vaccine strain, Sex virus strains are considered very useful as vaccine strains.

本発明方法で選択される高増殖能をもつインフルエンザウイルス株をMDCK由来TR7細胞を利用して大量増殖且つ迅速増殖させることによって、インフルエンザワクチンを容易に、且つ、効率よく大量に生産することが可能となる。 Influenza vaccine can be easily and efficiently produced in large quantities by mass-producing and rapidly growing influenza virus strains selected by the method of the present invention with MD7-derived TR7 cells. It becomes.

Claims (9)

種インフルエンザウイルス液を希釈した後にTR7細胞に接種して培養(継代1代目)し、更に、この培養後に得られたウイルス含有液を希釈した後にTR7細胞(NITE AP-922)に接種して培養する操作(継代培養)を繰り返すことによって、高増殖能を有するインフルエンザウイルス株を選択する方法。 Inoculate TR7 cells after diluting the seed influenza virus solution (passage 1st generation), and further inoculate TR7 cells (NITE AP-922) after diluting the virus-containing solution obtained after this culture. A method of selecting an influenza virus strain having a high growth ability by repeating the operation of culturing (subculture). インフルエンザウイルスがH5N1インフルエンザウイルス株 又はH1N1インフルエンザウイルス株である、請求項1記載の方法。 The method according to claim 1, wherein the influenza virus is an H5N1 influenza virus strain or an H1N1 influenza virus strain. 継代培養を継代2代目、継代3代目、又は継代4代目まで繰り返す、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the subculture is repeated until the second passage, the third passage, or the fourth passage. 各継代培養に用いるウイルス含有液の希釈率が100倍〜10,000倍である、請求項1〜3のいずれか一項に記載の方法。 The method as described in any one of Claims 1-3 whose dilution rate of the virus containing liquid used for each subculture is 100 times-10,000 times. 各継代培養を4〜6日間行なう、請求項1〜4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein each subculture is performed for 4 to 6 days. 請求項1〜5のいずれか一項の方法で選択された高増殖能を有するインフルエンザウイルス株。 An influenza virus strain having a high proliferation ability selected by the method according to any one of claims 1 to 5. 請求項6に記載の高増殖能を有するインフルエンザウイルス株をTR7細胞に接種し、無血清培地により細胞培養して該ウイルスを増殖させることからなる、インフルエンザウイルスワクチンの製造方法。 A method for producing an influenza virus vaccine, comprising inoculating TR7 cells with the influenza virus strain having a high proliferation ability according to claim 6 and culturing the cells in a serum-free medium to proliferate the virus. 無血清培地に成長因子を含むことを特徴とする、請求項7記載の製造方法。 The production method according to claim 7, wherein the serum-free medium contains a growth factor. 成長因子が上皮成長因子(EGF)である、請求項8記載の製造方法。 The production method according to claim 8, wherein the growth factor is epidermal growth factor (EGF).
JP2010076957A 2010-03-30 2010-03-30 Method for producing influenza vaccine by cell culture Pending JP2011205968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076957A JP2011205968A (en) 2010-03-30 2010-03-30 Method for producing influenza vaccine by cell culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076957A JP2011205968A (en) 2010-03-30 2010-03-30 Method for producing influenza vaccine by cell culture

Publications (1)

Publication Number Publication Date
JP2011205968A true JP2011205968A (en) 2011-10-20

Family

ID=44937808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076957A Pending JP2011205968A (en) 2010-03-30 2010-03-30 Method for producing influenza vaccine by cell culture

Country Status (1)

Country Link
JP (1) JP2011205968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520525A (en) * 2017-07-05 2019-11-29 Sk生物科学株式会社 It is used to prepare the method for influenza working virus seedling, the method for using identical seedling preparation influenza vaccines and the viral seedling prepared by this method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525025A (en) * 2004-12-23 2008-07-17 メッドイミューン バクシーンズ,インコーポレイティド Non-tumorigenic MDCK cell line for virus propagation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525025A (en) * 2004-12-23 2008-07-17 メッドイミューン バクシーンズ,インコーポレイティド Non-tumorigenic MDCK cell line for virus propagation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013038549; J.Virol. Vol.82, No.21, 2008, p.10502-10509 *
JPN6013038552; Cytotechnology Vol.52, 2006, p.71-85 *
JPN6013038555; Virology Vol.365, 2007, p.315-323 *
JPN6013038558; Virology Vol.351, 2006, p.303-311 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520525A (en) * 2017-07-05 2019-11-29 Sk生物科学株式会社 It is used to prepare the method for influenza working virus seedling, the method for using identical seedling preparation influenza vaccines and the viral seedling prepared by this method
CN110520525B (en) * 2017-07-05 2024-04-16 Sk生物科学株式会社 Influenza working virus seedling and preparation, and method for increasing infectivity and preparing vaccine

Similar Documents

Publication Publication Date Title
JP5469710B2 (en) Non-tumorigenic MDCK cell line for virus propagation
KR101464783B1 (en) Mdck cell lines supporting viral growth to high titers and bioreactor process using the same
KR101316350B1 (en) Methods of producing influenza vaccine compositions
Van Wielink et al. Adaptation of a Madin–Darby canine kidney cell line to suspension growth in serum-free media and comparison of its ability to produce avian influenza virus to Vero and BHK21 cell lines
JP2008537681A (en) Method for producing a viral vaccine in a suspended avian embryonic stem cell line
Lombardo et al. Susceptibility of different cell lines to Avian and Swine Influenza viruses
US11060069B2 (en) Porcine cell line for virus production
Chu et al. Production and antigenic properties of influenza virus from suspension MDCK-siat7e cells in a bench-scale bioreactor
US10392603B2 (en) Method of viral purification
JP7048716B2 (en) A method for producing a virus seed stock for an influenza vaccine, a method for producing an influenza vaccine using the seed stock, and a seed stock for the virus produced by the above method.
JP2011205968A (en) Method for producing influenza vaccine by cell culture
TW201726911A (en) MDCK suspension cell lines in serum-free, chemically-defined media for vaccine production
EP3438247A1 (en) Method for culturing mdck cells
Hartgroves et al. Rapid generation of a well-matched vaccine seed from a modern influenza A virus primary isolate without recourse to eggs
Jang et al. HA N193D substitution in the HPAI H5N1 virus alters receptor binding affinity and enhances virulence in mammalian hosts
Vázquez Ramírez Process intensification for the production of MVA and influenza A virus in high density suspension cultures of AGE1. CR. pIX cells
US11612648B2 (en) Method for adapting influenza viruses to Vero cells
Kupke Single-cell analysis of influenza A virus replication: sources of cell-to-cell heterogeneity and discoverey of a novel type of defective interfering particle
Luo Effects of N-linked Glycosylation on Influenza A Virus H3N2 Neuraminidase Protein Activity And Virus Replication
CN117946982A (en) H1N1 influenza virus cold-adaptation vaccine skeleton strain CV1-PR8, construction method and application thereof
Reichl et al. Single-Cell Analysis of Influenza A Virus Replication: Sources of Cell-to-Cell Heterogeneity and Discovery of a Novel Type of Defective Interfering Particle
WO2016148195A9 (en) Cells for influenza virus production
Le Nguyen Adaptive changes of Influenza virus A/H5N1 Neuraminidase in vitro and in vivo

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218