JP2011204925A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2011204925A
JP2011204925A JP2010071080A JP2010071080A JP2011204925A JP 2011204925 A JP2011204925 A JP 2011204925A JP 2010071080 A JP2010071080 A JP 2010071080A JP 2010071080 A JP2010071080 A JP 2010071080A JP 2011204925 A JP2011204925 A JP 2011204925A
Authority
JP
Japan
Prior art keywords
resistance
basic
circuit
wiring
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010071080A
Other languages
Japanese (ja)
Inventor
Toru Shimizu
亨 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2010071080A priority Critical patent/JP2011204925A/en
Publication of JP2011204925A publication Critical patent/JP2011204925A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device including a bleeder resistor circuit of superior accuracy capable of varying voltage dividing ratio by trimming so that desired voltage dividing ratio can be obtained.SOLUTION: The bleeder resistor circuit is constituted by resistance circuit parts in two or more steps connected in series, and, as resistance elements of these resistance circuit parts, basic resistance wirings of the same material, the same length, the same width and the same thickness are formed in a form where at least two or more of them are connected. The basic resistance wirings constituting the bleeder resistor circuit are aligned in one region in the semiconductor device while all of them are aggregated, and the basic resistance wirings of the resistance circuit parts are divided into at least two pieces, respectively, and arranged while sandwiching the basic resistance wiring of another resistance circuit part, thereby difference in resistance value due to variation in manufacture of the basic resistance wirings arranged separately is dispersed to each of resistance circuit parts.

Description

本発明は、トリミングにより分圧比を変更可能で所望の分圧比を得る精度の良いブリーダ抵抗回路を備える半導体装置に関する。   The present invention relates to a semiconductor device including a bleeder resistance circuit with high accuracy that can change a voltage dividing ratio by trimming and obtain a desired voltage dividing ratio.

現在、半導体集積回路に用いられるトリミングにより分圧比を変更可能なブリーダ抵抗回路は、高抵抗の配線領域とトリミング用のヒューズ領域から構成される。高抵抗材料を同一の長さと同一の幅をもつ同一形状の配線パターンに形成し複数個並べ、それらの配線を直列や並列に接続することで所望の抵抗値を得ている。この同一形状配線パターンの1本を以降の説明で基本抵抗配線と称する。ブリーダ抵抗は基準となる抵抗分圧比を得るための複数の抵抗回路部の直列接続とトリミング用のヒューズから構成される。抵抗回路もトリミングされない固定抵抗値の固定抵抗回路部とヒューズトリミングにより抵抗を補正できる補正抵抗部に分類できる。補正抵抗部のトリミング補正ビットとしては、1本の基本抵抗配線、2本、4本・・・2のn乗本の直列に接続した基本抵抗配線、さらに、2本、4本・・・2のn乗本の並列に接続した基本抵抗配線を用いて、2n+1ビット分の補正回路を形成する方法が一般的に採用されている。この構成の利点は、トリミングするヒューズの本数が少なく、トリミングする所望の抵抗値のレンジ範囲が大きく、かつ基本抵抗配線の2のn乗本の並列接続抵抗値単位の高分解能で抵抗補正が可能なことである。さらに2n+1ビットの補正回路は(2^(n+2)−3)本分の基本抵抗配線で作成でき、回路レイアウトの面積が比較的小さく設計できる点もある。直列および並列に接続される各ビットの抵抗回路は隣接した基本抵抗配線同士を接続して形成される。これは基本抵抗配線同士の接続配線のレイアウトの面積最小化と同一ビット内の基本抵抗に掛かる電界や応力に差が生じないようにする配慮からである。   Currently, a bleeder resistance circuit that can change a voltage dividing ratio by trimming used in a semiconductor integrated circuit is composed of a high-resistance wiring region and a trimming fuse region. A high resistance material is formed in a wiring pattern of the same shape having the same length and the same width, and a plurality of such high resistance materials are arranged, and a desired resistance value is obtained by connecting these wirings in series or in parallel. One of the same-shaped wiring patterns is referred to as a basic resistance wiring in the following description. The bleeder resistor is composed of a series connection of a plurality of resistance circuit units for obtaining a reference resistance voltage dividing ratio and a trimming fuse. The resistor circuit can also be classified into a fixed resistor circuit portion having a fixed resistance value that is not trimmed and a correction resistor portion that can correct the resistance by fuse trimming. As the trimming correction bit of the correction resistor section, one basic resistor wiring, two wires, four wires,... N 2 power resistors connected in series, two wires, four wires,. In general, a method of forming a correction circuit for 2n + 1 bits using basic resistance wirings connected in parallel to the nth power of n is adopted. The advantage of this configuration is that the number of fuses to be trimmed is small, the range of the desired resistance value to be trimmed is large, and resistance correction is possible with high resolution in units of 2 n parallel connection resistance values of the basic resistance wiring It is a thing. Furthermore, a 2n + 1-bit correction circuit can be created with (2 ^ (n + 2) -3) basic resistance wires, and the circuit layout area can be designed to be relatively small. The resistance circuit of each bit connected in series and in parallel is formed by connecting adjacent basic resistance wirings. This is because the area of the layout of the connection wiring between the basic resistance wirings is minimized and consideration is made to prevent a difference in electric field or stress applied to the basic resistance in the same bit.

しかしながら、このブリーダ抵抗の回路構成では、同一特性の基本抵抗配線であるはずの抵抗値がばらつくことにより回路定数から算出する狙いのトリミング後の分圧値と実際のトリミング後の分圧値に差が生じる問題点を含む。直列あるいは並列に接続した基本抵抗配線は、それぞれの回路定数から算出する抵抗値と実際の抵抗値に若干ズレが生じる事実が判明している。   However, in this bleeder resistor circuit configuration, the resistance value, which should be the basic resistance wiring with the same characteristics, varies, so the difference between the target partial voltage value after trimming calculated from the circuit constants and the actual partial voltage value after trimming is different. Including problems that occur. It has been found that the basic resistance wiring connected in series or in parallel has a slight difference between the resistance value calculated from each circuit constant and the actual resistance value.

そこで、このような問題を解決する方法として、各基本抵抗配線の動作点電位に対し近隣の電位が異なることが所望の抵抗値が得られない主原因と考え、各基本抵抗配線の下層および上層に電極を形成し基本抵抗配線に接続することで近隣電位を抵抗の動作点電位に固定する方法が開示されている。(例えば、特許文献1および特許文献2参照)。   Therefore, as a method for solving such a problem, it is considered that the fact that the neighboring potential is different from the operating point potential of each basic resistance wiring is the main cause that the desired resistance value cannot be obtained, and the lower and upper layers of each basic resistance wiring A method is disclosed in which an adjacent electrode potential is fixed to an operating point potential of a resistor by forming an electrode on the substrate and connecting it to a basic resistance wiring. (For example, refer to Patent Document 1 and Patent Document 2).

また、別の方法として、水素アニール量により抵抗材料の抵抗値が変化することを利用し、基本抵抗配線上に金属電極を配置し基本抵抗配線と金属電極の位置を漸次変化させ調整することで、水素アニール工程での各基本抵抗配線に届く水素量を調整でき所望の抵抗値を得る方法が開示されている。(例えば、特許文献3参照)。   As another method, by utilizing the fact that the resistance value of the resistance material changes depending on the amount of hydrogen annealing, a metal electrode is arranged on the basic resistance wiring, and the position of the basic resistance wiring and the metal electrode is gradually changed and adjusted. A method of obtaining a desired resistance value by adjusting the amount of hydrogen reaching each basic resistance wiring in the hydrogen annealing process is disclosed. (For example, refer to Patent Document 3).

特開2002−76281号公報JP 2002-762281 A 特開2003−234405号公報JP 2003-234405 A 特開2006−49581号公報JP 2006-49581 A

しかしながら、上述の特許文献1、2、3は、製造工程内のばらつきが各基本抵抗配線をばらつかせていることに対しては対応策を開示していない。基本抵抗配線1本1本のばらつきを鑑みると、隣接基本抵抗配線同士の抵抗値の差はほとんどないが、遠く離れるほど基本抵抗同士の抵抗値の差は発生しやすい傾向にある。ばらつき原因として、高抵抗配線材料自身の膜厚ばらつき・不純物導入にインプラを使用する場合はマイクロユニフォミティ効果・フォトリソグラフ工程でのレジスト膜厚差やフォーカスずれから生じる線幅差・ドライエッチング工程でのローディング効果・熱工程の熱および雰囲気の面内ばらつき・製品完成後の応力差等、多種多様な項目が挙げられ、離れた基本抵抗配線同士ほど抵抗値の差は大きくなりやすい。   However, the above-mentioned Patent Documents 1, 2, and 3 do not disclose countermeasures against variations in the manufacturing process causing the basic resistance wirings to vary. In view of the variation of each basic resistance wiring, there is almost no difference in resistance value between adjacent basic resistance wirings, but there is a tendency that the difference in resistance value between basic resistances tends to occur as the distance increases. As the cause of variation, the film thickness variation of the high resistance wiring material itself. When using the implanter to introduce impurities, the micro uniformity effect, the resist film thickness difference in the photolithographic process, the line width difference caused by the focus shift, the dry etching process There are various items such as loading effect, in-plane variation of heat and atmosphere of the thermal process, stress difference after product completion, etc. The difference in resistance value tends to increase as the basic resistance wirings are separated.

ブリーダ抵抗回路の各抵抗回路ブロックの構成要素は隣接した基本抵抗配線を使用して回路を構成するため、各回路ブロック間の基本抵抗配線の距離は離れて設置されており、前述の基本抵抗配線の抵抗値差が回路ブロック間の抵抗値差として影響を受けることになる。ある抵抗回路部は抵抗値が高くなり、逆に抵抗値が低くなる抵抗回路部も存在する。その結果、トリミングにより回路定数より算出した所望の分圧値と実際の分圧値にズレが発生しやくなる。   Since the constituent elements of each resistance circuit block of the bleeder resistance circuit are configured by using adjacent basic resistance wiring, the distance between the basic resistance wirings between the circuit blocks is set apart. Is affected as a resistance value difference between circuit blocks. There is also a resistance circuit unit in which a certain resistance circuit unit has a high resistance value and conversely a low resistance value. As a result, the difference between the desired partial pressure value calculated from the circuit constant by trimming and the actual partial pressure value is likely to occur.

また、2n+1ビットの補正回路は(2^(n+2)−3)本分の基本抵抗配線で作成されるため、高精度が必要な回路、すなわちビット数を大きくするほど基本抵抗配線数は指数的に増加し、各補正ビット抵抗の回路ブロックの距離が大きく離れ、所望の補正ビット抵抗値と実際の補正ビット抵抗値にズレが発生しやすいことになる。高精度の多ビット補正回路を有するほど低精度となる矛盾が生じることが考えられる。   In addition, since 2n + 1-bit correction circuits are created with (2 ^ (n + 2) -3) basic resistance wirings, a circuit that requires high accuracy, that is, the number of basic resistance wirings increases as the number of bits increases. As a result, the distance between the circuit blocks of the respective correction bit resistors is greatly increased, and a difference between the desired correction bit resistance value and the actual correction bit resistance value is likely to occur. It is conceivable that the more accurate the multi-bit correction circuit is, the more inconsistent it becomes.

そこで、本発明においては、トリミングにより分圧比を変更可能なブリーダ抵抗回路を備える半導体装置において、ブリーダ抵抗回路を2段以上の直列接続した抵抗回路部で構成し、それらの抵抗回路部の抵抗素子として同一材料、同一長さ、同一幅、かつ、同一厚みの基本抵抗配線を少なくとも2本以上接続した形態で形成し、ブリーダ抵抗回路を構成する基本抵抗配線は半導体装置内の1領域に全て集合して整列配置され、それぞれの抵抗回路部の基本抵抗配線は少なくとも2分割以上されて他の抵抗回路部の基本配線抵抗を挟んで配置されていることにより、離れた基本抵抗配線の抵抗値差を各抵抗回路部に分散して影響する構成とした。   Therefore, in the present invention, in a semiconductor device including a bleeder resistance circuit capable of changing a voltage dividing ratio by trimming, the bleeder resistance circuit is configured by two or more stages of series-connected resistance circuit sections, and the resistance elements of these resistance circuit sections Are formed in a form in which at least two basic resistance wirings of the same material, the same length, the same width and the same thickness are connected, and all the basic resistance wirings constituting the bleeder resistance circuit are gathered in one region in the semiconductor device. The basic resistance wirings of the respective resistance circuit sections are divided into at least two parts and arranged with the basic wiring resistances of the other resistance circuit sections sandwiched between them, so that the resistance value difference between the separated basic resistance wirings The configuration is such that each resistor circuit portion is affected in a distributed manner.

基本抵抗配線の接続に必要なレイアウト面積は増加してしまうが、多層配線技術を用いることでレイアウト面積もさほど大きくはならなくなる。   Although the layout area required for connection of the basic resistance wiring increases, the layout area does not become so large by using the multilayer wiring technique.

また、数すくない前記基本抵抗配線にて構成されていた抵抗回路部、すなわち1本の基本抵抗での補正ビット抵抗回路や、2本の基本抵抗を並列または直列に接続した補正ビット抵抗回路などに対しては、n段の直列接続と同n段の並列接続を併用することによりn^2倍の本数の基本抵抗配線を使用する回路とすることにより、各抵抗回路部の基本抵抗配線の構成本数を増加させ、前述のように分散して配置するようにした。   In addition, in the resistor circuit portion constituted by the basic resistor wiring which is not numerous, that is, a correction bit resistor circuit with one basic resistor, a correction bit resistor circuit in which two basic resistors are connected in parallel or in series, etc. On the other hand, by using the n-stage series connection and the n-stage parallel connection together to form a circuit using n ^ 2 times the number of basic resistance wirings, the configuration of the basic resistance wiring of each resistance circuit section The number was increased and distributed as described above.

この手法により離れた基本抵抗の抵抗値差を全抵抗回路部に対し分散させることができるようになる。その結果、離れあった基本抵抗配線の抵抗値に差があっても、それぞれの抵抗回路部は同様な影響を受け、所望のブリーダ分圧比を正確に得ることができる。   By this method, it becomes possible to disperse the resistance value difference between the separated basic resistors with respect to the entire resistance circuit portion. As a result, even if there is a difference in the resistance values of the separated basic resistance wires, the respective resistance circuit portions are similarly affected, and a desired bleeder voltage dividing ratio can be accurately obtained.

本発明によれば、安定して精度の良い分圧比にトリミング可能なブリーダ抵抗回路を備える半導体装置を提供することができる。   According to the present invention, it is possible to provide a semiconductor device including a bleeder resistance circuit that can be trimmed to a stable and accurate voltage dividing ratio.

本発明におけるブリーダ抵抗回路の1例を示す抵抗レイアウト略図である。It is a resistor layout schematic diagram showing an example of a bleeder resistance circuit in the present invention. 本発明におけるブリーダ抵抗回路の1例を示す回路図である。It is a circuit diagram which shows one example of the bleeder resistance circuit in this invention. 従来のブリーダ抵抗回路の抵抗レイアウト略図である。It is a resistance layout schematic diagram of a conventional bleeder resistance circuit. 従来のブリーダ抵抗回路の回路図であるIt is a circuit diagram of the conventional bleeder resistance circuit.

本発明を実施するための形態について図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described with reference to the drawings.

以下、半導体装置に関する実施形態を、簡単な5ビットのトリミング補正回路を持つブリーダ回路を例にとって説明する。   Hereinafter, an embodiment relating to a semiconductor device will be described by taking a bleeder circuit having a simple 5-bit trimming correction circuit as an example.

図1は、本発明におけるブリーダ抵抗回路の1例を示す抵抗レイアウト略図である。図2は、図1の抵抗レイアウト略図の回路図となる。同一高抵抗材料を同一の長さと同一の幅をもつ同一形状の配線パターンを形成し20個並べ、この同一形状配線パターンを基本抵抗配線と称する。20個並んだ基本抵抗配線は理想的には同じ抵抗値を持ち、各抵抗を直列や並列に接続して5ビットのトリミング補正回路を持つブリーダ抵抗回路を形成している。基本抵抗配線101,102,103,104の4本の基本抵抗配線を直列接続した抵抗とトリミングヒューズ105が並列接続される補正第1ビット抵抗回路部100と、基本抵抗配線201,202の2本の基本抵抗配線を直列接続した抵抗とトリミングヒューズ205が並列接続される補正第2ビット抵抗回路部200と、基本抵抗配線301,302、303,304の4本の基本抵抗配線で2本並列接続しさらに2段直列接続した抵抗とトリミングヒューズ305が並列接続される補正第3ビット抵抗回路部300と、基本抵抗配線401,402の2本の基本抵抗配線を並列接続した抵抗をトリミングヒューズ405が並列接続される補正第4ビット抵抗回路部400と、基本抵抗配線501,502,503,504の4本の基本抵抗配線を並列接続した抵抗とトリミングヒューズ505が並列接続される補正第5ビット抵抗回路部500と、基本抵抗配線601,602,603,604の4本の基本抵抗配線で2本並列接続しさらに2段直列接続した抵抗の固定抵抗回路部600の、6つ抵抗回路部からなる。一方の電圧入力端子1001は補正第1ビット抵抗回路部100に接続され、以下順に補正第2ビット抵抗回路部200、補正第3ビット抵抗回路部300、補正第4ビット抵抗部400、補正第5ビット抵抗部500、電圧出力端子1002、固定抵抗回路部600、他方の電圧入力端子1003と直列に接続される。   FIG. 1 is a schematic diagram of a resistance layout showing an example of a bleeder resistance circuit according to the present invention. FIG. 2 is a circuit diagram of the resistor layout schematic diagram of FIG. Twenty pieces of the same high resistance material having the same length and width and having the same shape are formed and arranged, and this same shape wiring pattern is referred to as a basic resistance wiring. The 20 basic resistor wirings ideally have the same resistance value, and each resistor is connected in series or in parallel to form a bleeder resistance circuit having a 5-bit trimming correction circuit. A corrected first bit resistor circuit unit 100 in which a resistor in which four basic resistor wires 101, 102, 103, and 104 are connected in series and a trimming fuse 105 are connected in parallel, and two basic resistor wires 201 and 202 are provided. A correction second bit resistance circuit unit 200 in which a basic resistance wiring is connected in series and a trimming fuse 205 are connected in parallel, and four basic resistance wirings 301, 302, 303, and 304 are connected in parallel. In addition, the trimming fuse 405 includes a correction third-bit resistance circuit unit 300 in which two stages of resistors connected in series and the trimming fuse 305 are connected in parallel, and a resistor in which two basic resistance wires 401 and 402 are connected in parallel. The corrected fourth bit resistor circuit unit 400 connected in parallel and the four basic resistor wires 501, 502, 503, and 504 A correction fifth bit resistor circuit unit 500 in which a resistor connected in parallel with this resistor wire and a trimming fuse 505 are connected in parallel and two basic resistor wires 601, 602, 603, and 604 are connected in parallel. Furthermore, it consists of six resistance circuit parts of the fixed resistance circuit part 600 of resistors connected in series in two stages. One voltage input terminal 1001 is connected to the corrected first bit resistor circuit unit 100, and the corrected second bit resistor circuit unit 200, the corrected third bit resistor circuit unit 300, the corrected fourth bit resistor unit 400, the corrected fifth bit resistor unit 100 in this order. The bit resistor unit 500, the voltage output terminal 1002, the fixed resistor circuit unit 600, and the other voltage input terminal 1003 are connected in series.

図1、図2の本発明の1例を示すブリーダ抵抗回路では、トリミングヒューズをカットすることにより、カットされた回路ブロックの抵抗が回路上に追加される構成となる。ヒューズのカット方法は5ビット、すなわち32通り存在し、電圧入力端子1001と電圧入力端子1003間にかかる電圧に対して、電圧出力端子1002と電圧入力端子1003間には11.4286%〜100%の出力電圧を得られる。   In the bleeder resistance circuit shown in FIG. 1 and FIG. 2 as an example of the present invention, the resistance of the cut circuit block is added to the circuit by cutting the trimming fuse. The fuse cutting method has 5 bits, that is, 32 kinds, and the voltage applied between the voltage input terminal 1001 and the voltage input terminal 1003 is 11.4286% to 100% between the voltage output terminal 1002 and the voltage input terminal 1003. Output voltage can be obtained.

図3は従来のブリーダ抵抗回路の抵抗レイアウト略図であり、図4は、図3の従来の抵抗レイアウト略図の回路図である。本発明の実施例図1、図2では基本抵抗配線の本数は20本で構成されているのに対し、図3、図4の従来方法では14本で構成されている。補正第3ビット抵抗回路部300、および、固定抵抗回路部600は、図3、図4の従来方法では1本の基本抵抗配線からなり、おのおの基本抵抗配線301および基本抵抗配線601で構成されている。一方、本発明の実施例図1、図2では4本数の基本抵抗を用いて構成されている。また、図1のレイアウト略図によれば、各6抵抗回路部の構成要素の基本抵抗は、異なる抵抗回路部の基本抵抗配線に隣接配置され、それぞれの抵抗回路部が入り乱れて分散配置されている。従来の図3のレイアウト略図では同一抵抗回路部内の基本抵抗配線が抵抗回路部毎に隣接配置されている。   FIG. 3 is a schematic diagram of a resistance layout of a conventional bleeder resistor circuit, and FIG. 4 is a circuit diagram of the conventional resistor layout diagram of FIG. Embodiments of the Present Invention In FIGS. 1 and 2, the number of basic resistance wires is 20, whereas in the conventional method of FIGS. 3 and 4, it is 14. The corrected third bit resistor circuit unit 300 and the fixed resistor circuit unit 600 are composed of one basic resistor wiring in the conventional method of FIGS. 3 and 4, and are configured by the basic resistor wiring 301 and the basic resistor wiring 601. Yes. On the other hand, the embodiment of the present invention is constructed by using four basic resistors in FIGS. In addition, according to the schematic layout of FIG. 1, the basic resistances of the components of each of the six resistance circuit units are arranged adjacent to the basic resistance wiring of different resistance circuit units, and the respective resistance circuit units are confused and distributed. . In the conventional layout schematic diagram of FIG. 3, the basic resistance wiring in the same resistance circuit portion is arranged adjacent to each resistance circuit portion.

基本抵抗配線1本1本のばらつきを鑑みると、隣接基本抵抗配線同士の抵抗値の差はほとんどないが、遠く離れるほど基本抵抗配線同士の抵抗値の差は発生しやすい傾向にあるのは既に述べたとおりである。面内ばらつきが存在すれば、距離が離れた基本抵抗配線の抵抗値に差が生じやすい。ばらつき原因として、高抵抗配線材料自身の膜厚ばらつき・不純物導入にインプラを使用する場合はマイクロユニフォミティ効果・フォトリソグラフ工程でのレジスト膜厚差やフォーカス差から生じる線幅差・ドライエッチング工程でのローディング効果・熱工程の熱および雰囲気の面内ばらつき・製品完成後の応力差等多種多様な項目が挙げられる。   Considering the variation of each basic resistance wiring, there is almost no difference in the resistance value between adjacent basic resistance wirings, but it is already that the difference in resistance value between the basic resistance wirings tends to occur as the distance increases. As stated. If there is in-plane variation, a difference is likely to occur in the resistance values of the basic resistance wires that are separated from each other. As the cause of variation, the film thickness variation of the high resistance wiring material itself. When using the implanter to introduce impurities, the micro uniformity effect. There are various items such as loading effect, in-plane variation of heat and atmosphere in the thermal process, stress difference after product completion.

図3、図4の従来のブリーダ抵抗回路の各回路ブロックでは、各々の抵抗回路部毎に配置され、各抵抗回路部間の基本抵抗配線は距離が離れており、基本抵抗の抵抗値差が抵抗回路部間の抵抗値差として影響を受けやすい。ある抵抗回路部は抵抗値が高くなり、逆に抵抗値が低くなる抵抗回路部も存在するであろう。その結果、回路定数より算出した所望の分圧値とトリミング後の実際の分圧値にズレが発生しやくなる。一方、図1、図2の本発明の1例を示すブリーダ抵抗回路では、抵抗回路部の構成要素の基本抵抗配線が、全抵抗回路部が入り乱れて分散して配置されており、全抵抗回路部が同じ程度のばらつき影響を受けることになる。   In each circuit block of the conventional bleeder resistance circuit of FIG. 3 and FIG. 4, it is arranged for each resistance circuit section, and the basic resistance wiring between each resistance circuit section is separated, and the resistance value difference of the basic resistance is It is easily affected by the difference in resistance between the resistance circuit parts. There may be a resistance circuit portion in which a resistance value of a certain resistance circuit portion is high, and conversely, a resistance value is low. As a result, the difference between the desired partial pressure value calculated from the circuit constant and the actual partial pressure value after trimming tends to occur. On the other hand, in the bleeder resistance circuit shown in FIG. 1 and FIG. 2 as an example of the present invention, the basic resistance wiring as the constituent elements of the resistance circuit section is arranged in a distributed manner in which all the resistance circuit sections are disturbed. The parts are affected by the same degree of variation.

仮に図1の最上端の配置された基本抵抗配線101が1000Ωの抵抗値であり、隣接する基本抵抗配線が下に1つ移行するにつれ、基本抵抗配線202が1001Ω、基本抵抗配線301が1002Ω・・・最下端の基本抵抗配線602が1019Ωとして、ほぼ抵抗値の0.1%である1Ωずつ隣接した抵抗値が上昇する製造ばらつきを持っていた場合、トリミング後の出力電圧と全基本抵抗配線の抵抗値ばらつきのない理想出力電圧とのズレは、32通りのトリミングをして、ズレの最大値は0.40%となる。また、図3の従来方法についても同様なばらつきとして、基本抵抗配線101が1000Ω、基本抵抗配線102が1001Ω・・・最下端の基本抵抗配線601が1013Ωとして計算すると、32通りのトリミングを行ったときのズレ最大値は0.92%となる。レイアウトが大きくなり基本抵抗配線間のばらつきレンジが大きくなっても、本発明の手法を取ることで製造ばらつきによる悪影響を小さくでき、精度良いブリーダ抵抗を提供できる。実際の製造ばらつきは、上述のような規則的に上昇する値を示すとは限らないが、距離が離れるほど基本抵抗の抵抗値の差が大きくなる傾向を持ち、この傾向がある限り本発明の手法を取ることで精度良いブリーダ抵抗を提供できる。   If the basic resistance wiring 101 arranged at the uppermost end of FIG. 1 has a resistance value of 1000Ω, the basic resistance wiring 202 is 1001Ω and the basic resistance wiring 301 is 1002Ω. ..If the basic resistance wiring 602 at the lowermost end is 1019Ω, and there is a manufacturing variation in which the adjacent resistance value increases by 1Ω, which is approximately 0.1% of the resistance value, the output voltage after trimming and all the basic resistance wiring The deviation from the ideal output voltage with no variation in the resistance value is obtained by performing 32 trimmings, and the maximum deviation is 0.40%. In addition, regarding the conventional method of FIG. 3, as the same variation, 32 basic trimmings were performed when the basic resistance wiring 101 was 1000Ω, the basic resistance wiring 102 was 1001Ω, and the lowest basic resistance wiring 601 was 1013Ω. The maximum deviation is 0.92%. Even if the layout becomes large and the variation range between the basic resistance wirings becomes large, the adverse effect due to the manufacturing variation can be reduced by using the method of the present invention, and a bleeder resistor with high accuracy can be provided. The actual manufacturing variation does not always indicate a value that regularly increases as described above, but the difference in the resistance value of the basic resistance tends to increase as the distance increases. By using this method, a bleeder resistance with high accuracy can be provided.

また、図1のように抵抗回路部を規則正しく順番に並べたりしなくとも、ブリーダ抵抗の全抵抗回路部の構成要素である基本抵抗配線を各々の抵抗回路部毎に偏らせず分散させて配置することでこの効果を得ることができる。   In addition, even if the resistance circuit units are not arranged in order in a regular manner as shown in FIG. 1, the basic resistance wiring, which is a constituent element of all resistance circuit units of the bleeder resistor, is distributed and distributed for each resistance circuit unit. This effect can be obtained.

抵抗回路部によっては基本抵抗配線の本数が少ないため、分散配置ができないこともありえよう。そのような場合にはn段の直列接続とn段の並列接続とを併用することにより、n^2倍の本数からなる基本抵抗配線を使用する回路とする構成に変更することで、全体の本数を増やして分散させて配置させることが可能となる。図1、図2の例では基本抵抗配線301、302,303,304および601,602,603,604は、図3、図4において各1本からなる基本抵抗配線301、601を、この手法を用いて4本ずつに増加させた例である。   Depending on the resistance circuit part, the number of basic resistance wirings is small, so it may not be possible to distribute them. In such a case, by using a combination of n stages of series connections and n stages of parallel connections, the configuration is changed to a circuit that uses basic resistance wiring composed of n ^ 2 times the total number. It is possible to increase the number and distribute them. In the example of FIGS. 1 and 2, the basic resistance wirings 301, 302, 303, 304 and 601, 602, 603, 604 are the same as the basic resistance wirings 301, 601 in FIG. 3 and FIG. This is an example of increasing the number by four.

100 補正第1ビット抵抗回路部
101、102、103、104 基本抵抗配線
105 トリミングヒューズ
200 補正第2ビット抵抗回路部
201、202 基本抵抗配線
205 トリミングヒューズ
300 補正第3ビット抵抗回路部
301、302、303、304 基本抵抗配線
305 トリミングヒューズ
400 補正第4ビット抵抗回路部
401、402 基本抵抗配線
405 トリミングヒューズ
500 補正第5ビット抵抗回路部
501、502、503、504 基本抵抗配線
505 トリミングヒューズ
600 固定抵抗回路部
601、602、603、604 基本抵抗配線
1001 電圧入力端子
1002 電圧出力端子
1003 電圧入力端子
100 corrected first bit resistance circuit unit 101, 102, 103, 104 basic resistance wiring 105 trimming fuse 200 corrected second bit resistance circuit unit 201, 202 basic resistance wiring 205 trimming fuse 300 corrected third bit resistance circuit unit 301, 302, 303, 304 Basic resistance wiring 305 Trimming fuse 400 Correction fourth bit resistance circuit section 401, 402 Basic resistance wiring 405 Trimming fuse 500 Correction fifth bit resistance circuit section 501, 502, 503, 504 Basic resistance wiring 505 Trimming fuse 600 Fixed resistance Circuit unit 601, 602, 603, 604 Basic resistance wiring 1001 Voltage input terminal 1002 Voltage output terminal 1003 Voltage input terminal

Claims (2)

トリミングにより分圧比を変更可能なブリーダ抵抗回路を備える半導体装置であって、
前記ブリーダ抵抗回路は2段以上の直列接続した抵抗回路部で構成され、
前記抵抗回路部はそれぞれ、同一材料、同一長さ、同一幅、かつ、同一厚みの基本抵抗配線を少なくとも2本以上接続してなる抵抗素子から形成され、
前記ブリーダ抵抗回路を構成する前記基本抵抗配線は前記半導体装置内の1領域に全て集合して整列配置され、
それぞれの前記抵抗回路部を構成する前記基本抵抗配線は少なくとも2分割以上されて他の前記抵抗回路部の前記基本配線抵抗を挟んで配置されていることを特徴とする半導体装置。
A semiconductor device including a bleeder resistance circuit capable of changing a voltage division ratio by trimming,
The bleeder resistance circuit is composed of two or more stages of resistance circuit units connected in series,
Each of the resistance circuit portions is formed of a resistance element formed by connecting at least two basic resistance wires having the same material, the same length, the same width, and the same thickness,
The basic resistance wirings constituting the bleeder resistance circuit are all arranged and aligned in one region in the semiconductor device,
2. The semiconductor device according to claim 1, wherein the basic resistance wiring constituting each of the resistance circuit portions is divided into at least two parts and arranged with the basic wiring resistance of the other resistance circuit portions interposed therebetween.
前記基本抵抗配線の一部は、基本抵抗配線のn段の直列接続と同n段の並列接続により構成されていることを特徴とする請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein a part of the basic resistance wiring is constituted by n series connection of the basic resistance wiring and n parallel connection of the basic resistance wiring.
JP2010071080A 2010-03-25 2010-03-25 Semiconductor device Pending JP2011204925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010071080A JP2011204925A (en) 2010-03-25 2010-03-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071080A JP2011204925A (en) 2010-03-25 2010-03-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2011204925A true JP2011204925A (en) 2011-10-13

Family

ID=44881265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071080A Pending JP2011204925A (en) 2010-03-25 2010-03-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2011204925A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041950A1 (en) * 2012-09-14 2014-03-20 セイコーインスツル株式会社 Voltage divider circuit
JP2018037693A (en) * 2012-02-03 2018-03-08 ローム株式会社 Chip resistor
CN107895618A (en) * 2012-02-03 2018-04-10 罗姆股份有限公司 Patch resistor
JP2018061069A (en) * 2011-12-28 2018-04-12 ローム株式会社 Chip resistor
JP2019145833A (en) * 2011-12-28 2019-08-29 ローム株式会社 Chip resistor
US10410772B2 (en) 2011-12-28 2019-09-10 Rohm Co., Ltd. Chip resistor
WO2023085026A1 (en) * 2021-11-12 2023-05-19 ローム株式会社 Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061069A (en) * 2011-12-28 2018-04-12 ローム株式会社 Chip resistor
JP2019145833A (en) * 2011-12-28 2019-08-29 ローム株式会社 Chip resistor
US10410772B2 (en) 2011-12-28 2019-09-10 Rohm Co., Ltd. Chip resistor
JP2020017771A (en) * 2011-12-28 2020-01-30 ローム株式会社 Discrete component
JP2018037693A (en) * 2012-02-03 2018-03-08 ローム株式会社 Chip resistor
CN107895618A (en) * 2012-02-03 2018-04-10 罗姆股份有限公司 Patch resistor
JP2019149571A (en) * 2012-02-03 2019-09-05 ローム株式会社 Chip resistor
WO2014041950A1 (en) * 2012-09-14 2014-03-20 セイコーインスツル株式会社 Voltage divider circuit
JP2014059620A (en) * 2012-09-14 2014-04-03 Seiko Instruments Inc Voltage division circuit
WO2023085026A1 (en) * 2021-11-12 2023-05-19 ローム株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP2011204925A (en) Semiconductor device
US20130341301A1 (en) Method for manufacturing a chip resistor
JP6284295B2 (en) Voltage divider circuit
CN105006475B (en) Resistor assembly for mobile device and manufacturing method thereof
JP2009206122A (en) Semiconductor device
JP2023533731A (en) Integrated resistor network and method of making same
JP4919642B2 (en) Semiconductor device
TWI500113B (en) Process tunable resistor with user selectable values
US7154370B2 (en) High precision power resistors
US20060164202A1 (en) Resistor having uniform resistance and semiconductor device using the same
JP5890989B2 (en) Thin film resistor
US4565000A (en) Matching of resistor sensitivities to process-induced variations in resistor widths
WO2021095308A1 (en) Strain gauge/module
US10205031B2 (en) Semiconductor device having resistance voltage dividing circuit
JP2007227478A (en) Method of manufacturing semiconductor chip
WO2005112052A1 (en) Resistor element, its precursor and resistance value regulating method
JP2006086211A (en) Semiconductor device
JP2014220491A (en) Thin film resistor group and multilayer wiring board having the same built-in
TWI716000B (en) Precision resistor and its manufacturing method
JPWO2012039175A1 (en) Metal plate low resistance chip resistor manufacturing method
JP2008205258A (en) Semiconductor device and its trimming method
US11545480B2 (en) Integrated circuit with single level routing
JP2013062422A (en) Semiconductor integrated circuit
JP5531488B2 (en) Semiconductor device
JP2011233809A (en) Polycrystalline silicon resistor