JP2011201837A - Method for producing purified collagen hydrolyzate - Google Patents

Method for producing purified collagen hydrolyzate Download PDF

Info

Publication number
JP2011201837A
JP2011201837A JP2010072994A JP2010072994A JP2011201837A JP 2011201837 A JP2011201837 A JP 2011201837A JP 2010072994 A JP2010072994 A JP 2010072994A JP 2010072994 A JP2010072994 A JP 2010072994A JP 2011201837 A JP2011201837 A JP 2011201837A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
porous hollow
hydrophilic polymer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010072994A
Other languages
Japanese (ja)
Other versions
JP5705445B2 (en
Inventor
Yukio Nakazawa
幸生 中澤
Hideki Yoshiyama
英樹 吉山
Satoshi Shiki
智 志岐
Yasuhiro Tadera
康啓 田寺
Masahiro Doi
昌裕 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Asahi Chemical Co Ltd
Asahi Kagaku Kogyo Co Ltd
Original Assignee
Asahi Kasei Chemicals Corp
Asahi Chemical Co Ltd
Asahi Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, Asahi Chemical Co Ltd, Asahi Kagaku Kogyo Co Ltd filed Critical Asahi Kasei Chemicals Corp
Priority to JP2010072994A priority Critical patent/JP5705445B2/en
Publication of JP2011201837A publication Critical patent/JP2011201837A/en
Application granted granted Critical
Publication of JP5705445B2 publication Critical patent/JP5705445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for capable of producing a sufficiently purified collagen hydrolysate excellent in production efficiency and having the less contamination of crushed materials such as microorganisms.SOLUTION: This method for producing the purified collagen hydrolysate comprising an inside pressure filtration process of passing the collagen hydrolysate-containing solution through a porous hollow fiber membrane of which tubular wall is constituted by a blended material of a hydrophobic polymer with a hydrophilic polymer, is provided with that in the case of equally dividing the tubular wall by three, into three regions in the wall thickness direction, the porous hollow fiber membrane has a higher containing ratio of the hydrophilic polymer in an outer circumferential region including an outside surface than the containing ratio of the hydrophilic polymer in an inner circumferential region including an inside surface, and the larger mean hole diameter of the inside surface than the mean hole diameter of the outside surface.

Description

本発明は、精製されたコラーゲン加水分解物の製造方法に関する。   The present invention relates to a method for producing a purified collagen hydrolyzate.

従来、溶液中から酵母等の微生物を除去する方法として、ゲルろ過法、遠心分離法、吸着分離法、沈澱法、膜ろ過法などが利用されている。しかしながら、ゲルろ過法は、ゲルろ過に用いられる溶媒により目的物質が希釈される、大量処理に向かないなどの理由で工業的に適用するのは困難である。遠心分離法は、微生物が数μm以上の大きさであり、かつ溶液の粘度が小さい場合にのみ適用できる。吸着ろ過法は、特定の少量の微生物の除去に利用できるが、多種多様の微生物が多量に分散している溶液には適用が難しい。沈澱法は比較的多量の溶液の処理には利用できるが、この方法単独では微生物を完全に除去することが困難である。   Conventionally, gel filtration, centrifugation, adsorption separation, precipitation, membrane filtration, and the like have been used as methods for removing microorganisms such as yeast from a solution. However, the gel filtration method is difficult to apply industrially because the target substance is diluted with a solvent used for gel filtration or is not suitable for mass processing. The centrifugal separation method can be applied only when the microorganism has a size of several μm or more and the viscosity of the solution is small. The adsorptive filtration method can be used to remove a specific small amount of microorganisms, but is difficult to apply to a solution in which a large variety of microorganisms are dispersed in large amounts. Although the precipitation method can be used for the treatment of a relatively large amount of solution, it is difficult to completely remove microorganisms by this method alone.

一方、精密ろ過膜、限外ろ過膜を利用した膜ろ過法はあらゆる微生物の除去が可能で、しかも大量連続処理が可能なため工業利用に適している。   On the other hand, a membrane filtration method using a microfiltration membrane and an ultrafiltration membrane is suitable for industrial use because it can remove all microorganisms and can perform a large amount of continuous treatment.

しかしながら、従来の精密ろ過膜、限外ろ過膜では膜面上で除去された微生物類、あるいはその破砕物の濃縮層が形成され膜面が閉塞するため、ろ過圧の上昇、及びろ過速度の経時的な減少が起きやすい問題があった。   However, in conventional microfiltration membranes and ultrafiltration membranes, a concentrated layer of microorganisms removed from the membrane surface or its crushed material is formed, and the membrane surface is clogged. There was a problem that a general decrease was likely to occur.

このような問題を解決するために、クロスフローろ過や、逆流洗浄(逆洗)を利用したろ過方法が用いられている。例えば、特許文献1には、短時間のバックフラッシュを行いながら濁りを引き起こす成分を除去する方法が記載されている。また、特許文献2には、短時間のデッドエンドろ過と逆洗を組み合わせた除濁方法が記載されている。   In order to solve such problems, a filtration method using crossflow filtration or backwashing (backwashing) is used. For example, Patent Document 1 describes a method of removing components that cause turbidity while performing short-time backflushing. Further, Patent Document 2 describes a turbidity removal method combining a short-time dead-end filtration and backwashing.

特開平7−155559号公報Japanese Patent Laid-Open No. 7-155559 特開平4−260419号公報JP-A-4-260419

コラーゲン加水分解物は、動物の骨、皮膚、じん帯又は腱等の結合組織から抽出することにより得ることができ、健康への関心の増加に伴って食品や飲料の原材料としての需要が高まっているが、抽出に際し、大腸菌等の微生物が混入してしまう。そのため、コラーゲン加水分解物の製造方法においては、これらの微生物を十分に除去するためのろ過工程が必要となる。   Collagen hydrolyzate can be obtained by extracting from connective tissues such as animal bones, skin, ligaments or tendons, and the demand for raw materials for foods and beverages is increasing with increasing health concerns. However, microorganisms such as E. coli are mixed during extraction. Therefore, in the manufacturing method of a collagen hydrolyzate, the filtration process for fully removing these microorganisms is needed.

しかしながら、従来の中空糸膜を用いたクロスフローろ過では、膜面の閉塞を防ぐために処理溶液の流速を大きくする必要があり、流速を大きくすることで微生物の破砕、変形等が起きやすくなる。微生物が破砕されると、破砕物が中空糸膜を通過し、コラーゲン加水分解物に混入するという問題がある。   However, in the conventional cross-flow filtration using a hollow fiber membrane, it is necessary to increase the flow rate of the treatment solution in order to prevent the membrane surface from being clogged. By increasing the flow rate, microorganisms are easily crushed and deformed. When microorganisms are crushed, there is a problem that the crushed material passes through the hollow fiber membrane and is mixed into the collagen hydrolyzate.

また、従来の中空糸膜を用いた場合、逆流洗浄により膜面上に蓄積した除去物を除去する際に、膜面に強く吸着した除去物を除去するために大量の逆洗液を流す必要があり、処理効率が低下するという問題がある。   In addition, when using a conventional hollow fiber membrane, it is necessary to flow a large amount of backwashing liquid to remove the removed matter that has been strongly adsorbed on the membrane surface when removing the removed matter accumulated on the membrane surface by backwashing. There is a problem that the processing efficiency decreases.

また、特許文献1に記載の方法では、洗浄効果が十分であるとは言えず、連続的に処理を行う場合にはろ過圧力の上昇が起こる。さらに、特許文献2に記載の方法では、ろ過時の透過流速だけを見れば高くすることが可能であるが、ろ過と逆洗の切り替えが頻繁に行われる為、ろ過操作トータルでの効率が低くなってしまい工業的に利用するには不向きである。   Moreover, in the method of patent document 1, it cannot be said that the washing | cleaning effect is enough, and when performing a process continuously, the raise of filtration pressure occurs. Furthermore, in the method described in Patent Document 2, it is possible to increase the flow rate only by looking at the permeation flow rate during filtration. However, since switching between filtration and backwashing is frequently performed, the total efficiency of the filtration operation is low. It is not suitable for industrial use.

本発明は、製造効率に優れるとともに、微生物等の破砕物の混入が少なく十分に精製されたコラーゲン加水分解物を製造可能な、製造方法を提供することを目的とする。   An object of the present invention is to provide a production method capable of producing a collagen hydrolyzate that is excellent in production efficiency and that is sufficiently mixed with crushed materials such as microorganisms and is sufficiently purified.

すなわち、本発明は、下記のコラーゲン加水分解物の製造方法に関する。
(1)疎水性高分子と親水性高分子のブレンド物から管壁が構成されている多孔質中空糸膜に、コラーゲン加水分解物含有溶液を流通させる内圧ろ過工程を含む、精製されたコラーゲン加水分解物の製造方法であって、上記多孔質中空糸膜は、上記管壁を膜厚方向に3等分して3つの領域に分割したときに、外側面を含む外周領域の親水性高分子の含有割合が、内側面を含む内周領域の親水性高分子の含有割合より大きく、内側面の平均孔径が、外側面の平均孔径より大きい多孔質中空糸膜である、製造方法。当該製造方法は、コラーゲン加水分解物の精製方法として捉えることもできる。
(2)上記多孔質中空糸膜が、上記内側面の平均孔径が1μm以上50μm以下であり、上記外周領域が0.1μm以上1μm未満の阻止孔径を有しており、上記管壁の膜厚が300μm以上1000μm以下の多孔質中空糸膜である、(1)に記載の製造方法。
(3)上記親水性高分子が、ポリビニルピロリドンである、(1)又は(2)に記載の製造方法。
(4)上記多孔質中空糸膜が、上記親水性高分子の含有量が、上記多孔質中空糸膜の総質量を基準として、0.2質量%以上3質量%以下の多孔質中空糸膜である、(1)〜(3)のいずれかに記載の製造方法。
(5)上記多孔質中空糸膜が、下記式(I)を満たす、(1)〜(4)のいずれかに記載の製造方法。
out/Cin≧2 (I)
[式(I)中、Coutは上記親水性高分子の上記外周領域における含有割合を示し、Cinは上記親水性高分子の上記内周領域における含有割合を示す。]
(6)上記多孔質中空糸膜が、内径が1000μm以上2000μm以下の多孔質中空糸膜である、(1)〜(5)のいずれかに記載の製造方法。
(7)上記疎水性高分子が、ポリスルホンである、(1)〜(6)のいずれかに記載の製造方法。
(8)上記内圧ろ過は、クロスフローろ過により行われ、上記コラーゲン加水分解物含有溶液は、上記多孔質中空糸膜の一端からその管内部に、線速度3.0m/sec以下で送液される、(1)〜(7)のいずれか一項に記載の製造方法。
(9)上記内圧ろ過は、デッドエンドろ過により行われ、上記コラーゲン加水分解物含有溶液は、上記多孔質中空糸膜の一端からその管内部に、線速度3.0m/sec以下で送液される、(1)〜(7)のいずれかに記載の製造方法。
(10)上記内圧ろ過工程で得られるろ液を用いて、上記多孔質中空糸膜を逆流洗浄する工程をさらに含む、(1)〜(9)のいずれかに記載の製造方法。
That is, this invention relates to the manufacturing method of the following collagen hydrolyzate.
(1) Purified collagen hydrolysis, which includes an internal pressure filtration step of circulating a collagen hydrolyzate-containing solution through a porous hollow fiber membrane having a tube wall composed of a blend of a hydrophobic polymer and a hydrophilic polymer. A method for producing a degradation product, wherein the porous hollow fiber membrane has a hydrophilic polymer in an outer peripheral region including an outer surface when the tube wall is divided into three regions by dividing the tube wall into three equal parts. Is a porous hollow fiber membrane in which the content ratio of is larger than the content ratio of the hydrophilic polymer in the inner peripheral region including the inner surface, and the average pore diameter of the inner surface is larger than the average pore diameter of the outer surface. The production method can also be regarded as a method for purifying a collagen hydrolyzate.
(2) The porous hollow fiber membrane has an average pore diameter of 1 μm or more and 50 μm or less on the inner side surface, the outer peripheral region has a blocking pore diameter of 0.1 μm or more and less than 1 μm, and the film thickness of the tube wall Is a porous hollow fiber membrane of 300 μm or more and 1000 μm or less.
(3) The production method according to (1) or (2), wherein the hydrophilic polymer is polyvinylpyrrolidone.
(4) The porous hollow fiber membrane in which the content of the hydrophilic polymer is 0.2% by mass or more and 3% by mass or less based on the total mass of the porous hollow fiber membrane. The production method according to any one of (1) to (3).
(5) The production method according to any one of (1) to (4), wherein the porous hollow fiber membrane satisfies the following formula (I).
C out / C in ≧ 2 (I)
[In formula (I), C out represents the content of the hydrophilic polymer in the outer peripheral region, and C in represents the content of the hydrophilic polymer in the inner peripheral region. ]
(6) The manufacturing method according to any one of (1) to (5), wherein the porous hollow fiber membrane is a porous hollow fiber membrane having an inner diameter of 1000 μm or more and 2000 μm or less.
(7) The production method according to any one of (1) to (6), wherein the hydrophobic polymer is polysulfone.
(8) The internal pressure filtration is performed by cross-flow filtration, and the collagen hydrolyzate-containing solution is fed from one end of the porous hollow fiber membrane into the tube at a linear velocity of 3.0 m / sec or less. The manufacturing method according to any one of (1) to (7).
(9) The internal pressure filtration is performed by dead-end filtration, and the collagen hydrolyzate-containing solution is fed from one end of the porous hollow fiber membrane into the tube at a linear velocity of 3.0 m / sec or less. The production method according to any one of (1) to (7).
(10) The production method according to any one of (1) to (9), further including a step of back washing the porous hollow fiber membrane using the filtrate obtained in the internal pressure filtration step.

本発明によれば、従来の多孔質中空糸膜を用いるろ過方法と比較して、高いろ過速度を長時間維持可能であり、微生物の破壊や変形が少なく、かつ、膜の洗浄が容易で処理効率の高い内圧ろ過工程を含む、製造効率に優れ、微生物等の破砕物の混入が少なく十分に精製されたコラーゲン加水分解物を製造可能な、製造方法を提供することができる。   According to the present invention, it is possible to maintain a high filtration rate for a long period of time as compared with a conventional filtration method using a porous hollow fiber membrane, there is little destruction and deformation of microorganisms, and the membrane can be easily washed and processed. It is possible to provide a production method including a highly efficient internal pressure filtration step, which is excellent in production efficiency and can produce a sufficiently purified collagen hydrolyzate with less contamination by microorganisms and the like.

以下、本発明の好適な一実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of the present invention will be described in detail.

本実施形態に係るコラーゲン加水分解物の製造方法は、疎水性高分子と親水性高分子のブレンド物から管壁が構成されている多孔質中空糸膜に、コラーゲン加水分解物含有溶液を流通させる内圧ろ過工程を含む。   In the method for producing a collagen hydrolyzate according to the present embodiment, a collagen hydrolyzate-containing solution is circulated through a porous hollow fiber membrane in which a tube wall is composed of a blend of a hydrophobic polymer and a hydrophilic polymer. Includes an internal pressure filtration step.

ここで多孔質中空糸膜は、管壁を膜厚方向に3等分して3つの領域に分割したときに、外側面を含む外周領域の親水性高分子の含有割合が、内側面を含む内周領域の親水性高分子の含有割合より大きく、内側面の平均孔径が、外側面の平均孔径より大きい多孔質中空糸膜である。   Here, when the porous hollow fiber membrane is divided into three regions by dividing the tube wall into three in the film thickness direction, the content of the hydrophilic polymer in the outer peripheral region including the outer surface includes the inner surface. The porous hollow fiber membrane is larger than the content ratio of the hydrophilic polymer in the inner peripheral region, and the average pore diameter on the inner side surface is larger than the average pore size on the outer side surface.

管壁を膜厚方向に3等分して3つの領域に分割するには、例えば、多孔質中空糸膜の管壁(中空環状の多孔質中空糸膜を構成する側壁をいう。)の一部を切り出して、フィルム状の管壁を得、それを膜厚方向に3等分にスライスすればよい。この場合、外側面を含む厚さ1/3の領域を「外周領域」、内側面を含む厚さ1/3の領域を「内周領域」と呼ぶ。なお、中心部分を「中心領域」と呼ぶことができる。   In order to divide the tube wall into three regions by dividing the tube wall into three equal parts, for example, a tube wall of a porous hollow fiber membrane (referred to as a side wall constituting a hollow annular porous hollow fiber membrane). What is necessary is just to cut out a part and obtain a film-form tube wall, and to slice it into 3 equal parts in a film thickness direction. In this case, a region having a thickness of 1/3 including the outer surface is referred to as an “outer peripheral region”, and a region having a thickness of 1/3 including the inner surface is referred to as an “inner peripheral region”. The central portion can be referred to as a “central region”.

疎水性高分子とは、20℃での臨界表面張力(γc)が50nN/m以上である高分子を表し、親水性高分子とは、20℃での臨界表面張力(γc)が50nN/m未満である高分子を表す。また、平均孔径は、内側面又は外側面を、電子顕微鏡を用いて1視野において10個以上の孔が観測可能な倍率で観測し、得られた顕微鏡写真における細孔を円形近似処理し、その面積平均値から直径を求めることにより、算出することができる。疎水性高分子と親水性高分子のブレンド物は、疎水性高分子と親水性高分子の双方を含有する混合物を意味し、その相構造を問わない(例えば、相溶系か相分離系かを問わないが、完全相溶系でないことが好ましい。)。   The hydrophobic polymer means a polymer having a critical surface tension (γc) at 20 ° C. of 50 nN / m or more, and the hydrophilic polymer means a critical surface tension (γc) at 20 ° C. of 50 nN / m. Represents a polymer that is less than. In addition, the average pore diameter was determined by observing the inner surface or the outer surface with an electron microscope at a magnification capable of observing 10 or more holes in one field of view, and subjecting the pores in the obtained micrograph to a circular approximation process, It can be calculated by obtaining the diameter from the area average value. A blend of a hydrophobic polymer and a hydrophilic polymer means a mixture containing both a hydrophobic polymer and a hydrophilic polymer, regardless of the phase structure (for example, a compatible system or a phase-separated system). It does not matter, but it is preferable that the system is not completely compatible.)

多孔質中空糸膜は、中空環状の形態をもつ膜であり、このような形状であることで平面状の膜に比べて、モジュール単位体積当たりの膜面積を大きくすることができる。   The porous hollow fiber membrane is a membrane having a hollow annular shape, and the membrane area per module unit volume can be increased compared to a planar membrane by having such a shape.

多孔質中空糸膜は、外側面を含む外周領域の親水性高分子の含有割合が、内側面を含む内周領域の親水性高分子の含有割合より大きく、内側面の平均孔径が、外側面の平均孔径より大きい。上記構成を有することで、多孔質中空糸膜は、従来の多孔質中空糸膜と比較して、温度変化や圧力変化に耐える高い強度を有し、ろ過速度と分画性とを両立可能であり、膜面及び膜内部に除去物が蓄積しにくく、膜孔の閉塞が起こりにくく、高いろ過速度を長時間維持可能であり、かつ、公知の中空糸膜洗浄方法により容易に洗浄が可能となる。洗浄方法としては、例えば、外側面から洗浄液を流入させる逆流洗浄や、モジュール内に気泡を導入することで膜を揺らして堆積物を除去するエアースクラビング等が挙げられる。   In the porous hollow fiber membrane, the content ratio of the hydrophilic polymer in the outer peripheral region including the outer surface is larger than the content ratio of the hydrophilic polymer in the inner peripheral region including the inner surface, and the average pore diameter of the inner surface is equal to the outer surface. Is larger than the average pore diameter. By having the above configuration, the porous hollow fiber membrane has higher strength to withstand temperature changes and pressure changes than conventional porous hollow fiber membranes, and is compatible with both filtration speed and fractionation. Yes, it is difficult for the removed matter to accumulate on the membrane surface and inside the membrane, the membrane pores are not easily blocked, a high filtration rate can be maintained for a long time, and it can be easily washed by a known hollow fiber membrane washing method Become. Examples of the cleaning method include back-flow cleaning in which a cleaning liquid is introduced from the outer surface, and air scrubbing in which a film is shaken to remove deposits by introducing bubbles into the module.

多孔質中空糸膜は、上記構成を有することで、内周領域においては、膜孔より小さい粒子を膜内部に保持して除去するデプスろ過の効果を十分発揮することができる。一方、外周領域においては、親水性高分子の含有割合が多く、粒子と膜との吸着力が低いため、粒子の吸着による膜孔の閉塞を防止することができる。孔径の小さな外周領域で粒子の吸着による膜孔の閉塞を防止することで、高いろ過速度を長時間維持することができる。また、孔径の大きな内周領域でデプスろ過の効果を十分に発揮できることから、分画性等のろ過性能に優れる。   Since the porous hollow fiber membrane has the above-described configuration, the effect of depth filtration that holds and removes particles smaller than the membrane pores inside the membrane can be sufficiently exhibited in the inner peripheral region. On the other hand, in the outer peripheral region, since the content ratio of the hydrophilic polymer is large and the adsorbing force between the particles and the film is low, blockage of the membrane hole due to the adsorption of the particles can be prevented. A high filtration rate can be maintained for a long time by preventing clogging of the membrane pores due to adsorption of particles in the outer peripheral region having a small pore diameter. Moreover, since the effect of depth filtration can be fully demonstrated in the inner peripheral area | region with a large hole diameter, it is excellent in filtration performance, such as a fractionation property.

親水性高分子としては、例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、セルロース、およびそれらからの派生物質等が挙げられる。これらのうち、親水性高分子としては、ポリビニルピロリドンが好ましい。これらの親水性高分子は、1種又は2種以上を混合して使用することができる。これらの親水性高分子であれば、疎水性高分子との相溶性に優れ、多孔質中空糸膜が均一で機械的強度に優れる膜となる。また、膜面及び膜内部における除去物の吸着を一層防止することが可能であるとともに、洗浄が容易となる。   Examples of the hydrophilic polymer include polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol, cellulose, and derivatives derived therefrom. Of these, polyvinylpyrrolidone is preferred as the hydrophilic polymer. These hydrophilic polymers can be used alone or in combination of two or more. With these hydrophilic polymers, the compatibility with the hydrophobic polymer is excellent, and the porous hollow fiber membrane is uniform and excellent in mechanical strength. In addition, it is possible to further prevent the removal material from adsorbing on the film surface and inside the film, and cleaning becomes easy.

疎水性高分子としては、例えば、ポリスルホン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリ塩化ビニル等が挙げられる。これらのうち、疎水性高分子としては、ポリスルホン、ポリフッ化ビニリデンが好ましい。これらの疎水性高分子は、1種又は2種以上を混合して使用することができる。これらの疎水性高分子であれば、多孔質中空糸膜が温度変化や圧力変化に対する強度に一層優れ、高いろ過性能を発現することができる。   Examples of the hydrophobic polymer include polysulfone, polyvinylidene fluoride, polyvinylidene chloride, and polyvinyl chloride. Of these, as the hydrophobic polymer, polysulfone and polyvinylidene fluoride are preferable. These hydrophobic polymers can be used alone or in combination of two or more. With these hydrophobic polymers, the porous hollow fiber membrane is more excellent in strength against temperature change and pressure change, and can exhibit high filtration performance.

内側面の平均孔径は、1μm以上50μm以下であると好ましく、5μm以上40μm以下であるとより好ましく、10μm以上30μm以下であるとさらに好ましい。内側面の平均孔径が1μm未満である場合、除去物を膜内部に保持するデプスろ過の効果を十分に得ることができず、膜面への除去物の堆積による膜孔の閉塞が起こり易くなる場合がある。また、内側面の平均孔径が50μmより大きい場合、膜面における孔が占める割合が大きくなるため、多孔質中空糸膜の強度が低下する傾向にある。なお、内側面の平均孔径を上記範囲とするためには、以下に述べる製造法において、例えば、内部凝固液の良溶剤濃度を85質量%以上とすればよい。   The average pore diameter of the inner surface is preferably 1 μm or more and 50 μm or less, more preferably 5 μm or more and 40 μm or less, and further preferably 10 μm or more and 30 μm or less. When the average pore diameter on the inner surface is less than 1 μm, the effect of depth filtration that holds the removed matter inside the membrane cannot be obtained sufficiently, and the membrane pores are likely to be clogged due to the deposit of the removed matter on the membrane surface. There is a case. In addition, when the average pore diameter on the inner surface is larger than 50 μm, the ratio of the pores on the membrane surface increases, so the strength of the porous hollow fiber membrane tends to decrease. In order to make the average pore diameter of the inner surface within the above range, for example, in the production method described below, the good solvent concentration of the internal coagulating liquid may be 85% by mass or more.

外側面の平均孔径は、0.1μm以上20μm以下であると好ましく、0.2μm以上15μm以下であるとより好ましく、0.3μm以上10μm以下であるとさらに好ましい。なお、外側面の平均孔径を上記範囲とするためには、以下に述べる製造法において、例えば、外部凝固液の温度を50℃以上90℃以下とすればよい。   The average pore diameter of the outer surface is preferably 0.1 μm or more and 20 μm or less, more preferably 0.2 μm or more and 15 μm or less, and further preferably 0.3 μm or more and 10 μm or less. In order to make the average pore diameter of the outer surface within the above range, in the manufacturing method described below, for example, the temperature of the external coagulation liquid may be set to 50 ° C. or higher and 90 ° C. or lower.

外周領域は、0.05μm以上1μm未満の阻止孔径を有することが好ましく、0.1μm以上1μm未満の阻止孔径を有することがさらに好ましく、0.2μm以上0.8μm以下の阻止孔径を有することがより好ましい。阻止孔径が0.05μm未満であると、透過抵抗が大きくなり、ろ過に要する圧力が高くなり、微生物の破壊、変形による膜面閉塞、ろ過効率の低下等が起こる場合がある。また、1μm以上であると、十分な分画性が得られない傾向にある。なお、外周領域の阻止孔径を上記範囲とするためには、以下に述べる製造法において、例えば、外部凝固液の温度を50℃以上90℃以下とすればよい。   The outer peripheral region preferably has a blocking hole diameter of 0.05 μm or more and less than 1 μm, more preferably has a blocking hole diameter of 0.1 μm or more and less than 1 μm, and has a blocking hole diameter of 0.2 μm or more and 0.8 μm or less. More preferred. When the blocking hole diameter is less than 0.05 μm, the permeation resistance increases, the pressure required for filtration increases, and membrane destruction, deformation, membrane surface blockage due to deformation, and reduction in filtration efficiency may occur. Moreover, when it is 1 μm or more, sufficient fractionation properties tend not to be obtained. In order to set the blocking hole diameter in the outer peripheral region within the above range, for example, the temperature of the external coagulation liquid may be set to 50 ° C. or more and 90 ° C. or less in the manufacturing method described below.

ここで阻止孔径とは、多孔質中空糸膜を用いて、一定孔径の粒子が分散した粒子分散液をろ過した場合に、当該粒子の透過阻止率が90%であるときの粒子の孔径を意味する。具体的には、例えば、粒子分散液のろ過を行い、ろ過前後の粒子の濃度変化を測定する。この測定を、0.1μmから約0.1μm刻みで粒子径を変えながら行い粒子の阻止曲線を作成する。この阻止曲線から90%阻止できる粒子径を読み取り、その径を阻止孔径とすることができる。   Here, the blocking pore diameter means the pore diameter of a particle when the permeation blocking ratio of the particle is 90% when a particle dispersion liquid in which particles of a certain pore diameter are dispersed is filtered using a porous hollow fiber membrane. To do. Specifically, for example, the particle dispersion is filtered, and the change in the concentration of the particles before and after filtration is measured. This measurement is performed while changing the particle diameter from 0.1 μm to about 0.1 μm to create a particle inhibition curve. The particle diameter capable of 90% inhibition can be read from this inhibition curve, and the diameter can be defined as the inhibition pore diameter.

多孔質中空糸膜は、外周領域に最小孔径層を含むことが好ましい。親水性高分子の含有割合が多い外周領域に最小孔径層が存在することで、粒子の吸着による膜孔の閉塞を、より確実に防止することができる。なお、ここで最小孔径層とは、膜の断面を電子顕微鏡で観察した際に最も小さい孔径を含む層を示す。最小孔径層の孔径は、阻止孔径とほぼ等しく、阻止孔径の測定により最小孔径層の孔径を得ることができる。最小孔径層の孔径としては、0.05μm以上1μm未満が好ましく、0.1μm以上1μm未満がより好ましく、0.2μm以上0.8μm以下がさらに好ましい。なお、外周領域に最小孔径層を含むようにするためには、以下に述べる製造法において、例えば、内部凝固液の良溶剤濃度を85質量%以上、かつ外部凝固液の良溶剤濃度を50質量%以下とすればよい。   The porous hollow fiber membrane preferably includes a minimum pore diameter layer in the outer peripheral region. The presence of the minimum pore diameter layer in the outer peripheral region where the content ratio of the hydrophilic polymer is large can prevent the blockage of the membrane pores due to the adsorption of particles more reliably. Here, the minimum pore diameter layer refers to a layer including the smallest pore diameter when the cross section of the film is observed with an electron microscope. The hole diameter of the minimum hole diameter layer is almost equal to the blocking hole diameter, and the hole diameter of the minimum hole diameter layer can be obtained by measuring the blocking hole diameter. The pore diameter of the minimum pore diameter layer is preferably 0.05 μm or more and less than 1 μm, more preferably 0.1 μm or more and less than 1 μm, and further preferably 0.2 μm or more and 0.8 μm or less. In order to include the minimum pore diameter layer in the outer peripheral region, in the manufacturing method described below, for example, the good solvent concentration of the internal coagulating liquid is 85% by mass or more and the good solvent concentration of the external coagulating liquid is 50% by mass. % Or less.

多孔質中空糸膜は、内側面から最小孔径層まで連続的に孔径が小さくなることが好ましい。このような構成を有することで、膜内部に除去物を保持するデプスろ過の効果を一層得ることができるとともに、高いろ過速度をより長時間維持することができる。なお、内側面から最小孔径層まで連続的に孔径が小さくなるようにするためには、以下に述べる製造法において、例えば、内部凝固液の良溶剤濃度を85質量%以上、かつ外部凝固液の良溶剤濃度を50質量%以下とすればよい。   The porous hollow fiber membrane preferably has a pore size that is continuously reduced from the inner surface to the minimum pore size layer. By having such a configuration, it is possible to further obtain the effect of depth filtration that holds the removed substance inside the membrane and to maintain a high filtration rate for a longer time. In order to continuously reduce the pore diameter from the inner surface to the minimum pore diameter layer, in the manufacturing method described below, for example, the good solvent concentration of the internal coagulating liquid is 85% by mass or more, and the external coagulating liquid The good solvent concentration may be 50% by mass or less.

多孔質中空糸膜は、膜厚が300μm以上1000μm以下であることが好ましく、350μm以上800μm以下であることがより好ましい。膜厚が300μm未満の多孔質中空糸膜では、膜内部の除去物を保持可能な範囲が制限されるため、デプスろ過の効果を十分に得られない場合があり、かつ、ろ過速度の低下が起こり易くなる傾向にある。膜厚が1000μmより大きい多孔質中空糸膜では、膜内部に堆積した除去物を洗浄することが困難となり、洗浄後にろ過性能が十分に回復しない場合がある。なお、膜厚を上記範囲にするためには、以下に述べる製造法において、例えば、二重管状ノズルの外側流路の200μm〜1200μm(好ましくは、300μm〜1000μm)とすればよい。   The porous hollow fiber membrane preferably has a film thickness of 300 μm or more and 1000 μm or less, and more preferably 350 μm or more and 800 μm or less. In a porous hollow fiber membrane having a film thickness of less than 300 μm, the range in which the removed matter inside the membrane can be retained is limited, so that the effect of depth filtration may not be sufficiently obtained, and the filtration rate may decrease. It tends to occur easily. In the case of a porous hollow fiber membrane having a film thickness of more than 1000 μm, it becomes difficult to wash the removed matter deposited inside the membrane, and the filtration performance may not be sufficiently recovered after washing. In order to make the film thickness within the above range, in the manufacturing method described below, for example, the outer flow path of the double tubular nozzle may be 200 μm to 1200 μm (preferably 300 μm to 1000 μm).

多孔質中空糸膜は、親水性高分子の含有量が、多孔質中空糸膜の総質量を基準として、0.2質量%以上3質量%以下であることが好ましく、0.5質量%以上2質量%以下であることがより好ましい。親水性高分子の含有量が0.2質量%未満である多孔質中空糸膜では、除去物が膜面及び膜内部に吸着しやすくなり、膜孔の閉塞が起こり易くなるとともに、洗浄が困難となる傾向がある。親水性高分子の含有量が3質量%より多い多孔質中空糸膜では、親水性高分子の膨潤により膜孔が閉塞し、透過抵抗が大きくなる場合がある。また、親水性高分子の含有量が上記範囲であることで、洗浄性に優れ、ろ過と洗浄とを繰り返した場合でも高いろ過性能を維持することができる。なお、親水性高分子の含有量を上記範囲にするためには、以下に述べる製造法において、例えば、疎水性高分子と親水性高分子のブレンド物における、疎水性高分子と親水性高分子の比を、前者:後者=(1):(0.1〜1.5)(好ましくは、前者:後者=(1):(0.5〜1.3))とすればよい。   The porous hollow fiber membrane preferably has a hydrophilic polymer content of 0.2% by mass or more and 3% by mass or less, based on the total mass of the porous hollow fiber membrane, and 0.5% by mass or more. It is more preferable that it is 2 mass% or less. In the case of a porous hollow fiber membrane having a hydrophilic polymer content of less than 0.2% by mass, the removed product is likely to be adsorbed on the membrane surface and inside the membrane, and the membrane pores are easily clogged and washing is difficult. Tend to be. In a porous hollow fiber membrane having a hydrophilic polymer content of more than 3% by mass, the membrane pores may be blocked by the swelling of the hydrophilic polymer, and the permeation resistance may increase. Moreover, it is excellent in detergency because content of a hydrophilic polymer is the said range, and when filtration and washing | cleaning are repeated, high filtration performance can be maintained. In order to make the content of the hydrophilic polymer within the above range, in the production method described below, for example, in the blend of the hydrophobic polymer and the hydrophilic polymer, the hydrophobic polymer and the hydrophilic polymer are used. Of the former: the latter = (1) :( 0.1 to 1.5) (preferably, the former: the latter = (1) :( 0.5 to 1.3)).

多孔質中空糸膜は、下記式(I)を満たすことが好ましい。
out/Cin≧2 (I)
The porous hollow fiber membrane preferably satisfies the following formula (I).
C out / C in ≧ 2 (I)

上記式(I)中、Coutは親水性高分子の外周領域における含有割合を示し、Cinは親水性高分子の内周領域における含有割合を示す。親水性高分子がこのような分布を示す多孔質中空糸膜は、内周領域における、デプスろ過の効果と、外周領域における、除去物の吸着による膜孔の閉塞防止効果とに一層優れる。また、洗浄性に優れ、ろ過と洗浄とを繰り返した場合でも高いろ過性能を維持することができる。なお、下記式(I)を満たすようにするためには、以下に述べる製造法において、例えば、疎水性高分子と親水性高分子のブレンド物における、疎水性高分子と親水性高分子の比を、前者:後者=(1):(0.1〜1.5)(好ましくは、前者:後者=(1):(0.3〜1.2))とすればよい。 In the above formula (I), C out indicates the content ratio in the outer peripheral region of the hydrophilic polymer, and C in indicates the content ratio in the inner peripheral region of the hydrophilic polymer. The porous hollow fiber membrane in which the hydrophilic polymer exhibits such a distribution is further excellent in the effect of depth filtration in the inner peripheral region and the effect of preventing the clogging of membrane pores due to adsorption of removed substances in the outer peripheral region. Moreover, it is excellent in detergency and can maintain high filtration performance even when filtration and washing are repeated. In order to satisfy the following formula (I), in the production method described below, for example, the ratio of the hydrophobic polymer to the hydrophilic polymer in the blend of the hydrophobic polymer and the hydrophilic polymer. The former: latter = (1) :( 0.1-1.5) (preferably, the former: latter = (1) :( 0.3-1.2)).

多孔質中空糸膜は、内径が1000μm以上2000μm以下であることが好ましい。内径が1000μm未満であると、微生物など凝集しやすい懸濁物質をろ過する際、中空糸の入口が凝集した懸濁物質で閉塞してしまいろ過が継続できなくなってしまう場合がある。また、内径が2000μmより大きい場合、多孔質中空糸膜1本が太くなり、モジュールあたりの有効な膜面積が減少し、ろ過性能が低下する傾向にある。なお、膜厚を上記範囲にするためには、以下に述べる製造法において、例えば、二重管状ノズルの内側流路の径を500μm〜2500μm(好ましくは、600μm〜2200μm)とすればよい。   The porous hollow fiber membrane preferably has an inner diameter of 1000 μm or more and 2000 μm or less. When the internal diameter is less than 1000 μm, when filtering suspended substances such as microorganisms that tend to aggregate, the inlet of the hollow fiber may be clogged with the aggregated suspended substances and filtration may not be continued. On the other hand, when the inner diameter is larger than 2000 μm, one porous hollow fiber membrane is thickened, the effective membrane area per module is reduced, and the filtration performance tends to be lowered. In order to make the film thickness within the above range, in the manufacturing method described below, for example, the diameter of the inner flow path of the double tubular nozzle may be 500 μm to 2500 μm (preferably 600 μm to 2200 μm).

多孔質中空糸膜は、オートクレーブ処理により滅菌しても良い。オートクレーブ処理により滅菌することで、多孔質中空糸膜は、コラーゲン加水分解物のろ過に好適に使用することができる。オートクレーブ処理を行う場合、疎水性高分子としては、オートクレーブ処理前後での透水性能変化が少ないことが好ましい。具体的には、オートクレーブ処理前の純水透水量(F)と処理後の純水透水量(FAC)から求められるオートクレーブ処理前後の透水量変化率(FAC/F)が、0.9以上1.1未満であることが好ましい。このような疎水性高分子としては、例えば、ポリスルホンが挙げられる。 The porous hollow fiber membrane may be sterilized by autoclaving. By sterilizing by autoclaving, the porous hollow fiber membrane can be suitably used for filtration of collagen hydrolyzate. When the autoclave treatment is performed, it is preferable that the hydrophobic polymer has a small change in water permeability before and after the autoclave treatment. Specifically, the water permeability change rate (F AC / F 0 ) before and after the autoclave treatment, which is obtained from the pure water permeability (F 0 ) before the autoclave treatment and the pure water permeability (F AC ) after the treatment, is 0. It is preferable that it is 0.9 or more and less than 1.1. Examples of such a hydrophobic polymer include polysulfone.

以下、多孔質中空糸膜の製造方法について、詳細に説明する。   Hereinafter, the manufacturing method of a porous hollow fiber membrane is demonstrated in detail.

多孔質中空糸膜の製造方法は、以下の(1)(2)の流出(押し出し)を同時に行って、外部凝固液中で凝固させる凝固工程を含む。
(1)二重管状ノズルの内側流路からの、内部凝固液の流出
(2)二重管状ノズルの外側流路からの、疎水性高分子、親水性高分子、これらの高分子双方に対する良溶剤及び該疎水性高分子に対する非溶剤を含有する製造原液の流出
The method for producing a porous hollow fiber membrane includes a coagulation step in which the following (1) and (2) are simultaneously discharged (extruded) and coagulated in an external coagulation liquid.
(1) Outflow of the internal coagulation liquid from the inner channel of the double tubular nozzle (2) Good for hydrophobic polymer, hydrophilic polymer and both of these polymers from the outer channel of the double tubular nozzle Outflow of production stock solution containing solvent and non-solvent for the hydrophobic polymer

このような製造方法によれば、多孔質中空糸膜を簡便に得ることができる。なお、(1)(2)の流出(押し出し)の後、外部凝固液中での凝固の前に、空走部分を通過させることが好ましい。ここで、「空走部分を通過」とは、二重管状ノズルから流出された製造原液が、直ぐに外部凝固液に接触しないように、一旦、空気中(又は不活性ガス等の気体中)を通過させることをいう。   According to such a production method, a porous hollow fiber membrane can be easily obtained. In addition, after the outflow (extrusion) of (1) and (2), it is preferable to pass the idle running portion before solidification in the external coagulation liquid. Here, “passing through the idling portion” means once in the air (or in a gas such as an inert gas) so that the production stock solution flowing out from the double tubular nozzle does not immediately contact the external coagulation liquid. To pass through.

ここで、二重管状ノズルとは、ノズルの中心部分に内側流路が形成され、それを取り囲むようにして外側流路が形成され、両流路間には隔壁が形成されているノズルをいう。二重管状ノズルの内側流路は、好ましくは、ノズルの長手方向に垂直な断面が円状のものであり、二重管状ノズルの外側流路は、好ましくは、ノズルの長手方向に垂直な断面が環状のものであり、両流路は同心(中心が共通)であることが好ましい。   Here, the double tubular nozzle refers to a nozzle in which an inner flow path is formed in the central portion of the nozzle, an outer flow path is formed so as to surround it, and a partition wall is formed between both flow paths. . The inner flow path of the double tubular nozzle preferably has a circular cross section perpendicular to the longitudinal direction of the nozzle, and the outer flow path of the double tubular nozzle preferably has a cross section perpendicular to the longitudinal direction of the nozzle. Are preferably circular, and both flow paths are preferably concentric (the center is common).

内部凝固液としては、疎水性高分子の良溶剤を、内部凝固液の総質量を基準として、80質量%以上100質量%未満含有する水溶液が好ましい。また、内側面の孔径が5μm以上である多孔質中空糸膜を得る観点からは、85質量%以上98質量%未満含有する水溶液が好ましい。   As the internal coagulation liquid, an aqueous solution containing a good solvent of a hydrophobic polymer, which is 80% by mass or more and less than 100% by mass, based on the total mass of the internal coagulation liquid is preferable. Further, from the viewpoint of obtaining a porous hollow fiber membrane having a pore diameter of 5 μm or more on the inner surface, an aqueous solution containing 85% by mass or more and less than 98% by mass is preferable.

外部凝固液としては、内部凝固液より製造原液に対する凝固力が高い、水を主成分とする凝固液が好ましい。このような外部凝固液を用いれば、内側面孔径が外側面孔径より大きく、内側面から最小孔径層まで連続的に孔径が小さくなる多孔質中空糸膜を得ることができる。凝固力は、透明な製膜原液をガラス上に薄くキャストし、そこにそれぞれの凝固液を垂らしたときに濁りを生じる速度によって測定することができ、濁りを生じる速度が速い凝固液が、凝固力が強い凝固液を示す。   As the external coagulation liquid, a coagulation liquid containing water as a main component and having a higher coagulation power with respect to the production stock solution than the internal coagulation liquid is preferable. By using such an external coagulation liquid, it is possible to obtain a porous hollow fiber membrane in which the inner surface pore diameter is larger than the outer surface pore diameter and the pore diameter continuously decreases from the inner surface to the minimum pore diameter layer. The coagulation force can be measured by the rate at which turbidity occurs when a transparent film-forming stock solution is cast thinly on glass and each coagulation solution is dropped on it. A strong coagulation liquid is shown.

疎水性高分子と親水性高分子の双方に対する良溶剤とは、疎水性高分子又は親水性高分子30gを100gの溶剤に溶解したときに、不溶成分が観察されない溶媒をいう。双方の高分子を溶かす良溶剤としては、製造原液の安定性の観点から、N−メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)及びジメチルアセトアミド(DMAC)から選ばれる1種又は2種以上の混合溶媒を80%以上含む溶剤が好ましく、90%以上含む溶剤がより好ましい。また、取り扱いの簡便さと高い透水性を得る観点から、良溶剤は、N−メチルピロリドンを含有することが好ましい。   The good solvent for both the hydrophobic polymer and the hydrophilic polymer refers to a solvent in which insoluble components are not observed when 30 g of the hydrophobic polymer or hydrophilic polymer is dissolved in 100 g of the solvent. As a good solvent for dissolving both polymers, one or a mixture of two or more selected from N-methylpyrrolidone (NMP), dimethylformamide (DMF) and dimethylacetamide (DMAC) is used from the viewpoint of the stability of the stock solution. A solvent containing 80% or more of the solvent is preferable, and a solvent containing 90% or more is more preferable. Further, from the viewpoint of easy handling and high water permeability, the good solvent preferably contains N-methylpyrrolidone.

製造原液中の、疎水性高分子と親水性高分子の双方に対する良溶剤の含有量としては、製造原液の総質量を基準として、40質量%以上75質量%以下であることが好ましく、50質量%以上70質量%以下であることがより好ましい。   The content of the good solvent for both the hydrophobic polymer and the hydrophilic polymer in the production stock solution is preferably 40% by mass or more and 75% by mass or less, based on the total mass of the production stock solution, and 50% by mass. % To 70% by mass is more preferable.

疎水性高分子に対する非溶剤とは、疎水性高分子5gを100gの溶剤に溶解したときに、不溶成分が観察される溶媒をいう。疎水性高分子に対する非溶剤としては、水、アルコール化合物等が挙げられる。これらのうち、製膜原液の調整の容易さ、保存中の組成変化の起きにくさ、取り扱いの容易さ等の観点から、グリセリンが好ましい。   The non-solvent for the hydrophobic polymer refers to a solvent in which insoluble components are observed when 5 g of the hydrophobic polymer is dissolved in 100 g of a solvent. Examples of the non-solvent for the hydrophobic polymer include water and alcohol compounds. Of these, glycerin is preferred from the viewpoints of ease of preparation of the film-forming stock solution, difficulty of composition change during storage, ease of handling, and the like.

製造原液中の、非溶剤の含有量としては、製造原液の総質量を基準として、0.5質量%以上15質量%以下であることが好ましく、1質量%以上10質量%以下であることがより好ましい。   The content of the non-solvent in the production stock solution is preferably 0.5% by mass or more and 15% by mass or less, preferably 1% by mass or more and 10% by mass or less, based on the total mass of the production stock solution. More preferred.

製造原液は、二重管状ノズルから流出させる温度における溶液粘度が30Pa・sec以上200Pa・sec以下であることが好ましく、40Pa・sec以上150Pa・sec以下であることがより好ましい。溶液粘度が30Pa・sec未満であると、二重管状ノズルの外側流路から流出させた製膜原液が、自重で垂れ落ちるため、空走時間を長く取ることが困難となり、膜厚が300μm以上であり、かつ、孔径が0.1μm以上の多孔質中空糸膜を製造することが困難となる。また、溶液粘度が200Pa・secより大きいと、二重管状ノズルから安定して押し出すことが困難となり、膜性能にばらつきが生じる場合がある。   The production stock solution preferably has a solution viscosity of 30 Pa · sec or more and 200 Pa · sec or less, more preferably 40 Pa · sec or more and 150 Pa · sec or less, at a temperature of flowing out from the double tubular nozzle. When the solution viscosity is less than 30 Pa · sec, the film-forming stock solution that has flowed out from the outer flow path of the double tubular nozzle drips by its own weight, making it difficult to take a long run time and the film thickness is 300 μm or more. And it becomes difficult to produce a porous hollow fiber membrane having a pore diameter of 0.1 μm or more. On the other hand, when the solution viscosity is larger than 200 Pa · sec, it is difficult to stably extrude from the double tubular nozzle, and the film performance may vary.

上記製造方法において、親水性高分子としては、重量平均分子量400000以上800000以下のポリビニルピロリドンが好ましい。このような親水性高分子を用いることで、溶液粘度が上記好適な範囲内である製造原液を、容易に調整することができる。   In the above production method, the hydrophilic polymer is preferably polyvinylpyrrolidone having a weight average molecular weight of 400,000 or more and 800,000 or less. By using such a hydrophilic polymer, it is possible to easily adjust a production stock solution having a solution viscosity within the above preferred range.

製造原液中の、親水性高分子の含有量としては、製造原液の総質量を基準として、8質量%以上30質量%以下であることが好ましく、10質量%以上25質量%以下であることがより好ましい。また、製造原液中の、疎水性高分子の含有量としては、製造原液の総質量を基準として、15質量%以上30質量%以下であることが好ましく、18質量%以上25質量%以上であることがより好ましい。親水性高分子と疎水性高分子の含有量が上記範囲であると、溶液粘度が上記好適な範囲内である製造原液を容易に調整することができるとともに、親水性高分子の含有量が上記好適な範囲内である多孔質中空糸膜を得ることができる。   The content of the hydrophilic polymer in the production stock solution is preferably 8% by mass or more and 30% by mass or less, and preferably 10% by mass or more and 25% by mass or less, based on the total mass of the production stock solution. More preferred. The content of the hydrophobic polymer in the production stock solution is preferably 15% by mass or more and 30% by mass or less, and more preferably 18% by mass or more and 25% by mass or more, based on the total mass of the production stock solution. It is more preferable. When the content of the hydrophilic polymer and the hydrophobic polymer is in the above range, the production stock solution having a solution viscosity within the above preferable range can be easily adjusted, and the content of the hydrophilic polymer is the above. A porous hollow fiber membrane within a suitable range can be obtained.

上記製造方法としては、凝固工程と同時又はその後に(好ましくは、凝固工程の後に)、親水性高分子の一部を、酸化剤含有水溶液を用いて除去することが好ましい。酸化剤含有水溶液としては、例えば、次亜塩素酸ナトリウム水溶液、過酸化水素水溶液など挙げられる。このような製造方法によれば、親水性高分子の含有量が上記好適な範囲内であり、ろ過性能及び洗浄性に一層優れる多孔質中空糸膜を得ることができる。   As said manufacturing method, it is preferable to remove a part of hydrophilic polymer using an oxidizing agent containing aqueous solution simultaneously with the coagulation | solidification process or after that (preferably after a coagulation process). Examples of the oxidizing agent-containing aqueous solution include a sodium hypochlorite aqueous solution and a hydrogen peroxide aqueous solution. According to such a production method, it is possible to obtain a porous hollow fiber membrane in which the content of the hydrophilic polymer is within the above preferred range, and the filtration performance and the washability are further improved.

本実施形態における「コラーゲン加水分解物」とは、動物の骨、皮膚、じん帯又は腱等の結合組織から得たコラーゲンを加水分解して得られる物質の総称であり、コラーゲン加水分解物としては、例えば、ゼラチン、にかわ、コラーゲンペプチド等が挙げられる。   The “collagen hydrolyzate” in this embodiment is a general term for substances obtained by hydrolyzing collagen obtained from connective tissues such as bones, skin, ligaments or tendons of animals, For example, gelatin, glue, collagen peptide and the like can be mentioned.

本実施形態における「コラーゲン加水分解物含有溶液」としては、コラーゲン加水分解物が溶解した水溶液、コラーゲン加水分解物が分散した水溶液等が挙げられる。   Examples of the “collagen hydrolyzate-containing solution” in the present embodiment include an aqueous solution in which a collagen hydrolyzate is dissolved, an aqueous solution in which a collagen hydrolyzate is dispersed, and the like.

本実施形態に係るコラーゲン加水分解物の製造方法では、微生物等の除去物を含有するコラーゲン加水分解物含有溶液を、上記多孔質中空糸膜に流通させる。これにより、除去物が多孔質中空糸膜により除去され、コラーゲン加水分解物含有溶液が清澄化される。そして、清澄化されたコラーゲン加水分解物含有溶液から、精製されたコラーゲン加水分解物を得ることができる。   In the method for producing a collagen hydrolyzate according to the present embodiment, a collagen hydrolyzate-containing solution containing a removed product such as a microorganism is circulated through the porous hollow fiber membrane. Thereby, a removal thing is removed by a porous hollow fiber membrane, and a collagen hydrolyzate containing solution is clarified. Then, a purified collagen hydrolyzate can be obtained from the clarified collagen hydrolyzate-containing solution.

コラーゲン加水分解物含有溶液としては、例えば、動物の骨、皮膚、じん帯又は腱等の結合組織を温水に数時間浸漬して、当該温水中にコラーゲン加水分解物を溶出させて得られる溶液が挙げられる。   Examples of the collagen hydrolyzate-containing solution include a solution obtained by immersing connective tissue such as animal bone, skin, ligament or tendon in warm water for several hours and eluting the collagen hydrolyzate in the warm water. It is done.

また、コラーゲン加水分解物含有溶液としては、例えば、菌体濃度が10万個/g(食品衛生検査指針)未満である溶液が挙げられる。コラーゲン加水分解物含有溶液の菌体濃度が10万個/g未満であると、微生物等の破砕物の混入が一層少ないコラーゲン加水分解物が得られる。   Examples of the collagen hydrolyzate-containing solution include a solution having a bacterial cell concentration of less than 100,000 cells / g (food sanitation inspection guidelines). When the cell concentration of the collagen hydrolyzate-containing solution is less than 100,000 cells / g, a collagen hydrolyzate with less contamination of crushed materials such as microorganisms can be obtained.

コラーゲン加水分解物含有溶液のpHは、3.0以上8.0以下であることが好ましく、4.0以上7.0以下であることがより好ましい。pHが上記範囲内であると、飲料等の最終製品に用いた際に食味のよいコラーゲン加水分解物を得ることができる。   The pH of the collagen hydrolyzate-containing solution is preferably 3.0 or more and 8.0 or less, and more preferably 4.0 or more and 7.0 or less. When the pH is within the above range, a collagen hydrolyzate having a good taste can be obtained when used in a final product such as a beverage.

コラーゲン加水分解物がゼラチンである場合、コラーゲン加水分解物含有溶液としては、ゼラチンの濃度が5質量%以上70質量%以下である溶液が好ましく、20質量%以上50質量%以下である溶液がより好ましい。コラーゲン加水分解物がゼラチンである場合、そのコラーゲン加水分解物含有溶液における濃度が5重量%以上であると、生産性良くコラーゲン加水分解物を得ることができる。また、コラーゲン加水分解物含有溶液における濃度が70質量%以下であると、コラーゲン加水分解物含有溶液の粘度上昇に起因するろ液流速の低下が起こり難く、安定なろ過処理が可能となる。   When the collagen hydrolyzate is gelatin, the collagen hydrolyzate-containing solution is preferably a solution having a gelatin concentration of 5% by mass to 70% by mass, more preferably a solution having a mass of 20% by mass to 50% by mass. preferable. When the collagen hydrolyzate is gelatin, the collagen hydrolyzate can be obtained with good productivity when the concentration in the collagen hydrolyzate-containing solution is 5% by weight or more. Moreover, when the density | concentration in a collagen hydrolyzate containing solution is 70 mass% or less, the fall of the filtrate flow rate resulting from the viscosity raise of a collagen hydrolyzate containing solution does not occur easily, and stable filtration processing is attained.

コラーゲン加水分解物がゼラチンである場合、コラーゲン加水分解物含有溶液の粘度(JIS K6503:2001に従って測定した粘度)が、1.1mPa・sec以上13mPa・sec以下であることが好ましい。コラーゲン加水分解物含有溶液の粘度が1.1mPa以上であると、ゼラチンの含有量が適切であり固体化に要するエネルギーが少なくなる。そのため、多孔質中空糸膜を通過した溶液から、固体化したゼラチンを容易に得ることができる。一方、コラーゲン加水分解物含有溶液の粘度が13mPa・sec以下であると、粘度が大きすぎずに多孔質中空糸膜を通過しやすいため、処理速度が一層向上する。また、当該粘度は、1.5mPa・sec以上6mPa・sec以下であることがより好ましい。   When the collagen hydrolyzate is gelatin, the viscosity of the collagen hydrolyzate-containing solution (viscosity measured according to JIS K6503: 2001) is preferably 1.1 mPa · sec to 13 mPa · sec. When the viscosity of the collagen hydrolyzate-containing solution is 1.1 mPa or more, the gelatin content is appropriate and the energy required for solidification is reduced. Therefore, solidified gelatin can be easily obtained from the solution that has passed through the porous hollow fiber membrane. On the other hand, when the viscosity of the collagen hydrolyzate-containing solution is 13 mPa · sec or less, the viscosity is not too high and the membrane easily passes through the porous hollow fiber membrane, so that the treatment speed is further improved. The viscosity is more preferably 1.5 mPa · sec or more and 6 mPa · sec or less.

コラーゲン加水分解物がコラーゲンペプチドである場合、コラーゲン加水分解物含有溶液としては、コラーゲンペプチドの濃度が5質量%以上70質量%以下である溶液が好ましく、30質量%以上60質量%以下である溶液がより好ましい。コラーゲン加水分解物がコラーゲンペプチドである場合に、そのコラーゲン加水分解物含有溶液における濃度が上記範囲内であると、生産性を保った上で、効率的なろ過流速も得られるという効果が奏される。   When the collagen hydrolyzate is a collagen peptide, the collagen hydrolyzate-containing solution is preferably a solution having a collagen peptide concentration of 5% by mass to 70% by mass, preferably 30% by mass to 60% by mass. Is more preferable. When the collagen hydrolyzate is a collagen peptide, if the concentration in the collagen hydrolyzate-containing solution is within the above range, an effect of obtaining an efficient filtration flow rate while maintaining productivity can be obtained. The

コラーゲン加水分解物がコラーゲンペプチドである場合、コラーゲン加水分解物含有溶液の粘度(JIS K6503:2001における、「にかわ」の濃度測定方法に従って測定した値)が、0.5mPa・sec以上3.2mPa・sec以下であることが好ましい。コラーゲン加水分解物含有溶液の粘度が0.5mPa・sec以上であると、コラーゲンペプチドの含有量が適切であり固体化に要するエネルギーが少なくなる。そのため、多孔質中空糸膜を通過した溶液から、固体化したコラーゲンペプチドを容易に得ることができる。一方、コラーゲン加水分解物含有溶液の粘度が3.2mPa・sec以下であると、粘度が大きすぎずに多孔質中空糸膜を通過しやすいため、処理速度が一層向上する。また、当該粘度は、0.6mPa・sec以上2mPa・sec以下であることがより好ましい。   When the collagen hydrolyzate is a collagen peptide, the viscosity of the collagen hydrolyzate-containing solution (measured according to the method of measuring the concentration of “Niwa” in JIS K6503: 2001) is 0.5 mPa · sec to 3.2 mPa · It is preferable that it is sec or less. When the viscosity of the collagen hydrolyzate-containing solution is 0.5 mPa · sec or more, the collagen peptide content is appropriate and the energy required for solidification is reduced. Therefore, the solidified collagen peptide can be easily obtained from the solution that has passed through the porous hollow fiber membrane. On the other hand, when the viscosity of the collagen hydrolyzate-containing solution is 3.2 mPa · sec or less, the viscosity is not too high and the membrane easily passes through the porous hollow fiber membrane, so that the processing speed is further improved. The viscosity is more preferably 0.6 mPa · sec or more and 2 mPa · sec or less.

本実施形態に係るコラーゲン加水分解物の製造方法は、上記多孔質中空糸膜に、コラーゲン加水分解物含有溶液を流通させる内圧ろ過工程を含むが、当該内圧ろ過工程は、従来の中空糸膜を用いる方法と比較して、高いろ過速度を長時間維持可能であり、微生物の破壊や変形が少なく、膜の洗浄が容易で処理効率に優れる。   The method for producing a collagen hydrolyzate according to the present embodiment includes an internal pressure filtration step in which a collagen hydrolyzate-containing solution is circulated through the porous hollow fiber membrane. The internal pressure filtration step includes a conventional hollow fiber membrane. Compared with the method used, a high filtration rate can be maintained for a long time, there is little destruction and deformation of microorganisms, membrane cleaning is easy, and processing efficiency is excellent.

内圧ろ過工程における内圧ろ過は、高いろ過速度を長時間維持することができるという観点からは、クロスフローろ過により行われることが好ましい。クロスフローろ過とは、多孔質中空糸膜の一端からその管内部にコラーゲン加水分解物含有溶液を導入して管壁に沿って送液するとともに、管壁でろ過して孔から清澄化されたコラーゲン加水分解物含有溶液を流出させ、ろ過により濃縮されたコラーゲン加水分解物含有溶液を多孔質中空糸膜の他端から抜き出すろ過方法をいう。   The internal pressure filtration in the internal pressure filtration step is preferably performed by cross flow filtration from the viewpoint that a high filtration rate can be maintained for a long time. Cross-flow filtration is a method of introducing a collagen hydrolyzate-containing solution from one end of a porous hollow fiber membrane into the inside of the tube and feeding it along the tube wall. It refers to a filtration method in which a collagen hydrolyzate-containing solution is discharged and the collagen hydrolyzate-containing solution concentrated by filtration is extracted from the other end of the porous hollow fiber membrane.

クロスフローろ過におけるコラーゲン加水分解物含有溶液の送液速度は、線速度で3.0m/sec以下であることが好ましく、2.0m/sec以下であることがより好ましい。送液速度が3.0m/sec以下であると、多孔質中空糸膜にかかるエネルギー負荷が少なく、多孔質中空糸膜を長期間使用することができる。また、0.2m/sec以上、1.5m/sec以下であると、十分に高い処理速度を維持しつつ、多孔質中空糸膜をより長期間使用することができるようになる。   The feeding speed of the collagen hydrolyzate-containing solution in the crossflow filtration is preferably 3.0 m / sec or less, more preferably 2.0 m / sec or less, in terms of linear velocity. When the liquid feeding speed is 3.0 m / sec or less, the energy load applied to the porous hollow fiber membrane is small, and the porous hollow fiber membrane can be used for a long time. Further, when it is 0.2 m / sec or more and 1.5 m / sec or less, the porous hollow fiber membrane can be used for a longer period while maintaining a sufficiently high processing speed.

内圧ろ過工程における内圧ろ過は、エネルギー効率良く内圧ろ過工程を行うことができるという観点からは、デッドエンドろ過により行うこともできる。デッドエンドろ過とは、多孔質中空糸膜の一端を閉じ、他端からその管内部にコラーゲン加水分解物含有溶液を導入するとともに、管壁でろ過して孔から清澄化されたコラーゲン加水分解物含有溶液を流出させ、膜面及び膜内部に微生物等の除去物を蓄積させるろ過方法をいう。   The internal pressure filtration in the internal pressure filtration step can also be performed by dead end filtration from the viewpoint that the internal pressure filtration step can be performed with high energy efficiency. Dead end filtration means closing the end of the porous hollow fiber membrane, introducing a collagen hydrolyzate-containing solution into the tube from the other end, filtering the tube wall, and clarifying it from the pores. It refers to a filtration method in which the contained solution is allowed to flow out and accumulated removed substances such as microorganisms are accumulated on the membrane surface and inside the membrane.

本実施形態に係るコラーゲン加水分解物の製造方法は、内圧ろ過工程で得られる清澄化されたコラーゲン加水分解物含有溶液から、固体化されたコラーゲン加水分解物を得る固体化工程を含んでいてもよい。   Even if the manufacturing method of the collagen hydrolyzate which concerns on this embodiment includes the solidification process of obtaining the solidified collagen hydrolyzate from the clarified collagen hydrolyzate containing solution obtained by an internal pressure filtration process Good.

固体化工程では、例えば、清澄化されたコラーゲン加水分解物含有溶液を乾燥機に入れて固化する。   In the solidification step, for example, the clarified collagen hydrolyzate-containing solution is placed in a dryer and solidified.

このような固体化工程によれば、清澄化されたコラーゲン加水分解物含有溶液から、コラーゲン加水分解物を容易に得ることができる。そして、清澄化されたコラーゲン加水分解物含有溶液を使用しているため、微生物やその破砕物等の含有量が少なく、精製されたコラーゲン加水分解物を得ることができる。   According to such a solidification process, a collagen hydrolyzate can be easily obtained from a clarified collagen hydrolyzate-containing solution. Since a clarified collagen hydrolyzate-containing solution is used, the purified collagen hydrolyzate can be obtained with a low content of microorganisms and crushed materials thereof.

本実施形態に係るコラーゲン加水分解物の製造方法は、動物の骨、皮膚、じん帯又は腱等の結合組織からコラーゲン及び/又はコラーゲン加水分解物を含む抽出物を得る、抽出工程を含んでいてもよい。   The method for producing a collagen hydrolyzate according to this embodiment may include an extraction step of obtaining an extract containing collagen and / or collagen hydrolyzate from connective tissue such as bone, skin, ligament or tendon of an animal. Good.

本実施形態に係るコラーゲン加水分解物の製造方法はまた、上記抽出工程で得られる抽出物中のコラーゲンを加水分解する、加水分解工程を含んでいてもよい。   The method for producing a collagen hydrolyzate according to the present embodiment may also include a hydrolysis step of hydrolyzing collagen in the extract obtained in the extraction step.

抽出工程は、例えば、動物の骨、皮膚、じん帯又は腱等の結合組織を数時間温水に浸漬し、コラーゲン及び/又はコラーゲン加水分解物を温水中に溶出させることにより行うことができる。   The extraction step can be performed, for example, by immersing connective tissue such as bone, skin, ligament or tendon of an animal in warm water for several hours and eluting collagen and / or collagen hydrolyzate in warm water.

加水分解工程における加水分解としては、温水中での熱加水分解や、酵素処理による加水分解等が挙げられる。   Examples of the hydrolysis in the hydrolysis step include thermal hydrolysis in warm water, hydrolysis by enzyme treatment, and the like.

本実施形態に係るコラーゲン加水分解物の製造方法はさらに、内圧ろ過工程で得られるろ液(清澄化されたコラーゲン加水分解物含有溶液)を用いて、多孔質中空糸膜を逆流洗浄する工程をさらに含むことが好ましい。逆流洗浄により、多孔質中空糸膜の膜面や膜内部の堆積物を定期的に除去することで、多孔質中空糸膜のろ過性能を長時間維持することが可能となる。また、低圧及び低送液速度で十分なろ過速度を長時間維持できるため、コラーゲン加水分解物含有溶液中に含まれる微生物等の破砕を一層防止することができる。   The method for producing a collagen hydrolyzate according to the present embodiment further comprises a step of back-washing the porous hollow fiber membrane using the filtrate obtained in the internal pressure filtration step (clarified collagen hydrolyzate-containing solution). Furthermore, it is preferable to include. The filtration performance of the porous hollow fiber membrane can be maintained for a long period of time by periodically removing the membrane surface of the porous hollow fiber membrane and deposits inside the membrane by backwashing. In addition, since a sufficient filtration rate can be maintained for a long time at a low pressure and a low liquid feeding rate, it is possible to further prevent crushing of microorganisms and the like contained in the collagen hydrolyzate-containing solution.

本実施形態に係るコラーゲン加水分解物の製造方法によれば、従来の多孔質中空糸膜を用いるろ過方法と比較して、高いろ過速度を長時間維持可能であり、微生物の破壊や変形が少なく、かつ、膜の洗浄が容易で処理効率の高い内圧ろ過工程を含む、製造効率に優れ、微生物等の破砕物の混入が少なく十分に精製されたコラーゲン加水分解物を製造することができる。   According to the method for producing a collagen hydrolyzate according to the present embodiment, it is possible to maintain a high filtration rate for a long period of time as compared with a conventional filtration method using a porous hollow fiber membrane, and there is less destruction and deformation of microorganisms. In addition, it is possible to produce a collagen hydrolyzate that is excellent in production efficiency and includes a pulverized product such as microorganisms and that is sufficiently purified, including an internal pressure filtration step that facilitates membrane cleaning and high processing efficiency.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態ではコラーゲン加水分解物の製造方法として説明したが、本発明は、コラーゲン加水分解物含有溶液の清澄化方法であってもよく、清澄化されたコラーゲン加水分解物含有溶液の製造方法であってもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, in the above embodiment, the method for producing a collagen hydrolyzate has been described. However, the present invention may be a method for clarifying a collagen hydrolyzate-containing solution, and manufacturing a clarified collagen hydrolyzate-containing solution. It may be a method.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

下記実施例及び比較例の多孔質中空糸膜について、内側面孔径及び最小孔径層の位置の測定、最小孔径層の孔径の測定、内径、外径及び膜厚の測定、ポリビニルピロリドンの含有割合の測定、ポリビニルピロリドンの分布の測定、製膜原液の溶液粘度測定、ポリビニルピロリドンの重量平均分子量測定を、以下の方法で行った。   For the porous hollow fiber membranes of the following examples and comparative examples, the measurement of the position of the inner surface pore diameter and the minimum pore diameter layer, the measurement of the pore diameter of the minimum pore diameter layer, the measurement of the inner diameter, the outer diameter and the film thickness, the content ratio of polyvinylpyrrolidone Measurement, measurement of the distribution of polyvinyl pyrrolidone, measurement of the solution viscosity of the film forming stock solution, and measurement of the weight average molecular weight of polyvinyl pyrrolidone were performed by the following methods.

(1)内側面孔径及び最小孔径層の位置の測定
凍結乾燥した多孔質中空糸膜の内側面を、電子顕微鏡を用いて1視野において10個以上の孔が観測可能な倍率で観察した。得られた顕微鏡写真における細孔を円形近似処理し、その面積平均値から求めた直径を内側面孔径とした。凍結乾燥した多孔質膜の断面を内側面側から外側面側へ向かって連続して観察し、断面孔径が最小になる層の位置を確認した。
(1) Measurement of position of inner side surface pore diameter and minimum pore diameter layer The inner side surface of the freeze-dried porous hollow fiber membrane was observed with an electron microscope at a magnification capable of observing 10 or more pores in one field of view. The pores in the obtained micrograph were subjected to circular approximation processing, and the diameter obtained from the area average value was defined as the inner side surface pore diameter. The cross section of the freeze-dried porous membrane was continuously observed from the inner side to the outer side, and the position of the layer having the smallest cross-sectional pore diameter was confirmed.

(2)最小孔径層の孔径決定法
ポリスチレンラテックス粒子を、0.5wt%のドデシル硫酸ナトリウム水溶液に、粒子濃度が0.01wt%になるように分散させ、ラテックス粒子分散液を調整した。多孔質中空糸膜を用いてラテックス粒子分散液のろ過を行い、ろ過前後のラテックス粒子の濃度変化を測定した。この測定を、0.1μmから約0.1μm刻みでラテックス粒子径を変えながら行いラテックス粒子の阻止曲線を作成した。この阻止曲線から、90%透過阻止可能な粒子径を読み取り、その径を最小孔径層の孔径とした。
(2) Pore size determination method of minimum pore size layer Polystyrene latex particles were dispersed in a 0.5 wt% sodium dodecyl sulfate aqueous solution so that the particle concentration was 0.01 wt% to prepare a latex particle dispersion. The latex particle dispersion was filtered using a porous hollow fiber membrane, and the change in latex particle concentration before and after filtration was measured. This measurement was performed while changing the latex particle diameter in steps of 0.1 μm to about 0.1 μm, and a latex particle inhibition curve was prepared. From this blocking curve, the particle diameter capable of blocking 90% permeation was read, and the diameter was taken as the pore diameter of the minimum pore diameter layer.

(3)多孔質中空糸膜の内径、外径及び膜厚の測定
多孔質中空糸膜を円管状に薄くきりそれを測定顕微鏡で観察し、多孔質中空糸膜の内径(μm)、外径(μm)を測定した。得られた内径、外径から下記の式(II)を用いて膜厚を算出した。
膜厚(μm)=(外径−内径)/2 (II)
(3) Measurement of the inner diameter, outer diameter and film thickness of the porous hollow fiber membrane The porous hollow fiber membrane is cut into a thin tube and observed with a measuring microscope to determine the inner diameter (μm) and outer diameter of the porous hollow fiber membrane. (Μm) was measured. The film thickness was calculated from the obtained inner and outer diameters using the following formula (II).
Film thickness (μm) = (outer diameter−inner diameter) / 2 (II)

(4)ポリビニルピロリドンの含有割合の測定(ポリスルホン膜の場合)
多孔質中空糸膜の1H−NMR測定を下記の条件で実施し、得られたスペクトルにおいて1.85〜2.5ppm付近に現れるポリビニルピロリドン(4H分)由来のシグナルの積分値(IPVP)と7.3ppm付近に現れるポリスルホン(4H分)由来のシグナルの積分値(IPSf)から、下記式(III)によって算出した。
(4) Measurement of polyvinylpyrrolidone content (in the case of polysulfone membrane)
1H-NMR measurement of the porous hollow fiber membrane was carried out under the following conditions, and the integrated value (I PVP ) of the signal derived from polyvinylpyrrolidone (4H min) appearing in the vicinity of 1.85 to 2.5 ppm in the obtained spectrum It was calculated by the following formula (III) from the integrated value (I PSf ) of the signal derived from polysulfone (4H min) appearing in the vicinity of 7.3 ppm.

[測定条件]
装置:JNM−LA400(日本電子株式会社)
共鳴周波数:400.05MHz
溶媒:重水素化DMF
試料濃度:5質量%
積算回数:256回
[Measurement condition]
Device: JNM-LA400 (JEOL Ltd.)
Resonance frequency: 400.05 MHz
Solvent: deuterated DMF
Sample concentration: 5% by mass
Integration count: 256 times

[式(III)]
ポリビニルピロリドン含有割合(質量%)=111(IPVP/4)/{442(IPSf/4)+111(IPVP/4)}×100
[Formula (III)]
Polyvinylpyrrolidone content ratio (% by mass) = 111 (I PVP / 4) / {442 (I PSf / 4) +111 (I PVP / 4)} × 100

(5)ポリビニルピロリドンの分布の測定
多孔質中空糸膜の管壁を膜厚方向に3等分して3つの領域に分割したときに、外側面を含む外周領域の部分と、内側面を含む内周領域の部分とをサンプリングし、多孔質中空糸膜中に含まれるポリビニルピロリドンの含有割合を上記測定と同様にしてNMR測定より求めた。得られた外周領域におけるポリビニルピロリドンの含有割合(Cout)と、内周領域における含有割合(Cin)から下記式(IV)によりポリビニルピロリドンの分布を求めた。
ポリビニルピロリドンの分布=Cout/Cin (IV)
(5) Measurement of polyvinylpyrrolidone distribution When the tube wall of the porous hollow fiber membrane is divided into three regions by dividing the tube wall into three equal parts in the film thickness direction, the outer peripheral region including the outer surface and the inner surface are included. The portion of the inner peripheral region was sampled, and the content ratio of polyvinyl pyrrolidone contained in the porous hollow fiber membrane was determined by NMR measurement in the same manner as the above measurement. The distribution of polyvinyl pyrrolidone was determined from the content (C out ) of polyvinyl pyrrolidone in the outer peripheral region and the content (C in ) in the inner peripheral region according to the following formula (IV).
Distribution of polyvinyl pyrrolidone = C out / C in (IV)

(6)製膜原液の溶液粘度測定
広口ビンに入れた製膜原液を恒温槽に入れ、液温が二重管ノズルから押し出される温度になるように設定した。B型粘度計を用いて粘度の測定を行った。
(6) Measurement of solution viscosity of membrane-forming stock solution The membrane-forming stock solution placed in a wide-mouth bottle was placed in a thermostatic bath, and the temperature of the solution was set to be a temperature extruded from a double tube nozzle. Viscosity was measured using a B-type viscometer.

(7)ポリビニルピロリドンの重量平均分子量測定
ポリビニルピロリドンを1.0mg/mlの濃度でDMFに溶かした試料液を作製し、以下の条件でGPC測定を行いその重量平均分子量(PMMA換算)を求めた。
装置:HLC−8220GPC(東ソー株式会社)
カラム:ShodexKF−606M、KF−601
オーブン:40℃
移動相:0.6ml/min DMF
検出器:示差屈折率検出器
(7) Weight average molecular weight measurement of polyvinyl pyrrolidone A sample solution in which polyvinyl pyrrolidone was dissolved in DMF at a concentration of 1.0 mg / ml was prepared, and GPC measurement was performed under the following conditions to determine its weight average molecular weight (PMMA conversion). .
Equipment: HLC-8220GPC (Tosoh Corporation)
Column: Shodex KF-606M, KF-601
Oven: 40 ° C
Mobile phase: 0.6 ml / min DMF
Detector: Differential refractive index detector

(実施例1)
[多孔質中空糸膜の製造]
ポリスルホン(SOLVAY ADVANCED POLYMERS社製、Udel P3500)18質量%、ポリビニルピロリドン(BASF社製、Luvitec k80)15質量%を、N−メチル−2−ピロリドン62質量%に70℃で撹拌溶解し、グリセリン5質量%を加えてさらに撹拌し製膜原液を調整した。この製膜原液を二重環紡糸ノズル(最外径2.4mm、中間径1.2mm、最内径0.6mm、以下の実施例でも同じ物を用いた)から内部凝固液の90質量%NMP水溶液と共に押し出し、50mmの空走距離を通し、80℃の水中で凝固させた。水中で脱溶媒を行った後、2000ppmの次亜塩素酸ナトリウム水溶液中で脱PVP処理後、水洗を行い、多孔質中空糸膜を得た。得られた多孔質中空糸膜の評価結果を表1に示す。
Example 1
[Production of porous hollow fiber membrane]
Polysulfone (SOLVAY ADVANCED POLYMERS, Udel P3500) 18% by mass and polyvinylpyrrolidone (BASF, Luvitec k80) 15% by mass were dissolved in N-methyl-2-pyrrolidone 62% by mass at 70 ° C., and glycerin 5 Mass% was added and further stirred to prepare a film-forming stock solution. This film-forming stock solution was fed from a double ring spinning nozzle (outer diameter 2.4 mm, intermediate diameter 1.2 mm, inner diameter 0.6 mm, the same in the following examples) to 90 mass% NMP of the internal coagulation liquid. It was extruded with an aqueous solution and allowed to solidify in water at 80 ° C. through a 50 mm free running distance. After removing the solvent in water, the PVP treatment was performed in a 2000 ppm sodium hypochlorite aqueous solution, followed by washing with water to obtain a porous hollow fiber membrane. The evaluation results of the obtained porous hollow fiber membrane are shown in Table 1.

[コラーゲン加水分解物の製造]
有効長20cmのモジュールケースに膜面積が1200cmとなるように得られた多孔質中空糸膜を入れ、クロスフロー型のミニモジュールを作製した。そのモジュールに、ろ過圧力60kPa、線速度0.5m/secで未ろ過のコラーゲンペプチドを送液し、平均透過速度を測定した。測定結果を表1に示す。また、本実施例では高いろ過速度を1時間以上維持することができた。
[Production of collagen hydrolyzate]
A porous hollow fiber membrane obtained so as to have a membrane area of 1200 cm 2 was put in a module case having an effective length of 20 cm to produce a cross-flow type mini-module. Unfiltered collagen peptide was fed to the module at a filtration pressure of 60 kPa and a linear velocity of 0.5 m / sec, and the average permeation rate was measured. The measurement results are shown in Table 1. Moreover, in the present Example, the high filtration rate was able to be maintained for 1 hour or more.

未ろ過のコラーゲンペプチドは、濃度が52%、JIS K6503:2001におけるにかわの濃度測定方法により測定した値が1.6mPa・sec、pHが6.0、菌体濃度が10万個/gであった。一方、ろ過後のコラーゲンペプチドは、菌体濃度が500個/g以下であり、十分に微生物やその破砕物が除去されていることが確認された。   The unfiltered collagen peptide had a concentration of 52%, a value measured by the method for measuring the concentration of glue in JIS K6503: 2001, 1.6 mPa · sec, a pH of 6.0, and a bacterial cell concentration of 100,000 cells / g. It was. On the other hand, the collagen peptide after filtration has a microbial cell concentration of 500 cells / g or less, and it was confirmed that microorganisms and their crushed materials were sufficiently removed.

ろ過後のコラーゲンペプチドを、乾燥機にて乾燥することにより、固体化したコラーゲンペプチドが得られた。得られたコラーゲンペプチドは、微生物やその破砕物の含有が除去され、精製されたものであることが確認された。   The collagen peptide after filtration was dried with a dryer to obtain a solidified collagen peptide. It was confirmed that the obtained collagen peptide was purified by removing the content of microorganisms and crushed materials thereof.

(実施例2)
[コラーゲン加水分解物の製造]
実施例1と同様のミニモジュールの片端にバルブを取り付けて閉止し、多孔質中空糸膜の片端が塞がった状態とした。このモジュールに、ろ過圧力60kPa、で未ろ過のコラーゲンペプチドを送液し、デッドエンドでろ過を行い、平均透過速度を測定した。測定結果を表1に示す。また、本実施例では高いろ過速度を1時間以上維持することができた。
(Example 2)
[Production of collagen hydrolyzate]
A valve was attached to one end of the same minimodule as in Example 1 and closed, and one end of the porous hollow fiber membrane was closed. An unfiltered collagen peptide was fed to the module at a filtration pressure of 60 kPa, filtered at the dead end, and the average permeation rate was measured. The measurement results are shown in Table 1. Moreover, in the present Example, the high filtration rate was able to be maintained for 1 hour or more.

未ろ過のコラーゲンペプチドは、濃度が52%、JIS K6503:2001におけるにかわの濃度測定方法により測定した値が1.6mPa・sec、pHが6.0、菌体濃度が10万個/gであった。また、ろ過後のコラーゲンペプチドは、菌体濃度が500個/g以下であり、十分に微生物やその破砕物が除去されていることが確認された。   The unfiltered collagen peptide had a concentration of 52%, a value measured by the method for measuring the concentration of glue in JIS K6503: 2001, 1.6 mPa · sec, a pH of 6.0, and a bacterial cell concentration of 100,000 cells / g. It was. Further, the collagen peptide after filtration had a microbial cell concentration of 500 cells / g or less, and it was confirmed that microorganisms and their crushed materials were sufficiently removed.

ろ過後のコラーゲンペプチドを、乾燥機で乾燥することにより、固体化したコラーゲンペプチドが得られた。得られたコラーゲンペプチドは、微生物やその破砕物の含有が除去され、精製されたものであることが確認された。   The collagen peptide after filtration was dried with a drier to obtain a solidified collagen peptide. It was confirmed that the obtained collagen peptide was purified by removing the content of microorganisms and crushed materials thereof.

(比較例1)
[コラーゲン加水分解物の製造]
実施例1の多孔質中空糸膜に代えて平均孔径0.45μmのポリフッ化ビニリデン均質膜を用いたこと以外は、実施例1と同様の方法により、コラーゲン加水分解物の精製を行った。測定結果を表1に示す。中空糸膜を用いた場合、膜が目詰まりを起こした結果、ろ過速度の著しい低下が見られた。
(Comparative Example 1)
[Production of collagen hydrolyzate]
The collagen hydrolyzate was purified by the same method as in Example 1 except that a polyvinylidene fluoride homogeneous membrane having an average pore diameter of 0.45 μm was used instead of the porous hollow fiber membrane of Example 1. The measurement results are shown in Table 1. When the hollow fiber membrane was used, the membrane was clogged, and as a result, the filtration rate was significantly reduced.

Figure 2011201837
Figure 2011201837

Claims (10)

疎水性高分子と親水性高分子のブレンド物から管壁が構成されている多孔質中空糸膜に、コラーゲン加水分解物含有溶液を流通させる内圧ろ過工程を含む、精製されたコラーゲン加水分解物の製造方法であって、
前記多孔質中空糸膜は、前記管壁を膜厚方向に3等分して3つの領域に分割したときに、外側面を含む外周領域の親水性高分子の含有割合が、内側面を含む内周領域の親水性高分子の含有割合より大きく、内側面の平均孔径が、外側面の平均孔径より大きい多孔質中空糸膜である、製造方法。
A purified collagen hydrolyzate comprising an internal pressure filtration process in which a collagen hydrolyzate-containing solution is circulated through a porous hollow fiber membrane in which a tube wall is composed of a blend of a hydrophobic polymer and a hydrophilic polymer. A manufacturing method comprising:
In the porous hollow fiber membrane, when the tube wall is equally divided into three regions in the film thickness direction and divided into three regions, the content of the hydrophilic polymer in the outer peripheral region including the outer surface includes the inner surface. A production method, wherein the porous hollow fiber membrane is larger than the content ratio of the hydrophilic polymer in the inner peripheral region and the average pore diameter on the inner surface is larger than the average pore size on the outer surface.
前記多孔質中空糸膜が、前記内側面の平均孔径が1μm以上50μm以下であり、前記外周領域が0.1μm以上1μm未満の阻止孔径を有しており、前記管壁の膜厚が300μm以上1000μm以下の多孔質中空糸膜である、請求項1に記載の製造方法。   The porous hollow fiber membrane has an average pore diameter of 1 μm or more and 50 μm or less on the inner surface, the outer peripheral region has a blocking pore diameter of 0.1 μm or more and less than 1 μm, and the film thickness of the tube wall is 300 μm or more. The manufacturing method of Claim 1 which is a porous hollow fiber membrane of 1000 micrometers or less. 前記親水性高分子が、ポリビニルピロリドンである、請求項1又は2に記載の製造方法。   The production method according to claim 1 or 2, wherein the hydrophilic polymer is polyvinylpyrrolidone. 前記多孔質中空糸膜が、前記親水性高分子の含有量が、前記多孔質中空糸膜の総質量を基準として、0.2質量%以上3質量%以下の多孔質中空糸膜である、請求項1〜3のいずれか1項に記載の製造方法。   The porous hollow fiber membrane is a porous hollow fiber membrane in which the content of the hydrophilic polymer is 0.2% by mass or more and 3% by mass or less based on the total mass of the porous hollow fiber membrane. The manufacturing method of any one of Claims 1-3. 前記多孔質中空糸膜が、下記式(I)を満たす、請求項1〜4のいずれか1項に記載の製造方法。
out/Cin≧2 (I)
[式(I)中、Coutは前記親水性高分子の前記外周領域における含有割合を示し、Cinは前記親水性高分子の前記内周領域における含有割合を示す。]
The manufacturing method of any one of Claims 1-4 with which the said porous hollow fiber membrane satisfy | fills following formula (I).
C out / C in ≧ 2 (I)
[In formula (I), C out represents the content of the hydrophilic polymer in the outer peripheral region, and C in represents the content of the hydrophilic polymer in the inner peripheral region. ]
前記多孔質中空糸膜が、内径が1000μm以上2000μm以下の多孔質中空糸膜である、請求項1〜5のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 5, wherein the porous hollow fiber membrane is a porous hollow fiber membrane having an inner diameter of 1000 µm or more and 2000 µm or less. 前記疎水性高分子が、ポリスルホンである、請求項1〜6のいずれか1項に記載の製造方法。   The manufacturing method according to claim 1, wherein the hydrophobic polymer is polysulfone. 前記内圧ろ過は、クロスフローろ過により行われ、
前記コラーゲン加水分解物含有溶液は、前記多孔質中空糸膜の一端からその管内部に、線速度3.0m/sec以下で送液される、請求項1〜7のいずれか一項に記載の製造方法。
The internal pressure filtration is performed by cross flow filtration,
The collagen hydrolyzate-containing solution is fed from one end of the porous hollow fiber membrane into the tube at a linear velocity of 3.0 m / sec or less, according to any one of claims 1 to 7. Production method.
前記内圧ろ過は、デッドエンドろ過により行われる、請求項1〜7のいずれか一項に記載の製造方法。   The said internal pressure filtration is a manufacturing method as described in any one of Claims 1-7 performed by dead end filtration. 前記内圧ろ過工程で得られるろ液を用いて、前記多孔質中空糸膜を逆流洗浄する工程をさらに含む、請求項1〜9のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-9 which further includes the process of backwashing the said porous hollow fiber membrane using the filtrate obtained at the said internal pressure filtration process.
JP2010072994A 2010-03-26 2010-03-26 Method for producing purified collagen hydrolyzate Active JP5705445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072994A JP5705445B2 (en) 2010-03-26 2010-03-26 Method for producing purified collagen hydrolyzate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072994A JP5705445B2 (en) 2010-03-26 2010-03-26 Method for producing purified collagen hydrolyzate

Publications (2)

Publication Number Publication Date
JP2011201837A true JP2011201837A (en) 2011-10-13
JP5705445B2 JP5705445B2 (en) 2015-04-22

Family

ID=44878902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072994A Active JP5705445B2 (en) 2010-03-26 2010-03-26 Method for producing purified collagen hydrolyzate

Country Status (1)

Country Link
JP (1) JP5705445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292827B2 (en) 2014-11-21 2022-04-05 Sewoncellontech Co., Ltd. Method for producing high-concentration collagen for using as medical material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033549A1 (en) * 1994-06-07 1995-12-14 Mitsubishi Rayon Co., Ltd. Porous polysulfone membrane and process for producing the same
JP2002502692A (en) * 1998-02-16 2002-01-29 ビー.ピー.ティー. バイオ ピュア テクノロジー リミテッド Selective membrane and process for its preparation
JP2004098026A (en) * 2002-09-12 2004-04-02 Asahi Medical Co Ltd Production method for plasma purification membrane
JP2005214919A (en) * 2004-02-02 2005-08-11 Toray Ind Inc Separation membrane for pretreatment for protein and/or peptide analysis
JP2006230419A (en) * 2003-11-26 2006-09-07 Toyobo Co Ltd Polysulfone-based permselective hollow fiber membrane
JP2006312009A (en) * 2005-04-04 2006-11-16 Toyobo Co Ltd Blood purifier
JP2007289886A (en) * 2006-04-26 2007-11-08 Toyobo Co Ltd Polymeric porous hollow fiber membrane
JP2008543546A (en) * 2005-06-20 2008-12-04 シーメンス・ウォーター・テクノロジーズ・コーポレーション Cross-linking treatment of polymer film
JP2010047527A (en) * 2008-08-22 2010-03-04 Asahi Kasei Corp Method of separating immunoglobulin monomer
WO2010035754A1 (en) * 2008-09-26 2010-04-01 旭化成ケミカルズ株式会社 Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033549A1 (en) * 1994-06-07 1995-12-14 Mitsubishi Rayon Co., Ltd. Porous polysulfone membrane and process for producing the same
JP2002502692A (en) * 1998-02-16 2002-01-29 ビー.ピー.ティー. バイオ ピュア テクノロジー リミテッド Selective membrane and process for its preparation
JP2004098026A (en) * 2002-09-12 2004-04-02 Asahi Medical Co Ltd Production method for plasma purification membrane
JP2006230419A (en) * 2003-11-26 2006-09-07 Toyobo Co Ltd Polysulfone-based permselective hollow fiber membrane
JP2005214919A (en) * 2004-02-02 2005-08-11 Toray Ind Inc Separation membrane for pretreatment for protein and/or peptide analysis
JP2006312009A (en) * 2005-04-04 2006-11-16 Toyobo Co Ltd Blood purifier
JP2008543546A (en) * 2005-06-20 2008-12-04 シーメンス・ウォーター・テクノロジーズ・コーポレーション Cross-linking treatment of polymer film
JP2007289886A (en) * 2006-04-26 2007-11-08 Toyobo Co Ltd Polymeric porous hollow fiber membrane
JP2010047527A (en) * 2008-08-22 2010-03-04 Asahi Kasei Corp Method of separating immunoglobulin monomer
WO2010035754A1 (en) * 2008-09-26 2010-04-01 旭化成ケミカルズ株式会社 Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292827B2 (en) 2014-11-21 2022-04-05 Sewoncellontech Co., Ltd. Method for producing high-concentration collagen for using as medical material

Also Published As

Publication number Publication date
JP5705445B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5431347B2 (en) Porous membrane, method for producing porous membrane, method for producing clarified liquid, and porous membrane module
JP5496901B2 (en) Use of porous hollow fiber membranes to produce clarified biopharmaceutical cultures
JP7157790B2 (en) Porous membrane, porous membrane module, method for producing porous membrane, method for producing clarified liquid and method for producing beer
JP6577781B2 (en) Hollow fiber membrane and method for producing hollow fiber membrane
JP3724412B2 (en) Hollow fiber membrane manufacturing method and hollow fiber membrane module
JP5705445B2 (en) Method for producing purified collagen hydrolyzate
JP4556150B2 (en) Polymer porous membrane
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JPH05245350A (en) High-performance hollow-fiber microfiltration membrane
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
JP3167370B2 (en) Hollow fiber membrane having novel structure and method for producing the same
WO2019172077A1 (en) Hollow-fiber membrane and method for producing hollow-fiber membrane
JP2009190029A (en) Polysulfone hollow fiber membrane excellent in water permeability, and method for manufacturing the same
JPH07106303B2 (en) Hollow fiber type plasma separation membrane and method for producing the same
KR20120130303A (en) Membrane having cyclodextrin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150225

R150 Certificate of patent or registration of utility model

Ref document number: 5705445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250