JP2011202244A - High-strength thin steel sheet having excellent material quality stability and method for producing the same - Google Patents

High-strength thin steel sheet having excellent material quality stability and method for producing the same Download PDF

Info

Publication number
JP2011202244A
JP2011202244A JP2010071726A JP2010071726A JP2011202244A JP 2011202244 A JP2011202244 A JP 2011202244A JP 2010071726 A JP2010071726 A JP 2010071726A JP 2010071726 A JP2010071726 A JP 2010071726A JP 2011202244 A JP2011202244 A JP 2011202244A
Authority
JP
Japan
Prior art keywords
less
strength
steel sheet
thin steel
strength thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010071726A
Other languages
Japanese (ja)
Other versions
JP5672736B2 (en
Inventor
Isato Saito
勇人 齋藤
Fusaaki Kariya
房亮 假屋
Takeshi Yokota
毅 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010071726A priority Critical patent/JP5672736B2/en
Publication of JP2011202244A publication Critical patent/JP2011202244A/en
Application granted granted Critical
Publication of JP5672736B2 publication Critical patent/JP5672736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a precipitation strengthening type high-strength thin steel sheet which has highly stable material quality, particularly strength, and to provide a method for producing the same.SOLUTION: The high-strength thin steel sheet having excellent material quality stability has a composition containing, by mass, 0.05 to 0.15% C, 0.06 to 0.7% Si, 1.0 to 2.5% Mn, 0.01 to 0.05% P, ≤0.0050% S, 0.01 to 0.10% Al, ≤0.0050% N, 0.01 to 0.10% Nb and 0.001 to 0.010% Ta, and the balance Fe with inevitable impurities.

Description

本発明は、自動車や家電製品などの構造部品の部材として好適な材質安定性の優れた高強度薄鋼板およびその製造方法に関する。   The present invention relates to a high-strength thin steel sheet having excellent material stability suitable as a member for structural parts such as automobiles and home appliances, and a method for producing the same.

近年、環境問題の高まりからCO排出規制が厳格化しており、自動車分野においては,車体の軽量化による燃費向上が大きな課題となっている。このため自動車部品への高強度鋼板の適用による薄肉化が進められており、これまで引張強度(TS)270〜440MPa級の鋼板が使用されていた部品に対して、TS590MPa級以上の鋼板の適用が進められている。 In recent years, CO 2 emission regulations have become stricter due to increasing environmental problems, and in the automobile field, improvement of fuel consumption by reducing the weight of the vehicle body has become a major issue. For this reason, thinning is being promoted by applying high-strength steel sheets to automobile parts, and steel parts of TS590 MPa class or higher are applied to parts that have been used with steel sheets of 270 to 440 MPa class of tensile strength (TS). Is underway.

TS590MPa級以上の高強度鋼板の中でもTiやNbなどの炭化物生成元素を添加した、いわゆる析出強化型の高強度鋼板は、マルテンサイトなどの硬質な第2相を生成させた組織強化型の鋼板に比べ、所定の強度を確保するために必要な合金元素が少量で済むため、廉価に製造することができ、工業的に広く使用されている。   Among high-strength steel sheets of TS590MPa class or higher, so-called precipitation-strengthened high-strength steel sheets to which carbide-generating elements such as Ti and Nb are added are applied to structure-strengthened steel sheets that generate hard second phases such as martensite. In comparison, since a small amount of alloy element is required to ensure a predetermined strength, it can be manufactured at low cost and is widely used industrially.

例えば、特許文献1には、Nb添加により析出強化したTS590MPa以上でプレス成形後の耐二次加工脆性に優れた溶融亜鉛めっき鋼板の製造方法が開示されており、特許文献2には,NbおよびTi添加により析出強化した、TSが490MPa以上720MPa未満の伸びフランジ成形性と衝突吸収エネルギー特性に優れた高強度冷延鋼板およびその製造方法が開示されている。   For example, Patent Document 1 discloses a method for producing a hot-dip galvanized steel sheet having excellent secondary work brittleness resistance after press forming at TS 590 MPa or more, which is precipitation strengthened by addition of Nb, and Patent Document 2 discloses Nb and A high-strength cold-rolled steel sheet, which is precipitation-strengthened by addition of Ti and has excellent stretch flange formability and impact absorption energy characteristics with a TS of 490 MPa or more and less than 720 MPa, and a method for producing the same are disclosed.

しかしながら、TS590MPa級以上の高強度鋼板は、従来使われていた軟鋼などの低強度の鋼板に比べ、強度や伸びといった材質のバラツキが大きくなるため、部品の寸法がばらついたり、ワレが発生するなどして生産性が低下するという問題がある。   However, high-strength steel plates of TS590MPa class or higher have material variations such as strength and elongation that are larger than those of low-strength steel plates such as mild steel that have been used in the past. There is a problem that productivity decreases.

このような材質のバラツキを改善する技術としては、特許文献3に合金化溶融亜鉛めっき鋼板の強度−延性バランスのバラツキ改善方法が開示されており、特許文献4にスポット溶接性および材質安定性に優れた高強度溶融亜鉛めっき鋼板が開示されている。   As a technique for improving such material variation, Patent Literature 3 discloses a method for improving the balance between strength and ductility of an alloyed hot-dip galvanized steel sheet, and Patent Literature 4 provides spot weldability and material stability. An excellent high strength hot dip galvanized steel sheet is disclosed.

特許3873638号公報Japanese Patent No. 3873638 特開2008−174776号公報JP 2008-174776 特開2007−327123号公報JP 2007-327123 A 特開2005−320561号公報JP 2005-320561 A

しかしながら、特許文献3に開示された技術は、残留オーステナイト中の炭素量を制御することで伸びの安定性を確保するものであり、強度のバラツキ低減について知見を与えるものではない。また、特許文献4に開示された技術は、Mnを多量に添加する必要があり高コストになること、および、マルテンサイト相を安定的に生成することを目的としているため、マルテンサイト相を少量しか含まない、または、全く含まない析出強化型の高強度鋼板に適用しても効果は小さいと考えられることから、析出強化型の高強度鋼板に適用できる技術ではない。   However, the technique disclosed in Patent Document 3 ensures the stability of elongation by controlling the amount of carbon in retained austenite, and does not give any knowledge about the reduction in strength variation. In addition, the technique disclosed in Patent Document 4 is required to add a large amount of Mn, resulting in high cost and stable generation of the martensite phase. Since it is considered that the effect is small even if it is applied to a precipitation strengthening type high strength steel sheet that contains only or not at all, it is not a technique that can be applied to a precipitation strengthening type high strength steel sheet.

このように、析出強化型の高強度鋼板については、強度の変動を十分に抑える技術は未だ存在せず、析出強化型の高強度鋼板を適用する際には、依然として材質のバラツキが問題となっており、このような材質のバラツキに起因して鋼板使用時の生産性が阻害されるという問題がある。   As described above, there is no technology for sufficiently suppressing fluctuations in strength for precipitation strengthened high-strength steel sheets, and variations in materials remain a problem when applying precipitation-strengthened high strength steel sheets. Therefore, there is a problem that productivity when using a steel sheet is hindered due to such variation in material.

したがって、本発明の課題は、材質、特に強度の安定性に優れた析出強化型の高強度薄鋼板およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a precipitation-strengthened high-strength steel sheet excellent in material, particularly strength stability, and a method for producing the same.

本発明者らは、材質変動の要因を精緻に検討した結果、析出物が、材質バラツキの主要因であることを見出した。そして、析出物の安定性を向上させるべく、さらに検討を続け、本発明に至った。   As a result of careful examination of the factors of material variation, the present inventors have found that precipitates are the main factor of material variation. And further examination was continued in order to improve the stability of the precipitate, and the present invention was achieved.

具体的には、NbとTaを同時に添加することで、安定した析出物を析出させ得ることを見出した。そして、このようにNbとTaを同時に添加した上で、熱延での仕上げ圧延後の冷却条件と巻取り温度、および、焼鈍条件を制御することで、実際に焼鈍後の材質が安定化することを見出した。詳細は必ずしも明らかではないが、析出物が(Nb,Ta)(C,N)のような複合炭窒化物になることで、析出物の安定性が向上して粗大化速度が著しく低下し、析出強化による強度寄与分が安定化するものと考えられる。   Specifically, it has been found that a stable precipitate can be precipitated by simultaneously adding Nb and Ta. And after adding Nb and Ta simultaneously in this way, the material after annealing is actually stabilized by controlling the cooling conditions and winding temperature after finish rolling in hot rolling, and annealing conditions. I found out. Although details are not necessarily clear, the precipitate becomes a composite carbonitride such as (Nb, Ta) (C, N), so that the stability of the precipitate is improved and the coarsening rate is significantly reduced. It is considered that the strength contribution due to precipitation strengthening is stabilized.

すなわち、本発明は、以下の(1)〜(6)を提供する。
(1) 質量%で、C:0.05〜0.15%、Si:0.06〜0.7%、Mn:1.0〜2.5%、P:0.01〜0.05%、S:0.0050%以下、Al:0.01〜0.10%、N:0.0050%以下、Nb:0.01〜0.10%、Ta:0.001〜0.010%を含み、残部がFeおよび不可避的不純物からなることを特徴とする材質安定性に優れた高強度薄鋼板。
(2) 上記(1)の成分に加えて、さらに質量%で、V:0.10%以下、Ti:0.100%以下のうち一種以上を含み、残部がFeおよび不可避的不純物からなることを特徴とする材質安定性に優れた高強度薄鋼板。
(3) 上記(1)または(2)の成分に加えて、さらに質量%で、Cr:0.5%以下、Mo:0.5%以下、Cu:0.50%以下、Ni:0.50%以下、B:0.0030%以下のうち一種以上を含み、残部がFeおよび不可避的不純物からなることを特徴とする材質安定性に優れた高強度薄鋼板。
(4) 引張強さTSが590MPa以上であることを特徴とする(1)〜(3)のいずれかに記載の材質安定性に優れた高強度薄鋼板。
(5) 上記(1)〜(3)のいずれかに記載の組成を有する鋼スラブを、加熱温度1100〜1270℃、仕上げ圧延の終了温度830〜950℃の条件で熱間圧延を行い、圧延終了後1s以内に冷却を開始して平均冷却速度20〜200℃/sで650〜750℃まで急冷し、該温度にて2s以上空冷後、500〜650℃で巻取り、酸洗後、冷間圧延を施し、その後、3〜30℃/sの平均加熱速度で720〜860℃まで加熱し、720〜860℃での均熱時間を30〜300sとし、均熱温度から510℃までの範囲を平均冷却速度3〜30℃/sで冷却する条件にて焼鈍を施し、その後、0.3〜2.0%の伸長率で調質圧延を施すことを特徴とする材質安定性に優れた高強度薄鋼板の製造方法。
(6) 得られた薄鋼板の引張強さTSが590MPa以上であることを特徴とする(5)に記載の材質安定性に優れた高強度薄鋼板の製造方法。
That is, the present invention provides the following (1) to (6).
(1) By mass%, C: 0.05 to 0.15%, Si: 0.06 to 0.7%, Mn: 1.0 to 2.5%, P: 0.01 to 0.05% S: 0.0050% or less, Al: 0.01 to 0.10%, N: 0.0050% or less, Nb: 0.01 to 0.10%, Ta: 0.001 to 0.010% A high-strength thin steel sheet excellent in material stability, characterized in that the balance is comprised of Fe and inevitable impurities.
(2) In addition to the component of (1) above, further contains at least one of mass%, V: 0.10% or less, Ti: 0.100% or less, with the balance being Fe and inevitable impurities. High strength thin steel sheet with excellent material stability.
(3) In addition to the component (1) or (2) above, further in terms of mass, Cr: 0.5% or less, Mo: 0.5% or less, Cu: 0.50% or less, Ni: 0.00. A high-strength thin steel sheet excellent in material stability, comprising one or more of 50% or less and B: 0.0030% or less, with the balance being Fe and inevitable impurities.
(4) The high strength thin steel sheet excellent in material stability according to any one of (1) to (3), wherein the tensile strength TS is 590 MPa or more.
(5) A steel slab having the composition described in any one of (1) to (3) above is hot-rolled under conditions of a heating temperature of 1100 to 1270 ° C. and a finish rolling finishing temperature of 830 to 950 ° C. Cooling is started within 1 s after the completion, rapidly cooled to 650-750 ° C. at an average cooling rate of 20-200 ° C./s, air-cooled at this temperature for 2 s or longer, wound up at 500-650 ° C., pickled, and cooled Then, it is heated to 720 to 860 ° C. at an average heating rate of 3 to 30 ° C./s, the soaking time at 720 to 860 ° C. is set to 30 to 300 s, and the range from the soaking temperature to 510 ° C. The material was excellent in material stability, characterized in that annealing was performed at an average cooling rate of 3 to 30 ° C./s, and then temper rolling was performed at an elongation rate of 0.3 to 2.0%. Manufacturing method of high strength thin steel sheet.
(6) The method for producing a high-strength thin steel sheet having excellent material stability according to (5), wherein the obtained thin steel sheet has a tensile strength TS of 590 MPa or more.

本発明によれば、材質安定性に優れた高強度薄鋼板を提供することが可能になり、生産性の向上に大きく寄与するものである。   According to the present invention, it is possible to provide a high-strength thin steel sheet having excellent material stability, which greatly contributes to the improvement of productivity.

以下、本発明について具体的に説明する。
まず、本発明の高強度薄鋼板の組成限定理由について説明する。以下において、成分の「%」表示は、質量%を意味する。
Hereinafter, the present invention will be specifically described.
First, the reasons for limiting the composition of the high strength thin steel sheet of the present invention will be described. In the following, “%” notation of components means mass%.

C:0.05〜0.15%
Cは鋼板の高強度化に有効な元素であり、特に、NbやTaといった炭化物形成元素と微細な合金炭化物、あるいは、合金炭窒化物を形成して、鋼板の強化に寄与する。また,パーライトやマルテンサイトなどの第2相を形成することでも高強度化に寄与する。この効果を得るためには0.05%以上含有することが必要である。一方、過剰に含有すると鋼板が硬化し、成形性が低下するだけでなく、スポット溶接性も低下することから、その含有量を0.15%以下とする。良好な溶接性を確保する観点からは0.12%以下が好ましい。
C: 0.05 to 0.15%
C is an element effective for increasing the strength of a steel sheet, and in particular, forms carbide forming elements such as Nb and Ta and fine alloy carbides or alloy carbonitrides, thereby contributing to strengthening of the steel sheet. In addition, forming a second phase such as pearlite or martensite also contributes to an increase in strength. In order to acquire this effect, it is necessary to contain 0.05% or more. On the other hand, if contained excessively, the steel sheet is hardened and not only the formability is lowered but also the spot weldability is lowered, so the content is made 0.15% or less. From the viewpoint of ensuring good weldability, 0.12% or less is preferable.

Si:0.06〜0.7%
Siは主に固溶強化により高強度化に寄与する元素であり、強度上昇に対して延性の低下が比較的少なく、強度のみならず、強度−延性バランスの向上にも寄与する元素である。この効果を得るためには0.06%以上含有することが必要である。強度−延性バランスの向上の観点からは0.2%以上含有することが好ましい。一方、0.7%を超えると化成処理性が低下するため、その含有量を0.7%以下とする。
Si: 0.06 to 0.7%
Si is an element that contributes to high strength mainly by solid solution strengthening, is a relatively small decrease in ductility with respect to strength increase, and is an element that contributes not only to strength but also to improvement of strength-ductility balance. In order to acquire this effect, it is necessary to contain 0.06% or more. From the viewpoint of improving the strength-ductility balance, the content is preferably 0.2% or more. On the other hand, if it exceeds 0.7%, the chemical conversion processability decreases, so the content is made 0.7% or less.

Mn:1.0〜2.5%
Mnは固溶強化および第2相を生成することで高強度化に寄与する元素であり、この効果を得るためには1.0%以上含有することが必要である。一方、過剰に含有した場合は成形性の低下が著しくなることから、その含有量を2.5%以下とする。
Mn: 1.0 to 2.5%
Mn is an element that contributes to strengthening by forming a solid solution strengthening and a second phase. In order to obtain this effect, it is necessary to contain 1.0% or more. On the other hand, when the content is excessive, the moldability is remarkably lowered, so the content is made 2.5% or less.

P:0.01〜0.05%
Pは固溶強化により高強度化に寄与する元素であり、この効果を得るためには0.01%以上含有することが必要である。過剰に含有した場合には、粒界への偏析が著しくなって粒界を脆化させたり、中央偏析しやすくなるため、その含有量を0.05%以下とする。
P: 0.01-0.05%
P is an element contributing to an increase in strength by solid solution strengthening, and in order to obtain this effect, it is necessary to contain 0.01% or more. When the content is excessive, segregation to the grain boundary becomes remarkable and the grain boundary becomes brittle or easily segregates at the center. Therefore, the content is made 0.05% or less.

S:0.0050%以下
Sの含有量が多い場合には、MnSなどの硫化物が多く生成し、伸びフランジ性に代表される局部延性が低下するため上限を0.0050%とする。好ましくは、0.0030%以下である。特に下限は無いが,極低S化は製鋼コストが上昇するため、0.0005%以上とするのが好ましい。
S: 0.0050% or less When the content of S is large, a large amount of sulfide such as MnS is generated, and the local ductility represented by stretch flangeability is lowered, so the upper limit is made 0.0050%. Preferably, it is 0.0030% or less. Although there is no particular lower limit, it is preferable to make it 0.0005% or more because extremely low S increases the steelmaking cost.

Al:0.01〜0.10%
Alは脱酸に必要な元素であり、この効果を得るためには0.01%以上含有することが必要であるが、0.10%を超えて添加しても効果が飽和するので、0.10%以下とする。
Al: 0.01-0.10%
Al is an element necessary for deoxidation, and in order to obtain this effect, it is necessary to contain 0.01% or more, but even if added over 0.10%, the effect is saturated. 10% or less.

N:0.0050%以下
Nは、Cと同様にNbやTaと化合物を形成して、合金窒化物や合金炭窒化物となり、高強度化に寄与する。しかし、窒化物は比較的高温で生成しやすいため、粗大になりやすく、炭化物に比べ強度への寄与が相対的に小さい。つまり高強度化には、N量を低減して、合金炭化物をより多く生成したほうが有利である。このような観点からNの含有量を0.0050%以下とする。好ましくは0.0030%以下である.
N: 0.0050% or less N, like C, forms a compound with Nb or Ta to become an alloy nitride or an alloy carbonitride, contributing to an increase in strength. However, since nitrides are likely to be formed at a relatively high temperature, they tend to be coarse, and their contribution to strength is relatively small compared to carbides. In other words, to increase the strength, it is advantageous to reduce the amount of N and produce more alloy carbide. From such a viewpoint, the N content is set to 0.0050% or less. Preferably it is 0.0030% or less.

Nb:0.01〜0.10%
Nbは、CやNと化合物を形成して、炭化物や炭窒化物となり、高強度化に寄与する。この効果を得るためには0.01%以上含有することが必要である。しかし、過剰に添加した場合、成形性の低下が著しくなるため、その含有量を0.10%以下とする。
Nb: 0.01 to 0.10%
Nb forms a compound with C or N to become a carbide or carbonitride, contributing to an increase in strength. In order to acquire this effect, it is necessary to contain 0.01% or more. However, when excessively added, the moldability is remarkably lowered, so the content is made 0.10% or less.

Ta:0.001〜0.010%
Taは、Nbと同様、合金炭化物や合金炭窒化物を形成して高強度化に寄与するのみならず、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を形成することで、析出物の粗大化を著しく抑制して、析出強化による強度への寄与を安定化させる効果があると考えられる。このような効果を得るためには0.001%以上含有することが必要である。しかし、過剰に添加した場合、上記の析出物安定化効果が飽和するのみならず、合金コストが上昇するため、その含有量を0.010%以下とする。
Ta: 0.001 to 0.010%
Ta, like Nb, forms alloy carbides and alloy carbonitrides and contributes to high strength, but also partially dissolves in Nb carbides and Nb carbonitrides, and (Nb, Ta) (C, By forming the composite precipitate as in N), it is considered that the coarsening of the precipitate is remarkably suppressed and the contribution to the strength by precipitation strengthening is stabilized. In order to acquire such an effect, it is necessary to contain 0.001% or more. However, when added excessively, not only the above-mentioned precipitate stabilization effect is saturated but also the alloy cost increases, so the content is made 0.010% or less.

本発明では、上記の成分に加え、以下の成分を所定の範囲で添加してもよい。   In the present invention, in addition to the above components, the following components may be added within a predetermined range.

V:0.10%以下
VはNbと同様、微細な炭窒化物を形成することで、強度上昇に寄与することができるため、必要に応じて添加することができる。このような効果を発揮させるためには、0.01%以上含有させることが好ましい。一方、多量にVを含有させても、0.10%を超えた分の強度上昇効果は小さく、そのうえ、合金コストの増加も招いてしまう。したがって、Vの含有量は0.10%以下とする。
V: 0.10% or less V, like Nb, can contribute to an increase in strength by forming fine carbonitrides, and can be added as necessary. In order to exhibit such an effect, it is preferable to contain 0.01% or more. On the other hand, even if a large amount of V is contained, the effect of increasing the strength exceeding 0.10% is small, and the alloy cost is also increased. Therefore, the V content is 0.10% or less.

Ti:0.100%以下
TiもNbと同様、微細な炭窒化物を形成することで、強度上昇に寄与することができるため、必要に応じて添加することができる。このような効果を発揮させるためには、Tiの含有量を0.005%以上とすることが好ましい。一方、多量にTiを添加すると、著しく成形性を低下させるため、その含有量を0.100%以下とする。
Ti: 0.100% or less Ti, like Nb, can contribute to an increase in strength by forming fine carbonitride, and can be added as necessary. In order to exert such an effect, the Ti content is preferably 0.005% or more. On the other hand, when Ti is added in a large amount, the moldability is remarkably lowered, so the content is made 0.100% or less.

Cr:0.5%以下
Crは焼入れ性を向上させ、第2相を生成することで高強度化に寄与する元素であり、必要に応じて添加することができる。このような効果を発揮させるためには、0.1%以上含有させることが好ましい。一方、0.5%を超えて含有させても効果が飽和するため、その含有量を0.5%以下とする。
Cr: 0.5% or less Cr is an element that contributes to increasing the strength by improving the hardenability and generating the second phase, and can be added as necessary. In order to exhibit such an effect, it is preferable to contain 0.1% or more. On the other hand, even if the content exceeds 0.5%, the effect is saturated, so the content is made 0.5% or less.

Mo:0.5%以下
Moは焼入れ性を向上させ、第2相を生成することで高強度化に寄与したり、一部炭化物を生成して高強度化に寄与する元素であり、必要に応じて添加することができる。これらの効果を発揮させるためには、0.05%以上含有させることが好ましい。一方、0.5%を超えて含有させても効果が飽和するため、その含有量を0.5%以下とする。
Mo: 0.5% or less Mo is an element that improves hardenability and contributes to high strength by generating a second phase, or partially generates carbides and contributes to high strength. Can be added accordingly. In order to exhibit these effects, it is preferable to make it contain 0.05% or more. On the other hand, even if the content exceeds 0.5%, the effect is saturated, so the content is made 0.5% or less.

Cu:0.50%以下
Cuは固溶強化により高強度化に寄与し、また焼入れ性を向上させ、第2相を生成することで高強度化に寄与する元素であり、必要に応じて添加することができる。これらの効果を発揮させるためには、0.05%以上含有させることが好ましい。一方、0.50%を超えて含有させても効果が飽和し、またCuに起因する表面欠陥が発生しやすくなるため、その含有量を0.50%以下とする。
Cu: 0.50% or less Cu is an element that contributes to strengthening by solid solution strengthening, improves hardenability, and contributes to strengthening by generating a second phase. can do. In order to exhibit these effects, it is preferable to make it contain 0.05% or more. On the other hand, even if the content exceeds 0.50%, the effect is saturated, and surface defects due to Cu are likely to occur, so the content is made 0.50% or less.

Ni:0.50%以下
NiもCuと同様、固溶強化により高強度化に寄与し、また焼入れ性を向上させ、第2相を生成することで高強度化に寄与する元素であり、必要に応じて添加することができる。これらの効果を発揮させるためには、0.05%以上含有させることが好ましい。また、Cuと同時に含有させると、Cu起因の表面欠陥を抑制する効果があるため、Cu添加時に有効である。一方、0.50%を超えて含有させても効果が飽和するため、その含有量を0.50%以下とする。
Ni: 0.50% or less Ni, like Cu, is an element that contributes to strengthening by solid solution strengthening, improves hardenability, and contributes to strengthening by generating a second phase. Necessary It can be added depending on. In order to exhibit these effects, it is preferable to make it contain 0.05% or more. Moreover, since it has the effect of suppressing the surface defect resulting from Cu when it contains with Cu, it is effective at the time of Cu addition. On the other hand, since the effect is saturated even if the content exceeds 0.50%, the content is made 0.50% or less.

B:0.0030%以下
Bは焼入れ性を向上し、第2相を生成することで高強度化に寄与する元素であり、必要に応じて添加することができる。この効果を発揮させるためには、0.0005%以上含有させることが好ましい。一方、0.0030%を超えて含有させても効果が飽和するため、その含有量を0.0030%以下とする。
B: 0.0030% or less B is an element that improves the hardenability and contributes to increasing the strength by generating the second phase, and can be added as necessary. In order to exhibit this effect, it is preferable to contain 0.0005% or more. On the other hand, even if the content exceeds 0.0030%, the effect is saturated, so the content is made 0.0030% or less.

材質の安定性および強度
本発明の高強度薄鋼板は、材質安定性に優れたものである。材質の安定性を評価するに当たっては、コイル内の長手先端部、中央部、尾端部にて、それぞれ幅方向中央位置、両1/4幅位置の計9ヶ所について引張試験を行い、降伏応力YSおよび引張強さTSのそれぞれの最大値と最小値の差、ΔYS、ΔTSを評価し、ΔYSとΔTSの両方が30MPa以下であれば、材質のバラツキは許容範囲内であり、材質安定性に優れたものである。また、本発明の高強度薄鋼板は、引張強さTSが590MPa以上であることが好ましい。
Stability and Strength of Material The high strength thin steel sheet of the present invention is excellent in material stability. In evaluating the stability of the material, a tensile test was carried out at a total of 9 points in the center in the width direction and at both 1/4 width positions at the longitudinal tip, center and tail ends in the coil to determine the yield stress. Evaluate the difference between the maximum and minimum values of YS and tensile strength TS, ΔYS, ΔTS, and if both ΔYS and ΔTS are 30 MPa or less, the material variation is within the allowable range, and the material stability It is excellent. The high strength thin steel sheet of the present invention preferably has a tensile strength TS of 590 MPa or more.

次に、本発明の高強度薄鋼板の製造方法について説明する。
本発明の高強度薄鋼板は、上記組成を有する鋼スラブを、熱間圧延工程で加熱後、粗圧延、仕上げ圧延を施し、巻取った後、酸洗工程で熱延板表層のスケールを除去した後、冷間圧延工程を実施し、続いて焼鈍工程および調質圧延工程を実施することにより製造される。
Next, the manufacturing method of the high intensity | strength thin steel plate of this invention is demonstrated.
The high-strength thin steel sheet of the present invention is a steel slab having the above composition, heated in a hot rolling process, subjected to rough rolling and finish rolling, wound, and then removed from the scale of the hot rolled sheet surface layer in a pickling process. Then, it is manufactured by performing a cold rolling process, and subsequently performing an annealing process and a temper rolling process.

[熱延条件]
加熱温度:1100〜1270℃
スラブの加熱温度は、1100℃未満になると圧延負荷が増大して生産性が低下し、1270℃超では加熱コストが増大するため、1100〜1270℃とする。
[Hot rolling conditions]
Heating temperature: 1100-1270 ° C
When the heating temperature of the slab is less than 1100 ° C., the rolling load increases and the productivity decreases, and when it exceeds 1270 ° C., the heating cost increases, so the heating temperature is set to 1100 to 1270 ° C.

仕上げ圧延終了温度:830〜950℃
オーステナイト単相域にて熱延を終了する必要があるので、仕上げ圧延を830℃以上にて終了する必要がある。一方、950℃超えでは、熱延組織が粗大になり、焼鈍後の特性が低下する。このため、仕上げ圧延終了温度を830〜950℃とする。
Finishing rolling finish temperature: 830-950 ° C
Since it is necessary to finish the hot rolling in the austenite single phase region, it is necessary to finish the finish rolling at 830 ° C. or higher. On the other hand, if it exceeds 950 ° C., the hot-rolled structure becomes coarse and the characteristics after annealing deteriorate. For this reason, finish rolling end temperature shall be 830-950 degreeC.

仕上げ圧延後の急冷条件:1s以内に冷却を開始して平均冷却速度20〜200℃/sにて650〜750℃に急冷
中間空冷:650〜750℃で2s以上空冷
熱延終了後、フェライト域に急冷することによりフェライト変態を促進するとともに、微細かつ安定な合金炭化物((Nb,Ta)(C,N))などを析出させることで、材質の安定化を達成することができる。熱延終了後に高温で滞留すると析出物が粗大化してしまうので、圧延終了後、1s以内に冷却を開始して平均冷却速度20℃/s以上で650〜750℃まで急冷する必要がある。しかし、冷却速度が速すぎる場合、冷却のムラが発生し易くなり、材質の不安定要因になるため、平均冷却速度を200℃/s以下とする必要がある。また、フェライト域でも高温では析出物が粗大化しやすく、低温では析出が抑制されるため、急冷後、650〜750℃で2s以上の空冷が必要である。
Rapid cooling conditions after finish rolling: Cooling started within 1 s and rapidly cooled to 650-750 ° C. at an average cooling rate of 20-200 ° C./s Intermediate air cooling: Air cooling at 650-750 ° C. for 2 s or more The ferrite transformation is promoted by rapid cooling, and fine and stable alloy carbide ((Nb, Ta) (C, N)) or the like is precipitated, so that stabilization of the material can be achieved. If it stays at a high temperature after completion of hot rolling, the precipitate becomes coarse. Therefore, after completion of rolling, it is necessary to start cooling within 1 s and rapidly cool to 650 to 750 ° C. at an average cooling rate of 20 ° C./s or more. However, when the cooling rate is too high, uneven cooling is likely to occur, which causes an unstable factor of the material. Therefore, the average cooling rate needs to be 200 ° C./s or less. Further, even in the ferrite region, precipitates are likely to be coarsened at high temperatures, and precipitation is suppressed at low temperatures. Therefore, after quenching, air cooling at 650 to 750 ° C. for 2 seconds or more is required.

巻取り温度:500〜650℃
巻取り温度が650℃を超えると、熱延後の冷却過程にて生成した合金炭化物などの析出物が著しく粗大化するため、巻取り温度の上限を650℃とする。一方、巻取り温度が低温になりすぎると、硬質なベイナイトやマルテンサイトが生成し、冷間圧延負荷が増大し、生産性を阻害するため、巻取り温度の下限を500℃とする。
Winding temperature: 500-650 ° C
When the coiling temperature exceeds 650 ° C., precipitates such as alloy carbides generated in the cooling process after hot rolling become extremely coarse, so the upper limit of the coiling temperature is set to 650 ° C. On the other hand, when the coiling temperature becomes too low, hard bainite and martensite are generated, the cold rolling load increases, and the productivity is hindered. Therefore, the lower limit of the coiling temperature is set to 500 ° C.

[酸洗工程]
熱間圧延工程後、酸洗工程を実施し、熱延板表層のスケールを除去する。酸洗工程は特に限定されず、常法に従って実施すればよい。
[Pickling process]
After the hot rolling step, a pickling step is performed to remove the scale of the hot rolled sheet surface layer. The pickling step is not particularly limited, and may be performed according to a conventional method.

[冷間圧延工程]
酸洗後の熱延板に対し、所定の板厚まで冷間圧延工程を実施する。冷間圧延工程は常法に従って実施すればよい。
[Cold rolling process]
A cold rolling process is implemented to the predetermined plate | board thickness with respect to the hot-rolled sheet after pickling. What is necessary is just to implement a cold rolling process according to a conventional method.

[焼鈍工程]
焼鈍工程においては、フェライト組織の再結晶を進行させるとともに、析出物の溶解や粗大化を抑制することが材質の安定化にとって重要である。このような組織形成のためには、昇温中に再結晶を十分に進行させ、フェライト+オーステナイトの2相域にて均熱して一部をオーステナイトに変態させ、冷却中にパーライト、ベイナイト、マルテンサイトを含む第2相を少量生成させればよく、そのために以下の条件で焼鈍処理する。
[Annealing process]
In the annealing process, it is important for the stabilization of the material that the recrystallization of the ferrite structure proceeds and that the dissolution and coarsening of the precipitates are suppressed. In order to form such a structure, recrystallization proceeds sufficiently during the temperature rise, soaking in the two-phase region of ferrite and austenite and partly transformed into austenite, and pearlite, bainite, martensite during cooling. What is necessary is just to produce | generate a small amount of 2nd phases containing a site, and it anneals on the following conditions for that purpose.

平均加熱速度:3〜30℃/s
2相域に加熱する前にフェライト域で十分に再結晶を進行させることで材質を安定化することができる。急速に加熱すると再結晶が進行しにくくなるため、平均加熱速度の上限を30℃/sとする。逆に加熱速度が小さすぎるとフェライト粒が粗大になり強度が低下するため、3℃/s以上の平均加熱速度が必要である。
Average heating rate: 3-30 ° C./s
The material can be stabilized by sufficiently allowing recrystallization to proceed in the ferrite region before heating to the two-phase region. Since recrystallization hardly proceeds when heated rapidly, the upper limit of the average heating rate is set to 30 ° C./s. On the other hand, if the heating rate is too low, the ferrite grains become coarse and the strength decreases, so an average heating rate of 3 ° C./s or more is required.

均熱温度:720〜860℃
均熱温度が低いと上記の加熱速度でも未再結晶組織が多く残存し、成形性が低下するため、均熱温度の下限を720℃とする。また、均熱温度が860℃超えの高温では、析出物が粗大化し、強度が低下するため、均熱温度の上限を860℃とする。好ましくは820℃以下である。
Soaking temperature: 720-860 ° C
If the soaking temperature is low, a large amount of unrecrystallized structure remains even at the heating rate described above, and the moldability is lowered. Therefore, the lower limit of the soaking temperature is set to 720 ° C. Further, when the soaking temperature is higher than 860 ° C., the precipitates become coarse and the strength decreases, so the upper limit of the soaking temperature is set to 860 ° C. Preferably it is 820 degrees C or less.

均熱時間:30〜300s
上記の均熱温度において、再結晶の進行および一部オーステナイト変態させるため30s以上の保持が必要である。一方、保持時間が長すぎるとフェライトが粗大化して強度が低下するため、300s以下とする必要がある。
Soaking time: 30-300s
At the soaking temperature described above, it is necessary to hold for 30 s or longer in order to progress recrystallization and partially austenite transform. On the other hand, if the holding time is too long, the ferrite becomes coarse and the strength decreases, so it is necessary to set it to 300 s or less.

510℃までの平均冷却速度:3〜30℃/s
冷却速度が小さい場合、フェライトの粗大化により強度が低下するため、3℃/s以上の平均冷却速度が必要である。一方、冷却速度が大きすぎると、第2相中のマルテンサイト分率が上昇してYSが低下してしまうので平均冷却速度の上限を30℃/sとする。
Average cooling rate to 510 ° C: 3-30 ° C / s
When the cooling rate is small, the strength decreases due to the coarsening of the ferrite, so an average cooling rate of 3 ° C./s or more is necessary. On the other hand, if the cooling rate is too high, the martensite fraction in the second phase increases and YS decreases, so the upper limit of the average cooling rate is set to 30 ° C./s.

[調質圧延工程]
降伏点や降伏伸びが発生すると、強度、特にYSのバラツキが大きくなることから調質圧延を実施する。
[Temper rolling process]
When the yield point or yield elongation occurs, the temper rolling is carried out because the strength, particularly the variation in YS, increases.

調質圧延の伸長率:0.3〜2.0%
降伏点や降伏伸びを消去するためには伸長率0.3%以上が必要である。しかし、2.0%を超えて伸長率を大きくしても、上記の効果が飽和するのみならず、伸びが低下するため、伸長率の上限を2.0%とする。
Elongation rate of temper rolling: 0.3-2.0%
In order to eliminate the yield point and yield elongation, an elongation rate of 0.3% or more is required. However, even if the elongation rate is increased beyond 2.0%, not only the above effects are saturated but also the elongation is lowered, so the upper limit of the elongation rate is set to 2.0%.

なお、本発明の範囲内であれば、焼鈍工程において、溶融亜鉛めっきを施して溶融亜鉛めっき鋼板としてもよく、また、溶融亜鉛めっき後に合金化処理を施して合金化溶融亜鉛めっき鋼板としてもよい。   Within the scope of the present invention, in the annealing step, hot dip galvanization may be performed to obtain a hot dip galvanized steel sheet, or after hot dip galvanization, an alloying treatment may be performed to obtain an alloyed hot dip galvanized steel sheet. .

以下、本発明の実施例について説明する。
表1に示す成分の鋼を溶製して鋳造し、230mm厚のスラブを製造し、表2に示す製造条件にて熱間圧延、酸洗、冷間圧延および焼鈍を実施し、その後、スキンパス圧延(調質圧延)を実施した。なお、熱間圧延の際の加熱温度は1200℃、仕上げ圧延終了後の急冷開始時間は0.1s、急冷終了温度(MT)での空冷時間は2.5s、熱延板の板厚は3.2mm、冷延板の板厚は1.4mm、スキンパス圧延での伸長率は0.7%と一定とした。なお、表中のFDTは仕上げ圧延の終了温度、CTは巻取り温度、冷速1は熱延時の仕上げ圧延後の急冷時の平均冷却速度、冷速2は焼鈍時の均熱後の平均冷却速度を示す。
Examples of the present invention will be described below.
Steel of the components shown in Table 1 is melted and cast to produce a 230 mm-thick slab, hot rolling, pickling, cold rolling and annealing are performed under the manufacturing conditions shown in Table 2, and then a skin pass Rolling (temper rolling) was performed. The heating temperature during the hot rolling is 1200 ° C., the rapid cooling start time after finishing rolling is 0.1 s, the air cooling time at the rapid cooling end temperature (MT) is 2.5 s, and the thickness of the hot rolled sheet is 3 .2 mm, the thickness of the cold-rolled sheet was 1.4 mm, and the elongation by skin pass rolling was constant at 0.7%. In the table, FDT is the finish rolling finish temperature, CT is the coiling temperature, cooling speed 1 is the average cooling rate during quenching after finish rolling during hot rolling, and cooling speed 2 is the average cooling after soaking during annealing. Indicates speed.

製造した鋼板の長手先端部、中央部、尾端部にて、それぞれ幅方向中央位置、両1/4幅位置の計9ヶ所から、JIS5号引張試験片を圧延直角方向から採取し、引張試験に供し、YSおよびTSならびに伸びElを測定し、YSおよびTSそれぞれの最大値と最小値の差ΔYS、ΔTSを評価した。YS、TS、Elの平均値およびΔYS、ΔTSの値を表2に併記する。   JIS No. 5 tensile test specimens were sampled from the vertical direction of rolling at 9 points at the center in the width direction and at both 1/4 width positions at the longitudinal tip, center, and tail end of the manufactured steel sheet, and subjected to a tensile test. Then, YS and TS and elongation El were measured, and the differences ΔYS and ΔTS between the maximum and minimum values of YS and TS were evaluated. The average values of YS, TS, and El and the values of ΔYS and ΔTS are also shown in Table 2.

表2に示すように、本発明範囲内である鋼A〜Nでは、TS≧590MPaと良好な強度を有し、またΔYSおよびΔTSはいずれも30MPa以下であり、コイル内の強度バラツキが十分に小さいことが確認された。   As shown in Table 2, steels A to N, which are within the scope of the present invention, have good strength such as TS ≧ 590 MPa, and ΔYS and ΔTS are both 30 MPa or less, and there is sufficient variation in strength within the coil. It was confirmed to be small.

これに対し、成分組成が本発明の範囲外である鋼Q〜Vでは、ΔYS、ΔTSが大きく材質安定性に劣ることが確認された。また、Cが低い鋼Q、Mnが低い鋼Tでは十分なTSが得られていない。 On the other hand, it was confirmed that in steels Q to V whose composition is outside the scope of the present invention, ΔYS and ΔTS are large and the material stability is poor. Moreover, sufficient TS is not obtained with steel Q with low C and steel T with low Mn.

Figure 2011202244
Figure 2011202244

Figure 2011202244
Figure 2011202244

Claims (6)

質量%で、C:0.05〜0.15%、Si:0.06〜0.7%、Mn:1.0〜2.5%、P:0.01〜0.05%、S:0.0050%以下、Al:0.01〜0.10%、N:0.0050%以下、Nb:0.01〜0.10%、Ta:0.001〜0.010%を含み、残部がFeおよび不可避的不純物からなることを特徴とする材質安定性に優れた高強度薄鋼板。   In mass%, C: 0.05 to 0.15%, Si: 0.06 to 0.7%, Mn: 1.0 to 2.5%, P: 0.01 to 0.05%, S: 0.0050% or less, Al: 0.01 to 0.10%, N: 0.0050% or less, Nb: 0.01 to 0.10%, Ta: 0.001 to 0.010%, the balance A high-strength thin steel sheet excellent in material stability, characterized in that is composed of Fe and inevitable impurities. 請求項1の成分に加えて、さらに質量%で、V:0.10%以下、Ti:0.100%以下のうち一種以上を含み、残部がFeおよび不可避的不純物からなることを特徴とする材質安定性に優れた高強度薄鋼板。   In addition to the components of claim 1, the composition further comprises one or more of V: 0.10% or less, Ti: 0.100% or less, and the balance is composed of Fe and inevitable impurities. High-strength thin steel sheet with excellent material stability. 請求項1または請求項2の成分に加えて、さらに質量%で、Cr:0.5%以下、Mo:0.5%以下、Cu:0.50%以下、Ni:0.50%以下、B:0.0030%以下のうち一種以上を含み、残部がFeおよび不可避的不純物からなることを特徴とする材質安定性に優れた高強度薄鋼板。   In addition to the components of claim 1 or claim 2, further, in mass%, Cr: 0.5% or less, Mo: 0.5% or less, Cu: 0.50% or less, Ni: 0.50% or less, B: A high-strength thin steel sheet excellent in material stability, characterized by containing one or more of 0.0030% or less and the balance being made of Fe and inevitable impurities. 引張強さTSが590MPa以上であることを特徴とする請求項1から請求項3のいずれか1項に記載の材質安定性に優れた高強度薄鋼板。   The high strength thin steel sheet excellent in material stability according to any one of claims 1 to 3, wherein the tensile strength TS is 590 MPa or more. 請求項1から請求項3のいずれかに記載の組成を有する鋼スラブを、加熱温度1100〜1270℃、仕上げ圧延の終了温度830〜950℃の条件で熱間圧延を行い、圧延終了後1s以内に冷却を開始して平均冷却速度20〜200℃/sで650〜750℃まで急冷し、該温度にて2s以上空冷後、500〜650℃で巻取り、酸洗後、冷間圧延を施し、その後、3〜30℃/sの平均加熱速度で720〜860℃まで加熱し、720〜860℃での均熱時間を30〜300sとし、均熱温度から510℃までの範囲を平均冷却速度3〜30℃/sで冷却する条件にて焼鈍を施し、その後、0.3〜2.0%の伸長率で調質圧延を施すことを特徴とする材質安定性に優れた高強度薄鋼板の製造方法。   The steel slab having the composition according to any one of claims 1 to 3 is hot-rolled under conditions of a heating temperature of 1100 to 1270 ° C and a finish rolling finish temperature of 830 to 950 ° C, and within 1 s after the end of rolling. After cooling to 650-750 ° C. at an average cooling rate of 20-200 ° C./s, air-cooled at this temperature for 2 s or longer, wound up at 500-650 ° C., pickled, and then cold-rolled. Then, it is heated to 720-860 ° C. at an average heating rate of 3-30 ° C./s, the soaking time at 720-860 ° C. is 30-300 s, and the average cooling rate is in the range from the soaking temperature to 510 ° C. High strength thin steel sheet with excellent material stability, characterized by annealing under conditions of cooling at 3-30 ° C./s, followed by temper rolling at an elongation of 0.3-2.0% Manufacturing method. 得られた薄鋼板の引張強さTSが590MPa以上であることを特徴とする請求項5に記載の材質安定性に優れた高強度薄鋼板の製造方法。
The tensile strength TS of the obtained thin steel plate is 590 MPa or more, The manufacturing method of the high strength thin steel plate excellent in material stability of Claim 5 characterized by the above-mentioned.
JP2010071726A 2010-03-26 2010-03-26 High-strength thin steel sheet with excellent material stability and manufacturing method thereof Expired - Fee Related JP5672736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010071726A JP5672736B2 (en) 2010-03-26 2010-03-26 High-strength thin steel sheet with excellent material stability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071726A JP5672736B2 (en) 2010-03-26 2010-03-26 High-strength thin steel sheet with excellent material stability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011202244A true JP2011202244A (en) 2011-10-13
JP5672736B2 JP5672736B2 (en) 2015-02-18

Family

ID=44879184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071726A Expired - Fee Related JP5672736B2 (en) 2010-03-26 2010-03-26 High-strength thin steel sheet with excellent material stability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5672736B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208089A1 (en) 2013-06-27 2014-12-31 Jfeスチール株式会社 Hot-rolled high-strength steel sheet and process for production thereof
CN111850394A (en) * 2020-06-30 2020-10-30 邯郸钢铁集团有限责任公司 Tensile strength 830 MPa-grade hot-galvanized bundle strip steel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170148A (en) * 1994-12-16 1996-07-02 Nippon Steel Corp Cold rolled steel sheet for deep drawing, excellent in uniformity of material in coil longitudinal direction and surface quality and having non-aging characteristic at ordinary temperature, and its production
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
JP2003193180A (en) * 2001-12-27 2003-07-09 Nippon Steel Corp High tensile strength rolled steel sheet free from anisotropy in strength and production method therefor
JP2005002372A (en) * 2003-06-09 2005-01-06 Nippon Steel Corp Method for producing thick steel plate having small anisotropic characteristic and variation in material quality
JP2009197251A (en) * 2008-02-19 2009-09-03 Jfe Steel Corp High-strength steel sheet having superior ductility and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170148A (en) * 1994-12-16 1996-07-02 Nippon Steel Corp Cold rolled steel sheet for deep drawing, excellent in uniformity of material in coil longitudinal direction and surface quality and having non-aging characteristic at ordinary temperature, and its production
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
JP2003193180A (en) * 2001-12-27 2003-07-09 Nippon Steel Corp High tensile strength rolled steel sheet free from anisotropy in strength and production method therefor
JP2005002372A (en) * 2003-06-09 2005-01-06 Nippon Steel Corp Method for producing thick steel plate having small anisotropic characteristic and variation in material quality
JP2009197251A (en) * 2008-02-19 2009-09-03 Jfe Steel Corp High-strength steel sheet having superior ductility and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208089A1 (en) 2013-06-27 2014-12-31 Jfeスチール株式会社 Hot-rolled high-strength steel sheet and process for production thereof
US10202667B2 (en) 2013-06-27 2019-02-12 Jfe Steel Corporation High strength hot rolled steel sheet and method for manufacturing the same
CN111850394A (en) * 2020-06-30 2020-10-30 邯郸钢铁集团有限责任公司 Tensile strength 830 MPa-grade hot-galvanized bundle strip steel and preparation method thereof

Also Published As

Publication number Publication date
JP5672736B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP7275137B2 (en) Steel plate with excellent toughness, ductility and strength and method for producing the same
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP5003785B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
KR101485237B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP4843982B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP2022160585A (en) Cold-rolled steel sheet and method for manufacturing the same
JP5924332B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2023011852A (en) Cold rolled and heat treated steel sheet and method of manufacturing thereof
JP5825189B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and low-temperature toughness, and method for producing the same
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
WO2012105126A1 (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
JP2006183130A (en) High-rigidity/high-strength thin steel sheet and manufacturing method therefor
JP4855442B2 (en) Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
JP4506434B2 (en) High strength steel plate with excellent rigidity and method for producing the same
JP5305149B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5953695B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
KR20130027794A (en) Ultra high strength cold-rolled steel sheet and hot dip plated steel sheet with low yield ratio and method of manufacturing the same
WO2016157257A1 (en) High-strength steel sheet and production method therefor
JP2010100896A (en) High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same
JP2000265244A (en) Hot-dip galvanized steel sheet excellent in strength and ductility, and its manufacture
JP5672736B2 (en) High-strength thin steel sheet with excellent material stability and manufacturing method thereof
JP2001226742A (en) Hot dip galvanized high strength thin steel sheet excellent in formability and producing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140904

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5672736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees