JP2011203159A - Infrared imaging device, and display method of infrared image - Google Patents

Infrared imaging device, and display method of infrared image Download PDF

Info

Publication number
JP2011203159A
JP2011203159A JP2010071672A JP2010071672A JP2011203159A JP 2011203159 A JP2011203159 A JP 2011203159A JP 2010071672 A JP2010071672 A JP 2010071672A JP 2010071672 A JP2010071672 A JP 2010071672A JP 2011203159 A JP2011203159 A JP 2011203159A
Authority
JP
Japan
Prior art keywords
aircraft
temperature information
infrared
specific target
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010071672A
Other languages
Japanese (ja)
Other versions
JP5640423B2 (en
Inventor
Takashi Yoshida
隆志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010071672A priority Critical patent/JP5640423B2/en
Publication of JP2011203159A publication Critical patent/JP2011203159A/en
Application granted granted Critical
Publication of JP5640423B2 publication Critical patent/JP5640423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an infrared imaging device and a display method of an infrared image for displaying the infrared image so that a pilot can easily recognize a specific object acting as an obstacle during the taking-off and landing or the flight of an aircraft.SOLUTION: This infrared imaging device to be mounted in the aircraft is equipped with at least: a detection section that is fixed to the aircraft and detects infrared rays radiated from a subject; a processing section for generating two-dimensional temperature information of the subject based on a signal sequentially outputted from the detection section; and a display section for displaying the infrared image based on the two-dimensional temperature information. The processing section extracts a specific object preset from the subject, based on the two-dimensional temperature information, sets the temperature information of the whole or a part of the specifying object to a predetermined high value, and allows identification of the specifying object.

Description

本発明は、赤外線撮像装置及び赤外線画像の表示方法に関し、特に、ヘリコプタや小型飛行機などの航空機に搭載される赤外線撮像装置及び航空機の運航を支援する赤外線画像の表示方法に関する。   The present invention relates to an infrared imaging device and an infrared image display method, and more particularly, to an infrared imaging device mounted on an aircraft such as a helicopter or a small airplane, and an infrared image display method that supports the operation of the aircraft.

赤外線撮像装置は、物体から放射される赤外線を検知するものであり、夜間や視界が悪い悪天候時においても画像を取得できるという特徴がある。そこで、赤外線撮像装置を医療用や消防防災用、警備用のヘリコプタや小型飛行機などの航空機に搭載し、赤外線撮像装置で撮像した赤外線画像を表示して運航の支援に利用している。   The infrared imaging device detects infrared rays emitted from an object, and has a feature that an image can be acquired at night or in bad weather with poor visibility. In view of this, an infrared imaging device is mounted on an aircraft such as a helicopter or a small airplane for medical use, firefighting disaster prevention, and security, and an infrared image captured by the infrared imaging device is displayed and used for operation support.

このような赤外線撮像装置は、航空機の進行方向を撮像して被写体から放射される赤外線を検知する検知部と、検知部から出力される信号を処理する処理部と、赤外線画像を表示する表示部などで構成される。また、検知部は、集光光学系及び検知器などからなり、マウントにより航空機に固定される。   Such an infrared imaging device includes a detection unit that detects an infrared ray emitted from a subject by imaging a traveling direction of an aircraft, a processing unit that processes a signal output from the detection unit, and a display unit that displays an infrared image Etc. The detection unit includes a condensing optical system and a detector, and is fixed to the aircraft by a mount.

上記赤外線撮像装置では、目標物から放射された赤外線は集光光学系によって検知器に集光され、集光された赤外線は検知器で電気信号に変換されて処理部に送られ、処理部では電気信号を温度情報に変換して二次元の温度情報を生成し、表示部で二次元の温度情報に基づく赤外線画像を表示する。そして、操縦士は赤外線画像から運航上の指標となる対象や障害物となる対象などを識別し、それらを利用して航空機を制御する。   In the infrared imaging device, the infrared light emitted from the target is condensed on the detector by the condensing optical system, and the condensed infrared light is converted into an electric signal by the detector and sent to the processing unit. An electrical signal is converted into temperature information to generate two-dimensional temperature information, and an infrared image based on the two-dimensional temperature information is displayed on the display unit. Then, the pilot identifies the target as an operational index or the target as an obstacle from the infrared image, and uses them to control the aircraft.

このようなヘリコプタに搭載される赤外線撮像装置として、例えば、下記特許文献1には、空中を移動可能な機体と、機体の位置を特定する機体位置特定手段と、機体に搭載され、地表面上の目標物を撮影する撮影手段と、機体に対して、撮影手段の向いている方向を検出する方向検出手段と、地表面の三次元的な位置を表すデータを記録しておく地表面記録手段と、機体位置特定手段、撮影手段、方向検出手段および地表面記録手段からの出力に応答し、機体の位置から撮影手段の向いている方向に延ばした直線と地表面との交点を算出し、目標物の位置として特定する演算処理手段とを含む位置特定装置が開示されている。   As an infrared imaging device mounted on such a helicopter, for example, in Patent Document 1 below, an airframe that can move in the air, an airframe position specifying unit that specifies the position of the airframe, Photographing means for photographing the target, direction detecting means for detecting a direction in which the photographing means is directed to the aircraft, and ground surface recording means for recording data representing a three-dimensional position of the ground surface And, in response to the output from the aircraft position specifying means, imaging means, direction detection means and ground surface recording means, calculate the intersection of the straight line extending from the position of the aircraft in the direction facing the imaging means and the ground surface, A position specifying device including an arithmetic processing means for specifying the position of a target is disclosed.

特開平8−285590号公報JP-A-8-285590

ここで、赤外線画像は物体の温度に応じて階調を変化させた画像(例えば、白黒表示の場合は高温部を白、低温部を黒、疑似カラーの場合は高温部を赤、低温部を青などで表示した画像)であるため、目視では見えない、若しくは見にくい対象であっても検知することができる。そこで、航空機の離着陸時や飛行時、特に夜間や視界が悪い時の離着陸時や飛行時に赤外線画像を利用することにより、航空機を安全に操縦することができる。   Here, the infrared image is an image in which the gradation is changed according to the temperature of the object (for example, in the case of monochrome display, the high temperature portion is white, the low temperature portion is black, in the case of pseudo color, the high temperature portion is red, and the low temperature portion is Therefore, even an object that is invisible or difficult to see with the naked eye can be detected. Therefore, the aircraft can be safely operated by using the infrared image at the time of take-off and landing of the aircraft and at the time of flight, particularly at the time of take-off and landing at the time of night and poor visibility and at the time of flight.

例えば、離着陸地点(例えば、滑走路やヘリポート)近傍の建物や他の航空機、人物などは、空や地表、遠方の物体などの背景と温度差があり、赤外線画像で識別することができるため、航空機の操縦士はこれらを指標にして航空機を離着陸させることができる。   For example, buildings and other aircraft, people, etc. near takeoff and landing points (for example, runways and heliports) have a temperature difference from the background of the sky, ground surface, distant objects, etc., and can be identified with infrared images, Aircraft pilots can take off and land the aircraft using these as indicators.

また、航空機の進行方向の比較的大きい建物も、空や地表、遠方の物体などの背景と温度差があり、赤外線画像で識別することができるため、航空機の操縦士はこれらを指標にして航空機を安全に飛行させることができる。   In addition, buildings with relatively large traveling directions have temperature differences from the background such as the sky, ground surface, and distant objects, and can be identified by infrared images. Can fly safely.

一方、赤外線画像では、温度の高い対象は白黒表示では白く、疑似カラーでは赤く表示されるが、離着陸地点近傍の建物や他の航空機、人物、航空機の進行方向の比較的大きい建物の温度が十分に高くないと、これらは目立つように表示されない。そのため、航空機の操縦士は、離着陸時や飛行時に障害となる対象(これらを総称して特定対象と呼ぶ。)を容易に識別することができず、航空機を安全に操縦することができないという問題があった。   On the other hand, in the infrared image, the object with high temperature is white in black and white display and red in pseudo color, but the temperature of the building near the takeoff / landing point and other aircraft, people, and relatively large traveling direction of the aircraft is sufficient. If not, they will not be displayed prominently. Therefore, the aircraft pilot cannot easily identify the objects that are obstructed during take-off and landing or flight (collectively referred to as specific objects), and cannot operate the aircraft safely. was there.

本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、航空機の離着陸時や飛行時に障害となる特定対象を操縦士が容易に認識できるように赤外線画像を表示することができる赤外線撮像装置及び赤外線画像の表示方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its main purpose is to display an infrared image so that a pilot can easily recognize a specific target that becomes an obstacle during take-off and landing of an aircraft or flight. It is an object to provide an infrared imaging device and an infrared image display method that can perform the above-described process.

上記目的を達成するため、本発明は、航空機に搭載される赤外線撮像装置であって、前記航空機に固定され、被写体から放射される赤外線を検知する検知部と、前記検知部から順次出力される信号に基づいて前記被写体の二次元の温度情報を生成する処理部と、前記二次元の温度情報に基づく赤外線画像を表示する表示部とを少なくとも備え、前記処理部は、前記二次元の温度情報に基づいて前記被写体から予め設定した特定対象を抽出し、前記特定対象の全部又は一部の温度情報を予め定めた高い値に設定して、前記特定対象を識別可能にするものである。   In order to achieve the above object, the present invention provides an infrared imaging device mounted on an aircraft, which is fixed to the aircraft and detects infrared rays emitted from a subject, and is sequentially output from the detection unit. At least a processing unit that generates two-dimensional temperature information of the subject based on a signal; and a display unit that displays an infrared image based on the two-dimensional temperature information, the processing unit including the two-dimensional temperature information The specific target set in advance from the subject is extracted, and all or part of the temperature information of the specific target is set to a predetermined high value so that the specific target can be identified.

また、本発明は、航空機に搭載される赤外線撮像装置を用いた赤外線画像の表示方法であって、前記航空機に固定される検知部を用いて、被写体から放射される赤外線を検知する第1ステップと、前記検知部から順次出力される信号に基づいて前記被写体の二次元の温度情報を生成する第2ステップと、前記二次元の温度情報に基づいて前記被写体から予め設定した特定対象を抽出する第3ステップと、前記特定対象の全部又は一部の温度情報を予め定めた高い値に設定して、前記特定対象を識別可能にする第4ステップと、前記二次元の温度情報に基づく赤外線画像を表示する第5ステップと、を有するものである。   The present invention is also a method for displaying an infrared image using an infrared imaging device mounted on an aircraft, wherein the first step of detecting infrared radiation emitted from a subject using a detection unit fixed to the aircraft. A second step of generating two-dimensional temperature information of the subject based on signals sequentially output from the detection unit, and extracting a specific target set in advance from the subject based on the two-dimensional temperature information A third step, a fourth step in which all or a part of the temperature information of the specific target is set to a predetermined high value so that the specific target can be identified, and an infrared image based on the two-dimensional temperature information And a fifth step of displaying.

本発明の赤外線撮像装置及び赤外線画像の表示方法によれば、航空機の離着陸時や飛行時に障害となる特定対象を操縦士が容易に認識できるように赤外線画像を表示することができる。   According to the infrared imaging device and the infrared image display method of the present invention, it is possible to display an infrared image so that a pilot can easily recognize a specific target that becomes an obstacle during take-off and landing of an aircraft or flight.

その理由は、赤外線撮像装置は、検知部から出力される信号に基づいて生成した被写体の二次元の温度情報から、予め定められたルールに従って、離着陸地点近傍の建物や他の航空機、人物、航空機の進行方向の比較的高い建物などの離着陸時や飛行時に障害となる特定対象を抽出し、特定対象の温度情報を予め定めた高い値に設定して、特定対象を識別可能に表示するからである。   The reason is that the infrared imaging device uses a two-dimensional temperature information of the subject generated based on a signal output from the detection unit, and follows a predetermined rule to a building or other aircraft, person, aircraft near the takeoff / landing point Because a specific target that becomes an obstacle during takeoff and landing or flight of a building with a relatively high traveling direction is extracted, the temperature information of the specific target is set to a predetermined high value, and the specific target is displayed in an identifiable manner. is there.

また、赤外線撮像装置は、二次元の温度情報から特定対象を抽出した場合には、特定対象を抽出したことを操縦士に知らせる警告を行うからである。   In addition, when the specific object is extracted from the two-dimensional temperature information, the infrared imaging device issues a warning notifying the pilot that the specific object has been extracted.

本発明の一実施例に係るヘリコプタの構成を模式的に示す斜視図である。It is a perspective view showing typically the composition of the helicopter concerning one example of the present invention. 本発明の一実施例に係る赤外線撮像装置の構成を示すブロック図である。It is a block diagram which shows the structure of the infrared imaging device which concerns on one Example of this invention. 本発明の一実施例に係る検知器の構成を示す回路図である。It is a circuit diagram which shows the structure of the detector which concerns on one Example of this invention. 本発明の一実施例に係る処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the process part which concerns on one Example of this invention. 本発明の一実施例に係る処理部に含まれる演算部の構成を示すブロック図である。It is a block diagram which shows the structure of the calculating part contained in the process part which concerns on one Example of this invention. 本発明の一実施例に係る赤外線撮像装置を用いた赤外線画像の表示手順を示すフローチャート図である。It is a flowchart figure which shows the display procedure of the infrared image using the infrared imaging device which concerns on one Example of this invention. 本発明の一実施例に係る赤外線撮像装置で撮像した赤外線画像(離着陸地点近傍の画像)の一例を示す図である。It is a figure which shows an example of the infrared image (image of the vicinity of a takeoff and landing point) imaged with the infrared imaging device which concerns on one Example of this invention. 図7の赤外線画像の特定対象(建物、照明灯)を識別できるように処理した画像の一例を示す図である。It is a figure which shows an example of the image processed so that the specific object (building, illumination lamp) of the infrared image of FIG. 7 could be identified. 本発明の一実施例に係る赤外線撮像装置で撮像した赤外線画像(航空機の進行方向の画像)の他の例を示す図である。It is a figure which shows the other example of the infrared image (image of the advancing direction of an aircraft) imaged with the infrared imaging device which concerns on one Example of this invention. 図9の赤外線画像の特定対象(高い建物)を識別できるように処理した画像の一例を示す図である。It is a figure which shows an example of the image processed so that the specific object (high building) of the infrared image of FIG. 9 could be identified.

背景技術で示したように、ヘリコプタや小型飛行機などの航空機に赤外線撮像装置を搭載し、進行方向を撮像して取得した赤外線画像を運航の支援に利用している。しかしながら、赤外線画像は、高温の対象が目立つように表示されるため、様々な温度の様々な物体が存在する状況では、離着陸地点近傍の建物や他の航空機、人物、航空機の進行方向の比較的高い建物などの航空機の離着陸時や飛行時に障害となる特定対象が識別しにくいという問題があった。   As shown in the background art, an infrared imaging device is mounted on an aircraft such as a helicopter or a small airplane, and an infrared image acquired by imaging a traveling direction is used for operation support. However, since the infrared image is displayed so that a high-temperature object is conspicuous, in the situation where various objects of various temperatures exist, a building near another takeoff and landing point, another aircraft, a person, and a relatively moving direction of the aircraft There is a problem that it is difficult to identify a specific object that becomes an obstacle during take-off and landing of an aircraft such as a high building or during flight.

ここで、離着陸時に地表の近くにいる航空機から見ると、離着陸地点近傍の建物は空や地表面が背景になるが、空の温度は非常に低く、また、滑走路などの地表面の温度はほぼ均一であることから、その境界を特定することができる。   Here, when viewed from an aircraft near the surface at the time of takeoff and landing, the sky near the ground and the surface of the building near the takeoff and landing point is the background, but the temperature of the sky is very low, and the temperature of the ground surface such as the runway is Since it is almost uniform, the boundary can be specified.

また、離着陸時に地表の近くにいる航空機から見ると、離着陸地点近傍の他の航空機や人物は空や地表面、建物などが背景になるが、空の温度は非常に低く、滑走路などの地表面の温度はほぼ均一であり、また、材料が異なると放射率や暖まり方/冷え方が変化し、温度差が生じることから、その境界を特定することができる。   In addition, when viewed from an aircraft near the surface at the time of takeoff and landing, other aircraft and people near the takeoff and landing point are in the background of the sky, the ground surface, buildings, etc., but the temperature of the sky is very low, and the land such as a runway The temperature of the surface is almost uniform, and if the material is different, the emissivity and the way of warming / cooling change, resulting in a temperature difference. Therefore, the boundary can be specified.

また、低空を飛行している航空機から見ると、進行方向の比較的高い建物は空や遠方の物体が背景になるが、空の温度は非常に低く、また、遠方の物体から放射される赤外線は距離に応じて吸収されて温度が低く表示されることから、その境界を特定することができる。   In addition, when viewed from an aircraft flying in the low sky, a relatively high-rise building has a sky or a distant object in the background, but the temperature of the sky is very low, and infrared radiation emitted from a distant object Is absorbed according to the distance and the temperature is displayed low, so the boundary can be specified.

更に、一般的に建物は比較的長い直線や曲線で構成されており、また、飛行機やヘリコプタなどの航空機、人物は特徴的な形状であることから、公知のパターン認識技術により特定可能である。   Furthermore, buildings are generally composed of relatively long straight lines and curves, and airplanes and helicopters such as airplanes and helicopters have a characteristic shape, so that they can be identified by a known pattern recognition technique.

そこで、本発明の一実施の形態では、検知部から出力される信号に基づいて生成した被写体の二次元の温度情報から、離着陸地点近傍の建物や他の航空機、人物、航空機の進行方向の比較的高い建物などの航空機の離着陸時や飛行時に障害となる特定対象を抽出し、特定対象の輪郭や内部の画素の温度情報を予め定めた高い値に設定して、特定対象を強調して赤外線画像を表示する。また、特定対象を抽出した場合には、特定対象を抽出したことを操縦士に知らせる警告を行い、特定対象が見過ごされないようにする。   Therefore, in one embodiment of the present invention, the two-dimensional temperature information of the subject generated based on the signal output from the detection unit is used to compare the direction of travel of a building or other aircraft, person, or aircraft near the takeoff and landing point The specific target that becomes an obstacle during takeoff and landing or flight of an aircraft such as a high-rise building is extracted, the temperature of the specific target's outline and internal pixels is set to a predetermined high value, and the specific target is emphasized to infrared Display an image. When a specific target is extracted, a warning is given to the pilot that the specific target has been extracted so that the specific target is not overlooked.

これにより、操縦士は様々な対象が表示される赤外線画像から、航空機の離着陸時や飛行時に障害となる特定対象を簡単に識別することができ、安全に航空機を操縦することができる。   Thereby, the pilot can easily identify a specific target that becomes an obstacle at the time of takeoff and landing of the aircraft or flight from an infrared image in which various targets are displayed, and can safely control the aircraft.

上記した本発明の一実施の形態についてさらに詳細に説明すべく、本発明の一実施例に係る赤外線撮像装置及び赤外線画像の表示方法について、図1乃至図10を参照して説明する。図1は、本発明の一実施例に係るヘリコプタの構成を模式的に示す斜視図であり、図2は、赤外線撮像装置の構成を模式的に示すブロック図である。また、図3は、検知器の構成を示す回路図であり、図4は、処理部の構成を示すブロック図、図5は、処理部の中の演算部の構成を示すブロック図である。また、図6は、本実施例の赤外線撮像装置を用いて赤外線画像を表示する手順を示すフローチャート図であり、図7乃至図10は、本実施例の赤外線撮像装置を用いて撮像した赤外線画像(図7及び図9は処理前の画像、図8及び図10は処理後の画像)の一例を示す図である。   In order to describe the above-described embodiment of the present invention in further detail, an infrared imaging apparatus and an infrared image display method according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view schematically illustrating the configuration of a helicopter according to an embodiment of the present invention, and FIG. 2 is a block diagram schematically illustrating the configuration of an infrared imaging device. 3 is a circuit diagram showing the configuration of the detector, FIG. 4 is a block diagram showing the configuration of the processing unit, and FIG. 5 is a block diagram showing the configuration of the arithmetic unit in the processing unit. FIG. 6 is a flowchart showing a procedure for displaying an infrared image using the infrared imaging apparatus of the present embodiment. FIGS. 7 to 10 are infrared images captured using the infrared imaging apparatus of the present embodiment. FIGS. 7 and 9 are diagrams showing examples of images before processing, and FIGS. 8 and 10 are images after processing.

図1に示すように、本実施例の赤外線撮像装置20は、夜間や視界が悪い環境でも使用される医療用や消防防災用、警備用などのヘリコプタや小型飛行機などの航空機(本実施例ではヘリコプタ10とする。)に設置されるものである。   As shown in FIG. 1, the infrared imaging apparatus 20 of this embodiment is a helicopter or a small airplane such as a medical, fire-fighting, and security equipment that is used at night or in an environment with poor visibility (in this embodiment, Helicopter 10).

この赤外線撮像装置20は、図2に示すように、マウント24によりヘリコプタ10の所定の位置(例えば、ヘリコプタ10の底部)に固定され、ヘリコプタ10の進行方向を撮像して被写体から放射される赤外線を検知する検知部21と、検知部21から出力される信号を処理して被写体の二次元の温度情報を生成すると共に、離着陸地点近傍の建物や他の航空機、人物、進行方向の比較的高い建物などの航空機の離着陸時や飛行時に障害となる対象(特定対象)を識別しやすくする処理を行う処理部25と、二次元の温度情報に基づく赤外線画像を表示する表示部26と、必要に応じて、特定対象の選択などの操作を行う操作部27などで構成される。また、上記検知部21は、レンズやミラーなどの集光光学系22と、入射した赤外線を電気信号に変換する検知器23などで構成される。   As shown in FIG. 2, the infrared imaging device 20 is fixed to a predetermined position of the helicopter 10 (for example, the bottom of the helicopter 10) by a mount 24, and infrared rays emitted from the subject by imaging the traveling direction of the helicopter 10. Detecting unit 21 and processing the signal output from detecting unit 21 to generate two-dimensional temperature information of the subject, and a building or other aircraft near the takeoff and landing point, a relatively high direction of travel A processing unit 25 that performs processing that makes it easy to identify an object (specific target) that becomes an obstacle during take-off / landing or flight of an aircraft such as a building, a display unit 26 that displays an infrared image based on two-dimensional temperature information, and Accordingly, the operation unit 27 is configured to perform an operation such as selection of a specific target. The detection unit 21 includes a condensing optical system 22 such as a lens and a mirror, and a detector 23 that converts incident infrared light into an electrical signal.

なお、ヘリコプタ10の進行方向とは、ヘリコプタ10の正面のみならず、正面の上方、下方、側方を含む。また、図2では、検知部21と処理部25を別々に構成しているが、検知部21と処理部25を一体的に構成してもよい。また、本実施例では、検知部21でヘリコプタ10の進行方向を撮像する構成とするが、撮像方向は進行方向に限定されず、例えば、ヘリコプタ10の下方などを撮像する構成としてもよい。   The traveling direction of the helicopter 10 includes not only the front surface of the helicopter 10 but also the upper, lower, and lateral sides of the front surface. Moreover, in FIG. 2, although the detection part 21 and the process part 25 are comprised separately, you may comprise the detection part 21 and the process part 25 integrally. In the present embodiment, the detection unit 21 captures the traveling direction of the helicopter 10, but the capturing direction is not limited to the traveling direction, and for example, a configuration may be employed in which the lower part of the helicopter 10 is captured.

以下、検知器23と処理部25の詳細について説明する。   Details of the detector 23 and the processing unit 25 will be described below.

[検知器]
図3に示すように、検知器23は、複数の画素が二次元のマトリクス状に配列された赤外線検出素子と、赤外線検出素子からの信号を処理する信号処理部などで構成され、信号処理部は、基板内に作り込まれる内部回路と、基板外に設けられる外部回路などで構成される。
[Detector]
As shown in FIG. 3, the detector 23 includes an infrared detection element in which a plurality of pixels are arranged in a two-dimensional matrix, a signal processing unit that processes a signal from the infrared detection element, and the like. Consists of an internal circuit built in the substrate and an external circuit provided outside the substrate.

赤外線検出素子の各々の画素は、例えば、ボロメータ23aなどの温度抵抗素子とMOSトランジスタ23bなどの選択素子とで構成され、MOSトランジスタ23bのソースはGNDに接続され、MOSトランジスタ23bのドレインはボロメータ23aを介して垂直信号線23dに接続され、MOSトランジスタ23bのゲートは水平信号線23cに接続されている。また、垂直信号線23dと出力端子OUTの間には、PチャネルMOSトランジスタとNチャネルMOSトランジスタなどからなるトランスファゲート23gが接続されている。   Each pixel of the infrared detection element includes, for example, a temperature resistance element such as a bolometer 23a and a selection element such as a MOS transistor 23b. The source of the MOS transistor 23b is connected to GND, and the drain of the MOS transistor 23b is connected to the bolometer 23a. The gate of the MOS transistor 23b is connected to the horizontal signal line 23c. Further, a transfer gate 23g composed of a P channel MOS transistor, an N channel MOS transistor, and the like is connected between the vertical signal line 23d and the output terminal OUT.

そして、水平信号線23cは垂直シフトレジスタ23e及びアンド回路23hによって順次選択され、垂直信号線23dは水平シフトレジスタ23f及びアンド回路23iによって順次選択され、選択された水平信号線23c及び垂直信号線23dが交差する画素のボロメータ23aの赤外線映像信号が出力端子OUTから出力される。   The horizontal signal line 23c is sequentially selected by the vertical shift register 23e and the AND circuit 23h, and the vertical signal line 23d is sequentially selected by the horizontal shift register 23f and the AND circuit 23i, and the selected horizontal signal line 23c and vertical signal line 23d are selected. The infrared video signal of the bolometer 23a of the pixel intersecting with is output from the output terminal OUT.

なお、本実施例では、複数の画素が二次元に配列された赤外線検出素子を用いて二次元の温度情報を生成する構成としているが、赤外線検出素子の画素構成は任意であり、例えば、画素が一次元に配列された赤外線検出素子や1つの画素からなる赤外線検出素子を用い、ポリゴンミラー等の光学系で走査して二次元の温度情報を生成する構成としてもよい。また、赤外線検出素子は温度抵抗素子に限らず、入射赤外線を電気信号に変換可能な素子であればよい。   In this embodiment, the two-dimensional temperature information is generated using an infrared detection element in which a plurality of pixels are two-dimensionally arranged. However, the pixel configuration of the infrared detection element is arbitrary, for example, a pixel May be configured to generate two-dimensional temperature information by scanning with an optical system such as a polygon mirror using an infrared detection element arranged in a one-dimensional array or an infrared detection element composed of one pixel. In addition, the infrared detection element is not limited to a temperature resistance element, and may be any element that can convert incident infrared rays into an electrical signal.

[処理部]
図4に示すように、検知器23から出力される赤外線映像信号を処理する処理部25は、増幅器25aと、A/D変換器25bと、フレームメモリ25cと、演算部25dと、D/A変換器25eなどで構成される。
[Processing part]
As shown in FIG. 4, the processing unit 25 that processes the infrared video signal output from the detector 23 includes an amplifier 25a, an A / D converter 25b, a frame memory 25c, a calculation unit 25d, and a D / A. It consists of a converter 25e and the like.

増幅器25aは、検知器23からの赤外線映像信号を増幅し、A/D変換器25bに渡す。A/D変換器25bは、赤外線映像信号をディジタル信号に変換して、フレームメモリ25cに記憶する。演算部25dは、フレームメモリ25cから順次データを読み出し、予め記憶したテーブルを参照して各画素のディジタル信号を温度情報に変換して二次元の温度情報を生成し、特定対象を識別しやすくする処理を行ってD/A変換器25eに出力する。D/A変換器25eは、ディジタル信号をアナログの表示映像信号に変換し、表示部26に出力する。   The amplifier 25a amplifies the infrared video signal from the detector 23 and passes it to the A / D converter 25b. The A / D converter 25b converts the infrared video signal into a digital signal and stores it in the frame memory 25c. The calculation unit 25d sequentially reads data from the frame memory 25c, refers to a prestored table, converts the digital signal of each pixel into temperature information, generates two-dimensional temperature information, and makes it easy to identify a specific target. Processing is performed and output to the D / A converter 25e. The D / A converter 25 e converts the digital signal into an analog display video signal and outputs it to the display unit 26.

すなわち、本実施例の赤外線撮像装置の特徴部分である演算部25dは、図5に示すように、特定対象抽出部と、特定対象強調処理部としても機能する。   That is, the calculation unit 25d, which is a characteristic part of the infrared imaging device of the present embodiment, also functions as a specific target extraction unit and a specific target enhancement processing unit as shown in FIG.

特定対象抽出部は、予め定めたルール(具体的内容は後述する。)に従って、二次元の温度情報から、航空機の離着陸時に障害となる特定対象(例えば、離着陸地点近傍の建物、比較的大きい機材、他の飛行機やヘリコプタ、人物など)、航空機の飛行時に障害となる特定対象(例えば、進行方向の比較的高い建物、灯台、鉄塔、電線、他の飛行機やヘリコプタなど)を抽出する。   The specific target extraction unit follows a predetermined rule (specific details will be described later), based on the two-dimensional temperature information, a specific target that becomes an obstacle during takeoff and landing of the aircraft (for example, a building near the takeoff and landing point, relatively large equipment) , Other airplanes, helicopters, humans, etc.) and specific objects (for example, buildings, lighthouses, steel towers, electric wires, other airplanes, helicopters, etc., which are relatively high in the direction of travel) that are obstructed when the aircraft is flying.

特定対象強調処理部は、特定対象抽出部で抽出した特定対象の輪郭や内部の全部又は一部を強調(すなわち、画素の温度情報を予め定めた高い値に設定)して、特定対象を識別しやすくする。   The specific target enhancement processing unit emphasizes all or part of the outline or the inside of the specific target extracted by the specific target extraction unit (that is, sets the pixel temperature information to a predetermined high value) to identify the specific target Make it easier to do.

なお、処理部25や演算部25dは図4及び図5の構成に限定されず、検知器23から出力される信号に基づいて二次元の温度情報を生成する共に、特定対象を識別しやすくする処理が実行できる構成であればよい。   The processing unit 25 and the calculation unit 25d are not limited to the configurations shown in FIGS. 4 and 5, and generate two-dimensional temperature information based on a signal output from the detector 23 and make it easy to identify a specific target. Any configuration that can execute the process may be used.

次に、本実施例の赤外線撮像装置を用いて赤外線画像を表示する手順について、図6のフローチャート図及び図7乃至図10の赤外線画像例を参照して具体的に説明する。なお、以下の説明において、特定対象(1つでも複数でもよい。)は、予め操作部27によって設定されており、飛行機やヘリコプタなどの航空機、人物などの特定対象の代表的な形状は予め登録されているものとする。   Next, a procedure for displaying an infrared image using the infrared imaging apparatus of the present embodiment will be specifically described with reference to a flowchart of FIG. 6 and infrared image examples of FIGS. 7 to 10. In the following description, the specific target (one or more) may be set in advance by the operation unit 27, and typical shapes of specific targets such as airplanes and helicopters such as airplanes and people are registered in advance. It is assumed that

ヘリコプタ10の操縦士等がヘリコプタ10の離陸時、飛行時、着陸時に赤外線撮像装置を起動、若しくは、ヘリコプタ10の起動に連動して赤外線撮像装置が自動的に起動すると、ステップS101で、検知部21はヘリコプタ10の進行方向を撮像して被写体から放射される赤外線を検知して、赤外線映像信号を処理部25に送信する。   When the pilot or the like of the helicopter 10 activates the infrared imaging device when the helicopter 10 takes off, during flight, or landing, or when the infrared imaging device automatically activates in conjunction with the activation of the helicopter 10, in step S101, the detection unit 21 images the traveling direction of the helicopter 10 to detect infrared rays emitted from the subject, and transmits an infrared video signal to the processing unit 25.

次に、ステップS102で、処理部25は、検知部21から受信した赤外線映像信号を増幅、A/D変換してフレームメモリに格納した後、検知器23の各画素のデータを温度情報に変換して二次元の温度情報を生成する。そして、処理部25(特定対象抽出部)は、二次元の温度情報から予め定めた特定対象を抽出する。   Next, in step S102, the processing unit 25 amplifies the infrared video signal received from the detection unit 21, performs A / D conversion, stores it in the frame memory, and then converts the data of each pixel of the detector 23 into temperature information. Then, two-dimensional temperature information is generated. Then, the processing unit 25 (specific target extraction unit) extracts a predetermined specific target from the two-dimensional temperature information.

例えば、図7に示すように、離着陸時に地表の近くのヘリコプタ10から前方を撮像した場合、離着陸地点近傍に建てられた建物や照明灯は空や地表(滑走路など)が背景となるが、空は物体から放射される赤外線がほとんどないために十分に温度が低く、また、滑走路はほぼ均一な温度であることから、これらと温度差がある所定の長さの直線や曲線を抽出し、それらから構成される形状をパターン認識して建物や照明灯として特定する。   For example, as shown in FIG. 7, when imaging the front from the helicopter 10 near the ground surface during takeoff and landing, the buildings and illumination lights built near the takeoff and landing point are the background of the sky and the ground surface (runway, etc.) Since the sky has a sufficiently low temperature because there is almost no infrared rays radiated from the object, and the runway has a nearly uniform temperature, a straight line or curve of a certain length with a temperature difference from these is extracted. Then, the shape composed of them is recognized as a pattern and specified as a building or an illumination lamp.

また、離着陸地点近傍の他の航空機は空や地表(滑走路など)、建物などが背景となるが、上述したように、空は物体から放射される赤外線がほとんどないために十分に温度が低く、滑走路はほぼ均一な温度であり、また、航空機と建物は材料が異なるために放射率や大気による暖まり方/冷え方の違いによって温度差が生じ、更に、航空機は特徴的な形状であることから、これらと温度差がある特定の形状(予め記憶した航空機の代表的な形状)の物体をパターン認識して他の航空機として特定する。   In addition, other aircraft in the vicinity of the takeoff and landing point are the background of the sky, the ground surface (runway, etc.), buildings, etc. As mentioned above, the sky has a sufficiently low temperature because there is almost no infrared radiation emitted from the object. The runway has a nearly uniform temperature, and because the aircraft and the building are made of different materials, there is a temperature difference depending on the emissivity and how the air is warmed / cooled, and the aircraft has a characteristic shape. Therefore, an object having a specific shape (a typical shape of an aircraft stored in advance) having a temperature difference from these is recognized as a pattern and recognized as another aircraft.

また、離着陸地点近傍にいる人物は地表(滑走路など)や建物、他の航空機などが背景となるが、人物は滑走路や建物、他の航空機などと温度差があり、更に、人物は特徴的な形状であることから、これらと温度差がある特定の形状(予め記憶した人物の代表的な形状)の物体をパターン認識して人物として特定する。   In addition, the person near the take-off and landing point is the ground surface (runway, etc.), buildings, and other aircraft, but the person has a temperature difference from the runway, buildings, other aircraft, etc. Therefore, an object having a specific shape (a typical shape of a person stored in advance) having a temperature difference from these is recognized as a person by pattern recognition.

また、図9に示すように、ヘリコプタ10が低空を飛行している時に進行方向を撮像した場合、比較的大きい建物は空や遠方の物体が背景となるが、上述したように、空は物体から放射される赤外線がほとんどないために十分に温度が低く、遠方の物体はその物体を構成する直線や曲線が短く、遠方の物体から放射される赤外線は距離に応じて吸収されて温度が低く認識されることから、これらと温度差がある所定の長さの直線や曲線を抽出し、それらから構成される形状をパターン認識して建物として特定する。   Also, as shown in FIG. 9, when the traveling direction is imaged when the helicopter 10 is flying in the low sky, a relatively large building becomes the background of the sky or a distant object, but as described above, the sky is an object. Because there is almost no infrared rays radiated from the object, the temperature is sufficiently low, distant objects have short straight lines and curves, and the infrared rays emitted from the distant objects are absorbed according to the distance and the temperature is low Since these are recognized, a straight line or a curve having a predetermined length having a temperature difference from these is extracted, and the shape formed from these is recognized as a pattern and specified as a building.

そして、ステップS102で特定対象を抽出しなかった場合(ステップS103のNoの場合)は、ステップS106に遷移して、処理部25は、特定対象に対する処理を行っていない二次元の温度情報をモニタなどの表示部26に出力し、表示部26は、その二次元の温度情報に基づいて赤外線画像を表示し、撮像終了が指示されていなければ(ステップS107のNo)、ステップS101に戻って同様の処理を繰り返す。   If the specific target is not extracted in step S102 (in the case of No in step S103), the process proceeds to step S106, and the processing unit 25 monitors the two-dimensional temperature information that is not processed for the specific target. The display unit 26 displays an infrared image based on the two-dimensional temperature information, and if the end of imaging is not instructed (No in step S107), the process returns to step S101 and the same. Repeat the process.

一方、ステップS102で特定対象を抽出した場合(ステップS103のYesの場合)は、ステップS104で、処理部25(特定対象強調処理部)は、抽出した特定対象の輪郭又は内部の全部又は一部の画素の温度情報を、予め定めた高い値(例えば、最高の階調の温度)に設定して、特定対象を識別しやすくする処理を行う。   On the other hand, when the specific target is extracted in step S102 (Yes in step S103), in step S104, the processing unit 25 (specific target emphasis processing unit) extracts the contour of the extracted specific target or all or part of the inside. The pixel temperature information is set to a predetermined high value (for example, the temperature of the highest gradation), and processing for easily identifying the specific target is performed.

次に、必要に応じて、ステップS105で、特定対象を抽出したことを操縦士に知らせる警告を行う。この警告の方法は任意であり、例えば、ステップS106で赤外線画像を表示するモニタなどの表示部26に警告メッセージを表示してもよいし、ヘリコプタ10に備えるスピーカなどから警告メッセージを出力してもよいし、ヘリコプタ10に備える警告ランプ等を点灯/点滅させてもよい。   Next, if necessary, in step S105, a warning is given to inform the pilot that the specific target has been extracted. This warning method is arbitrary. For example, a warning message may be displayed on the display unit 26 such as a monitor that displays an infrared image in step S106, or a warning message may be output from a speaker provided in the helicopter 10 or the like. Alternatively, a warning lamp provided in the helicopter 10 may be turned on / flashed.

その後、ステップS106で、処理部25は、特定対象に対する処理を行った二次元の温度情報をモニタなどの表示部26に出力し、表示部26は、その二次元の温度情報に基づいて赤外線画像を表示し、撮像終了が指示されていなければ(ステップS107のNo)、ステップS101に戻って同様の処理を繰り返す。   Thereafter, in step S106, the processing unit 25 outputs the two-dimensional temperature information obtained by performing the process on the specific target to a display unit 26 such as a monitor, and the display unit 26 performs infrared image based on the two-dimensional temperature information. Is displayed and if the end of imaging is not instructed (No in step S107), the process returns to step S101 and the same processing is repeated.

例えば、図7の画像において、特定対象として建物と照明灯を抽出した場合は、図8(a)に示すように、特定対象の輪郭を強調して表示(例えば、白黒表示において白、疑似カラーにおいて赤で表示)する。これにより、離着陸時に障害となる特定対象を容易に識別することが可能となり、ヘリコプタ10を安全に離着陸させることができる。   For example, in the image of FIG. 7, when a building and an illumination lamp are extracted as a specific target, the specific target is emphasized and displayed as shown in FIG. 8A (for example, white, pseudo color in black and white display) In red). Thereby, it becomes possible to easily identify a specific target that becomes an obstacle during takeoff and landing, and the helicopter 10 can be safely taken off and landing.

また、図8(b)に示すように、特定対象の全部又は一部を白黒表示において白、疑似カラーにおいて赤で塗りつぶしてもよく、小さいサイズの特定対象(例えば、照明灯)を塗りつぶすことにより、離着陸時に障害となる特定対象を見落とすことがなくなり、ヘリコプタ10を安全に離着陸させることができる。   Further, as shown in FIG. 8B, all or a part of the specific target may be painted with white in black and white display, red with pseudo color, or by painting a small specific target (for example, an illumination lamp). The helicopter 10 can be safely taken off and landing without overlooking a specific target that becomes an obstacle during takeoff and landing.

また、図9の画像において、特定対象として比較的高い建物を抽出した場合は、図10(a)に示すように、特定対象の輪郭を強調して表示(例えば、白黒表示において白、疑似カラーにおいて赤で表示)する。また、図8(b)と同様に、特定対象の内部を白黒表示において白、疑似カラーにおいて赤で塗りつぶす。これにより、飛行時に障害となる特定対象を容易に識別することが可能となり、ヘリコプタ10を安全に飛行させることができる。   In addition, when a relatively high building is extracted as a specific target in the image of FIG. 9, the outline of the specific target is emphasized and displayed as shown in FIG. In red). Further, as in FIG. 8B, the inside of the specific object is filled with white in monochrome display and red in pseudo color. Thereby, it becomes possible to easily identify a specific target that becomes an obstacle during flight, and the helicopter 10 can fly safely.

また、比較的高い建物が多数存在する場合に、それらの全てを強調表示すると、特定対象の識別性が悪化することも考えられる。そのような場合は、図10(b)に示すように、ヘリコプタ10が飛行する方向(画像の中央近傍)の特定対象のみを強調表示してもよいし、特定対象を幾何学的に処理してその大きさやヘリコプタ10からの距離を特定し、予め定めた数の建物を高い順や近い順に強調表示してもよい。これにより、障害となりやすい建物を避けてヘリコプタ10を安全に飛行させることができる。   In addition, when there are many relatively high buildings and all of them are highlighted, it is conceivable that the identifiability of the specific object deteriorates. In such a case, as shown in FIG. 10B, only the specific target in the direction in which the helicopter 10 flies (near the center of the image) may be highlighted, or the specific target may be processed geometrically. The size and the distance from the helicopter 10 may be specified, and a predetermined number of buildings may be highlighted in order from the highest to the lowest. Thereby, the helicopter 10 can be safely flying while avoiding buildings that are likely to become obstacles.

なお、図8及び図10は、本実施例の赤外線画像の一例であり、特定対象が画面上で識別しやすくなる表示形態であればよい。   8 and 10 are examples of the infrared image of the present embodiment, and any display form may be used as long as the specific target can be easily identified on the screen.

例えば、図8及び図10では、特定対象の全体を強調表示したが、ヘリコプタ10の離着陸時や飛行時に障害となるのは主に特定対象の上部であることから、特定対象の上部のみを強調表示してもよい。   For example, in FIG. 8 and FIG. 10, the entire specific target is highlighted. However, when the helicopter 10 takes off and landing or in flight, the obstacle is mainly the upper part of the specific target, so only the upper part of the specific target is highlighted. It may be displayed.

また、特定対象は必ずしも同じ温度(階調)で表示する必要はなく、例えば、特定対象の種類やサイズ、ヘリコプタ10からの距離などに応じて温度(階調)を変化させて(例えば、サイズの大きい特定対象や距離が近い特定対象ほど高い温度にして)表示してもよい。このような処理を行うことにより、より障害となりやすい特定対象を容易に識別することが可能となる。   In addition, the specific objects do not necessarily have to be displayed at the same temperature (gradation). For example, the temperature (gradation) is changed according to the type and size of the specific object, the distance from the helicopter 10 (for example, the size). A specific target having a larger distance or a specific target having a closer distance may be displayed at a higher temperature. By performing such processing, it is possible to easily identify a specific target that is more likely to become an obstacle.

また、上記フローでは、特定対象を抽出した場合、警告を行った後に特定画像を強調した画像を表示したが、この警告は特定画像を強調した画像を表示する際に行ってもよいし、特定対象の強調表示を断続的に行う(例えば、特定対象の全部又は一部を一定の時間間隔で白黒表示において白、疑似カラーにおいて赤で表示する)ことによって、特定対象を抽出したことを操縦士に警告するようにしてもよい。   In the above flow, when a specific target is extracted, an image in which a specific image is emphasized after a warning is displayed, but this warning may be performed when an image in which a specific image is emphasized is displayed. The pilot has identified that the specific target has been extracted by intermittently highlighting the target (for example, displaying all or a part of the specific target in white in a monochrome display and red in a pseudo color at regular time intervals). May be warned.

なお、夜間に離着陸したり飛行する場合、上記特定対象を目視で判別することは難しいが、赤外線撮像装置は太陽光の反射を利用するのではなく、特定対象自体が放射する赤外線を利用するため、夜間においても確実に特定対象を識別することができる。また、霧や雲が発生して視界が悪い場合も上記特定対象を目視で判別することは難しいが、赤外光は可視光に比べて霧や雲を透過しやすいため、視界不良時においても確実に特定対象を識別することができる。   In addition, when taking off and landing or flying at night, it is difficult to visually identify the specific target, but the infrared imaging device uses infrared rays radiated by the specific target itself, not using reflection of sunlight. The specific object can be reliably identified even at night. In addition, it is difficult to visually identify the specific target even when fog and clouds are generated and the visibility is poor, but infrared light is more likely to pass through fog and clouds than visible light, so even when visibility is poor. A specific object can be reliably identified.

このように、本実施例の赤外線撮像装置20によれば、検知部21から出力される信号に基づいて生成した二次元の温度情報から予め設定した特定対象を抽出し、被写体の特定対象の画素の温度情報を予め定めた高い値に設定して、特定対象を強調した赤外線画像を表示するため、特定対象を容易に識別することができる。また、特定対象を抽出した場合は、特定対象を抽出したことを知らせる警告を行うため、特定対象の見落としを未然に防止することができる。そして、これらにより、ヘリコプタ10を安全に運航することができる。   Thus, according to the infrared imaging device 20 of the present embodiment, a specific target set in advance is extracted from the two-dimensional temperature information generated based on the signal output from the detection unit 21, and the target specific pixel of the subject is extracted. The temperature information is set to a predetermined high value and an infrared image highlighting the specific object is displayed, so that the specific object can be easily identified. Further, when a specific target is extracted, a warning is given to notify that the specific target has been extracted, so that oversight of the specific target can be prevented in advance. And by these, helicopter 10 can be operated safely.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、その構成や制御方法は適宜変更可能である。   In addition, this invention is not limited to the said Example, The structure and control method can be changed suitably, unless it deviates from the meaning of this invention.

例えば、上記実施例では、特定対象として、離着陸地点近傍の建物、他の航空機、人物、進行方向の比較的高い建物を例示したが、離着陸時や飛行時に注意すべき任意の対象を特定対象とすることができる。   For example, in the above-described embodiment, the specific object is exemplified by a building near the takeoff / landing point, another aircraft, a person, and a building with a relatively high traveling direction. can do.

また、赤外線撮像装置で検出する赤外線の波長も特に限定されず、3〜5μm帯を検出しても良いし、8〜12μm帯を検出しても良いし、これらを組み合わせても良い。また、赤外線画像と可視画像を組み合わせた画像を処理/表示してもよい。   Further, the wavelength of infrared rays detected by the infrared imaging device is not particularly limited, and a 3 to 5 μm band may be detected, an 8 to 12 μm band may be detected, or these may be combined. Further, an image obtained by combining an infrared image and a visible image may be processed / displayed.

本発明は、医療用や消防防災用、警備用のヘリコプタや小型飛行機などの航空機に搭載される赤外線撮像装置及び当該赤外線撮像装置における赤外線画像の表示方法に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for an infrared imaging device mounted on an aircraft such as a medical helicopter or a small airplane for medical use, fire prevention and disaster prevention, and an infrared image display method in the infrared imaging device.

10 ヘリコプタ
20 赤外線撮像装置
21 検知部
22 集光光学系
23 検知器
23a ボロメータ
23b MOSトランジスタ
23c 水平信号線
23d 垂直信号線
23e 垂直シフトレジスタ
23f 水平シフトレジスタ
23g トランスファゲート
23h、23i アンド回路
24 マウント
25 処理部
25a 増幅器
25b A/D変換器
25c フレームメモリ
25d 演算部
25e D/A変換器
26 表示部
27 操作部
DESCRIPTION OF SYMBOLS 10 Helicopter 20 Infrared imaging device 21 Detection part 22 Condensing optical system 23 Detector 23a Bolometer 23b MOS transistor 23c Horizontal signal line 23d Vertical signal line 23e Vertical shift register 23f Horizontal shift register 23g Transfer gate 23h, 23i AND circuit 24 Mount 25 process Unit 25a amplifier 25b A / D converter 25c frame memory 25d arithmetic unit 25e D / A converter 26 display unit 27 operation unit

Claims (8)

航空機に搭載される赤外線撮像装置であって、
前記航空機に固定され、被写体から放射される赤外線を検知する検知部と、前記検知部から順次出力される信号に基づいて前記被写体の二次元の温度情報を生成する処理部と、前記二次元の温度情報に基づく赤外線画像を表示する表示部とを少なくとも備え、
前記処理部は、前記二次元の温度情報に基づいて前記被写体から予め設定した特定対象を抽出し、前記特定対象の全部又は一部の温度情報を予め定めた高い値に設定して、前記特定対象を識別可能にする、ことを特徴とする赤外線撮像装置。
An infrared imaging device mounted on an aircraft,
A detection unit that is fixed to the aircraft and detects infrared rays emitted from the subject, a processing unit that generates two-dimensional temperature information of the subject based on signals sequentially output from the detection unit, and the two-dimensional A display unit that displays an infrared image based on temperature information,
The processing unit extracts a specific target set in advance from the subject based on the two-dimensional temperature information, sets all or part of the temperature information of the specific target to a predetermined high value, and specifies the specific An infrared imaging device characterized in that an object can be identified.
前記特定対象は、前記航空機の離着陸時に障害となる離着陸地点近傍の建物、若しくは、前記航空機の飛行時に障害となる進行方向の建物であり、
前記処理部は、前記二次元の温度情報から略一定の温度で連続する所定の長さの線を特定し、複数の前記線で構成される形状に基づいて、前記建物を抽出する、ことを特徴とする請求項1に記載の赤外線撮像装置。
The specific object is a building in the vicinity of a takeoff and landing point that becomes an obstacle when the aircraft takes off and landing, or a building in a traveling direction that becomes an obstacle when the aircraft is flying,
The processing unit specifies a line having a predetermined length that is continuous at a substantially constant temperature from the two-dimensional temperature information, and extracts the building based on a shape composed of a plurality of the lines. The infrared imaging device according to claim 1.
前記特定対象は、前記航空機の離着陸時に障害となる離着陸地点近傍の他の航空機若しくは人物であり、
前記処理部は、前記二次元の温度情報から予め記憶した形状に相似する形状を特定し、前記形状に基づいて、前記他の航空機又は人物を抽出する、ことを特徴とする請求項1に記載の赤外線撮像装置。
The specific object is another aircraft or person in the vicinity of the takeoff and landing point that becomes an obstacle at the time of takeoff and landing of the aircraft,
The said processing part identifies the shape similar to the shape memorize | stored previously from the said two-dimensional temperature information, Based on the said shape, the said other aircraft or a person is extracted, The Claim 1 characterized by the above-mentioned. Infrared imaging device.
前記処理部は、前記二次元の温度情報から前記特定対象を抽出した場合は、前記特定対象を抽出したことを前記航空機の操縦士に知らせる警告を行う、ことを特徴とする請求項1乃至3のいずれか一に記載の赤外線撮像装置。   4. The processing unit according to claim 1, wherein when the specific target is extracted from the two-dimensional temperature information, a warning is given to notify a pilot of the aircraft that the specific target has been extracted. The infrared imaging device according to any one of the above. 航空機に搭載される赤外線撮像装置を用いた赤外線画像の表示方法であって、
前記航空機に固定される検知部を用いて、被写体から放射される赤外線を検知する第1ステップと、
前記検知部から順次出力される信号に基づいて前記被写体の二次元の温度情報を生成する第2ステップと、
前記二次元の温度情報に基づいて前記被写体から予め設定した特定対象を抽出する第3ステップと、
前記特定対象の全部又は一部の温度情報を予め定めた高い値に設定して、前記特定対象を識別可能にする第4ステップと、
前記二次元の温度情報に基づく赤外線画像を表示する第5ステップと、を有する、ことを特徴とする赤外線画像の表示方法。
An infrared image display method using an infrared imaging device mounted on an aircraft,
A first step of detecting infrared rays emitted from a subject using a detection unit fixed to the aircraft;
A second step of generating two-dimensional temperature information of the subject based on signals sequentially output from the detection unit;
A third step of extracting a specific target preset from the subject based on the two-dimensional temperature information;
A fourth step of setting all or a part of the temperature information of the specific target to a predetermined high value so that the specific target can be identified;
And a fifth step of displaying an infrared image based on the two-dimensional temperature information.
前記特定対象は、前記航空機の離着陸時に障害となる離着陸地点近傍の建物、若しくは、前記航空機の飛行時に障害となる進行方向の建物であり、
前記第3ステップでは、前記二次元の温度情報から略一定の温度で連続する所定の長さの線を特定し、複数の前記線で構成される形状に基づいて、前記建物を抽出する、ことを特徴とする請求項5に記載の赤外線画像の表示方法。
The specific object is a building in the vicinity of a takeoff and landing point that becomes an obstacle when the aircraft takes off and landing, or a building in a traveling direction that becomes an obstacle when the aircraft is flying,
In the third step, a line having a predetermined length that is continuous at a substantially constant temperature is identified from the two-dimensional temperature information, and the building is extracted based on a shape constituted by a plurality of the lines. The infrared image display method according to claim 5.
前記特定対象は、前記航空機の離着陸時に障害となる離着陸地点近傍の他の航空機若しくは人物であり、
前記第3ステップでは、前記二次元の温度情報から予め記憶した形状に相似する形状を特定し、前記形状に基づいて、前記他の航空機又は人物を抽出する、ことを特徴とする請求項5に記載の赤外線画像の表示方法。
The specific object is another aircraft or person near the takeoff and landing point that becomes an obstacle when taking off and landing of the aircraft,
6. In the third step, a shape similar to a shape stored in advance is specified from the two-dimensional temperature information, and the other aircraft or person is extracted based on the shape. The display method of the infrared image of description.
前記第3ステップにおいて、前記赤外線画像から前記特定対象を抽出した場合は、前記特定対象を抽出したことを前記航空機の操縦士に知らせる警告を行う、ことを特徴とする請求項5乃至7のいずれか一に記載の赤外線画像の表示方法。   8. In the third step, when the specific target is extracted from the infrared image, a warning is given to notify a pilot of the aircraft that the specific target has been extracted. An infrared image display method according to claim 1.
JP2010071672A 2010-03-26 2010-03-26 Infrared imaging device and infrared image display method Active JP5640423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010071672A JP5640423B2 (en) 2010-03-26 2010-03-26 Infrared imaging device and infrared image display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071672A JP5640423B2 (en) 2010-03-26 2010-03-26 Infrared imaging device and infrared image display method

Publications (2)

Publication Number Publication Date
JP2011203159A true JP2011203159A (en) 2011-10-13
JP5640423B2 JP5640423B2 (en) 2014-12-17

Family

ID=44879953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071672A Active JP5640423B2 (en) 2010-03-26 2010-03-26 Infrared imaging device and infrared image display method

Country Status (1)

Country Link
JP (1) JP5640423B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499971A (en) * 2013-09-30 2014-01-08 北京控制工程研究所 Sequential control method for landing obstacle avoidance of lunar probe
WO2015137019A1 (en) * 2014-03-13 2015-09-17 コニカミノルタ株式会社 Temperature monitoring device and temperature monitoring method
JP2016193717A (en) * 2015-02-27 2016-11-17 ジーイー・アビエイション・システムズ・エルエルシー System and methods for providing situational awareness information for relative navigation system
US9823089B1 (en) 2016-06-21 2017-11-21 Amazon Technologies, Inc. Unmanned aerial vehicle sensor calibration as part of departure from a materials handling facility
US9972212B1 (en) 2016-06-21 2018-05-15 Amazon Technologies, Inc. Unmanned aerial vehicle camera calibration as part of departure or arrival at a materials handling facility
US9969486B1 (en) * 2016-06-21 2018-05-15 Amazon Technologies, Inc. Unmanned aerial vehicle heat sensor calibration
US10032275B1 (en) 2016-06-21 2018-07-24 Amazon Technologies, Inc. Unmanned aerial vehicle sensor calibration during flight
US10220964B1 (en) 2016-06-21 2019-03-05 Amazon Technologies, Inc. Unmanned aerial vehicle sensor calibration validation before flight

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424590A (en) * 1990-05-18 1992-01-28 Tokimec Inc Identification device for moving object
JPH09130680A (en) * 1995-10-31 1997-05-16 Mitsubishi Electric Corp Infrared ray image pickup device
JPH09207896A (en) * 1996-02-09 1997-08-12 Nec Corp Apron guiding system
JPH11243538A (en) * 1998-02-25 1999-09-07 Nissan Motor Co Ltd Visually recognizing device for vehicle
JP2002366958A (en) * 2001-06-08 2002-12-20 Toshiba Corp Method and device for recognizing image
JP2003296728A (en) * 2002-03-29 2003-10-17 Fujitsu Ltd Infrared image signal processor
JP2004030453A (en) * 2002-06-27 2004-01-29 Starlabo Corp Stereo matching method, stereo matching program, and computer readable recording medium with stereo matching program recorded thereon
JP2004086779A (en) * 2002-08-28 2004-03-18 Toshiba Corp Obstacle detection device and its method
JP2004219277A (en) * 2003-01-15 2004-08-05 Sanyo Electric Co Ltd Method and system, program, and recording medium for detection of human body
JP2005354597A (en) * 2004-06-14 2005-12-22 Honda Motor Co Ltd Vehicle vicinity monitoring apparatus
JP2006042147A (en) * 2004-07-29 2006-02-09 Honda Motor Co Ltd Cognitive support device for car
JP2006142913A (en) * 2004-11-17 2006-06-08 Ishikawajima Harima Heavy Ind Co Ltd Small flight machine
JP2007093483A (en) * 2005-09-29 2007-04-12 Mitsubishi Electric Corp Positioning system, positioning method, and positioning program
JP2008065757A (en) * 2006-09-11 2008-03-21 Kawasaki Heavy Ind Ltd Driving assist system
JP2009530159A (en) * 2006-03-13 2009-08-27 ザ・ボーイング・カンパニー Aircraft collision detection and avoidance system and method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424590A (en) * 1990-05-18 1992-01-28 Tokimec Inc Identification device for moving object
JPH09130680A (en) * 1995-10-31 1997-05-16 Mitsubishi Electric Corp Infrared ray image pickup device
JPH09207896A (en) * 1996-02-09 1997-08-12 Nec Corp Apron guiding system
JPH11243538A (en) * 1998-02-25 1999-09-07 Nissan Motor Co Ltd Visually recognizing device for vehicle
JP2002366958A (en) * 2001-06-08 2002-12-20 Toshiba Corp Method and device for recognizing image
JP2003296728A (en) * 2002-03-29 2003-10-17 Fujitsu Ltd Infrared image signal processor
JP2004030453A (en) * 2002-06-27 2004-01-29 Starlabo Corp Stereo matching method, stereo matching program, and computer readable recording medium with stereo matching program recorded thereon
JP2004086779A (en) * 2002-08-28 2004-03-18 Toshiba Corp Obstacle detection device and its method
JP2004219277A (en) * 2003-01-15 2004-08-05 Sanyo Electric Co Ltd Method and system, program, and recording medium for detection of human body
JP2005354597A (en) * 2004-06-14 2005-12-22 Honda Motor Co Ltd Vehicle vicinity monitoring apparatus
JP2006042147A (en) * 2004-07-29 2006-02-09 Honda Motor Co Ltd Cognitive support device for car
JP2006142913A (en) * 2004-11-17 2006-06-08 Ishikawajima Harima Heavy Ind Co Ltd Small flight machine
JP2007093483A (en) * 2005-09-29 2007-04-12 Mitsubishi Electric Corp Positioning system, positioning method, and positioning program
JP2009530159A (en) * 2006-03-13 2009-08-27 ザ・ボーイング・カンパニー Aircraft collision detection and avoidance system and method
JP2008065757A (en) * 2006-09-11 2008-03-21 Kawasaki Heavy Ind Ltd Driving assist system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499971A (en) * 2013-09-30 2014-01-08 北京控制工程研究所 Sequential control method for landing obstacle avoidance of lunar probe
WO2015137019A1 (en) * 2014-03-13 2015-09-17 コニカミノルタ株式会社 Temperature monitoring device and temperature monitoring method
JP2016193717A (en) * 2015-02-27 2016-11-17 ジーイー・アビエイション・システムズ・エルエルシー System and methods for providing situational awareness information for relative navigation system
US9823089B1 (en) 2016-06-21 2017-11-21 Amazon Technologies, Inc. Unmanned aerial vehicle sensor calibration as part of departure from a materials handling facility
US9972212B1 (en) 2016-06-21 2018-05-15 Amazon Technologies, Inc. Unmanned aerial vehicle camera calibration as part of departure or arrival at a materials handling facility
US9969486B1 (en) * 2016-06-21 2018-05-15 Amazon Technologies, Inc. Unmanned aerial vehicle heat sensor calibration
US10032275B1 (en) 2016-06-21 2018-07-24 Amazon Technologies, Inc. Unmanned aerial vehicle sensor calibration during flight
US10220964B1 (en) 2016-06-21 2019-03-05 Amazon Technologies, Inc. Unmanned aerial vehicle sensor calibration validation before flight
US10302452B1 (en) 2016-06-21 2019-05-28 Amazon Technologies, Inc. Unmanned aerial vehicle sensor calibration via sensor channel

Also Published As

Publication number Publication date
JP5640423B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5640423B2 (en) Infrared imaging device and infrared image display method
Yuan et al. Fire detection using infrared images for UAV-based forest fire surveillance
EP3235735B1 (en) Method and system for generating a collision alerting during aircraft taxiing
CN107871405B (en) Detection and assessment of air crash threats using visual information
US20140092206A1 (en) Aircraft provided with a system for observing part of the aircraft's environment
US20110013016A1 (en) Visual Detection of Clear Air Turbulence
US20120314066A1 (en) Fire monitoring system and method using composite camera
KR20130054285A (en) System and method for detecting adverse atmospheric conditions ahead of an aircraft
EP3227829A1 (en) Method and system for identifying an individual with increased body temperature
US10372986B2 (en) Method and device for detecting an overhead cable from an aerial vessel
CN108024070A (en) The method and relevant display system of sensor image are covered on the composite image
US9726486B1 (en) System and method for merging enhanced vision data with a synthetic vision data
US11377226B2 (en) Aircraft hovering work support system and aircraft including same
KR101387594B1 (en) Safety system using transparent display
US20150015698A1 (en) Methods and systems for optical aircraft detection
CN113393486A (en) Abnormal event monitoring method, intelligent monitoring terminal and system
EP4056950A1 (en) Thermal imaging for navigation systems and methods
US20180300856A1 (en) System adapted for providing an operator with augmented visibility and associated method
JP5012918B2 (en) Infrared imaging device and infrared image display method
CN114998771B (en) Display method and system for enhancing visual field of aircraft, aircraft and storage medium
ES2379644T3 (en) Airport traffic information indicator system
KR20180101906A (en) Method of displaying the location of the foreign substance within the runway
CN203841004U (en) Airport infrared bird detecting and repelling device
CN106657886A (en) Flight vehicle real-time monitoring and visualized displaying system
KR20120135967A (en) Method of using infrared marker based on augmented reality for providing marker information with real-time changing and producing multiple markers

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R150 Certificate of patent or registration of utility model

Ref document number: 5640423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150