JP2011204135A - Flow controlling device, liquid discharge device including the flow controlling device, and designing method of the flow controlling device - Google Patents

Flow controlling device, liquid discharge device including the flow controlling device, and designing method of the flow controlling device Download PDF

Info

Publication number
JP2011204135A
JP2011204135A JP2010072647A JP2010072647A JP2011204135A JP 2011204135 A JP2011204135 A JP 2011204135A JP 2010072647 A JP2010072647 A JP 2010072647A JP 2010072647 A JP2010072647 A JP 2010072647A JP 2011204135 A JP2011204135 A JP 2011204135A
Authority
JP
Japan
Prior art keywords
flow rate
flow
adjusting device
pressure
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010072647A
Other languages
Japanese (ja)
Other versions
JP5507303B2 (en
Inventor
Yoshiyasu Ito
良泰 伊藤
Hisanori Shibata
尚紀 柴田
Yasunari Maeda
康成 前田
Shigeyuki Yamaguchi
重行 山口
Hitoshi Kitamura
仁史 北村
Kyoko Tsutsumi
恭子 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010072647A priority Critical patent/JP5507303B2/en
Publication of JP2011204135A publication Critical patent/JP2011204135A/en
Application granted granted Critical
Publication of JP5507303B2 publication Critical patent/JP5507303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a simply-structured flow controlling device capable of easily fixing a flow rate without requiring any special control.SOLUTION: The flow controlling device, which controls a flow rate of a liquid flowing through a flow passage 3 to a set flow rate, includes a Venturi tube 1 arranged in the flow passage 3. The flow passage cross section of a throat part 6 of the Venturi tube 1 is set so that the flow rate is lowered by pressure loss accompanying occurrence of bubbles due to cavitation and substantially fixed to the set flow rate when the flow rate of the liquid passing the Venturi tube 1 exceeds the set flow rate.

Description

本発明は、流量調整装置およびその流量調整装置が設けられた液体吐出装置並びに流量調整装置の設計方法に関する。   The present invention relates to a flow rate adjusting device, a liquid ejection device provided with the flow rate adjusting device, and a design method of the flow rate adjusting device.

給水源から供給される水を使用する場合、供給される水の給水流量を設定給水流量に調整することが要請されることが多い。例えば、節水等を目的として水の定流量化を図る場合、特許文献1で報告されている定流量弁を設置する方法や、止水栓を設置して調整する方法によることが一般的である。   When water supplied from a water supply source is used, it is often required to adjust the water supply flow rate of the supplied water to the set water supply flow rate. For example, when a constant flow rate of water is intended for the purpose of saving water or the like, it is common to use a method of installing a constant flow valve reported in Patent Document 1 or a method of adjusting by installing a stop cock. .

しかしながら、前者の方法の場合、要求される流量調整機能を十分に発揮することができるものの、内部構造が複雑であり、組込スペースの確保が容易でなく低コスト化が難しい。後者の方法の場合、特に自動水栓において各水栓端末毎に調整が必要になるなどの手間を要する。   However, in the case of the former method, although the required flow rate adjustment function can be sufficiently exhibited, the internal structure is complicated, and it is difficult to secure a built-in space and it is difficult to reduce the cost. In the case of the latter method, especially in an automatic faucet, it is necessary to make adjustments for each faucet terminal.

特開2005−163823号公報JP 2005-163823 A

本発明は以上の通りの事情に鑑みてなされたものであり、構造が簡単で特別な調整を必要とせず容易に定流量化が図れる流量調整装置およびその流量調整装置が設けられた液体吐出装置並びに流量調整装置の設計方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and has a simple structure and does not require special adjustment, and can easily achieve a constant flow rate, and a liquid discharge device provided with the flow rate adjustment device An object of the present invention is to provide a method for designing a flow rate adjusting device.

本発明は以下のことを特徴としている。   The present invention is characterized by the following.

第1に、本発明は、流路を流れる液体の流量を設定流量に調整する流量調整装置であり、流路に設けられるベンチュリ管を備えている。前記ベンチュリ管のスロート部は、下記式を満足する流路断面積を有しており、ベンチュリ管を通過する液体が設定流量を超える場合にキャビテーションによる気泡の発生に伴う圧力損失によりその流量が抑えられ、設定流量に略定流量化される。   1stly, this invention is a flow volume adjustment apparatus which adjusts the flow volume of the liquid which flows through a flow path to setting flow volume, and is provided with the venturi pipe provided in a flow path. The throat portion of the venturi pipe has a flow path cross-sectional area that satisfies the following formula, and when the liquid passing through the venturi pipe exceeds the set flow rate, the flow rate is suppressed by the pressure loss caused by the generation of bubbles due to cavitation. The flow rate is substantially constant to the set flow rate.

Figure 2011204135
Figure 2011204135

ここで、Sはスロート部の流路断面積、V、Pはそれぞれスロート部における所定の位置A点の流速と圧力であり、V、Pはそれぞれベンチュリ管よりも下流の流路の末端においてA点の流線上にあるB点の流速と圧力であり、Pは大気圧である。ρは液体の密度であり、Qは設定流量である。 Here, S is the cross-sectional area of the flow path of the throat section, V and P are the flow velocity and pressure at a predetermined position A in the throat section, and V 1 and P 1 are the end of the flow path downstream of the venturi pipe, respectively. , The flow velocity and pressure at point B on the streamline at point A, and P 1 is atmospheric pressure. ρ is the density of the liquid, and Q is the set flow rate.

第2に、上記第1の発明において、ベンチュリ管のスロート部に開口する気体導入口を有する。   Secondly, in the first aspect of the invention, a gas introduction port that opens to the throat portion of the venturi tube is provided.

第3に、上記第1または第2の発明において、ベンチュリ管が流路方向に複数設けられている。   Thirdly, in the first or second invention, a plurality of venturi tubes are provided in the flow path direction.

第4に、上記第1から第3のいずれかの発明において、液体が、水道水である。   Fourth, in any one of the first to third inventions, the liquid is tap water.

第5に、本発明の液体吐出装置は、上記第1から第4のいずれかの発明である流量調整装置が流路の途中に設けられ、吐出口が流路の下流端に設けられている。   Fifthly, in the liquid discharge device of the present invention, the flow rate adjusting device according to any one of the first to fourth aspects of the present invention is provided in the middle of the flow path, and the discharge port is provided at the downstream end of the flow path. .

第6に、本発明は、流路を流れる液体の流量を設定流量に調整する流量調整装置の設計方法であり、気体が溶解した液体が流れる流路に設けるベンチュリ管のスロート部の流路断面積を、下記式を満足するように設計する。   Sixth, the present invention is a method for designing a flow rate adjusting device that adjusts the flow rate of the liquid flowing through the flow channel to a set flow rate, and the flow path disconnection of the throat portion of the venturi pipe provided in the flow channel through which the liquid in which the gas is dissolved flows The area is designed to satisfy the following formula.

Figure 2011204135
Figure 2011204135

ここで、Sはスロート部の流路断面積、V、Pはそれぞれスロート部における所定の位置A点の流速と圧力であり、V、Pはそれぞれベンチュリ管よりも下流の流路の末端においてA点の流線上にあるB点の流速と圧力であり、Pは大気圧である。ρは液体の密度であり、Qは設定流量である。 Here, S is the cross-sectional area of the flow path of the throat section, V and P are the flow velocity and pressure at a predetermined position A in the throat section, and V 1 and P 1 are the end of the flow path downstream of the venturi pipe, respectively. , The flow velocity and pressure at point B on the streamline at point A, and P 1 is atmospheric pressure. ρ is the density of the liquid, and Q is the set flow rate.

第1の発明によれば、従来の定流量弁等に比べて構造が簡単であり、しかも特別な調整を必要とせず容易に定流量化が図れる。   According to the first invention, the structure is simpler than that of a conventional constant flow valve or the like, and a constant flow rate can be easily achieved without requiring any special adjustment.

第2の発明によれば、キャビテーションで発生する気泡に加えて、ベンチュリ管のスロート部に気体が導入されるので液体中の気泡量が増大する。これにより、圧力損失がますます増大してより効果的に定流量化が図れる。   According to the second invention, in addition to the bubbles generated by cavitation, the gas is introduced into the throat portion of the venturi tube, so the amount of bubbles in the liquid increases. As a result, the pressure loss increases further, and the flow rate can be made more effective.

第3の発明によれば、ベンチュリ管が流路方向に複数設けられており、それぞれのベンチュリ管において気泡の発生に伴う圧力損失による定流量化が段階的に行われるので、より確実に、またより効果的に定流量化が図れる。   According to the third invention, a plurality of venturi pipes are provided in the direction of the flow path, and the constant flow rate due to the pressure loss due to the generation of bubbles in each of the venturi pipes is performed in stages, so more reliably and A constant flow rate can be achieved more effectively.

第4の発明によれば、構造が簡単で特別な調整を必要とせず容易に水道水の定流量化が図れる。   According to the fourth invention, the structure is simple and a constant flow rate of tap water can be easily achieved without requiring special adjustment.

第5の発明によれば、流路内の圧力変動にかかわらず流量が略一定に保たれた液体を吐出することができる。   According to the fifth aspect of the invention, it is possible to discharge a liquid whose flow rate is kept substantially constant regardless of pressure fluctuations in the flow path.

第6の発明によれば、従来の定流量弁等に比べて構造が簡単であり、しかも特別な調整を必要とせず容易に定流量化が図れる流量調整装置を得ることができる。   According to the sixth aspect of the present invention, it is possible to obtain a flow rate adjusting device that has a simple structure as compared with a conventional constant flow rate valve or the like and that can easily achieve a constant flow rate without requiring special adjustment.

流量調整装置を備えた液体吐出装置の一実施形態を示した概略説明図である。It is the schematic explanatory drawing which showed one Embodiment of the liquid discharge apparatus provided with the flow volume adjustment apparatus. 気泡混入がない流体と気泡混入した流体の流路内における流体の圧力と流量の関係を示すグラフである。It is a graph which shows the relationship between the pressure and flow volume of the fluid in the flow path of the fluid without a bubble mixing, and the fluid with which a bubble was mixed. 液体吐出装置の別の実施形態を示した概略説明図である。It is the schematic explanatory drawing which showed another embodiment of the liquid discharge apparatus. 水の飽和蒸気圧線図である。It is a saturated vapor pressure diagram of water. 液体吐出装置のさらに別の実施形態を示した概略説明図である。It is the schematic explanatory drawing which showed another embodiment of the liquid discharge apparatus.

以下、図面を参照して本発明を詳細に説明する。図1は、流量調整装置を備えた液体吐出装置の一実施形態を示した概略説明図である。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic explanatory view showing an embodiment of a liquid ejection device provided with a flow rate adjusting device.

一般的に流体の流路内に気泡が混入した場合、気泡が混入しない場合に比べて圧力損失が大きくなる。その傾向は気泡の量が多ければ多いほど、顕著になる。図2は、気泡混入がない流体と気泡混入流体の流路内における流体の圧力と流量の関係を示すグラフである。縦軸が圧力であり、横軸が流体の流量を示す。いずれの流体も流路内の圧力が増大するに従い流量も増大する。点線で囲まれる領域Xにおいては、圧力が増大してもその流量変化は気泡混入がない流体と比べて小さく、定流量になる傾向がある。これは、上記したとおり、気泡が混入すると圧力損失が大きくなっていることによる。本発明は、以上の知見に基づいてなされたものであり、上記特性を利用して流量がある一定以上になった場合に液体に気泡を発生させ、また混入することにより定流量化を図っている。   Generally, when bubbles are mixed in the fluid flow path, the pressure loss is larger than when bubbles are not mixed. The tendency becomes more prominent as the amount of bubbles increases. FIG. 2 is a graph showing the relationship between the pressure and flow rate of the fluid in the flow path of the fluid in which bubbles are not mixed and the bubbles in fluid. The vertical axis represents pressure, and the horizontal axis represents fluid flow rate. The flow rate of any fluid increases as the pressure in the flow path increases. In the region X surrounded by the dotted line, even when the pressure increases, the flow rate change is smaller than that of the fluid without air bubbles and tends to be a constant flow rate. As described above, this is because the pressure loss increases when bubbles are mixed. The present invention has been made on the basis of the above knowledge. When the flow rate becomes a certain level or more by utilizing the above characteristics, bubbles are generated in the liquid and mixed to achieve a constant flow rate. Yes.

図1の液体吐出装置は、流路3を形成する水道配管4の途中に流量調整装置を構成するベンチュリ管1が接続されており、流路3の下流端には吐出口2が設けられている。流路3の上流端は水道等の給水源に接続され、流路3に給水源から水道水が供給される。   In the liquid discharge device of FIG. 1, a venturi pipe 1 constituting a flow rate adjusting device is connected in the middle of a water pipe 4 that forms a flow path 3, and a discharge port 2 is provided at the downstream end of the flow path 3. Yes. The upstream end of the flow path 3 is connected to a water supply source such as a water supply, and tap water is supplied to the flow path 3 from the water supply source.

ベンチュリ管1は、流路径が下流側に向かって縮小する先細部5と、この先細部5につながり下流側に向かって流路径が略一定なスロート部6と、このスロート部6につながり流路径が下流側に向かって徐々に拡大するテーパー状の末広部7とを有している。給水源から水道配管4に流れる水道水は、ベンチュリ管1の先細部5において流速が増加し、流路径が最も小さいスロート部6において流速が最大になり、静圧が最低になる。そして末広部7において水道水の流速が減少して静圧が回復する。   The venturi tube 1 has a tapered portion 5 in which the flow channel diameter decreases toward the downstream side, a throat portion 6 connected to the tapered portion 5 and having a substantially constant flow channel diameter toward the downstream side, and a flow channel diameter connected to the throat portion 6. It has a tapered divergent portion 7 that gradually expands toward the downstream side. The tap water flowing from the water supply source to the tap pipe 4 has a flow velocity that increases in the tapered portion 5 of the venturi 1, the flow velocity is maximized in the throat portion 6 having the smallest channel diameter, and the static pressure is minimized. And in the divergent part 7, the flow velocity of tap water decreases and the static pressure recovers.

ここで、ベンチュリ管1のスロート部6の任意の位置をA点とし、ベンチュリ管1の末広部7よりも下流の流路3の末端にある水道配管4の水道水出口部分(吐出口2)においてA点と同一流線上にある位置をB点とする。A点の圧力と流速をそれぞれP、Vとし、B点の圧力と流速をPとVとし、水道水の密度をρとすると、流体に粘性がなく定常流れであり非圧縮性であれば、下記式(ベルヌーイの定理)のような関係にある。なお、B点は大気に開放される部分であるため、Pは大気圧である。 Here, an arbitrary position of the throat portion 6 of the venturi pipe 1 is designated as point A, and the tap water outlet portion (discharge port 2) of the water pipe 4 at the end of the flow path 3 downstream from the divergent portion 7 of the venturi pipe 1 is shown. A position on the same streamline as point A is B point. If the pressure and flow velocity at point A are P and V, the pressure and flow velocity at point B are P 1 and V 1, and the density of tap water is ρ, the fluid is not viscous and is a steady flow and is incompressible. For example, the relationship is as shown in the following equation (Bernoulli's theorem). Since point B is a portion which is opened to the atmosphere, P 1 is atmospheric pressure.

Figure 2011204135
Figure 2011204135

本実施形態にかかる流量調整装置は、設定流量を超える水道水がベンチュリ管1を通過する際、圧力損失が大きくなるようにし、これによって流量を抑えて設定流量に略定流量化している。圧力損失を大きくするためには、上記のとおり、気泡が混入した水道水とすることが必要である。そこで本実施形態では静圧が最も低いスロート部において、静圧がその水道水の温度の飽和蒸気圧以下になるようにし、水道水を沸騰させ(キャビテーション)、気泡を水道水中に発生させている。設定流量は、   In the flow rate adjusting device according to the present embodiment, when tap water exceeding the set flow rate passes through the venturi 1, the pressure loss is increased, thereby suppressing the flow rate and making the set flow rate substantially constant. In order to increase the pressure loss, it is necessary to use tap water mixed with bubbles as described above. Therefore, in the present embodiment, in the throat portion where the static pressure is the lowest, the static pressure is made equal to or lower than the saturated vapor pressure of the tap water temperature, the tap water is boiled (cavitation), and bubbles are generated in the tap water. . The set flow rate is

Figure 2011204135
Figure 2011204135

と表すことができるので、上記式(1)、(2)と、下記式(3)、(4) Therefore, the above formulas (1) and (2) and the following formulas (3) and (4)

Figure 2011204135
Figure 2011204135

を満たすようなベンチュリ管のスロート部の流路断面積Sを設定すれば、ベンチュリ管1を通過する水道水が設定流量を超える場合、水道水を沸騰させて気泡を水道水中に発生させることができる。なお、水道水は一般的に空気が飽和状態で溶存しているため、水道水を沸騰させれば容易に気泡を水道水中に析出させることができる。したがって、本実施形態にかかるベンチュリ管は、そのスロート部の流路断面積Sが上記式を満足するように設定されている。 If the channel cross-sectional area S of the throat portion of the venturi pipe that satisfies the above is set, when the tap water passing through the venturi pipe 1 exceeds the set flow rate, the tap water is boiled to generate bubbles in the tap water. it can. Since tap water is generally dissolved in a saturated state, bubbles can be easily deposited in tap water by boiling the tap water. Therefore, the venturi tube according to this embodiment is set so that the flow passage cross-sectional area S of the throat portion satisfies the above formula.

このように本実施形態の液体吐出装置は、構造が簡単で特別な調整を必要とせず容易に定流量化が図れる流量調整装置を備えており、優れた流量調整機能を有している。なお、流量調整装置は、そのスロート部の流路断面積が上記式で求めた流路断面積Sに厳密に限定されるものではなく多少異なっていても、同様に流量調整機能を有するものとなる。   As described above, the liquid ejection apparatus according to the present embodiment includes a flow rate adjustment device that has a simple structure, does not require special adjustment, and can easily achieve a constant flow rate, and has an excellent flow rate adjustment function. It should be noted that the flow rate adjusting device is not limited to the flow path cross-sectional area S obtained by the above formula, but has a flow rate adjusting function in the same manner even if it is slightly different. Become.

図3は、液体吐出装置の別の実施形態を示した概略説明図である。なお、図1に示す液体吐出装置と同じ部分については同符号を付して説明を省略する。   FIG. 3 is a schematic explanatory view showing another embodiment of the liquid ejection apparatus. The same parts as those of the liquid ejection apparatus shown in FIG.

図3の液体吐出装置では、流量調整装置を構成するベンチュリ管1のスロート部6に開口する気体導入口8を有しており、開口には配管9が接続され、配管9を通じて外部空間とスロート部6とが連通されている。スロート部6の静圧は上記したように飽和蒸気圧以下になるように設定されているので、同静圧は、図4に示す水の飽和蒸気圧線図から明らかなようにように大気圧より低くなっている。スロート部6の静圧が大気圧より低いと、気体導入口8から配管9を通じて外部空気が自然吸引される。   3 has a gas introduction port 8 that opens to the throat portion 6 of the venturi pipe 1 constituting the flow rate adjusting device, and a pipe 9 is connected to the opening, and the throat and the external space are connected through the pipe 9. The part 6 is in communication. Since the static pressure of the throat portion 6 is set to be equal to or lower than the saturated vapor pressure as described above, the static pressure is the atmospheric pressure as apparent from the saturated vapor pressure diagram of water shown in FIG. It is lower. When the static pressure of the throat portion 6 is lower than atmospheric pressure, external air is naturally sucked from the gas inlet 8 through the pipe 9.

したがって、本実施形態では、キャビテーションにより発生する気泡に加えて外部空気から取り込まれた気泡が水道水中に混入されるので、水道水中の気泡量が増大する。これにより、圧力損失がますます増大してより効果的に水道水の定流量化を図ることができる。本実施形態では、エアポンプ等の動力を利用して外部空気を強制的に流路に送り込む必要はなく、水道水の流れを利用しているので安価である。また構造が簡単である。   Therefore, in this embodiment, in addition to bubbles generated by cavitation, bubbles taken from external air are mixed in the tap water, so the amount of bubbles in the tap water increases. Thereby, pressure loss increases more and it can aim at the constant flow volume of tap water more effectively. In this embodiment, it is not necessary to forcibly send external air into the flow path using power such as an air pump, and the flow of tap water is used, so that the cost is low. The structure is simple.

図5は、液体吐出装置のさらに別の実施形態を示した概略説明図である。なお、図1、3に示す液体吐出装置と同じ部分については同符号を付して説明を省略する
図5の液体吐出装置では、図1の液体吐出装置における流量調整装置を構成するベンチュリ管1,1’が流路方向に複数設けられている。具体的には、水道配管4の上流側と下流側に2つベンチュリ管1,1’が接続されている。下流側のベンチュリ管1’は、上流側のベンチュリ管1と同様、先細部5’スロート部6’および末広部7’を有している。この実施形態では、それぞれのベンチュリ管1,1’でキャビテーションを発生させ、気泡を発生させるようにしている。圧力損失による流量の抑制が上流側のベンチュリ管1と下流側のベンチュリ管1’において段階的に行われるので、より確実に、またより効果的に水道水の定流量化を図ることができる。なお、各ベンチュリ管1,1’のスロート部6,6’の流路断面積S、S’は、図1の流量調整装置と同様に下記式を満足するように設定される。
FIG. 5 is a schematic explanatory view showing still another embodiment of the liquid ejection apparatus. The same parts as those of the liquid ejection device shown in FIGS. 1 and 3 are denoted by the same reference numerals and description thereof is omitted. In the liquid ejection device of FIG. 5, the venturi 1 constituting the flow rate adjusting device in the liquid ejection device of FIG. , 1 'are provided in the flow path direction. Specifically, two venturi pipes 1 and 1 ′ are connected to the upstream side and the downstream side of the water pipe 4. The downstream venturi tube 1 ′ has a tapered portion 5 ′ throat portion 6 ′ and a divergent portion 7 ′, similar to the upstream venturi tube 1. In this embodiment, cavitation is generated in each of the venturi tubes 1 and 1 ′ to generate bubbles. Since the flow rate is suppressed by pressure loss in the upstream venturi 1 and the downstream venturi 1 'in stages, the constant flow rate of tap water can be achieved more reliably and more effectively. In addition, the flow path cross-sectional areas S and S ′ of the throat portions 6 and 6 ′ of the respective venturi pipes 1 and 1 ′ are set so as to satisfy the following expression, similarly to the flow rate adjusting device of FIG.

Figure 2011204135
Figure 2011204135

ここで、V’、P’はそれぞれベンチュリ管1’のスロート部6’におけるC点の流速と圧力であり、A点、B点、C点はともに同一流線上に位置している。   Here, V ′ and P ′ are the flow velocity and pressure at point C in the throat portion 6 ′ of the venturi tube 1 ′, and points A, B, and C are all located on the same streamline.

以上、実施形態に基づき本発明を説明したが、本発明は上記の実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲内において各種の変更が可能である。例えば、図5に示すように流量調整装置が複数設けられている場合、少なくとも1つのベンチュリ管のスロート部に開口する気体導入口を設けることもできる。また、流量調整装置や液体吐出装置は流量調整が必要な分野に幅広く用いられ、例えば、浄水器、給湯器、トイレシステム関連機器等に適用することができる。   While the present invention has been described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, when a plurality of flow rate adjusting devices are provided as shown in FIG. 5, a gas introduction port that opens to at least one venturi throat portion may be provided. In addition, the flow rate adjusting device and the liquid discharge device are widely used in fields that require flow rate adjustment, and can be applied to, for example, water purifiers, water heaters, toilet system related devices, and the like.

1,1’ ベンチュリ管
2 吐出口
3 流路
6,6’ スロート部
8 気体導入口
1, 1 'Venturi tube 2 Discharge port 3 Flow path 6, 6' Throat section 8 Gas inlet

Claims (6)

流路を流れる液体の流量を設定流量に調整する流量調整装置であって、流路に設けられるベンチュリ管を備え、ベンチュリ管のスロート部は、スロート部の流路断面積をSとし、スロート部における所定の位置A点の流速と圧力をそれぞれV、Pとし、ベンチュリ管よりも下流の流路の末端においてA点の流線上にあるB点の流速と圧力をそれぞれV、P(=大気圧)とし、液体の密度をρとし、設定流量をQとした場合に、
Figure 2011204135
を満足する流路断面積Sを有しており、ベンチュリ管を通過する液体が設定流量を超える場合にキャビテーションによる気泡の発生に伴う圧力損失によりその流量が抑えられ、設定流量に略定流量化されることを特徴とする流量調整装置。
A flow rate adjusting device for adjusting a flow rate of a liquid flowing in a flow path to a set flow rate, comprising a venturi pipe provided in the flow path, wherein the throat portion of the venturi pipe has a flow passage cross-sectional area of the throat portion as S, and the throat portion Let V and P be the flow velocity and pressure at a predetermined position A in V, respectively, and let V 1 and P 1 (= the flow velocity and pressure at point B on the streamline of point A at the end of the flow path downstream from the venturi pipe respectively. Atmospheric pressure), the liquid density is ρ, and the set flow rate is Q.
Figure 2011204135
If the liquid passing through the venturi tube exceeds the set flow rate, the flow rate is suppressed by the pressure loss associated with the generation of bubbles due to cavitation, and the set flow rate is made almost constant. A flow rate adjusting device characterized in that:
ベンチュリ管のスロート部に開口する気体導入口を有することを特徴とする請求項1に記載の流量調整装置。   The flow rate adjusting device according to claim 1, further comprising a gas introduction port that opens to a throat portion of the venturi pipe. ベンチュリ管が流路方向に複数設けられていることを特徴とする請求項1または2に記載の流量調整装置。   The flow rate adjusting device according to claim 1 or 2, wherein a plurality of venturi pipes are provided in the direction of the flow path. 流路を流れる液体が、水道水であることを特徴とする請求項1から3のいずれか一項に記載の流量調整装置。   The flow rate adjusting device according to any one of claims 1 to 3, wherein the liquid flowing in the flow path is tap water. 請求項1から4のいずれかの流量調整装置が流路の途中に設けられ、吐出口が流路の下流端に設けられていることを特徴とする液体吐出装置。   5. A liquid ejecting apparatus according to claim 1, wherein the flow rate adjusting device according to claim 1 is provided in the middle of the flow path, and a discharge port is provided at a downstream end of the flow path. 流路を流れる液体の流量を設定流量に調整する流量調整装置の設計方法であって、気体が溶解した液体が流れる流路に設けるベンチュリ管のスロート部の流路断面積をSとし、スロート部における所定の位置A点の流速と圧力をそれぞれV、Pとし、ベンチュリ管よりも下流の流路の末端においてA点の流線上にあるB点の流速と圧力をそれぞれV、P(=大気圧)とし、液体の密度をρとし、設定流量をQとした場合に、
Figure 2011204135
を満足するようにベンチュリ管のスロート部の流路断面積Sを設計することを特徴とする流量調整装置の設計方法。
A design method of a flow rate adjusting device for adjusting a flow rate of a liquid flowing in a flow channel to a set flow rate, wherein S is a flow channel cross-sectional area of a throat portion of a venturi tube provided in a flow channel in which a liquid in which a gas is dissolved flows. Let V and P be the flow velocity and pressure at a predetermined position A in V, respectively, and let V 1 and P 1 (= the flow velocity and pressure at point B on the streamline of point A at the end of the flow path downstream from the venturi pipe respectively. Atmospheric pressure), the liquid density is ρ, and the set flow rate is Q.
Figure 2011204135
A flow rate adjusting device designing method, wherein the flow passage cross-sectional area S of the throat portion of the venturi pipe is designed so as to satisfy the above.
JP2010072647A 2010-03-26 2010-03-26 Liquid ejection device provided with a flow rate adjusting device Active JP5507303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072647A JP5507303B2 (en) 2010-03-26 2010-03-26 Liquid ejection device provided with a flow rate adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072647A JP5507303B2 (en) 2010-03-26 2010-03-26 Liquid ejection device provided with a flow rate adjusting device

Publications (2)

Publication Number Publication Date
JP2011204135A true JP2011204135A (en) 2011-10-13
JP5507303B2 JP5507303B2 (en) 2014-05-28

Family

ID=44880692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072647A Active JP5507303B2 (en) 2010-03-26 2010-03-26 Liquid ejection device provided with a flow rate adjusting device

Country Status (1)

Country Link
JP (1) JP5507303B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100748A (en) * 1995-08-02 1997-04-15 Trw Inc Cavitating venturi for low reynolds-number flow
JPH1037804A (en) * 1996-07-22 1998-02-13 Ishikawajima Harima Heavy Ind Co Ltd Cavitation venturi valve
JP2004188240A (en) * 2002-12-06 2004-07-08 Jfe Engineering Kk Water treatment apparatus
JP2009273966A (en) * 2008-05-12 2009-11-26 Kyoritsu Gokin Co Ltd Fine air bubble generating nozzle and device provided with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100748A (en) * 1995-08-02 1997-04-15 Trw Inc Cavitating venturi for low reynolds-number flow
JPH1037804A (en) * 1996-07-22 1998-02-13 Ishikawajima Harima Heavy Ind Co Ltd Cavitation venturi valve
JP2004188240A (en) * 2002-12-06 2004-07-08 Jfe Engineering Kk Water treatment apparatus
JP2009273966A (en) * 2008-05-12 2009-11-26 Kyoritsu Gokin Co Ltd Fine air bubble generating nozzle and device provided with the same

Also Published As

Publication number Publication date
JP5507303B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP6058672B2 (en) Fluid mixing delivery system
KR20200093527A (en) Devices with clean small areas
TW200942693A (en) Fuel pump module having a direct mounted jet pump and methods of assembly
CN105909567A (en) Jet device capable of improving cavitation performance of jet type centrifugal pump
GB2431461A (en) Water heating installation
CN201045359Y (en) Fluidic jet pump for reducing vibration and noise
JP5507303B2 (en) Liquid ejection device provided with a flow rate adjusting device
CN106062450B (en) Flow rate adjustment unit having function of limiting swing angle of flow rate adjustment blade
US20120094242A1 (en) Multiple Fuel Manifold System
RO132390A3 (en) Water aeration system for hydraulic turbines
JP2008128603A (en) Electric expansion valve
JP6144854B1 (en) Ejecta
JP2007213906A (en) Amplification nozzle and fuel cell system using it
CN106556208A (en) Low tension outlet environment-support system under a kind of forced circulation flox condition
JP2018178944A (en) Method of adjusting suction amount of ejector, and ejector using the same
JP6425147B2 (en) Method of supplying heat of vaporization and vaporization mixing apparatus
JP2019120242A (en) Secondary air supply device for internal combustion engine
KR20120054788A (en) Multi hole orifice
CN109210374A (en) Air inlet pipeline and semiconductor processing equipment
CN108374919B (en) Magnetic force constraint piston type flow stabilizing valve
TWI537218B (en) Ozone water generating device
KR100829290B1 (en) Underwater discharging nozzle
JP2016161237A (en) Gas supply device
CN205037290U (en) Reduce boiler feed water device of oxygen -eliminating device mounting height
CN116045213A (en) Flange type throttle orifice plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R151 Written notification of patent or utility model registration

Ref document number: 5507303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151