JP2011203443A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP2011203443A
JP2011203443A JP2010069991A JP2010069991A JP2011203443A JP 2011203443 A JP2011203443 A JP 2011203443A JP 2010069991 A JP2010069991 A JP 2010069991A JP 2010069991 A JP2010069991 A JP 2010069991A JP 2011203443 A JP2011203443 A JP 2011203443A
Authority
JP
Japan
Prior art keywords
light
light source
transparent plate
source device
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010069991A
Other languages
Japanese (ja)
Inventor
Daisaku Tanaka
大作 田中
Yasubumi Kawanabe
保文 川鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2010069991A priority Critical patent/JP2011203443A/en
Publication of JP2011203443A publication Critical patent/JP2011203443A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light source device for accurately measuring a light output in a simple configuration.SOLUTION: A light source device 1 having a light guide rod 30 as a light guide member that receives light of a discharge lamp 4 being a light source, and outputs it, and controlling the quantity of the light incident on the light guide rod 30 in accordance with a light output. A transparent plate 13 with half mirror is disposed between the discharge lamp 4 and the light guide rod 30 at an inclined angle relative to an optical axis of the discharge lamp 4, so that a part of the incident light propagating inside toward an end surface 48. A light amount sensor 50 is provided on the end surface 48 to detect light 49 propagating to the end surface 48 of the transparent plate 13 with half mirror. The light output is detected on the basis of the amount of the propagating light 49.

Description

本発明は、光源の光を光ファイバ等の導光部材に入射する光源装置に係り、特に、出力光の検出技術に関する。   The present invention relates to a light source device that makes light from a light source incident on a light guide member such as an optical fiber, and more particularly to a technique for detecting output light.

従来から、放電ランプと、当該放電ランプの光を集光させる反射鏡とを組み合わせた集光型放電ランプを内蔵し、反射鏡で集光した光を、複数本の光ファイバの素線を束ねたバンドル光ファイバに入射し、当該バンドル光ファイバを介して所望の箇所まで導光可能にした光源装置が知られている。この種の光源装置では、光出力を検出し、集光型放電ランプの光軸上に設けた調光手段の調光量を光出力の検出結果に基づいてフィードバック制御することで、集光型放電ランプの劣化や使用環境(温度など)の変化により放射光量が変動した場合でも、光出力を一定に維持するものが知られている。   Conventionally, it has a built-in concentrating discharge lamp that combines a discharge lamp and a reflecting mirror that condenses the light from the discharge lamp, and bundles the light collected by the reflecting mirror into a plurality of optical fiber strands. There is known a light source device that is incident on a bundle optical fiber and can guide light to a desired location through the bundle optical fiber. In this type of light source device, the light output is detected, and the light control amount of the light control means provided on the optical axis of the light condensing type discharge lamp is feedback-controlled based on the detection result of the light output. It is known that the light output is kept constant even when the amount of radiated light fluctuates due to deterioration of the discharge lamp or change in use environment (temperature, etc.).

光出力の検出には、一般に、バンドル光ファイバの束から光モニタ用の光ファイバを分離して光量センサで検出する第1の検出方式や(例えば、特許文献1参照)、バンドル光ファイバに入射する光の光軸断面内の光量分布を均一化する導光ロッドの側面に光量センサを設け当該導光ロッドの側面から取り出した光を検出する第2の検出方式(例えば、特許文献2参照)が知られている。   For detection of optical output, generally, a first detection method in which an optical fiber for light monitoring is separated from a bundle of bundle optical fibers and detected by a light amount sensor (see, for example, Patent Document 1), is incident on the bundle optical fiber. A second detection method for detecting light extracted from the side surface of the light guide rod by providing a light amount sensor on the side surface of the light guide rod for uniformizing the light amount distribution in the optical axis cross section of the light to be transmitted (for example, see Patent Document 2) It has been known.

特開2009−206049号公報JP 2009-206049 A 特開2009−122468号公報JP 2009-122468 A

しかしながら、従来の第1の検出方式では、光量センサ用に光を分岐させるファイバを有した専用のバンドル光ファイバを用いる必要があり、装置コストが高くなる、という問題がある。また、従来の第2の検出方式では、導光ロッドの側面から光を取り出すための面加工が必要となり、また、面加工の仕上がり状態によって、検出光量と導光ロッドを伝搬する光量との対応関係が異なるため、光出力を正確に検出することが困難である。
本発明は、上述した事情に鑑みてなされたものであり、光出力を簡単かつ正確に測定できる光源装置を提供することを目的とする。
However, in the first conventional detection method, it is necessary to use a dedicated bundle optical fiber having a fiber for branching light for the light quantity sensor, and there is a problem that the apparatus cost increases. The second conventional detection method requires surface processing for extracting light from the side surface of the light guide rod, and the correspondence between the detected light amount and the light amount propagating through the light guide rod depending on the finished state of the surface processing. Since the relationship is different, it is difficult to accurately detect the light output.
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a light source device that can easily and accurately measure light output.

上記目的を達成するために、本発明は、光源の光を導光部材に入射して出力するとともに、前記導光部材への入射光量を光出力に応じて制御する光源装置において、前記光源と前記導光部材の間に透明板を、入射した光の一部が端面に向かって内部を伝搬するように前記光源の光軸に対して傾けて配置し、前記端面に光量センサを設けて前記透明板の端面への伝搬光を検出し、当該伝搬光の光量に基づいて光出力を検出することを特徴とする。   In order to achieve the above object, the present invention provides a light source device that makes light from a light source incident on a light guide member and outputs the light, and controls the amount of light incident on the light guide member according to light output. A transparent plate is disposed between the light guide members so as to be inclined with respect to the optical axis of the light source so that a part of incident light propagates toward the end surface, and a light amount sensor is provided on the end surface. It is characterized in that the propagation light to the end face of the transparent plate is detected and the light output is detected based on the light quantity of the propagation light.

また本発明は、上記光源装置において、略矩形の前記透明板の出射面の中心が前記光軸に位置するように配置し、前記端面の幅方向の中央部に前記光量センサを設けたことを特徴とする。   In the light source device according to the present invention, the center of the emission surface of the substantially rectangular transparent plate is positioned on the optical axis, and the light quantity sensor is provided at the center in the width direction of the end surface. Features.

また本発明は、上記光源装置において、前記光量センサが取り付けられる側の端面の厚さに対し当該端面に対向する端面の厚さが短くなるように前記透明板の入射面を出射面側に2.5度〜4度の範囲で傾斜させたことを特徴とする。   According to the present invention, in the above light source device, the incident surface of the transparent plate is set to the exit surface side so that the thickness of the end surface facing the end surface is shorter than the thickness of the end surface on the side where the light quantity sensor is attached. Inclined in the range of 5 degrees to 4 degrees.

また本発明は、上記光源装置において、前記透明板の出射面を前記光軸に対して45度〜50度の範囲で傾けて設けたことを特徴とする。   Further, the present invention is characterized in that in the light source device described above, the exit surface of the transparent plate is provided to be inclined in the range of 45 to 50 degrees with respect to the optical axis.

また本発明は、上記光源装置において、前記光源の光を集光し導光部材に入射する反射鏡と、前記反射鏡と前記導光部材の間に通過光量を調整する調光部材と、を有し、前記調光部材を前記反射鏡の開口面と集光点の略中心位置に配置したことを特徴とする。   According to the present invention, in the light source device, a reflecting mirror that collects light from the light source and enters the light guide member, and a light control member that adjusts the amount of light passing between the reflecting mirror and the light guide member, And the light control member is arranged at a substantially central position of the aperture surface of the reflecting mirror and the condensing point.

また本発明は、上記光源装置において、前記透明板の出射面にハーフミラー膜を設けたことを特徴とする。   According to the present invention, in the above light source device, a half mirror film is provided on an emission surface of the transparent plate.

本発明によれば、透明板を光軸に傾けて配置し、当該透明板の端面に伝搬する伝搬光を光量センサで検出する構成としたため、透明板への入射光量或いは透過光量と、伝搬光量との間の相関関係に基づいて、当該入射光量或いは透過光量が求められるから、導光部材を経て出力される光出力を簡単かつ正確に検出することができる。   According to the present invention, the transparent plate is disposed to be inclined with respect to the optical axis, and the propagation light propagating to the end surface of the transparent plate is detected by the light amount sensor. Since the incident light amount or transmitted light amount is obtained based on the correlation between the light output and the light output, the light output output through the light guide member can be detected easily and accurately.

本発明の実施形態に係る光源装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the light source device which concerns on embodiment of this invention. ハーフミラー付透明板及び光量センサの構成を示す図である。It is a figure which shows the structure of a transparent plate with a half mirror, and a light quantity sensor. 調光板の構成を示す図である。It is a figure which shows the structure of a light control board. ハーフミラー付透明板の出射面に対する入射面の傾斜角γと、透過光の分布、反射光の分布及び光量センサに入射する伝搬光の分布との関係を、光量センサの取付側の端面の光量分布とともに示す図である。The relationship between the inclination angle γ of the entrance surface relative to the exit surface of the transparent plate with a half mirror and the distribution of transmitted light, reflected light, and propagation light incident on the light quantity sensor. It is a figure shown with distribution. ハーフミラー付透明板の出射面の光軸に対する傾斜角αと、透過光の分布、反射光の分布及び光量センサに入射する伝搬光の分布との関係を、光量センサの取付側の端面の光量分布とともに示す図である。The relationship between the inclination angle α with respect to the optical axis of the exit surface of the transparent plate with a half mirror, the distribution of transmitted light, the distribution of reflected light, and the distribution of propagating light incident on the light quantity sensor. It is a figure shown with distribution.

以下、図面を参照して本発明の実施形態について説明する。
図1は、本実施形態に係る光源装置1の構成を模式的に示す図である。この図に示すように、光源装置1は、例えば検査対象物(被照射物)の表面を撮像して画像処理により製品検査を行う際に、光ファイバの素線が多数束ねられてなるバンドル光ファイバ2を介して検査対象物に照明光を照射するために用いられるものである。具体的には、光源装置1は、光源装置本体3と、この光源装置本体3に着脱自在に接続された上記バンドル光ファイバ2とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically illustrating a configuration of a light source device 1 according to the present embodiment. As shown in this figure, the light source device 1 is a bundled light in which a large number of optical fiber strands are bundled when, for example, the surface of an inspection object (irradiated object) is imaged and product inspection is performed by image processing. This is used for irradiating the inspection object with illumination light through the fiber 2. Specifically, the light source device 1 includes a light source device body 3 and the bundle optical fiber 2 detachably connected to the light source device body 3.

図1に示すように、光源装置本体3は、放電ランプ4及び放電ランプ4の放射光を集光する楕円反射鏡6を一体に備えた集光型放電ランプ7と、集光型放電ランプ7の発光を制御する安定器8と、光量調整部12と、集光型放電ランプ7の光線を2つに分岐するハーフミラー付透明板13と、分岐した光線ごとに光出射口14とを内蔵し、さらに、ハーフミラー付透明板13には、光出射口14に入射する光量を検出する光量センサ50が設けられている。なお、この他にも、光源装置本体3には、紫外線・赤外線カットフィルタなどが設けられている。   As shown in FIG. 1, the light source device body 3 includes a discharge lamp 4 and a condensing discharge lamp 7 integrally provided with an elliptical reflecting mirror 6 that condenses the emitted light of the discharge lamp 4, and a condensing discharge lamp 7. Built-in ballast 8 that controls the light emission of light, a light amount adjusting unit 12, a transparent plate 13 with a half mirror that divides the light beam of the concentrating discharge lamp 7 into two, and a light exit 14 for each branched light beam. Further, the transparent plate 13 with a half mirror is provided with a light amount sensor 50 for detecting the amount of light incident on the light exit port 14. In addition, the light source device body 3 is provided with an ultraviolet / infrared cut filter or the like.

放電ランプ4は、水銀ランプ及びメタルハライドランプなどのショートアーク型のランプであり、楕円反射鏡6の第一焦点F1に配置され、これら放電ランプ4及び楕円反射鏡6により上記集光型放電ランプ7が構成されており、集光型放電ランプ7が放射する光は、楕円反射鏡6の第二焦点F2に集光する。この第二焦点F2は光源装置本体3内に位置し、この第二焦点F2の近傍に上記ハーフミラー付透明板13が配置されている。   The discharge lamp 4 is a short arc type lamp such as a mercury lamp and a metal halide lamp, and is disposed at the first focal point F1 of the elliptical reflecting mirror 6. The concentrating discharge lamp 7 is formed by the discharge lamp 4 and the elliptical reflecting mirror 6. The light emitted from the concentrating discharge lamp 7 is condensed at the second focal point F2 of the elliptical reflecting mirror 6. The second focal point F2 is located in the light source device main body 3, and the transparent plate 13 with a half mirror is disposed in the vicinity of the second focal point F2.

ハーフミラー付透明板13は、図2に示すように、ガラスやアクリル等の透明部材から成る透明板40の出射面40Bにハーフミラー膜42を設けた、入射面40A及び出射面40Bが略正方形(少なくとも出射面40Bを正面視したときに正方形)の光学素子である。すなわちハーフミラー付透明板13の入射面40Aへの入射光43はハーフミラー膜42により、そのまま透過する透過光44と、ハーフミラー膜42で反射する反射光45とに二分され、透過光44及び反射光45がそれぞれ光出射口14に入射する。このハーフミラー膜42は、出射面40B(すなわち、ハーフミラー膜42への入射面)が光軸Kに対して少なくとも45度〜50度の傾斜角αで設置された場合に、透過光44及び反射光45の光量比を約1:1とする特性を有している。このハーフミラー付透明板13は、光軸K上の第二焦点F2から導光ロッド30側に若干ずれた位置に配置されており、透過光44及び反射光45が所定の拡がり角βをもって光出射口14に入射される。ハーフミラー付透明板13を第二焦点F2から外れた位置に配置することで、集光による熱影響を抑えられる。このとき、ハーフミラー付透明板13を第二焦点F2から集光型放電ランプ7側に外れた位置に配置すると、当該集光型放電ランプ7の放射光がハーフミラー付透明板13を通過した後に集光することとなるので、導光ロッド33までの距離が長くなり、これが2方向分あるため、装置が大型化する。そこで、ハーフミラー付透明板13を第二焦点F2から導光ロット30側に外れた位置に配置することで、装置の大型化を防止し、また集光による熱影響を防止できる。   As shown in FIG. 2, the transparent plate 13 with a half mirror has a substantially square entrance surface 40A and an exit surface 40B in which a half mirror film 42 is provided on the exit surface 40B of a transparent plate 40 made of a transparent member such as glass or acrylic. It is an optical element (square at least when the emission surface 40B is viewed from the front). That is, the incident light 43 on the incident surface 40A of the transparent plate 13 with a half mirror is divided into two by the half mirror film 42 into a transmitted light 44 that is transmitted as it is and a reflected light 45 that is reflected by the half mirror film 42. Each of the reflected lights 45 enters the light exit 14. The half mirror film 42 has an outgoing surface 40B (that is, an incident surface to the half mirror film 42) and the transmitted light 44 and the light when the inclined surface α is at least 45 degrees to 50 degrees with respect to the optical axis K. The light quantity ratio of the reflected light 45 is about 1: 1. The half mirror-equipped transparent plate 13 is disposed at a position slightly shifted from the second focal point F2 on the optical axis K to the light guide rod 30 side, and the transmitted light 44 and the reflected light 45 are light having a predetermined divergence angle β. The light enters the exit 14. By disposing the transparent plate 13 with a half mirror at a position deviating from the second focal point F <b> 2, the thermal effect due to light collection can be suppressed. At this time, when the transparent plate 13 with a half mirror is disposed at a position deviated from the second focal point F2 toward the condensing discharge lamp 7, the emitted light of the condensing discharge lamp 7 has passed through the transparent plate 13 with a half mirror. Since the light will be condensed later, the distance to the light guide rod 33 becomes longer, and there are two directions, so the apparatus becomes larger. Therefore, by arranging the transparent plate 13 with a half mirror at a position deviated from the second focal point F2 to the light guide lot 30 side, it is possible to prevent the apparatus from becoming large and to prevent the thermal influence due to light collection.

光出射口14には、図1に示すように、それぞれ導光ロッド30及び当該導光ロッド30を保持する導光ロッドホルダー32が設けられている。
導光ロッド30は、入射した光を、光軸Kの断面における光量分布を均一にしてバンドル光ファイバ2に出力する導光部材である。具体的には、導光ロッド30は、ガラス体で形成された断面正六角形の柱状体であり、一端面の光入射端面30inに、ハーフミラー付透明板13の透過光44又は反射光45が入射され、他端面の光出射端面30outからバンドル光ファイバ2に出力する。この導光ロッド30は、ロッドインテグレータで形成されているので、導光ロッド30に入射される光が光軸Kの断面内でガウシアン分布のような光量分布を有している場合でも、出力される光の光量分布は光軸Kの断面内でフラットな分布になるように均一化される。すなわち、光源装置1においては、照射面内で均一な光量分布の照明光が要求される場合でも、導光ロッド30により十分に均一化されることから、光を均一化する光学系を別途に設ける必要がない。
As shown in FIG. 1, the light exit 14 is provided with a light guide rod 30 and a light guide rod holder 32 that holds the light guide rod 30.
The light guide rod 30 is a light guide member that outputs incident light to the bundle optical fiber 2 with a uniform light amount distribution in the cross section of the optical axis K. Specifically, the light guide rod 30 is a columnar body having a regular hexagonal cross section formed of a glass body, and the transmitted light 44 or the reflected light 45 of the transparent plate 13 with a half mirror is formed on the light incident end surface 30in of one end surface. The light is incident and output to the bundle optical fiber 2 from the light emitting end face 30out on the other end face. Since the light guide rod 30 is formed of a rod integrator, the light that is incident on the light guide rod 30 is output even when the light has a light quantity distribution such as a Gaussian distribution in the cross section of the optical axis K. The light quantity distribution of the light is made uniform so as to become a flat distribution in the cross section of the optical axis K. That is, in the light source device 1, even when illumination light having a uniform light amount distribution within the irradiation surface is required, the light source rod 1 is sufficiently uniformed by the light guide rod 30. There is no need to provide it.

導光ロッドホルダー32は、光源装置本体3を貫通する筒部材であり、光源装置本体3に入り込んだ端部には上記導光ロッド30が挿入され、また光源装置本体3の外に突出した端部は、バンドル光ファイバ2の入射取付具60の接続口34として構成されている。入射取付具60が取り付けられることで、バンドル光ファイバ2の先端部が導光ロッド30の光出射端面30outに対向配置され、光出射端面30outからの出力光がバンドル光ファイバ2の先端部に入射される。   The light guide rod holder 32 is a cylindrical member that penetrates the light source device main body 3. The light guide rod 30 is inserted into an end portion that enters the light source device main body 3, and the end protrudes outside the light source device main body 3. The part is configured as the connection port 34 of the incident fixture 60 of the bundle optical fiber 2. By attaching the incident fixture 60, the distal end portion of the bundle optical fiber 2 is disposed to face the light exit end surface 30out of the light guide rod 30, and the output light from the light exit end surface 30out enters the distal end portion of the bundle optical fiber 2. Is done.

光量調整部12は、光源装置本体3の出力光量をフィードバック制御するものであり、調光板20と、この調光板20を回転駆動するステップモータ22と、このステップモータ22の回転駆動量を制御するコントローラ24とを備えている。
調光板20は、楕円反射鏡6から第二焦点F2に至る光軸K上であって、楕円反射鏡6(集光型放電ランプ7)の開口面たるフランジ面6Aと第二焦点F2との間の中心位置Pよりもやや第二焦点F2側に配置され、その板面には、図3に示すように、調光板20の回転量に比例するように光透過量を可変する形状、すなわち周方向に沿って開口幅が漸増する形状の開口20Aが形成されている。
コントローラ24は、出射口入射光の光量が一定に維持されるように調光板20を回転させて出力光量を可変するフィードバック制御を実行する。
ここで、調光板20を第二焦点F2に近付けて配置するほど、調光板20の開口20Aの開口幅を小さくすることができ、調光板20自体を小さくできる。しかし、調光板20を第二焦点F2に近付けて配置するほど、当該調光板20に照射される入射光の面積が小さくなるので、調光板20の開口幅の作製が難しく、かつ局所的に調光板20の温度が高くなる為、調光板20の変形等の問題が発生する。そこで、調光板20を、フランジ面6Aと第二焦点F2との間の中心位置Pよりもやや第二焦点F2側に配置することで、調光板20の小型化と、作成の容易性及びランプからの熱による変形防止を可能にしている。
The light amount adjustment unit 12 feedback-controls the output light amount of the light source device body 3, and the light control plate 20, a step motor 22 that rotationally drives the light control plate 20, and the rotational drive amount of the step motor 22. And a controller 24 for controlling.
The dimming plate 20 is on the optical axis K from the elliptical reflecting mirror 6 to the second focal point F2, and has a flange surface 6A that is an opening surface of the elliptical reflecting mirror 6 (condensing discharge lamp 7) and the second focal point F2. 3 is located slightly closer to the second focal point F2 side than the center position P between them, and the plate surface has a shape in which the light transmission amount is variable so as to be proportional to the rotation amount of the light control plate 20, as shown in FIG. That is, the opening 20A having a shape in which the opening width gradually increases along the circumferential direction is formed.
The controller 24 performs feedback control to vary the output light quantity by rotating the light control plate 20 so that the light quantity of the exit-entrance light is maintained constant.
Here, the closer the dimming plate 20 is to the second focal point F2, the smaller the opening width of the opening 20A of the dimming plate 20, and the smaller the dimming plate 20 itself. However, as the light control plate 20 is arranged closer to the second focal point F2, the area of incident light irradiated on the light control plate 20 becomes smaller. In particular, since the temperature of the light control plate 20 becomes high, problems such as deformation of the light control plate 20 occur. Therefore, by arranging the light control plate 20 on the second focus F2 side slightly from the center position P between the flange surface 6A and the second focus F2, the light control plate 20 can be reduced in size and easily created. In addition, it is possible to prevent deformation due to heat from the lamp.

図1及び図2に示すように、ハーフミラー付透明板13の下端部側の端面48には光量センサ50が設けられている。光量センサ50は、端面48の光量を検出し、上記コントローラ24に出力する。詳述すると、ハーフミラー付透明板13が光軸Kに対して傾けて配置されることで、ハーフミラー付透明板13に入射した入射光43は、図2に示すように、その一部が透明板40の内部で多重反射し、端面48に向かって伝搬する伝搬光49となる。この伝搬光49の光量は、入射光43の光量と、透明板40の光学特性とに依存し、当該光学特性が既知である場合には、伝搬光49の光量に基づいて入射光43、透過光44、或いは反射光45の光量が演算により求められる。   As shown in FIGS. 1 and 2, a light amount sensor 50 is provided on the end surface 48 on the lower end side of the transparent plate 13 with a half mirror. The light quantity sensor 50 detects the light quantity of the end face 48 and outputs it to the controller 24. More specifically, as the transparent plate 13 with a half mirror is arranged to be inclined with respect to the optical axis K, a part of the incident light 43 incident on the transparent plate 13 with a half mirror is, as shown in FIG. The reflected light 49 is propagated toward the end face 48 by multiple reflection inside the transparent plate 40. The light quantity of the propagation light 49 depends on the light quantity of the incident light 43 and the optical characteristics of the transparent plate 40. When the optical characteristics are known, the incident light 43 and the transmission light are transmitted based on the light quantity of the propagation light 49. The amount of light 44 or reflected light 45 is obtained by calculation.

上記コントローラ24は、光量センサ50から入力された伝搬光49の光量の検出値を透過光44及び反射光45の光量に換算し、これら透過光44及び反射光45の光量が所定の目標値に維持されるように調光板20を制御する。かかる制御により、導光ロッド30への入射光量が目標値に維持されることから、集光型放電ランプ7の劣化や使用環境(温度など)の変化により放射光量が変動した場合でも、光出力が常に一定に維持される。なお、この所定の目標値は、光源装置本体3に設けられた図示せぬ操作子の操作によってコントローラ24に入力される。   The controller 24 converts the light intensity detection value of the propagation light 49 input from the light intensity sensor 50 into the light intensity of the transmitted light 44 and the reflected light 45, and the light intensity of the transmitted light 44 and the reflected light 45 becomes a predetermined target value. The light control plate 20 is controlled so as to be maintained. With this control, the amount of light incident on the light guide rod 30 is maintained at the target value, so that even if the amount of radiated light varies due to deterioration of the condensing type discharge lamp 7 or changes in the usage environment (temperature, etc.), the light output Is always kept constant. The predetermined target value is input to the controller 24 by operating an operator (not shown) provided in the light source device body 3.

ここで、ハーフミラー付透明板13において、ハーフミラー膜42を、透明板40の出射面40Bに代えて入射面40Aに設ける構成としてもハーフミラーの機能が得られる。しかしながら、入射面40Aにハーフミラー膜42を形成した場合には、出射面40Bに形成した場合に比べて伝搬光49の光量が減ってしまうため、本実施形態では、ハーフミラー膜42を透明板40の出射面40Bに設け、伝搬光49の光量低下を防止している。
また、ハーフミラー付透明板13(透明板40)において、上記光量センサ50を設ける端面48の厚さTaは、図2に示すように、光量センサ50の検出面51と同程度の大きさ(本実施形態ではTa=約3mm)とし、透明板40の厚さを無駄に大きくせずに、端面48に伝搬した伝搬光49を効率良く光量センサ50に入射させるようにしている。
Here, in the transparent plate 13 with a half mirror, the function of a half mirror can be obtained even if the half mirror film 42 is provided on the incident surface 40A instead of the exit surface 40B of the transparent plate 40. However, when the half mirror film 42 is formed on the incident surface 40A, the amount of propagating light 49 is reduced as compared with the case where the half mirror film 42 is formed on the output surface 40B. 40 is provided on the emission surface 40B to prevent the light quantity of the propagation light 49 from being reduced.
Further, in the transparent plate 13 with a half mirror (transparent plate 40), the thickness Ta of the end face 48 provided with the light quantity sensor 50 is as large as the detection surface 51 of the light quantity sensor 50 (see FIG. 2). In this embodiment, Ta = about 3 mm), and the propagation light 49 propagated to the end face 48 is efficiently incident on the light quantity sensor 50 without unnecessarily increasing the thickness of the transparent plate 40.

また、ハーフミラー付透明板13は、図2に示すように、光軸K上の第二焦点F2或いはその近傍に、当該ハーフミラー付透明板13の出射面40Bの中心Oを光軸Kに合わせて配置されている。これにより、ハーフミラー付透明板13への入射面積が小さくなるため、ハーフミラー付透明板13自体を小さくできる。また、ハーフミラー付透明板13の中心Oを光軸Kに合わせることで、後述する図4に示すように、光量センサ50の取付側の端面48では、伝搬光49が端面48の中央部(端面48の横方向(厚さTaに直交する方向)の幅Wの略中心)に集められ、この端面48の中央部に光量センサ50を配置することで、伝搬光49を効率良く検出でき、また、集光型放電ランプ7と、ハーフミラー付透明板13と、光量センサ50の位置関係が明確になり、装置の組み立てが容易となる。   Further, as shown in FIG. 2, the transparent plate 13 with a half mirror has, as the optical axis K, the center O of the emission surface 40B of the transparent plate 13 with the half mirror at or near the second focal point F2 on the optical axis K. Are arranged together. Thereby, since the incident area to the transparent plate 13 with a half mirror becomes small, the transparent plate 13 with a half mirror itself can be made small. Further, by aligning the center O of the transparent plate 13 with the half mirror with the optical axis K, as shown in FIG. 4 to be described later, the propagation light 49 is transmitted to the center portion (on the end surface 48 of the light amount sensor 50). By collecting the light quantity sensor 50 at the center of the end face 48 in the lateral direction of the end face 48 (substantially the center of the width W in the direction orthogonal to the thickness Ta), the propagating light 49 can be detected efficiently, Further, the positional relationship among the concentrating discharge lamp 7, the transparent plate 13 with a half mirror, and the light quantity sensor 50 becomes clear, and the assembly of the apparatus becomes easy.

図4は、ハーフミラー付透明板13の出射面40Bに対する入射面40Aの傾斜角γと、透過光44の分布、反射光45の分布及び光量センサ50に入射する伝搬光49の分布との関係を、光量センサ50の取付側の端面48の光量分布とともに示す図である。なお、同図に示す分布は後述する傾斜角αを45度に固定して測定したものである。
本実施形態では、ハーフミラー付透明板13には、図2に示すように、入射面40Aが出射面40Bの側に、光量センサ50の取付側の端面48の厚さTaよりも当該端面48に対向する端面53の厚さTbが短くなるように傾斜角γで傾斜した形状のものが用いられている。この傾斜角γは、出射面40Bに対して端面48及び端面53が垂直であり、出射面40Bの高さ(すなわち端面48から端面53までの距離)をLとした場合、次式で表される。
傾斜角γ=Arctan((Ta−Tb)/L) (1)
なお、傾斜角γ=0度のときが入射面40Aと出射面40Bが平行な場合である。
FIG. 4 shows the relationship between the inclination angle γ of the incident surface 40A with respect to the emission surface 40B of the transparent plate 13 with a half mirror, the distribution of the transmitted light 44, the distribution of the reflected light 45, and the distribution of the propagation light 49 incident on the light quantity sensor 50. Is shown together with the light amount distribution of the end surface 48 on the mounting side of the light amount sensor 50. FIG. The distribution shown in the figure is measured by fixing an inclination angle α, which will be described later, to 45 degrees.
In the present embodiment, as shown in FIG. 2, the transparent plate 13 with a half mirror has an entrance surface 40A on the exit surface 40B side, and an end surface 48 that is thicker than the thickness Ta of the end surface 48 on the mounting side of the light quantity sensor 50. A shape inclined at an inclination angle γ is used so that the thickness Tb of the end face 53 facing the surface becomes shorter. The inclination angle γ is expressed by the following equation when the end surface 48 and the end surface 53 are perpendicular to the exit surface 40B, and the height of the exit surface 40B (ie, the distance from the end surface 48 to the end surface 53) is L. The
Inclination angle γ = Arctan ((Ta−Tb) / L) (1)
Note that when the angle of inclination γ = 0 degrees, the incident surface 40A and the output surface 40B are parallel.

傾斜角γが変化した場合、図4に示すように、反射光45及び透過光44の光量や分布に大きな変化は見られないものの、端面48での伝搬光49の分布及び光量が大きく変化する。光量センサ50には、検出限界を下まわらない程度の微少な光量が入射すれば十分であるため、伝搬光49の光量の変化は問題にはならないものの、伝搬光49の分布が不均一になったり、伝搬光49の分布が光量センサ50の検出面51をはみ出たりすると、光量の検出精度の低下を招く虞がある。
すなわち、傾斜角γが大きくなるほど、端面48での伝搬光49の分布が拡がり、傾斜角γ=約3.6度のときが伝搬光49の分布が検出面51に入る限界となる。一方、傾斜角γがある程度小さくなると、例えば傾斜角γ=約1.8度のときに示されるように、伝搬光49の分布が乱れ検出精度の低下を招くこととなる。
そこで、本実施形態では、傾斜角γを2.5度から4度を限度とすることで、検出精度を維持することとしている。具体的には、本実施形態では、ハーフミラー付透明板13として、L=16mm、Ta=3mm、Tb=2mm、γ=3.6度の形状寸法のものを用いることとしている。
When the inclination angle γ is changed, as shown in FIG. 4, although the light quantity and distribution of the reflected light 45 and the transmitted light 44 are not greatly changed, the distribution and light quantity of the propagation light 49 on the end face 48 are greatly changed. . Since it is sufficient for the light amount sensor 50 to receive a minute amount of light that does not fall below the detection limit, a change in the amount of light of the propagating light 49 is not a problem, but the distribution of the propagating light 49 becomes uneven. If the distribution of the propagation light 49 protrudes from the detection surface 51 of the light quantity sensor 50, the light quantity detection accuracy may be reduced.
That is, as the inclination angle γ increases, the distribution of the propagation light 49 at the end face 48 is expanded, and the distribution of the propagation light 49 enters the detection surface 51 when the inclination angle γ = about 3.6 degrees. On the other hand, if the inclination angle γ is reduced to some extent, the distribution of the propagation light 49 is disturbed, for example, as shown when the inclination angle γ = about 1.8 degrees, and the detection accuracy is reduced.
Therefore, in this embodiment, the detection accuracy is maintained by limiting the inclination angle γ to 2.5 degrees to 4 degrees. Specifically, in the present embodiment, as the transparent plate 13 with a half mirror, a plate with dimensions of L = 16 mm, Ta = 3 mm, Tb = 2 mm, and γ = 3.6 degrees is used.

図5は、ハーフミラー付透明板13の出射面40Bの光軸Kに対する傾斜角αと、透過光44の分布、反射光45の分布及び光量センサ50に入射する伝搬光49の分布との関係を、光量センサ50の取付側の端面48の光量分布とともに示す図である。なお、同図の分布は、上記傾斜角γを3.6度に固定して測定したものである。
この図に示すように、傾斜角αが変化すると、反射光及び透過光の光量や分布に大きな変化は見られない。一方、端面48での伝搬光49の分布においては、傾斜角αが45度〜50度の範囲で、端面48の中央部に伝搬光49が集中するものの、傾斜角αが45度よりも小さくなると(図示例α=40度)、分布が乱れる傾向がある。そこで、本実施形態では、ハーフミラー付透明板13の傾斜角αを40度〜50度の範囲とし、光量センサ50に伝搬光49を効率良く入射させ、検出精度の低下を防止することとしている。
FIG. 5 shows the relationship between the inclination angle α with respect to the optical axis K of the exit surface 40B of the transparent plate 13 with a half mirror, the distribution of transmitted light 44, the distribution of reflected light 45, and the distribution of propagating light 49 incident on the light quantity sensor 50. Is shown together with the light amount distribution of the end surface 48 on the mounting side of the light amount sensor 50. FIG. The distribution in the figure is measured with the tilt angle γ fixed at 3.6 degrees.
As shown in this figure, when the inclination angle α is changed, there is no significant change in the amount and distribution of reflected light and transmitted light. On the other hand, in the distribution of the propagation light 49 on the end face 48, the propagation angle 49 is concentrated in the central part of the end face 48 in the range of the inclination angle α of 45 degrees to 50 degrees, but the inclination angle α is smaller than 45 degrees. Then (illustration example α = 40 degrees), the distribution tends to be disturbed. Therefore, in the present embodiment, the inclination angle α of the transparent plate 13 with a half mirror is set in the range of 40 degrees to 50 degrees, and the propagation light 49 is efficiently incident on the light amount sensor 50 to prevent a decrease in detection accuracy. .

このように本実施形態によれば、ハーフミラー付透明板13を光軸Kに傾けて配置し、当該ハーフミラー付透明板13の端面48に伝搬する伝搬光49を光量センサ50で検出する構成としたため、ハーフミラー付透明板13への入射光43、透過光44及び反射光45の光量を伝搬光49の光量との相関関係に基づいて演算により求められるため、導光ロッド30を経て出力される光出力を簡単かつ正確に検出することができる。   As described above, according to the present embodiment, the transparent plate 13 with the half mirror is inclined with respect to the optical axis K, and the light quantity sensor 50 detects the propagating light 49 propagating to the end surface 48 of the transparent plate 13 with the half mirror. Therefore, the light amounts of the incident light 43, the transmitted light 44 and the reflected light 45 to the transparent plate 13 with a half mirror can be obtained by calculation based on the correlation with the light amount of the propagation light 49, and thus output through the light guide rod 30. The detected light output can be detected easily and accurately.

また本実施形態によれば、ハーフミラー付透明板13を出射面40Bの中心Oが光軸Kに位置するように配置し、端面48の幅W方向の中央部に光量センサ50を設ける構成とした。この構成により、伝搬光49を端面48の幅W方向の中央部に集め、当該伝搬光49を光量センサ50に効率良く入射して検出することができる。   In addition, according to the present embodiment, the transparent plate 13 with a half mirror is arranged so that the center O of the emission surface 40B is located on the optical axis K, and the light quantity sensor 50 is provided at the center of the end surface 48 in the width W direction. did. With this configuration, the propagation light 49 can be collected at the center of the end face 48 in the width W direction, and the propagation light 49 can be efficiently incident on the light quantity sensor 50 and detected.

また本実施形態によれば、光量センサ50の取付側の端面48に対し当該端面48に対向する端面53の厚さTbが短くなるようにハーフミラー付透明板13の入射面40Aを出射面40Bの側に2.5度〜4度の範囲で傾斜させる構成とした。この構成により、端面48での伝搬光49の分布が光量センサ50の検出面51よりも拡がることがなく、伝搬光49を効率良く、なおかつ精度良く検出することができる。   Further, according to the present embodiment, the incident surface 40A of the half mirror-equipped transparent plate 13 is set to the output surface 40B so that the thickness Tb of the end surface 53 facing the end surface 48 is shorter than the end surface 48 on the mounting side of the light quantity sensor 50. It was set as the structure made to incline in the range of 2.5 degree | times-4 degree | times to this side. With this configuration, the distribution of the propagation light 49 on the end surface 48 does not spread more than the detection surface 51 of the light quantity sensor 50, and the propagation light 49 can be detected efficiently and accurately.

さらに本実施形態によれば、ハーフミラー付透明板13の出射面40Bを光軸Kに対して45度〜50度の範囲で傾けて設ける構成としたため、端面48での伝搬光49の分布の乱れを抑え、より精度良く伝搬光49を検出することができる。   Furthermore, according to the present embodiment, the outgoing surface 40B of the transparent plate 13 with a half mirror is provided so as to be inclined in the range of 45 degrees to 50 degrees with respect to the optical axis K, so that the distribution of the propagation light 49 on the end face 48 is reduced. It is possible to suppress the disturbance and detect the propagating light 49 with higher accuracy.

特に、透明板40の出射面40Bにハーフミラー膜42を設けた構成のハーフミラー付透明板13においては、当該ハーフミラー付透明板13の透過光44と反射光45の両方の光量を1つの光量センサ50の検出値から求めることができる。これにより、装置構成を簡略化でき、装置コストが抑えられる。
さらに、ハーフミラー付透明板13において、入射面40Aを出射面40Bの側に2.5度〜4度の範囲で傾斜させ、また、ハーフミラー付透明板13の出射面40Bを光軸Kに対して45度〜50度の範囲で傾けて設けた場合でも、透過光44と反射光45の光量比率に差ほど変化がないため、透過光44と反射光45の光量比率を維持しつつ、1つの光量センサ50で効率良く、かつ正確に、これら透過光44と反射光45の光量を検出できる。
In particular, in the transparent plate 13 with a half mirror having the configuration in which the half mirror film 42 is provided on the emission surface 40B of the transparent plate 40, the transmitted light 44 and the reflected light 45 of the transparent plate 13 with the half mirror are reduced to one. It can be obtained from the detection value of the light quantity sensor 50. Thereby, the apparatus configuration can be simplified and the apparatus cost can be suppressed.
Further, in the transparent plate 13 with a half mirror, the incident surface 40A is inclined in the range of 2.5 degrees to 4 degrees toward the output surface 40B, and the output surface 40B of the transparent plate 13 with a half mirror is set to the optical axis K. On the other hand, even when it is tilted in the range of 45 degrees to 50 degrees, the light quantity ratio between the transmitted light 44 and the reflected light 45 does not change as much as the difference, so that while maintaining the light quantity ratio between the transmitted light 44 and the reflected light 45, The light quantity of the transmitted light 44 and the reflected light 45 can be detected efficiently and accurately by the single light quantity sensor 50.

また、本実施形態によれば、調光部材たる調光板20を、楕円反射鏡6の開口面たるフランジ面6Aと第二焦点F2との間の略中心位置Pに配置することで、調光板20の小型化と、作成の容易性及びランプからの熱による変形防止が可能になる。   Moreover, according to this embodiment, the light control plate 20 which is a light control member is arrange | positioned in the approximate center position P between the flange surface 6A which is an opening surface of the elliptical reflecting mirror 6, and the 2nd focus F2, thereby adjusting light. It is possible to reduce the size of the light plate 20, make it easy to make, and prevent deformation due to heat from the lamp.

なお、上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形および応用が可能である。
例えば、光源装置1の光源として、放電ランプ4を例示したが、これに限らず、例えばLED光源であっても良い。また、放電ランプ4の光を楕円反射鏡6で集光して導光ロッド30に入射する構成を例示したが、これに限らず、回転放物面の反射鏡を用いて平行光化して入射しても良い。この場合、平行光を出力するように構成されたLED光源を光源装置1の光源として用いることができる。
また、調光板20により調光する構成を例示したが、これに限らず、放電ランプ4や上記LED光源自体を、電流制御やパルス制御等で調光する調光手段を設ける構成としても良い。
In addition, embodiment mentioned above shows the one aspect | mode of this invention to the last, and a deformation | transformation and application are arbitrarily possible within the scope of the present invention.
For example, the discharge lamp 4 is exemplified as the light source of the light source device 1, but the present invention is not limited thereto, and for example, an LED light source may be used. In addition, the configuration in which the light of the discharge lamp 4 is collected by the elliptical reflecting mirror 6 and incident on the light guide rod 30 is illustrated. However, the present invention is not limited thereto, and the incident light is converted into parallel light using a rotating parabolic reflecting mirror. You may do it. In this case, an LED light source configured to output parallel light can be used as the light source of the light source device 1.
Moreover, although the structure which light-controls by the light control board 20 was illustrated, it is good not only as this but the structure which provides the light control means which light-controls the discharge lamp 4 or said LED light source itself by electric current control, pulse control, etc. .

また例えば、放電ランプ4の放射光をハーフミラー付透明板13により50:50に等分して出力する光源装置1を例示したが、これに限らない。すなわち、光出力の応用目的によっては、二分する比率を変えても良い。さらに、ハーフミラー付透明板13と他のハーフミラー等の光分岐機能を有する光学素素子を設けて放射光を、適宜の光量比率でn分岐(n≧3)して出力する構成としても良い。
またハーフミラー付透明板13に代えて、ハーフミラー膜42を設けていない透明板40を配置し、集光型放電ランプ7の放射光を二分せずに出力する光源装置としてもよい。
Moreover, for example, although the light source device 1 that divides the emitted light of the discharge lamp 4 into 50:50 by the transparent plate 13 with a half mirror and outputs it is illustrated, it is not limited thereto. In other words, depending on the application purpose of the light output, the bisection ratio may be changed. Furthermore, it is good also as a structure which provides the optical element element which has optical branch functions, such as the transparent plate 13 with a half mirror, and another half mirror, and radiates light by n branching (n> = 3) by a suitable light quantity ratio, and outputs. .
Moreover, it is good also as a light source device which replaces with the transparent plate 13 with a half mirror, arrange | positions the transparent plate 40 which does not provide the half mirror film | membrane 42, and outputs the emitted light of the condensing type discharge lamp 7 without dividing into two.

1 光源装置
2 バンドル光ファイバ
3 光源装置本体
4 放電ランプ(光源)
6 楕円反射鏡(反射鏡)
7 集光型放電ランプ
F1 第一焦点
F2 第二焦点(集光点)
12 光量調整部
13 ハーフミラー付透明板
20 調光板
24 コントローラ
30 導光ロッド(導光部材)
40 透明板
40A 入射面
40B 出射面
42 ハーフミラー膜
43 入射光
44 透過光
45 反射光
48、53 端面
49 伝搬光
50 光量センサ
51 検出面
K 光軸
O 中心
W 幅
Ta、Tb 厚さ
DESCRIPTION OF SYMBOLS 1 Light source device 2 Bundle optical fiber 3 Light source device main body 4 Discharge lamp (light source)
6 Elliptical reflector (reflector)
7 Condensing type discharge lamp F1 First focal point F2 Second focal point (condensing point)
DESCRIPTION OF SYMBOLS 12 Light quantity adjustment part 13 Transparent plate with a half mirror 20 Light control plate 24 Controller 30 Light guide rod (light guide member)
40 Transparent plate 40A Incident surface 40B Emission surface 42 Half mirror film 43 Incident light 44 Transmitted light 45 Reflected light 48, 53 End surface 49 Propagated light 50 Light quantity sensor 51 Detection surface K Optical axis O Center W Width Ta, Tb Thickness

Claims (6)

光源の光を導光部材に入射して出力するとともに、前記導光部材への入射光量を光出力に応じて制御する光源装置において、
前記光源と前記導光部材の間に透明板を、入射した光の一部が端面に向かって内部を伝搬するように前記光源の光軸に対して傾けて配置し、前記端面に光量センサを設けて前記透明板の端面への伝搬光を検出し、当該伝搬光の光量に基づいて光出力を検出することを特徴とする光源装置。
In the light source device that enters and outputs the light of the light source to the light guide member, and controls the amount of light incident on the light guide member according to the light output,
A transparent plate is disposed between the light source and the light guide member so as to be inclined with respect to the optical axis of the light source so that a part of the incident light propagates toward the end surface, and a light amount sensor is provided on the end surface. A light source device provided to detect light propagated to the end face of the transparent plate and detect light output based on the amount of the propagated light.
略矩形の前記透明板の出射面の中心が前記光軸に位置するように配置し、前記端面の幅方向の中央部に前記光量センサを設けたことを特徴とする請求項1に記載の光源装置。   2. The light source according to claim 1, wherein the light source sensor is disposed so that a center of an emission surface of the substantially rectangular transparent plate is positioned on the optical axis, and the light amount sensor is provided at a center portion in a width direction of the end surface. apparatus. 前記光量センサが取り付けられる側の端面の厚さに対し当該端面に対向する端面の厚さが短くなるように前記透明板の入射面を出射面側に2.5度〜4度の範囲で傾斜させたことを特徴とする請求項1又は2に記載の光源装置。   The incident surface of the transparent plate is inclined in the range of 2.5 to 4 degrees toward the exit surface so that the thickness of the end surface facing the end surface is shorter than the thickness of the end surface on the side where the light quantity sensor is attached. The light source device according to claim 1, wherein the light source device is a light source device. 前記透明板の出射面を前記光軸に対して45度〜50度の範囲で傾けて設けたことを特徴とする請求項1乃至3のいずれかに記載の光源装置。   4. The light source device according to claim 1, wherein an emission surface of the transparent plate is provided to be inclined in a range of 45 degrees to 50 degrees with respect to the optical axis. 前記光源の光を集光し導光部材に入射する反射鏡と、前記反射鏡と前記導光部材の間に通過光量を調整する調光部材と、を有し、前記調光部材を前記反射鏡の開口面と集光点の略中心位置に配置したことを特徴とする請求項1乃至4のいずれかに記載の光源装置。   A reflecting mirror that condenses the light from the light source and enters the light guide member; and a light control member that adjusts the amount of light passing between the reflection mirror and the light guide member; 5. The light source device according to claim 1, wherein the light source device is arranged at a substantially central position between the opening surface of the mirror and the condensing point. 前記透明板の出射面にハーフミラー膜を設けたことを特徴とする請求項1乃至5のいずれかに記載の光源装置。   The light source device according to claim 1, wherein a half mirror film is provided on an emission surface of the transparent plate.
JP2010069991A 2010-03-25 2010-03-25 Light source device Pending JP2011203443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069991A JP2011203443A (en) 2010-03-25 2010-03-25 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069991A JP2011203443A (en) 2010-03-25 2010-03-25 Light source device

Publications (1)

Publication Number Publication Date
JP2011203443A true JP2011203443A (en) 2011-10-13

Family

ID=44880154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069991A Pending JP2011203443A (en) 2010-03-25 2010-03-25 Light source device

Country Status (1)

Country Link
JP (1) JP2011203443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376626A (en) * 2012-04-12 2013-10-30 中强光电股份有限公司 Projecting device
CN114051571A (en) * 2019-07-10 2022-02-15 昕诺飞控股有限公司 Linear lamp connector assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103376626A (en) * 2012-04-12 2013-10-30 中强光电股份有限公司 Projecting device
US8982470B2 (en) 2012-04-12 2015-03-17 Coretronic Corporation Projection apparatus
CN103376626B (en) * 2012-04-12 2015-09-09 中强光电股份有限公司 Projection arrangement
CN114051571A (en) * 2019-07-10 2022-02-15 昕诺飞控股有限公司 Linear lamp connector assembly

Similar Documents

Publication Publication Date Title
US10042148B2 (en) Light sheet microscope and sheet illumination method
EP2315065B1 (en) Microscope
JP2012128425A (en) Illumination optical system and three-dimensional image acquisition device having the same
US10161859B2 (en) Planar reflective ring
JP5088605B2 (en) Light intensity monitor and light source device using the same
JP2012155159A (en) Laser light transmission device, laser light transmission system, and laser light transmission method
JP7296940B2 (en) Spectral Filters for High Power Fiber Illumination Sources
JP2011203443A (en) Light source device
JP5108490B2 (en) Lighting device for cell analyzer
JP5841498B2 (en) Object detection device
JP6548028B2 (en) Light source device
JP2001174410A (en) Lighting apparatus
JP2016145770A (en) Optical analyzer
US11067433B2 (en) Optical detection system with light sampling
TW200936990A (en) Procedure and apparition to define the velocity of a flowing liquid
GB2441050A (en) Measuring device for determining the concentration of gases by radiation absorption
JP6851751B2 (en) Optical equipment, processing equipment, and article manufacturing methods
JP2006045598A (en) Device for improving residual stress in installed pipe
KR20160110156A (en) Ultraviolet light flaw detection light unit, and ultraviolet light flaw detection apparatus
KR20070084504A (en) Analysis apparatus
WO2012002462A1 (en) Light source apparatus and pseudo-sunlight irradiating apparatus provided with same
JPH06265773A (en) Autofocusing device for microscope
JP2006351439A (en) Spot light source device
KR102234980B1 (en) Raman signal enhancement device using plasmon and raman signal measurment system using the same
US7821631B1 (en) Architecture of laser sources in a flow cytometer