JP2011204520A - Hydrogen storage alloy electrode and nickel-hydrogen battery - Google Patents
Hydrogen storage alloy electrode and nickel-hydrogen battery Download PDFInfo
- Publication number
- JP2011204520A JP2011204520A JP2010071683A JP2010071683A JP2011204520A JP 2011204520 A JP2011204520 A JP 2011204520A JP 2010071683 A JP2010071683 A JP 2010071683A JP 2010071683 A JP2010071683 A JP 2010071683A JP 2011204520 A JP2011204520 A JP 2011204520A
- Authority
- JP
- Japan
- Prior art keywords
- storage alloy
- hydrogen storage
- alloy layer
- nickel
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、ニッケル水素電池の水素吸蔵合金電極、およびニッケル水素電池に関する。 The present invention relates to a hydrogen storage alloy electrode of a nickel metal hydride battery and a nickel metal hydride battery.
ニッケル水素電池では、充電時にアルカリ水溶液を電気分解して得られる水素を吸蔵する水素吸蔵合金粒子を含む層を負極集電体上に形成し、放電時には吸蔵した水素を放出し、酸化して水とする反応が生じている。 In a nickel metal hydride battery, a layer containing hydrogen storage alloy particles that store hydrogen obtained by electrolyzing an alkaline aqueous solution at the time of charging is formed on the negative electrode current collector, and the stored hydrogen is released during discharge and is oxidized to water. The following reaction occurs.
かかるニッケル水素電池の課題として、充電時に負極で発生する水素ガスと正極で発生する酸素ガスによって上昇する電池の内圧上昇の抑制が重要であり、また、放電時に発生した水による水素ガスの放出阻害によって、電池容量の低下、サイクル特性の低下、負荷特性の低下などが生じてしまうことを抑制することも重要である。 As a problem of such a nickel metal hydride battery, it is important to suppress an increase in the internal pressure of the battery that is increased by hydrogen gas generated at the negative electrode and oxygen gas generated at the positive electrode, and also inhibits hydrogen gas release by water generated during discharge. Therefore, it is also important to prevent the battery capacity, cycle characteristics, load characteristics, and the like from being reduced.
そこで、水素吸蔵合金粒子の表面を撥水化させて、水素吸蔵合金粒子表面を固体(合金層)−液体(水またはアルカリ水溶液)−気体(水素ガス)の3相界面状態とすることで、前記課題を改善することが提案されている。 Therefore, by making the surface of the hydrogen storage alloy particles water repellent, the surface of the hydrogen storage alloy particles is brought into a three-phase interface state of solid (alloy layer) -liquid (water or aqueous alkali solution) -gas (hydrogen gas), It has been proposed to improve the problem.
特許文献1〜2では、ポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)共重合体(FEP)などの有機溶媒に難溶の固体フッ素樹脂粒子のディスパージョンを水素吸蔵合金層に塗布し、撥水性のフッ素樹脂粒子を水素吸蔵合金粒子表面に点在させる方法が提案されている。 In Patent Documents 1 and 2, a dispersion of solid fluororesin particles hardly soluble in an organic solvent such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) copolymer (FEP) is used. There has been proposed a method of applying to a hydrogen storage alloy layer and interspersing the surface of the hydrogen storage alloy particles with water-repellent fluororesin particles.
特許文献3では、加水分解性シリル基(ヒドロシリル基)を両末端に有するパーフルオロポリエーテルを撥水剤としてフッ素系溶剤に溶解した溶液を水素吸蔵合金層に塗布し、撥水層で水素吸蔵合金粒子の表面を被覆する方法が提案されている。 In Patent Document 3, a solution in which a perfluoropolyether having hydrolyzable silyl groups (hydrosilyl groups) at both ends is dissolved in a fluorine-based solvent as a water repellent is applied to the hydrogen storage alloy layer, and the water repellent layer stores hydrogen. A method for coating the surface of alloy particles has been proposed.
特許文献4〜5では、フッ素樹脂ポリマー(パーフルオロブテニルビニルエーテル重合体、パーフルオロアリルビニルエーテル重合体またはテトラフルオロエチレン/パーフルオロ−2,2−ジメチル−1,3−ジオキソール共重合体)のフッ素系溶剤の溶液を水素吸蔵合金層に塗布(またはスプレー)し、撥水層を水素吸蔵合金粒子表面に形成(点在)する方法が提案されている。 In Patent Documents 4 to 5, fluorine of a fluororesin polymer (perfluorobutenyl vinyl ether polymer, perfluoroallyl vinyl ether polymer or tetrafluoroethylene / perfluoro-2,2-dimethyl-1,3-dioxole copolymer). There has been proposed a method in which a solution of a system solvent is applied (or sprayed) to a hydrogen storage alloy layer, and a water repellent layer is formed (spotted) on the surface of the hydrogen storage alloy particles.
特許文献6では、炭素含有水素吸蔵合金粒子の表面に存在する炭素の一部または全部をフッ素化することで水素吸蔵合金粒子表面に3相界面状態を形成することが提案されている。 Patent Document 6 proposes forming a three-phase interface state on the surface of the hydrogen storage alloy particles by fluorinating part or all of the carbon present on the surface of the carbon-containing hydrogen storage alloy particles.
特許文献7には、水素吸蔵合金層を形成するためのペーストとして、水素吸蔵合金粒子に対して、特定の不飽和基含有含フッ素アミド化合物とヒドロシリル基を2個以上有するパーフルオロポリエーテルと硬化用の白金触媒とを含む硬化性組成物を5重量%以下配合した水素吸蔵合金層形成材料が記載されている。 In Patent Document 7, as a paste for forming a hydrogen storage alloy layer, a perfluoropolyether having two or more specific unsaturated group-containing fluorine-containing amide compounds and two or more hydrosilyl groups is cured with respect to the hydrogen storage alloy particles. The hydrogen storage alloy layer forming material which mix | blended 5 weight% or less of the curable composition containing the platinum catalyst for this is described.
しかし、撥水性のフッ素樹脂粒子を水素吸蔵合金粒子表面に点在させる方法(特許文献1〜2)では、難溶性のフッ素樹脂粒子層を水素吸蔵合金粒子表面に形成するための工程が必要となり、また、フッ素樹脂粒子を均一に塗布することが難しいといった問題がある。 However, in the method of dispersing water-repellent fluororesin particles on the surface of the hydrogen storage alloy particles (Patent Documents 1 and 2), a process for forming a hardly soluble fluororesin particle layer on the surface of the hydrogen storage alloy particles is required. Moreover, there is a problem that it is difficult to uniformly apply the fluororesin particles.
含フッ素エーテル系ポリマーを撥水剤として用いる特許文献3〜5では、有機溶剤としてフッ素系溶剤を用いる必要があるが、フッ素系溶剤は地球温暖化係数(GWP)が高く、できれば使用しない方が望ましい。 In Patent Documents 3 to 5 using a fluorinated ether polymer as a water repellent, it is necessary to use a fluorinated solvent as the organic solvent. However, the fluorinated solvent has a high global warming potential (GWP), and should not be used if possible. desirable.
また、炭素含有水素吸蔵合金粒子の表面に存在する炭素の一部または全部をフッ素化する特許文献6は、炭素をフッ素化する際に炭素以外の合金も一緒にフッ素化される可能性があるため容量低下などの問題が残る。 Further, in Patent Document 6 in which part or all of carbon existing on the surface of carbon-containing hydrogen storage alloy particles is fluorinated, an alloy other than carbon may be fluorinated together with carbon. Therefore, problems such as capacity reduction remain.
特許文献7は、水素吸蔵合金層を形成した後に撥水層を形成する形態ではなく、水素吸蔵合金層を形成するペースト中に撥水剤として特定のパーフルオロポリエーテルを配合する発明であるが、触媒として白金触媒が必要となるほか、アミド化合物の親水性のアミド基の存在により撥水効果が薄れる傾向にある。 Patent Document 7 is an invention in which a specific perfluoropolyether is blended as a water repellent agent in a paste for forming a hydrogen storage alloy layer, rather than a form of forming a water repellent layer after forming a hydrogen storage alloy layer. In addition to the need for a platinum catalyst as a catalyst, the presence of the hydrophilic amide group of the amide compound tends to reduce the water-repellent effect.
本発明は、撥水性に優れた水素吸蔵合金層を形成するために、容易に適用できかつ環境に優しい材料を検討した結果、完成されたものである。 The present invention has been completed as a result of studying an environment-friendly material that can be easily applied to form a hydrogen storage alloy layer having excellent water repellency.
すなわち本発明は、式(1):Rf−X(式中、Rfは炭素数1〜12のエーテル結合を含んでいてもよいフルオロアルキル基;Xはカルボン酸、スルホン酸、リン酸、ケイ酸およびその誘導体)で示されるフッ素化合物(a)と結着剤(b)と水素吸蔵合金粒子(c)とを含む水素吸蔵合金層(I)を導電性支持体(II)上に有する水素吸蔵合金電極に関する。 That is, the present invention is represented by the formula (1): Rf-X (wherein Rf is a fluoroalkyl group optionally containing an ether bond having 1 to 12 carbon atoms; X is a carboxylic acid, sulfonic acid, phosphoric acid, silicic acid; And a hydrogen storage alloy layer (I) containing a fluorine compound (a), a binder (b), and hydrogen storage alloy particles (c) represented by the following formula: The present invention relates to an alloy electrode.
式(1)のXとしては、カルボン酸エステル、リン酸エステルまたはシリケートであることが好ましい。 X in the formula (1) is preferably a carboxylic acid ester, a phosphoric acid ester or a silicate.
式(1)のRfとしては、炭素数1〜8のフルオロアルキル基であることが好ましい。 Rf in formula (1) is preferably a fluoroalkyl group having 1 to 8 carbon atoms.
水素吸蔵合金層(I)としては、式(1)のフッ素化合物(a)と結着剤(b)と水素吸蔵合金粒子(c)とを含む水素吸蔵合金層形成用ペーストを用いて形成されていてもよいし、結着剤(b)と水素吸蔵合金粒子(c)とを含む水素吸蔵合金層に、有機溶剤または水に分散または溶解した式(1)のフッ素化合物(a)を塗布することにより形成されていてもよい。 The hydrogen storage alloy layer (I) is formed by using a hydrogen storage alloy layer forming paste containing the fluorine compound (a) of the formula (1), the binder (b), and the hydrogen storage alloy particles (c). The fluorine compound (a) of the formula (1) dispersed or dissolved in an organic solvent or water may be applied to the hydrogen storage alloy layer containing the binder (b) and the hydrogen storage alloy particles (c). It may be formed by doing.
本発明はまた、本発明の水素吸蔵合金電極を負極とし、正極およびアルカリ電解液を備えるニッケル水素二次電池にも関する。 The present invention also relates to a nickel-metal hydride secondary battery having the hydrogen storage alloy electrode of the present invention as a negative electrode and including a positive electrode and an alkaline electrolyte.
本発明の水素吸蔵合金電極によれば、撥水性に優れた水素吸蔵合金層を有しており、電池内圧の上昇を抑制でき、サイクル特性や負荷特性に優れたニッケル水素二次電池を提供することができる。 According to the hydrogen storage alloy electrode of the present invention, a nickel hydrogen secondary battery having a hydrogen storage alloy layer excellent in water repellency, capable of suppressing an increase in battery internal pressure, and excellent in cycle characteristics and load characteristics is provided. be able to.
本発明の水素吸蔵合金電極は、式(1)のフッ素化合物(a)と結着剤(b)と水素吸蔵合金粒子(c)とを含む水素吸蔵合金層(I)を導電性支持体(II)上に有する。 The hydrogen storage alloy electrode of the present invention comprises a hydrogen storage alloy layer (I) containing a fluorine compound (a) of the formula (1), a binder (b) and hydrogen storage alloy particles (c) as a conductive support ( II) have on.
以下、各要素について説明する。 Hereinafter, each element will be described.
(I)水素吸蔵合金層
本発明において、水素吸蔵合金層(I)は、式(1)のフッ素化合物(a)と結着剤(b)と水素吸蔵合金粒子(c)とを含む。
(I) Hydrogen storage alloy layer In this invention, hydrogen storage alloy layer (I) contains the fluorine compound (a) of Formula (1), binder (b), and hydrogen storage alloy particle (c).
(a)式(1):Rf−X(式中、Rfは炭素数1〜12のエーテル結合を含んでいてもよいフルオロアルキル基;Xはカルボン酸、スルホン酸、リン酸、ケイ酸およびその誘導体)で示されるフッ素化合物 (A) Formula (1): Rf-X (wherein Rf is a fluoroalkyl group optionally containing an ether bond having 1 to 12 carbon atoms; X is a carboxylic acid, sulfonic acid, phosphoric acid, silicic acid and its Derivatives)
本発明で用いる式(1)のフッ素化合物(a)は、Ni金属への結合性を有し、または撥水性を有することが重要である。 It is important that the fluorine compound (a) of the formula (1) used in the present invention has a binding property to Ni metal or water repellency.
そのためには、
(i)撥水性を発現させるため、Rfはエーテル結合を含んでいてもよいフルオロアルキル基であること、
(ii)Ni金属と結合性を有する官能基を有していること
が重要である。
for that purpose,
(I) In order to express water repellency, Rf is a fluoroalkyl group which may contain an ether bond,
(Ii) It is important to have a functional group capable of binding to Ni metal.
(i)の観点からは、Rfは炭素数が長くてもよいが、炭素数が長いとNi金属へ結合しにくくなり、その結果、撥水性が低下し好ましくない。また炭素数が大きい場合、パーフルオロオキシアルキレン化合物(PFOA)に代表されるような環境規制物質となってしまうことからも好ましくない。したがって、炭素数は1〜12、さらに好ましくは1〜8である。 From the viewpoint of (i), Rf may have a long carbon number, but if the carbon number is long, it becomes difficult to bond to Ni metal, and as a result, water repellency is lowered, which is not preferable. Moreover, when carbon number is large, it becomes unpreferable from becoming an environmental control substance represented by the perfluoro oxyalkylene compound (PFOA). Therefore, the carbon number is 1 to 12, more preferably 1 to 8.
(ii)の観点からは、XはNi金属と結合力をもつ官能基であればよく、カルボン酸、スルホン酸、リン酸などの酸、またはそれらのエステル、塩などの当該酸の誘導体、アミンや水酸基などの水素結合力を有する官能基、さらにはNi金属表面の水酸基に対して化学結合力を有するシリケートなどのケイ酸化合物が考えられる。しかし、ニッケル水素電池の電解液であるアルカリ水溶液に対して不溶であり、また、Ni金属に対してより強い化学結合力を持つことが重要であることから、カルボン酸、スルホン酸、リン酸、ケイ酸およびその誘導体が好ましい。 From the viewpoint of (ii), X may be a functional group having a binding force with Ni metal, such as acids such as carboxylic acid, sulfonic acid and phosphoric acid, or derivatives of such acids such as esters and salts thereof, amines And a functional group having a hydrogen bonding force such as a hydroxyl group, and a silicate compound such as silicate having a chemical bonding force to a hydroxyl group on the surface of Ni metal. However, it is insoluble in an alkaline aqueous solution that is an electrolytic solution of a nickel metal hydride battery, and since it is important to have a stronger chemical bonding force to Ni metal, carboxylic acid, sulfonic acid, phosphoric acid, Silicic acid and its derivatives are preferred.
このように本発明で用いる式(1)のフッ素化合物は、水素吸蔵合金の成分であるNi金属との親和性が良好であり、水素吸蔵合金粒子に撥水性を長時間付与することができる。 As described above, the fluorine compound of the formula (1) used in the present invention has good affinity with Ni metal which is a component of the hydrogen storage alloy, and can impart water repellency to the hydrogen storage alloy particles for a long time.
本発明で用いるリン酸またはその誘導体を含むフッ素化合物としては、式(2):RfP(=O)(OR1)(OR2)(式中、Rfは炭素数1〜12、好ましくは1〜8のパーフルオロアルキル基、パーフルオロアルキレン基またはパーフルオロアルキルエーテル基;R1およびR2は、同じかまたは異なっていてもよく、水素原子、ハロゲン化されていてもよい炭素数1〜6のアルキル基、ハロゲン化されていてもよい芳香族基、NH4、NRH3、NR2H2、NR3H(Rは炭素数1〜4のアルキル基またはヒドロキシアルキル基)、ピリジミウム基またはピペリジニウム基)で示される化合物が好ましい。 As the fluorine compound containing phosphoric acid or a derivative thereof used in the present invention, formula (2): RfP (═O) (OR 1 ) (OR 2 ) (wherein Rf has 1 to 12 carbon atoms, preferably 1 to 1 carbon atoms). 8 perfluoroalkyl group, perfluoroalkylene group or perfluoroalkyl ether group; R 1 and R 2 may be the same or different, and may be a hydrogen atom or a halogenated C 1-6 carbon atom; Alkyl group, aromatic group which may be halogenated, NH 4 , NRH 3 , NR 2 H 2 , NR 3 H (R is an alkyl group having 1 to 4 carbon atoms or a hydroxyalkyl group), pyridinium group or piperidinium group ) Is preferred.
具体的には、たとえばC4F9C2H4P(=O)(OH)2、C5F11C2H4P(=O)(OH)2、C6F13C2H4P(=O)(OH)2、C8F17C2H4P(=O)(OH)2、C3F7C2H4P(=O)(OC3H7)2、(CF3)2CFC6F12C2H4P(=O)(OH)2、C4F9C2H4P(=O)(OCH3)2、C5F11C2H4P(=O)(O−iso−C3H7)2、C8F17C2H4P(=O)(OPh)2、C4F9C2H4P(=O)(OC2H4−C4F9)2、C4F9C2H4P(=O)(OC2H4−C4F9)(OH)、C4F9C2H4P(=O)(ONH4)2、C5F11C2H4P(=O)(ON(C2H5)3H)2などがあげられる(ただし、Phはフェニル基)。 Specifically, for example, C 4 F 9 C 2 H 4 P (═O) (OH) 2 , C 5 F 11 C 2 H 4 P (═O) (OH) 2 , C 6 F 13 C 2 H 4 P (= O) (OH) 2, C 8 F 17 C 2 H 4 P (= O) (OH) 2, C 3 F 7 C 2 H 4 P (= O) (OC 3 H 7) 2, ( CF 3 ) 2 CFC 6 F 12 C 2 H 4 P (═O) (OH) 2 , C 4 F 9 C 2 H 4 P (═O) (OCH 3 ) 2 , C 5 F 11 C 2 H 4 P (= O) (O-iso -C 3 H 7) 2, C 8 F 17 C 2 H 4 P (= O) (OPh) 2, C 4 F 9 C 2 H 4 P (= O) (OC 2 H 4 -C 4 F 9) 2 , C 4 F 9 C 2 H 4 P (= O) (OC 2 H 4 -C 4 F 9) (OH), C 4 F 9 C 2 H 4 P (= O ) (ONH 4 ) 2 , C 5 F 11 C 2 H 4 P (═O) (ON (C 2 H 5 ) 3 H) 2 (where Ph is a phenyl group).
本発明で用いるカルボン酸またはその誘導体を含むフッ素化合物としては、式(3):RfCOOR3(式中、Rfは炭素数1〜12、好ましくは1〜8のパーフルオロアルキル基、パーフルオロアルキレン基またはパーフルオロアルキルエーテル基;R3は、水素原子、ハロゲン化されていてもよい炭素数1〜6のアルキル基、ハロゲン化されていてもよい芳香族基、NH4、NRH3、NR2H2、NR3H(Rは炭素数1〜4のアルキル基またはヒドロキシアルキル基)、ピリジミウム基またはピペリジニウム基)で示される化合物が好ましい。 The fluorine compound containing a carboxylic acid or derivative thereof used in the present invention is represented by the formula (3): RfCOOR 3 (wherein Rf is a perfluoroalkyl group or perfluoroalkylene group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms). Or a perfluoroalkyl ether group; R 3 is a hydrogen atom, an optionally halogenated alkyl group having 1 to 6 carbon atoms, an optionally halogenated aromatic group, NH 4 , NRH 3 , NR 2 H 2 , NR 3 H (R is an alkyl group or hydroxyalkyl group having 1 to 4 carbon atoms), a pyridimium group or a piperidinium group) is preferable.
具体的には、たとえば、C4F9COOH、C5F11COOH、C6F13COOH、C7F15COOH、C8F17COOH、C8F17COOCH3、C8F17COOC2H5、C8F17COOC3H7、C8F17COOC4H9、C8F17COOC5H11、C8F17COOPhなどがあげられる(ただし、Phはフェニル基)。 Specifically, for example, C 4 F 9 COOH, C 5 F 11 COOH, C 6 F 13 COOH, C 7 F 15 COOH, C 8 F 17 COOH, C 8 F 17 COOCH 3 , C 8 F 17 COOC 2 H 5 , C 8 F 17 COOC 3 H 7 , C 8 F 17 COOC 4 H 9 , C 8 F 17 COOC 5 H 11 , C 8 F 17 COOPh, etc. (where Ph is a phenyl group).
本発明で用いるケイ酸またはその誘導体を含むフッ素化合物としては、式(4):RfnSiR4 4-n(式中、Rfは炭素数1〜12、好ましくは1〜8のパーフルオロアルキル基、パーフルオロアルキレン基またはパーフルオロアルキルエーテル基;R4はメトキシ基、エトキシ基、もしくはプロポキシ基などの炭素数1〜6のアルコキシ基、またはメトキシメトキシ基、もしくはメトキシエトキシ基などのオキシアルコキシ基であり、R4が2個以上の場合同じでも異なっていてもよい;nは1〜3の整数)で示される化合物が好ましい。 The fluorine compound containing silicic acid or a derivative thereof used in the present invention is represented by the formula (4): Rf n SiR 4 4-n (wherein Rf is a perfluoroalkyl group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms). R 4 is an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, or a propoxy group, or an oxyalkoxy group such as a methoxymethoxy group or a methoxyethoxy group; And when R 4 is 2 or more, they may be the same or different; n is an integer of 1 to 3).
具体的には、たとえば、CF3(CF2)5(CH2)2Si(OCH3)3、CF3(CF2)7(CH2)2Si(OCH3)3、CF3CF2CH2CH2Si(OCH3)3、CF2(CF2)3CH2CH2Si(OCH3)3、C5F11Si(OCH3)3、C5F11Si(OC2H5)3、C6F13Si(OCH3)3、C6F13Si(OC2H5)3、C7F15Si(OCH3)3、C8H17Si(OCH3)3、C8F17Si(OC2H5)3、C8F17Si(OC3H7)3などがあげられる。 Specifically, for example, CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 CF 2 CH 2 CH 2 Si (OCH 3 ) 3 , CF 2 (CF 2 ) 3 CH 2 CH 2 Si (OCH 3 ) 3 , C 5 F 11 Si (OCH 3 ) 3 , C 5 F 11 Si (OC 2 H 5 ) 3 , C 6 F 13 Si (OCH 3 ) 3 , C 6 F 13 Si (OC 2 H 5 ) 3 , C 7 F 15 Si (OCH 3 ) 3 , C 8 H 17 Si (OCH 3 ) 3 , C 8 Examples thereof include F 17 Si (OC 2 H 5 ) 3 and C 8 F 17 Si (OC 3 H 7 ) 3 .
本発明で用いるスルホン酸またはその誘導体を含むフッ素化合物としては、式(5):RfSO3M(式中、Rfは炭素数1〜12、好ましくは1〜8のパーフルオロアルキル基、パーフルオロアルキレン基またはパーフルオロアルキルエーテル基;Mは水素原子、金属原子またはアンモニウム塩)で示される化合物が好ましい。 The fluorine compound containing a sulfonic acid or a derivative thereof used in the present invention is represented by the formula (5): RfSO 3 M (wherein Rf is a perfluoroalkyl group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, perfluoroalkylene). Group or perfluoroalkyl ether group; M is preferably a hydrogen atom, a metal atom or an ammonium salt).
具体的には、たとえば、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロブタンスルホン酸テトラメチルアンモニウムなどがあげられる。 Specifically, for example, potassium perfluorobutanesulfonate, potassium perfluorohexanesulfonate, potassium perfluorooctanesulfonate, sodium perfluorobutanesulfonate, sodium perfluorooctanesulfonate, lithium perfluorobutanesulfonate, perfluorobutanesulfonate, Examples thereof include lithium fluoroheptanesulfonate, cesium perfluorooctanesulfonate, cesium perfluorohexanesulfonate, cesium perfluorobutanesulfonate, and tetramethylammonium perfluorobutanesulfonate.
なかでも、カルボン酸またはその塩もしくはエステル、スルホン酸またはその塩もしくはエステル、リン酸またはその塩もしくはエステル、ケイ酸またはその塩もしくはエステルであることがより好ましく、Ni金属との結合力がより強い点から、さらに好ましくはカルボン酸エステル、リン酸エステル、およびシリケートである。 Among them, carboxylic acid or a salt or ester thereof, sulfonic acid or a salt or ester thereof, phosphoric acid or a salt or ester thereof, silicic acid or a salt or ester thereof is more preferable, and has a stronger binding force with Ni metal. From the viewpoint, carboxylic acid ester, phosphoric acid ester, and silicate are more preferable.
(b)結着剤
本発明において用いる結着剤(b)としては、従来からニッケル水素二次電池の水素吸蔵合金層の形成に用いられている公知の材料、たとえば特開2002−15731号公報などに記載されている結着剤が採用できる。
(B) Binder As the binder (b) used in the present invention, a known material conventionally used for forming a hydrogen storage alloy layer of a nickel metal hydride secondary battery, for example, JP-A-2002-15731 The binder described in the above can be employed.
具体的には、たとえばメチルセルロース、カルボキシメチルセルロースなどのセルロース系結着剤;ポリビニルアルコール、ポリエチレンオキサイドなどの親水性合成樹脂系結着剤;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂系結着剤;ポリプロピレン、ポリエチレン、ポリスチロールなどのハイドロカーボン系結着剤;スチレン−ブタジエンゴム(SBR)などのゴム系結着剤が例示できる。 Specifically, for example, cellulose-based binders such as methylcellulose and carboxymethylcellulose; hydrophilic synthetic resin-based binders such as polyvinyl alcohol and polyethylene oxide; polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and the like Examples include fluororesin binders; hydrocarbon binders such as polypropylene, polyethylene, and polystyrene; rubber binders such as styrene-butadiene rubber (SBR).
これらのうち、非フッ素系結着剤を用いる場合は、式(1)のフッ素化合物(a)がもつ撥水効果が顕著に発現する。また、フッ素樹脂系結着剤を用いる場合については、フッ素樹脂自身が撥水性をもっているが、式(1)のフッ素化合物(a)を添加することにより、より一層電極表面上に撥水性を発現させやすくなる。 Among these, when a non-fluorinated binder is used, the water repellent effect of the fluorine compound (a) of the formula (1) is remarkably exhibited. In the case of using a fluororesin-based binder, the fluororesin itself has water repellency, but by adding the fluorine compound (a) of the formula (1), water repellency is further exhibited on the electrode surface. It becomes easy to let you.
(c)水素吸蔵合金粒子
本発明において用いる水素吸蔵合金としては、従来からニッケル水素二次電池の水素吸蔵合金層の形成に用いられている公知の材料、たとえば特開平02−291665号公報、特開2008−210554号公報などに記載されている合金が採用できる。
(C) Hydrogen storage alloy particles As the hydrogen storage alloy used in the present invention, known materials conventionally used for forming a hydrogen storage alloy layer of a nickel hydrogen secondary battery, for example, Japanese Patent Application Laid-Open No. 02-291665, Alloys described in Japanese Unexamined Patent Publication No. 2008-210554 can be employed.
具体的には、たとえばAB5型と呼ばれているミッシュメタル(Mm)を主原料とする合金やAB2型と呼ばれているTi−Zr−Mn−V、Ti−Zr−Cr−FeTi−Cr−VやBCC型と呼ばれるTi−Cr−Vなどが例示できる。これらのうち、サイクル特性等の電池特性が良好な点から、ミッシュメタル系の水素吸蔵合金が好ましい。 Specifically, for example, AB 5 type and the called and is misch metal (Mm) is called the alloy and AB 2 type whose main raw material Ti-Zr-Mn-V, Ti-Zr-Cr-FeTi- Examples thereof include Ti—Cr—V called Cr—V or BCC type. Among these, a misch metal-based hydrogen storage alloy is preferable from the viewpoint of good battery characteristics such as cycle characteristics.
ミッシュメタル系水素吸蔵合金(AB5型)は、CaCu5構造を有するLaNi5系合金のLaの一部をCe、Pr、Ndなどの希土類金属元素で置換した混合物であり、代表
例として、Ce/La/Nd/他の希土類金属元素(=45/30/5/20重量%)があげられる。また、Mm、Ni、Co、AlおよびMnをモル比でMm/Ni/Co/Al/Mnが1.0/3.3/0.9/0.2/0.6で合金化した物や1.0/4.1/0.3/0.35/0.3で合金化した物、1.0/3.4/0.8/0.2/0.6で合金化した物も知られている。
The Misch metal-based hydrogen storage alloy (AB 5 type) is a mixture in which a part of La of a LaNi 5 -based alloy having a CaCu 5 structure is replaced with a rare earth metal element such as Ce, Pr, Nd. As a representative example, Ce / La / Nd / other rare earth metal elements (= 45/30/5/20% by weight). Further, Mm, Ni, Co, Al, and Mn alloyed at a molar ratio of Mm / Ni / Co / Al / Mn of 1.0 / 3.3 / 0.9 / 0.2 / 0.6 Those alloyed with 1.0 / 4.1 / 0.3 / 0.35 / 0.3 and those alloyed with 1.0 / 3.4 / 0.8 / 0.2 / 0.6 Are known.
水素吸蔵合金は粒子(粉末)の形態で使用される。粒子径は通常、40〜300μm程度である。 The hydrogen storage alloy is used in the form of particles (powder). The particle size is usually about 40 to 300 μm.
本発明に用いる水素吸蔵合金層(I)における、式(1)のフッ素化合物(a)と結着剤(b)と水素吸蔵合金粒子(c)の含有量は、水素吸蔵合金層(I)中(以下同様)において、式(1)のフッ素化合物(a)0.1〜5.0質量%、結着剤(b)0.5〜5.0質量%および水素吸蔵合金粒子(c)90〜97質量%であることが好ましい。また、式(1)のフッ素化合物(a)と結着剤(b)の合計量は5質量%以下、さらには0.6〜4.0質量%であることが電池特性の向上の点から好ましい。 In the hydrogen storage alloy layer (I) used in the present invention, the contents of the fluorine compound (a) of formula (1), the binder (b), and the hydrogen storage alloy particles (c) are determined according to the hydrogen storage alloy layer (I). In the middle (hereinafter the same), 0.1 to 5.0% by mass of the fluorine compound (a) of the formula (1), 0.5 to 5.0% by mass of the binder (b), and hydrogen storage alloy particles (c) It is preferable that it is 90-97 mass%. From the viewpoint of improving battery characteristics, the total amount of the fluorine compound (a) of the formula (1) and the binder (b) is 5% by mass or less, and more preferably 0.6 to 4.0% by mass. preferable.
式(1)のフッ素化合物(a)の配合量は、サイクル特性、負荷特性が良好な点から5.0質量%以下、さらには1.0質量%以下であることが好ましく、また、電極の表面を均一に覆うことができる点から0.1質量%以上、さらには0.5質量%以上であることが好ましい。 The blending amount of the fluorine compound (a) of the formula (1) is preferably 5.0% by mass or less, more preferably 1.0% by mass or less from the viewpoint of good cycle characteristics and load characteristics. From the viewpoint of uniformly covering the surface, it is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more.
結着剤(b)の配合量は、その種類や分子量などによって異なるが、一般に、電池特性が良好な点から5.0質量%以下、さらには3.0質量%以下であることが好ましく、また、接着性が良好な点から0.5質量%以上、さらには1.0質量%以上であることが好ましい。 The blending amount of the binder (b) varies depending on the type and molecular weight, but generally it is preferably 5.0% by mass or less, more preferably 3.0% by mass or less from the viewpoint of good battery characteristics. Moreover, it is preferable that it is 0.5 mass% or more from a point with favorable adhesiveness, Furthermore, it is preferable that it is 1.0 mass% or more.
(II)導電性支持体
本発明において用いる導電性支持体(集電体)としては、従来からニッケル水素二次電池の水素吸蔵合金電極(負極)に用いられている公知の材料の支持体、たとえば特開2002−260646号公報などに記載されている支持体が採用できる。
(II) Conductive support As the conductive support (current collector) used in the present invention, a support of a known material conventionally used for a hydrogen storage alloy electrode (negative electrode) of a nickel hydrogen secondary battery, For example, the support body described in Unexamined-Japanese-Patent No. 2002-260646 etc. can be employ | adopted.
具体的には、たとえば繊維状ニッケル、発泡ニッケルなどの三次元導電性支持体;パンチングメタル、エクスパンドメタル、金属ネットなどの二次元導電性支持体などが例示できる。 Specific examples include three-dimensional conductive supports such as fibrous nickel and foamed nickel; two-dimensional conductive supports such as punching metal, expanded metal, and metal net.
本発明の水素吸蔵合金電極は、種々の方法で導電性支持体(II)上に水素吸蔵合金層(I)を形成することにより製造できる。 The hydrogen storage alloy electrode of the present invention can be produced by forming the hydrogen storage alloy layer (I) on the conductive support (II) by various methods.
たとえば、(1)式(1)のフッ素化合物(a)と結着剤(b)と水素吸蔵合金粒子(c)を溶媒の不存在下に所定量混合してペーストを調製し、導電性支持体に塗布するか圧着する方法;
(2)結着剤(b)と水素吸蔵合金粒子(c)とを溶媒を用いて混合してペーストを調製し、導電性支持体に塗布するか圧着して水素吸蔵合金層を形成し、ついで、この水素吸蔵合金層に式(1)のフッ素化合物(a)を塗布する方法;
(3)結着剤(b)と水素吸蔵合金粒子(c)とを溶媒を用いて混合してペーストを調製し、キャスト法や圧縮成形法で水素吸蔵合金シートを形成し、ついで、この水素吸蔵合金シートに式(1)のフッ素化合物(a)を塗布または含浸した後、導電性支持体に貼付する方法
などが採用できる。
For example, (1) a paste is prepared by mixing a predetermined amount of the fluorine compound (a) of the formula (1), the binder (b), and the hydrogen storage alloy particles (c) in the absence of a solvent, and the conductive support Applying or crimping to the body;
(2) A binder (b) and hydrogen storage alloy particles (c) are mixed using a solvent to prepare a paste, which is applied to a conductive support or pressed to form a hydrogen storage alloy layer, Next, a method of applying the fluorine compound (a) of the formula (1) to the hydrogen storage alloy layer;
(3) The binder (b) and the hydrogen storage alloy particles (c) are mixed using a solvent to prepare a paste, and a hydrogen storage alloy sheet is formed by a casting method or a compression molding method. A method of applying or impregnating the fluorine compound (a) of the formula (1) to the occlusion alloy sheet and then sticking it to the conductive support can be employed.
これらの方法の中でも、方法(1)が、均一に式(1)のフッ素化合物(a)を水素吸蔵合金粒子(c)上に塗布することができる点から好ましい。 Among these methods, the method (1) is preferable because the fluorine compound (a) of the formula (1) can be uniformly coated on the hydrogen storage alloy particles (c).
本発明はまた、本発明の水素吸蔵合金電極を負極とし、正極とアルカリ電解液を備えたニッケル水素二次電池にも関する。本発明のニッケル水素二次電池は、負極として本発明の水素吸蔵合金電極を用いるほかは、従来のニッケル水素二次電池と同様であり、正極、アルカリ電解液のほか、セパレータ、負極缶などの構成、材料なども従来公知のものが採用できる。 The present invention also relates to a nickel-metal hydride secondary battery using the hydrogen storage alloy electrode of the present invention as a negative electrode and including a positive electrode and an alkaline electrolyte. The nickel metal hydride secondary battery of the present invention is the same as the conventional nickel metal hydride secondary battery, except that the hydrogen storage alloy electrode of the present invention is used as the negative electrode. In addition to the positive electrode and the alkaline electrolyte, the separator, the negative electrode can, etc. Conventionally known structures and materials can be used.
正極としては、具体的には、たとえば水酸化ニッケルを充填したニッケル極が一般的である。このニッケル極は、表面にオキシ水酸化コバルト層が形成された水酸化ニッケル粉末を主成分とするペーストを発泡状ニッケルに充填することで作製できる。 Specifically, for example, a nickel electrode filled with nickel hydroxide is generally used. This nickel electrode can be produced by filling foam nickel with a paste mainly composed of nickel hydroxide powder having a cobalt oxyhydroxide layer formed on the surface thereof.
アルカリ電解液としては、たとえば水酸化カリウム水溶液、水酸化ナトリウム、水酸化リチウムあるいはそれらの混合溶液などがあげられる。 Examples of the alkaline electrolyte include an aqueous potassium hydroxide solution, sodium hydroxide, lithium hydroxide, or a mixed solution thereof.
本発明のニッケル水素二次電池は、水素吸蔵合金層に撥水性に優れかつニッケルへの親和性が良好なアルキルリン酸あるいはアルキルリン酸エステルを含有させているため、良好な固体−液体−気体−3相界面状態が形成され、水素ガスの吸蔵・放出をスムーズに行うことができるので電池内圧の上昇を抑制でき、その結果、サイクル特性や負荷特性などの電池特性も向上する。 The nickel metal hydride secondary battery of the present invention contains an alkyl phosphoric acid or an alkyl phosphate having excellent water repellency and good affinity for nickel in the hydrogen storage alloy layer. Since a -3 phase interface state is formed and hydrogen gas can be occluded / released smoothly, an increase in battery internal pressure can be suppressed, and as a result, battery characteristics such as cycle characteristics and load characteristics are improved.
つぎに実施例をあげて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
本発明において採用した測定方法は以下のとおりである。 The measurement method employed in the present invention is as follows.
(1)NMR
装置:BRUKER製のAC−300
測定条件:
1H−MNR:300.133MHz,CDCl3,neat
19F−MNR:282.40MHz,CF3COOH,neat
(1) NMR
Apparatus: AC-300 manufactured by BRUKER
Measurement condition:
1 H-MNR: 300.133 MHz, CDCl 3 , neat
19 F-MNR: 282.40 MHz, CF 3 COOH, neat
(2)対水接触角
自動接触角測定装置DSA100S(協和界面科学(株)製)を使用し純水0.5μLを電極に落とし8秒後の接触角を測定する。
(2) Contact angle with water Using an automatic contact angle measuring device DSA100S (manufactured by Kyowa Interface Science Co., Ltd.), 0.5 μL of pure water is dropped on the electrode, and the contact angle after 8 seconds is measured.
合成例1
200mlのステンレス製オートクレーブに、C8F17Iを160g、60%の三酸化硫黄を溶解含有する発煙硫酸を90g、五酸化リンを0.66g仕込み、110℃に加熱して約6時間反応させた。反応圧は5.1kg/cm2であった。
Synthesis example 1
A 200 ml stainless steel autoclave was charged with 160 g of C 8 F 17 I, 90 g of fuming sulfuric acid containing 60% sulfur trioxide and 0.66 g of phosphorus pentoxide, heated to 110 ° C. and reacted for about 6 hours. It was. The reaction pressure was 5.1 kg / cm 2 .
反応終了後冷却し、大気圧に戻した後、生成物を分取し、粗生成物47.3gを得た。このものは、NMR分析の結果、C7F15COFが92.9モル%、C8F17SO3Fが5.8モル%、C8F17Iが0.9モル%、C7F15COOHが0.3モル%の混合物であった。この混合物を精留することにより、純度99%以上のC7F15COFが得られた。次に、精留によって得られたC7F15COFに水を加えて加水分解することにより、C7F15COOHが定量的に得られた。 After completion of the reaction, the mixture was cooled and returned to atmospheric pressure, and then the product was collected to obtain 47.3 g of a crude product. As a result of NMR analysis, it was found that C 7 F 15 COF was 92.9 mol%, C 8 F 17 SO 3 F was 5.8 mol%, C 8 F 17 I was 0.9 mol%, C 7 F 15 COOH was a 0.3 mol% mixture. By rectifying this mixture, C 7 F 15 COF having a purity of 99% or more was obtained. Next, C 7 F 15 COOH was quantitatively obtained by adding water to C 7 F 15 COF obtained by rectification and hydrolyzing it.
1H−NMR(300.133MHz,CDC13,neat:11.0ppm(s,1H) 1 H-NMR (300.133 MHz, CDC 1 3 , neat: 11.0 ppm (s, 1H)
合成例2
合成例1で製造したC7F15COOH(42.8g、0.1mol)に硫酸(29.4g、0.3mol)とメタノール(3.2g、0.1mol)を加え3時間攪拌しながら反応させた。その後、蒸留して、C7F15COOCH3を定量的に得た。
Synthesis example 2
Sulfuric acid (29.4 g, 0.3 mol) and methanol (3.2 g, 0.1 mol) were added to C 7 F 15 COOH (42.8 g, 0.1 mol) produced in Synthesis Example 1, and the reaction was conducted for 3 hours with stirring. I let you. Thereafter, distilled to give a C 7 F 15 COOCH 3 quantitatively.
1H−NMR(300.133MHz,CDC13,neat):3.67ppm(s,3H) 1 H-NMR (300.133 MHz, CDC 1 3 , neat): 3.67 ppm (s, 3H)
合成例3
C4F9CH2CH2I(11.4g,0.031mol)を、還流管、滴下ロート、温度計を備えた50mlの4つ口フラスコに仕込み、滴下ロートより室温にてP(iPrO)3(6.36g,0.031mol)を約30分間で滴下した。滴下後8時間還流させた。その後、未反応原料を64℃で減圧(11mmHg)蒸留した。得られた生成物のNMRスペクトル測定よりC4F9CH2CH2P(=O)(iPrO)2であることを確認した(6.12g,0.031mol)。各種分析結果はつぎのとおりである。
Synthesis example 3
C 4 F 9 CH 2 CH 2 I (11.4 g, 0.031 mol) was charged into a 50 ml four-necked flask equipped with a reflux tube, a dropping funnel and a thermometer, and P (iPrO) was added at room temperature from the dropping funnel. 3 (6.36 g, 0.031 mol) was added dropwise in about 30 minutes. The mixture was refluxed for 8 hours. Then, the unreacted raw material was distilled under reduced pressure (11 mmHg) at 64 ° C. NMR spectrum measurement of the obtained product confirmed that it was C 4 F 9 CH 2 CH 2 P (═O) (iPrO) 2 (6.12 g, 0.031 mol). The various analysis results are as follows.
1H−NMR(300.133MHz,CDCl3,neat):1.6ppm(d,J=7.14Hz,12H),2.13〜2.32ppm(m,2H),2.56〜2.82ppm(m,2H),5.05ppm(q,J=7.14Hz,2H)
19F−NMR(282.40MHz,CF3COOH,neat):−82ppm(m,3F),−116.2ppm(m,2F),−125.23ppm(m,2F),−127.1ppm(m,2F)
1 H-NMR (300.133 MHz, CDCl 3 , neat): 1.6 ppm (d, J = 7.14 Hz, 12H), 2.13 to 2.32 ppm (m, 2H), 2.56 to 2.82 ppm (M, 2H), 5.05 ppm (q, J = 7.14 Hz, 2H)
19 F-NMR (282.40 MHz, CF 3 COOH, neat): -82 ppm (m, 3F), -116.2 ppm (m, 2F), -125.23 ppm (m, 2F), -127.1 ppm (m , 2F)
合成例4
合成例3で合成したC4F9CH2CH2P(=O)(iPrO)2(6.12g,0.031mol)を、還流管を備えた丸底フラスコに仕込み、オイルバスで徐々に昇温させた。系内温度が約220℃に達したところで白煙を生じたので、白煙の生成がなくなるまで約2時間、系内が220℃になるように加熱した。放冷後、減圧ポンプを用いて生じた気体を還流管上部から抜き出し、生成物4.31gを得た。生成物のNMRスペクトル分析の測定の結果から、C4F9CH2CH2P(=O)(OH)2であることを確認した。各種分析結果はつぎのとおりである。
Synthesis example 4
C 4 F 9 CH 2 CH 2 P (═O) (iPrO) 2 (6.12 g, 0.031 mol) synthesized in Synthesis Example 3 was charged into a round bottom flask equipped with a reflux tube, and gradually added in an oil bath. The temperature was raised. Since white smoke was generated when the system temperature reached about 220 ° C., the system was heated to 220 ° C. for about 2 hours until the generation of white smoke disappeared. After standing to cool, the gas generated using a vacuum pump was extracted from the upper part of the reflux tube to obtain 4.31 g of product. From the results of NMR spectral analysis of the product, it was confirmed that it was C 4 F 9 CH 2 CH 2 P (═O) (OH) 2 . The various analysis results are as follows.
1H−NMR(300.133MHz,CDCl3,D2O):1.83〜2.10ppm(m,2H),2.28〜2.65ppm(m,2H)
19F−NMR(282.40MHz,CF3COOH,D2O):−79.939ppm(s,3F),−144.013ppm(s,2F),−123.36ppm(s,2F),−124.943ppm(s,2F)
1 H-NMR (300.133 MHz, CDCl 3 , D 2 O): 1.83 to 2.10 ppm (m, 2H), 2.28 to 2.65 ppm (m, 2H)
19 F-NMR (282.40 MHz, CF 3 COOH, D 2 O): −79.939 ppm (s, 3F), −144.013 ppm (s, 2F), −123.36 ppm (s, 2F), −124 .943 ppm (s, 2F)
合成例5
ガラス製三口フラスコにCH3MgBr(1mol/リットル濃度のジエチルエーテル溶液、2L)を入れ−20℃に一定にした。このフラスコ内にCF3(CF2)3Iの346gをTHF1リットルに溶解させた溶液を5時間かけて滴下し1時間攪拌後、反応系に亜硫酸ガス3molを5時間かけて吹き込んだ。吹き込みが終了した後、室温に戻し3時間攪拌した。その後、過酸化水素水(35%水溶液300ml)を2時間かけて滴下し、滴下終了後、室温で12時間攪拌した。反応系を脱溶剤し、この残渣をイオン交換水2リットルに加え、0℃に冷却し、不溶物を濾取した。その後、この得られた固体を100℃で乾燥し、得られた固体100gを60℃のメタノール(200g)に溶解し、この液にイオン交換水(500ml)を加えた。その後、この溶液をロータリーエバポレーターで脱溶剤し、全体の重量が300gになるまで濃縮した。この溶液を0℃に冷却し、一晩静置した。ここで、析出した固体を濾別し、イオン交換水100mlで洗浄した。その後、得られた固体を100℃で乾燥することにより、ヨウ素イオンを低減したCF3(CF2)3SO3Na(42g)を得た。
Synthesis example 5
CH 3 MgBr (1 mol / liter concentration diethyl ether solution, 2 L) was placed in a glass three-necked flask and kept constant at −20 ° C. A solution prepared by dissolving 346 g of CF 3 (CF 2 ) 3 I in 1 liter of THF was dropped into the flask over 5 hours, stirred for 1 hour, and 3 mol of sulfurous acid gas was blown into the reaction system over 5 hours. After completion of blowing, the mixture was returned to room temperature and stirred for 3 hours. Then, hydrogen peroxide solution (35% aqueous solution 300 ml) was added dropwise over 2 hours, and after completion of the addition, the mixture was stirred at room temperature for 12 hours. The solvent was removed from the reaction system, the residue was added to 2 liters of ion-exchanged water, cooled to 0 ° C., and insolubles were collected by filtration. Thereafter, the obtained solid was dried at 100 ° C., 100 g of the obtained solid was dissolved in methanol (200 g) at 60 ° C., and ion-exchanged water (500 ml) was added to this liquid. Thereafter, this solution was desolvated with a rotary evaporator and concentrated until the total weight reached 300 g. The solution was cooled to 0 ° C. and left overnight. Here, the precipitated solid was separated by filtration and washed with 100 ml of ion-exchanged water. Thereafter, the obtained solid was dried at 100 ° C. to obtain CF 3 (CF 2 ) 3 SO 3 Na (42 g) with reduced iodine ions.
実施例1
(1)水素吸蔵合金粉末の作製
MmNi3.4Co0.8Al0.2Mn0.6(モル比。Mmはミッシュメタルである)となるように市販の各金属元素Mm、Ni、Co、AlおよびMnを秤量して所定の比率で混合した。この混合物を高周波溶解炉に投入して溶解させた後、鋳型に流し込み、冷却してMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金の塊(インゴット)を作製した。この水素吸蔵合金の塊を粗粉砕した後、不活性ガス雰囲気中で平均粒径が50μm程度になるまで機械的に粉砕して、水素吸蔵合金粉末を作製した。なお、得られた水素吸蔵合金粉末の平均粒径はレーザ回折法により測定した値である。
Example 1
(1) Preparation of hydrogen storage alloy powder Weigh each commercially available metal element Mm, Ni, Co, Al and Mn so as to be MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 (molar ratio. Mm is Misch metal). Mix in the given ratio. The mixture was poured into a high-frequency melting furnace and dissolved, and then poured into a mold and cooled to prepare a hydrogen storage alloy lump (ingot) made of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 . This lump of hydrogen storage alloy was coarsely pulverized and then mechanically pulverized in an inert gas atmosphere until the average particle size became about 50 μm to prepare a hydrogen storage alloy powder. In addition, the average particle diameter of the obtained hydrogen storage alloy powder is a value measured by a laser diffraction method.
(2)水素吸蔵合金電極の作製
作製した水素吸蔵合金粉末98質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)および合成例1で合成したC7F15COOHを0.5質量部加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
(2) Production of hydrogen storage alloy electrode To 98 parts by mass of the produced hydrogen storage alloy powder, 1.5 parts by mass (solid content) of PTFE dispersion (D-210C manufactured by Daikin Industries, Ltd.) as a binder and 0.5 parts by mass of C 7 F 15 COOH synthesized in Synthesis Example 1 was added, and pure water was added and kneaded to prepare a hydrogen storage alloy layer forming slurry (active material slurry). This hydrogen storage alloy layer forming slurry was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until moisture disappeared to prepare a hydrogen storage alloy electrode (negative electrode).
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、120.2度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 120.2 degrees.
実施例2
合成例2で合成したC7H15COOCH3を用いたほかは実施例1と同様に混合物を混練して水素吸蔵合金層形成用ペーストを調製し、これをニッケルメッキしたパンチングメタルに塗布し、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 2
The mixture was kneaded in the same manner as in Example 1 except that C 7 H 15 COOCH 3 synthesized in Synthesis Example 2 was used to prepare a hydrogen storage alloy layer forming paste, which was applied to nickel-plated punching metal, Drying was performed in a constant temperature bath at 90 ° C. until there was no moisture, and a hydrogen storage alloy electrode (negative electrode) was produced.
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、120.8度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 120.8 degrees.
実施例3
合成例3で合成したC4F9CH2CH2P(=O)(iPrO)2を用いたほかは実施例1と同様に混合物を混練して水素吸蔵合金層形成用ペーストを調製し、これをニッケルメッキしたパンチングメタルに塗布し、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 3
A paste for forming a hydrogen storage alloy layer was prepared by kneading the mixture in the same manner as in Example 1 except that C 4 F 9 CH 2 CH 2 P (═O) (iPrO) 2 synthesized in Synthesis Example 3 was used. This was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until no water was present, thereby producing a hydrogen storage alloy electrode (negative electrode).
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、121.3度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 121.3 degrees.
実施例4
合成例4で製造したC4F9CH2CH2P(=O)(OH)2を用いたほかは実施例1と同様に混合物を混練して水素吸蔵合金層形成用ペーストを調製し、これをニッケルメッキしたパンチングメタルに塗布し、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 4
A paste for forming a hydrogen storage alloy layer was prepared by kneading the mixture in the same manner as in Example 1 except that C 4 F 9 CH 2 CH 2 P (═O) (OH) 2 produced in Synthesis Example 4 was used. This was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until no water was present, thereby producing a hydrogen storage alloy electrode (negative electrode).
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、119.8度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 119.8 degrees.
実施例5
合成例5で合成したCF3(CF2)3SO3Naを用いたほかは実施例1と同様に混合物を混練して水素吸蔵合金層形成用ペーストを調製し、これをニッケルメッキしたパンチングメタルに塗布し、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 5
A paste for forming a hydrogen storage alloy layer was prepared by kneading the mixture in the same manner as in Example 1 except that CF 3 (CF 2 ) 3 SO 3 Na synthesized in Synthesis Example 5 was used. And dried in a constant temperature bath at 90 ° C. until the water disappeared to prepare a hydrogen storage alloy electrode (negative electrode).
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、115.1度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 115.1 degrees.
実施例6
C6F13CH2CH2Si(OCH3)3(GE・東芝シリコーン(株)製のTSL−8257)を用いたほかは実施例1と同様に混合物を混練して水素吸蔵合金層形成用ペーストを調製し、これをニッケルメッキしたパンチングメタルに塗布し、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 6
The mixture is kneaded in the same manner as in Example 1 except that C 6 F 13 CH 2 CH 2 Si (OCH 3 ) 3 (GE / Toshiba Silicone Co., Ltd. TSL-8257) is used. A paste was prepared, applied to a nickel-plated punching metal, and dried in a constant temperature bath at 90 ° C. until moisture was lost, thereby preparing a hydrogen storage alloy electrode (negative electrode).
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、120.5度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 120.5 degrees.
実施例7
実施例1の工程(1)で調製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末98.5質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行った。
Example 7
A dispersion of PTFE as a binder (D-210C manufactured by Daikin Industries, Ltd.) was added to 98.5 parts by mass of the hydrogen storage alloy powder composed of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 prepared in step (1) of Example 1. 1.5 parts by mass (solid content) was added, and pure water was further added and kneaded to prepare a hydrogen storage alloy layer forming slurry (active material slurry). This slurry for forming a hydrogen storage alloy layer was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until there was no water.
ついで、得られた水素吸蔵合金電極に合成例1で製造したC7F15COOHを厚さ15μm程度になるように均一に塗布した後、再度、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。 Next, C 7 F 15 COOH produced in Synthesis Example 1 was uniformly applied to the obtained hydrogen storage alloy electrode so as to have a thickness of about 15 μm, and then dried again in a constant temperature bath at 90 ° C. until the water disappeared. The hydrogen storage alloy electrode (negative electrode) was produced.
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、120.8度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 120.8 degrees.
実施例8
実施例1の工程(1)で調製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末97.9質量部に、結着剤としてSBR水性エマルション(JSR(株)製TRD2001(固形分48.0%))を1.5質量部(固形分)、合成例1で製造したC7F15COOHを0.5質量部、増粘剤としてカルボキシメチルセルロース(CMC)を0.1質量部加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 8
To 97.9 parts by mass of the hydrogen storage alloy powder composed of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 prepared in step (1) of Example 1, SBR aqueous emulsion (TRD2001 manufactured by JSR Co., Ltd. (solid content 48) was used as a binder. 0.0%)) 1.5 parts by mass (solid content), 0.5 part by mass of C 7 F 15 COOH produced in Synthesis Example 1 and 0.1 part by mass of carboxymethylcellulose (CMC) as a thickener Further, pure water was added and kneaded to prepare a slurry for forming a hydrogen storage alloy layer (active material slurry). This hydrogen storage alloy layer forming slurry was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until moisture disappeared to prepare a hydrogen storage alloy electrode (negative electrode).
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ121.2度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 121.2 degrees.
実施例9
実施例1の工程(1)で作製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末98.4質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)、合成例1で製造したC7F15COOHを0.1質量部加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 9
A dispersion of PTFE as a binder (D-210C manufactured by Daikin Industries, Ltd.) was added to 98.4 parts by mass of the hydrogen storage alloy powder made of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 produced in the step (1) of Example 1. ) 1.5 parts by mass (solid content), 0.1 part by mass of C 7 F 15 COOH produced in Synthesis Example 1, and then adding pure water and kneading to make a slurry for forming a hydrogen storage alloy layer (active material) Slurry) was prepared. This hydrogen storage alloy layer forming slurry was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until moisture disappeared to prepare a hydrogen storage alloy electrode (negative electrode).
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、116.8度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 116.8 degrees.
実施例10
実施例1の工程(1)で作製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末93.5質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)、合成例1で製造したC7F15COOHを5.0質量部加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 10
A dispersion of PTFE (D-210C manufactured by Daikin Industries, Ltd.) as a binder was added to 93.5 parts by mass of the hydrogen storage alloy powder made of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 produced in the step (1) of Example 1. ) 1.5 parts by mass (solid content), 5.0 parts by mass of C 7 F 15 COOH produced in Synthesis Example 1, and further kneaded by adding pure water (slurry for forming a hydrogen storage alloy layer (active material) Slurry) was prepared. This hydrogen storage alloy layer forming slurry was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until moisture disappeared to prepare a hydrogen storage alloy electrode (negative electrode).
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、124.5度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 124.5 degrees.
比較例1
実施例1の工程(1)で作製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末98.5質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Comparative Example 1
A dispersion of PTFE as a binder (D-210C manufactured by Daikin Industries, Ltd.) was added to 98.5 parts by mass of the hydrogen storage alloy powder made of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 prepared in the step (1) of Example 1. 1.5 parts by mass (solid content) was added, and pure water was further added and kneaded to prepare a hydrogen storage alloy layer forming slurry (active material slurry). This hydrogen storage alloy layer forming slurry was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until moisture disappeared to prepare a hydrogen storage alloy electrode (negative electrode).
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、63.5度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 63.5 degrees.
比較例2
実施例1の工程(1)で調製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末98.5質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行った。
Comparative Example 2
A dispersion of PTFE as a binder (D-210C manufactured by Daikin Industries, Ltd.) was added to 98.5 parts by mass of the hydrogen storage alloy powder composed of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 prepared in step (1) of Example 1. 1.5 parts by mass (solid content) was added, and pure water was further added and kneaded to prepare a hydrogen storage alloy layer forming slurry (active material slurry). This slurry for forming a hydrogen storage alloy layer was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until there was no water.
ついで、得られた水素吸蔵合金電極にPTFEディスパージョン(ダイキン工業(株)製D−210C)を厚さ15μm程度になるように均一に塗布した後、再度、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。 Next, PTFE dispersion (D-210C manufactured by Daikin Industries, Ltd.) was uniformly applied to the obtained hydrogen storage alloy electrode so as to have a thickness of about 15 μm, and then the water disappeared again in a constant temperature bath at 90 ° C. Was dried to prepare a hydrogen storage alloy electrode (negative electrode).
得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、105.0度であった。 When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 105.0 degrees.
実施例11
実施例1で製造した本発明の水素吸蔵合金電極を330mm×30mmの大きさに裁断して負極とし、焼成ニッケル板(270mm×30mm)を正極とし、正極と負極の間にセパレータとして厚さ130μmの親水化処理を施したポリプロピレン不織布を挟んで渦巻状に巻回した後、SUBC(直径22.5mm、全長43mm)の大きさの電池缶に収容した。ついで、6N−水酸化カリウム水溶液を電池缶内に充填した後密封して、本発明のニッケル水素二次電池を作製した。
Example 11
The hydrogen storage alloy electrode of the present invention produced in Example 1 was cut into a size of 330 mm × 30 mm to form a negative electrode, a fired nickel plate (270 mm × 30 mm) was used as a positive electrode, and a thickness of 130 μm as a separator between the positive electrode and the negative electrode Was wound in a spiral shape with a polypropylene non-woven fabric subjected to hydrophilization treatment in between, and then accommodated in a battery can having a size of SUBC (diameter 22.5 mm, total length 43 mm). Next, a 6N-potassium hydroxide aqueous solution was filled in the battery can and then sealed to prepare a nickel metal hydride secondary battery of the present invention.
このニッケル水素二次電池について、サイクル特性および負荷特性をつぎの要領で調べた。結果を表1に示す。 The cycle characteristics and load characteristics of this nickel metal hydride secondary battery were examined as follows. The results are shown in Table 1.
(負荷特性)
1Cの電流値で1.5時間充電した後、3.0Cの電流値で終止電圧1.0Vまで放電させたときの放電容量を測定する。評価は、比較例3の放電容量を100とした指数で行う。
(Load characteristics)
After charging at a current value of 1 C for 1.5 hours, the discharge capacity when discharged to a final voltage of 1.0 V at a current value of 3.0 C is measured. The evaluation is performed using an index with the discharge capacity of Comparative Example 3 as 100.
(サイクル特性)
1Cの電流値で1.5時間充電した後、放電容量を測定しながら1Cの電流値で終止電圧1.0Vまで放電させる充放電サイクルを1サイクルとする。放電容量が初期の放電容量の80%以下になるまでのサイクル数を計数し、比較例3のサイクル数を100とした指数で評価する。
(Cycle characteristics)
A charge / discharge cycle in which the battery is charged at a current value of 1 C for 1.5 hours and then discharged to a final voltage of 1.0 V at a current value of 1 C while measuring the discharge capacity is defined as one cycle. The number of cycles until the discharge capacity becomes 80% or less of the initial discharge capacity is counted, and the evaluation is performed using an index with the number of cycles of Comparative Example 3 as 100.
実施例12〜20および比較例3〜4
実施例2〜10および比較例1〜2でそれぞれ製造した水素吸蔵合金電極を用いたほかは実施例11と同様にしてニッケル水素二次電池を作製し、そのサイクル特性および負荷特性を調べた。結果を表1に示す。
Examples 12-20 and Comparative Examples 3-4
A nickel-metal hydride secondary battery was produced in the same manner as in Example 11 except that the hydrogen storage alloy electrodes manufactured in Examples 2 to 10 and Comparative Examples 1 and 2 were used, and the cycle characteristics and load characteristics were examined. The results are shown in Table 1.
表1の結果から、すべての実施例が、比較例3および4に比べて明らかに負荷特性およびサイクル特性のいずれにおいても向上していることが分かる。また、PTFEのディスパージョンを電極に後から塗布している比較例4については、水素吸蔵合金の粒子の一部が均一に覆われていないため、全体として撥水性がわるくなり、カルボン酸を電極に後から塗布している実施例7に比べて負荷特性とサイクル特性が向上しなかったものと考えられる。 From the results of Table 1, it can be seen that all the examples are clearly improved in both load characteristics and cycle characteristics as compared with Comparative Examples 3 and 4. Further, in Comparative Example 4 in which a PTFE dispersion was later applied to the electrode, since some of the hydrogen storage alloy particles were not uniformly covered, the water repellency became poor as a whole, and carboxylic acid was used as the electrode. It is considered that the load characteristics and the cycle characteristics were not improved as compared with Example 7 applied later.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010071683A JP5560824B2 (en) | 2010-03-26 | 2010-03-26 | Hydrogen storage alloy electrode and nickel metal hydride battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010071683A JP5560824B2 (en) | 2010-03-26 | 2010-03-26 | Hydrogen storage alloy electrode and nickel metal hydride battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011204520A true JP2011204520A (en) | 2011-10-13 |
JP5560824B2 JP5560824B2 (en) | 2014-07-30 |
Family
ID=44880972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010071683A Active JP5560824B2 (en) | 2010-03-26 | 2010-03-26 | Hydrogen storage alloy electrode and nickel metal hydride battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5560824B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012134110A (en) * | 2010-12-24 | 2012-07-12 | Fdk Twicell Co Ltd | Negative electrode for alkaline secondary battery, and alkaline secondary battery comprising the negative electrode |
CN115417758A (en) * | 2022-09-22 | 2022-12-02 | 山东大学 | Preparation method of high-purity crystalline perfluorooctanoic acid |
JP7454430B2 (en) | 2020-04-02 | 2024-03-22 | 東ソー・ファインケム株式会社 | Method for producing fluorine-containing phosphonic acid |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02250260A (en) * | 1989-03-23 | 1990-10-08 | Matsushita Electric Ind Co Ltd | Hydrogen storage electrode and manufacture thereof |
JPH02291665A (en) * | 1989-02-23 | 1990-12-03 | Matsushita Electric Ind Co Ltd | Alkali battery and manufacture of its negative electrode |
JPH05258748A (en) * | 1992-03-13 | 1993-10-08 | Hitachi Maxell Ltd | Hydride secondary battery |
JPH0737578A (en) * | 1993-07-23 | 1995-02-07 | C Uyemura & Co Ltd | Battery electrode |
JPH08162101A (en) * | 1994-12-09 | 1996-06-21 | Shin Etsu Chem Co Ltd | Hydrogen storage alloy electrode and manufacture thereof |
JPH08315814A (en) * | 1995-05-22 | 1996-11-29 | Sanyo Electric Co Ltd | Hydrogen absorbing alloy electrode for alkaline storage battery |
JPH08333603A (en) * | 1995-06-02 | 1996-12-17 | Matsushita Electric Ind Co Ltd | Hydrogen storage alloy particle and its production |
JPH0997605A (en) * | 1995-07-21 | 1997-04-08 | Shin Etsu Chem Co Ltd | Hydrogen storage alloy electrode and manufacture thereof |
JPH1012228A (en) * | 1996-04-26 | 1998-01-16 | Shin Etsu Chem Co Ltd | Hydrogen storage alloy electrode |
JPH1060361A (en) * | 1996-08-23 | 1998-03-03 | Shin Etsu Chem Co Ltd | Hydrogen-occluding alloy electrode |
JPH11144733A (en) * | 1997-11-11 | 1999-05-28 | Furukawa Battery Co Ltd:The | Secondary battery electrode and secondary battery |
JP2009295405A (en) * | 2008-06-04 | 2009-12-17 | Asahi Glass Co Ltd | Method for manufacturing aqueous paste for forming power storage element electrode |
-
2010
- 2010-03-26 JP JP2010071683A patent/JP5560824B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02291665A (en) * | 1989-02-23 | 1990-12-03 | Matsushita Electric Ind Co Ltd | Alkali battery and manufacture of its negative electrode |
JPH02250260A (en) * | 1989-03-23 | 1990-10-08 | Matsushita Electric Ind Co Ltd | Hydrogen storage electrode and manufacture thereof |
JPH05258748A (en) * | 1992-03-13 | 1993-10-08 | Hitachi Maxell Ltd | Hydride secondary battery |
JPH0737578A (en) * | 1993-07-23 | 1995-02-07 | C Uyemura & Co Ltd | Battery electrode |
JPH08162101A (en) * | 1994-12-09 | 1996-06-21 | Shin Etsu Chem Co Ltd | Hydrogen storage alloy electrode and manufacture thereof |
JPH08315814A (en) * | 1995-05-22 | 1996-11-29 | Sanyo Electric Co Ltd | Hydrogen absorbing alloy electrode for alkaline storage battery |
JPH08333603A (en) * | 1995-06-02 | 1996-12-17 | Matsushita Electric Ind Co Ltd | Hydrogen storage alloy particle and its production |
JPH0997605A (en) * | 1995-07-21 | 1997-04-08 | Shin Etsu Chem Co Ltd | Hydrogen storage alloy electrode and manufacture thereof |
JPH1012228A (en) * | 1996-04-26 | 1998-01-16 | Shin Etsu Chem Co Ltd | Hydrogen storage alloy electrode |
JPH1060361A (en) * | 1996-08-23 | 1998-03-03 | Shin Etsu Chem Co Ltd | Hydrogen-occluding alloy electrode |
JPH11144733A (en) * | 1997-11-11 | 1999-05-28 | Furukawa Battery Co Ltd:The | Secondary battery electrode and secondary battery |
JP2009295405A (en) * | 2008-06-04 | 2009-12-17 | Asahi Glass Co Ltd | Method for manufacturing aqueous paste for forming power storage element electrode |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012134110A (en) * | 2010-12-24 | 2012-07-12 | Fdk Twicell Co Ltd | Negative electrode for alkaline secondary battery, and alkaline secondary battery comprising the negative electrode |
JP7454430B2 (en) | 2020-04-02 | 2024-03-22 | 東ソー・ファインケム株式会社 | Method for producing fluorine-containing phosphonic acid |
CN115417758A (en) * | 2022-09-22 | 2022-12-02 | 山东大学 | Preparation method of high-purity crystalline perfluorooctanoic acid |
Also Published As
Publication number | Publication date |
---|---|
JP5560824B2 (en) | 2014-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5444717B2 (en) | Non-aqueous electrolyte | |
DE69918117T2 (en) | AROMATIC POLYMERS WITH FLUORINATED IONIC GROUPS | |
JP2010146740A (en) | Electrolytic solution | |
CN109715684A (en) | The water-borne dispersions without fluorinated surfactant of vinylidene fluoride copolymer comprising hydroxyl | |
JP2003525957A5 (en) | ||
CN110277587A (en) | Electrolyte and lithium rechargeable battery for lithium rechargeable battery | |
KR101343477B1 (en) | Non-aqueous secondary battery | |
WO2008032793A1 (en) | Lithium salt | |
JP5560824B2 (en) | Hydrogen storage alloy electrode and nickel metal hydride battery | |
JP2010086914A (en) | Nonaqueous electrolytic solution | |
JP2018005972A (en) | Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery | |
JP2006066095A (en) | Nonaqueous electrolyte solution and battery using this | |
JP5218066B2 (en) | Electrode coating composition using fluoroether surfactant | |
JP2015521208A5 (en) | ||
KR101309240B1 (en) | Novel ionic liquid, gel polymer electrolyte for lithium air battery and lithium air battery including ionic liquid | |
JP5413460B2 (en) | Hydrogen storage alloy electrode and nickel metal hydride battery | |
JP2006093064A (en) | Non-aqueous electrolytic liquid and battery using the same | |
JPH0997605A (en) | Hydrogen storage alloy electrode and manufacture thereof | |
JP2016076374A (en) | Composition for lithium secondary battery electrode | |
JP6645792B2 (en) | Electrode, lithium ion secondary battery, method for manufacturing electrode, and method for manufacturing lithium ion secondary battery | |
JP5515503B2 (en) | Hydrogen storage alloy electrode and nickel metal hydride battery | |
JP2011198510A (en) | Hydrogen storage alloy electrode and nickel hydrogen battery | |
US9765096B2 (en) | Organohalosilane and use thereof in electrolytes of non-aqueous lithium ion batteries | |
JP2007099706A (en) | Lithium salt and use thereof | |
JP2007103208A (en) | Ion conductive composition and its utilization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140513 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140526 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5560824 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |