JP2011201818A - Potential-dependent cation channel inhibitor - Google Patents

Potential-dependent cation channel inhibitor Download PDF

Info

Publication number
JP2011201818A
JP2011201818A JP2010071645A JP2010071645A JP2011201818A JP 2011201818 A JP2011201818 A JP 2011201818A JP 2010071645 A JP2010071645 A JP 2010071645A JP 2010071645 A JP2010071645 A JP 2010071645A JP 2011201818 A JP2011201818 A JP 2011201818A
Authority
JP
Japan
Prior art keywords
voltage
cation channel
compound
channel inhibitor
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010071645A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Sakasai
充好 逆井
Hiroko Takatoku
博子 高徳
Kentaro Kumihashi
堅太郎 組橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2010071645A priority Critical patent/JP2011201818A/en
Publication of JP2011201818A publication Critical patent/JP2011201818A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an excellent potential-dependent cation channel inhibitor.SOLUTION: The potential-dependent cation channel inhibitor comprises a phthalide analog represented by formula (1) [wherein, ring A is a saturated, partially unsaturated or completely unsaturated six-membered ring; X is C=CH-R(Ris 1-12C alkyl), CRR(Ris 1-12C alkyl; Ris a hydrogen atom or 1-5C alkyl); Rand Rare each, same or different, a hydrogen atom or hydroxy] as an active ingredient.

Description

本発明は、電位依存性カチオンチャネル抑制剤に関する。   The present invention relates to a voltage-gated cation channel inhibitor.

近年、生活環境の変化に起因する化学物質やハウスダスト等の外来刺激物質の増加によるアレルギー等の過敏症の増加や、自己の体臭や家庭における種々の生活臭を初めとする生活環境の臭気を嫌悪する傾向の高まり等、過敏な感覚に起因する日常の不快感が問題となっている。   In recent years, there has been an increase in hypersensitivity such as allergies due to an increase in external stimulating substances such as chemical substances and house dust caused by changes in the living environment, as well as the odors of the living environment, including the body odor and various living odors at home. Daily discomfort resulting from irritability, such as an increased tendency to dislike, is a problem.

感覚は、皮膚感覚や深部感覚等の体性感覚、内臓痛等の内臓感覚、視覚、聴覚、味覚、嗅覚等の特殊感覚に分類することができる。感覚の情報は、例えば、皮膚の各種受容器、筋紡錘、網膜、嗅粘膜、味蕾、蝸牛の有毛細胞等の末梢の感覚受容器等によって受容され、知覚感覚において神経インパルスに変換された後、電気信号として中枢まで伝達される。   Sensations can be classified into somatic sensations such as skin sensations and deep sensations, visceral sensations such as visceral pain, and special sensations such as vision, hearing, taste, and smell. Sensory information is received by peripheral sensory receptors such as various receptors on the skin, muscle spindle, retina, olfactory mucosa, taste buds, cochlear hair cells, etc., and after being converted into nerve impulses in sensory sensation It is transmitted to the center as an electrical signal.

例えば、痛覚は、皮膚の自由神経終末で受容される侵害刺激(温度刺激、化学刺激、機械刺激)によって惹起される。自由神経終末には、各々の刺激に感受性のイオンチャネルが存在しており、刺激を受けた場合、これらのイオンチャネルが開口することでカチオンチャネルが細胞内に流入し、結果として電位依存性カチオンチャネルが活性化されて、神経の活動電位(インパルス)が発生する(非特許文献1)。また、かゆみを起こす刺激としては、機械刺激、熱刺激、電気刺激等の物理的刺激と、起痒物質等の化学的刺激とが知られている。これらの刺激は、主として真皮内のマスト細胞からヒスタミンを放出させ、放出されたヒスタミンは自由神経終末上の受容体と結合してカルシウムイオンの流入を引き起こし、最終的に神経の活動電位を発生させると考えられている(非特許文献2)。   For example, pain sensations are triggered by nociceptive stimuli (temperature stimuli, chemical stimuli, mechanical stimuli) received at the free nerve endings of the skin. At the free nerve ending, there are ion channels that are sensitive to each stimulus, and when these stimuli are received, the ion channels are opened and the cation channels flow into the cell, resulting in voltage-dependent cations. The channel is activated and a nerve action potential (impulse) is generated (Non-patent Document 1). As stimuli that cause itching, physical stimuli such as mechanical stimuli, thermal stimuli, and electrical stimuli, and chemical stimuli such as pollutants are known. These stimuli release histamine mainly from mast cells in the dermis, and the released histamine binds to a receptor on the free nerve endings, causing calcium ion influx and ultimately generating a neural action potential. (Non-patent document 2).

同様に、他の何れの感覚の発生にも、情報は、最終的には、神経細胞の電位依存性カチオンチャネルの活性化によって発生する活動電位の形態で中枢に伝達される。電位依存性カチオンチャネルは更に、こうした活動電位の発生や伝導だけでなく、シナプス間隙や神経筋終末への神経伝達物質の放出にも関与している。   Similarly, in any other sensory development, information is ultimately transmitted to the center in the form of action potentials generated by activation of nerve cell voltage-gated cation channels. Voltage-gated cation channels are not only involved in the generation and conduction of these action potentials, but also in the release of neurotransmitters into synaptic clefts and neuromuscular terminals.

従って、電位依存性カチオンチャネルの活性化を阻害すれば、感覚を刺激することが可能である。実際、電位依存性カチオンチャネル阻害剤を利用して感覚を抑制させる方法は、従来から医療現場等で使用されている。例えば、局所麻酔剤や抗不整脈薬として使用されるリドカイン(例えばキロシカイン(登録商標))は、電位依存性ナトリウムチャネル阻害剤である。電位依存性カルシウムチャネル阻害剤であるガバペンチン(例えば、ガバペン(登録商標)、ニューロンチン(登録商標))、は抗痙攣剤或いは鎮痛補助薬として使用されている。たま、電位依存性カルシウムチャネル又はナトリウムチャネルのインヒビター(例えば、バラパミル)が、外的攻撃に対する皮膚の耐性閾値を増加させ、皮膚の過敏症に適用できることが報告されている(特許文献1)。   Therefore, if the activation of the voltage-gated cation channel is inhibited, it is possible to stimulate the sense. Actually, methods for suppressing sensation using a voltage-gated cation channel inhibitor have been used in the medical field. For example, lidocaine (eg, kilosicaine®) used as a local anesthetic and antiarrhythmic agent is a voltage-gated sodium channel inhibitor. A voltage-dependent calcium channel inhibitor gabapentin (for example, gabapen (registered trademark), neurontin (registered trademark)) is used as an anticonvulsant or analgesic. Occasionally, inhibitors of voltage-gated calcium channels or sodium channels (for example, valapamil) have been reported to increase the skin's tolerance threshold against external attack and can be applied to skin hypersensitivity (Patent Document 1).

知覚神経の電位依存性カチオンチャネルを阻害することによって、医療目的での感覚抑制効果が得られるだけでなく、日常感じる過敏な感覚又は不快な感覚を抑制又は調整することにより、生活の質を改善することができる可能性がある。   Inhibiting the sensory nerve's voltage-gated cation channel not only provides a sensory suppression effect for medical purposes, but also improves quality of life by suppressing or adjusting the sensitive or unpleasant sensations that are felt daily There is a possibility that you can.

ところで、フタリド類縁体は、広く感熱記録材料用色素に使用されているが、このなかには、抗炎症性障害治療化合物(特許文献2)や腫瘍性薬の感受性増強化合物(特許文献3)等の薬理作用を有するものが知られている。また、斯様なフタリド類縁体の製造方法は、例えば、特許文献4及び5や非特許文献3〜6に開示されている。   By the way, phthalide analogues are widely used as dyes for heat-sensitive recording materials. Among these, pharmacological agents such as anti-inflammatory disorder treatment compounds (Patent Document 2) and oncogenic drug sensitivity-enhancing compounds (Patent Document 3). What has an effect | action is known. Moreover, the manufacturing method of such a phthalide analog is disclosed by patent documents 4 and 5, and nonpatent literature 3-6, for example.

しかしながら、フタリド類縁体に電位依存性チャネル阻害作用があることは知られていない。   However, it is not known that phthalide analogs have a voltage-dependent channel inhibitory action.

特表2002−505268号公報JP-T-2002-505268 特表2008−542226号公報Special table 2008-542226 gazette 特表2009−511436号公報Special table 2009-511436 gazette 特開平07−206843号公報Japanese Patent Laid-Open No. 07-206843 特開平04−077480号公報Japanese Patent Laid-Open No. 04-077480

富永真琴,(2006), 実験医学, vol.24, No.15: 54-59Tominaga Makoto, (2006), Experimental Medicine, vol.24, No.15: 54-59 豊田雅彦,(2004), 綜合臨床、Vo.53, No.5: 1629-1636Masahiko Toyoda, (2004), Sogo Clinical, Vo.53, No.5: 1629-1636 Li, Shaobaiら, Lanzhou Daxue Xuebao, Ziran Kexueban (1990), 26(1), pp118-19Li, Shaobai et al., Lanzhou Daxue Xuebao, Ziran Kexueban (1990), 26 (1), pp118-19 Ogawa, Yら,Heterocycles, (1991), 32(9), pp 1737-1744Ogawa, Y et al., Heterocycles, (1991), 32 (9), pp 1737-1744 Kobayashi, Mら,Chem pharm bull,(1987),35(4), pp 1427-1433Kobayashi, M et al., Chem pharm bull, (1987), 35 (4), pp 1427-1433 Cocker, Wら,Chemical Communications,(1965), 20, pp 479-80Cocker, W et al., Chemical Communications, (1965), 20, pp 479-80

本発明は、感覚の抑制又は調整、或いは日常感じる過敏な感覚又は不快な感覚の低減に利用することができる電位依存性カチオンチャネル阻害剤に関する。   The present invention relates to a voltage-gated cation channel inhibitor that can be used for suppression or adjustment of sensation, or reduction of daily sensitive sensation or unpleasant sensation.

本発明者らは、電位依存性チャネルを効果的に阻害し、感覚の抑制又は調整に利用し得る物質を探索した結果、下記式で表されるフタリド類縁体が、有効な電位依存性チャネル阻害効果が認められることを見出した。   As a result of searching for substances that can effectively inhibit a voltage-gated channel and can be used for suppression or regulation of sensation, the present inventors have found that a phthalide analog represented by the following formula is effective in inhibiting a voltage-gated channel. It was found that the effect was recognized.

すなわち、本発明は以下の1)〜5)に係るものである。   That is, the present invention relates to the following 1) to 5).

1)下記式(1)   1) The following formula (1)

Figure 2011201818
Figure 2011201818

〔環Aは、飽和、一部不飽和又は完全な不飽和の6員環を示し、Xは、C=CH−R1(ここで、R1は炭素数1〜12のアルキル基を示す)、又はCR23(ここで、R2は炭素数1〜12のアルキル基を示し、R3は水素原子又は炭素数1〜5のアルキル基を示す)を示し、R4及びR5はそれぞれ同一又は異なって水素原子又は水酸基を示す。〕で表されるフタリド類縁体を有効成分とする電位依存性カチオンチャネル阻害剤。 [Ring A represents a saturated, partially unsaturated or completely unsaturated 6-membered ring, and X represents C═CH—R 1 (wherein R 1 represents an alkyl group having 1 to 12 carbon atoms) Or CR 2 R 3 (wherein R 2 represents an alkyl group having 1 to 12 carbon atoms, R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms), and R 4 and R 5 represent Each is the same or different and represents a hydrogen atom or a hydroxyl group. ] The voltage-dependent cation channel inhibitor which uses the phthalide analog represented by this as an active ingredient.

2)上記R1及びR2が炭素数3〜8の直鎖アルキル基である上記記載の電位依存性カチオンチャネル阻害剤。
3)上記R3が水素原子である上記記載の電位依存性カチオンチャネル阻害剤。
4)上記R4及びR5がそれぞれ水素原子であるか、もしくはそれぞれ水酸基である上記記載の電位依存性カチオンチャネル阻害剤。
5)上記フタリド類縁体が、3−ブチルフタリド、3−オクチルフタリド、3−ブチリデンフタリド、セダノリド、センキュノリドH又はセンキュノリドIである上記記載の電位依存性カチオンチャネル阻害剤。
2) The voltage-gated cation channel inhibitor as described above, wherein R 1 and R 2 are linear alkyl groups having 3 to 8 carbon atoms.
3) The voltage-gated cation channel inhibitor as described above, wherein R 3 is a hydrogen atom.
4) The voltage-gated cation channel inhibitor as described above, wherein R 4 and R 5 are each a hydrogen atom or a hydroxyl group.
5) The voltage-dependent cation channel inhibitor as described above, wherein the phthalide analog is 3-butylphthalide, 3-octylphthalide, 3-butylidenephthalide, sedanolide, sencunolide H or sencunolide I.

本発明の電位依存性カチオンチャネル阻害剤は、種々の感覚を効果的に抑制又は調整することで、医薬品の分野のみならず食品、化粧品、家庭用品等の分野においても有用であり、日常感じる過敏な感覚又は不快な感覚を低減することができる。   The voltage-gated cation channel inhibitor of the present invention is useful not only in the field of pharmaceuticals but also in the field of foods, cosmetics, household products, etc. by effectively suppressing or adjusting various sensations. Sensations or unpleasant sensations can be reduced.

試験物質による電位依存性カチオンチャネル活性抑制能の測定実験データを示す。The measurement experimental data of the voltage-dependent cation channel activity suppression ability by a test substance are shown. 各フタリド類縁体の内向き電流抑制率を示す。The inward current suppression rate of each phthalide analog is shown. 各フタリド類縁体の内向き電流抑制率を示す。The inward current suppression rate of each phthalide analog is shown. 電位依存性カチオンチャネル阻害活性率とマスキングスコアとの相関関係を示す。The correlation of a voltage-dependent cation channel inhibitory activity rate and a masking score is shown.

環Aとしては、例えば、ベンゼン環、シクロヘキサジエン環、シクロヘキセン環及びシクロヘキサン環が挙げられ、このうち、ベンゼン環及びシクロヘキセン環が好ましい。   Examples of the ring A include a benzene ring, a cyclohexadiene ring, a cyclohexene ring, and a cyclohexane ring. Among these, a benzene ring and a cyclohexene ring are preferable.

1及びR2で示される炭素数1〜12のアルキル基としては、直鎖又は分岐鎖のものが包含されるが、炭素数1〜10のアルキル基が好ましく、更に炭素数2〜9の直鎖アルキル基が好ましい。当該R1及びR2で示されるアルキル基としては、例えば、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基及びネオペンチル基等が挙げられる。
このうち、直鎖のアルキル基が好ましく、より炭素数3〜8の直鎖アルキル基が好ましく、更にプロピル基及びブチル基が好ましい。
The alkyl group having 1 to 12 carbon atoms represented by R 1 and R 2 includes a straight chain or branched chain group, preferably an alkyl group having 1 to 10 carbon atoms, and further having 2 to 9 carbon atoms. Straight chain alkyl groups are preferred. Examples of the alkyl group represented by R 1 and R 2 include an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, an isopropyl group, an isobutyl group, and a sec-butyl group. , Tert-butyl group, isopentyl group, neopentyl group and the like.
Among these, a linear alkyl group is preferable, a linear alkyl group having 3 to 8 carbon atoms is more preferable, and a propyl group and a butyl group are more preferable.

また、R3で示される炭素数1〜5のアルキル基としては、直鎖又は分岐鎖のものが包含される。当該R3で示されるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、イソブチル基、sec−ブチル基及びtert−ブチル基、イソペンチル基及びネオペンチル基等が挙げられる。
3が炭素数1〜5のアルキル基、好ましくは炭素数1〜4の直鎖アルキル基、より好ましくはメチル基の場合には、R2は、炭素数1〜8のアルキル基であるのが好ましく、このうち、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基及びイソペンチル基であるのが好ましい。
また、R3が水素原子の場合には、R2は、炭素数1〜8の直鎖アルキル基であるのが好ましく、より3〜8の直鎖アルキル基であるのが好ましく、更にブチル基であるのが好ましい。
3は、水素原子及び炭素数1〜4の直鎖アルキル基であるのが好ましく、より水素原子であるが好ましい。
Moreover, as a C1-C5 alkyl group shown by R < 3 >, a linear or branched thing is included. Examples of the alkyl group represented by R 3 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, isobutyl group, sec-butyl group and tert-butyl group, isopentyl group and neopentyl group. Etc.
When R 3 is an alkyl group having 1 to 5 carbon atoms, preferably a linear alkyl group having 1 to 4 carbon atoms, more preferably a methyl group, R 2 is an alkyl group having 1 to 8 carbon atoms. Of these, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, isopropyl, isobutyl and isopentyl are preferred.
When R 3 is a hydrogen atom, R 2 is preferably a linear alkyl group having 1 to 8 carbon atoms, more preferably a linear alkyl group having 3 to 8 carbon atoms, and a butyl group. Is preferred.
R 3 is preferably a hydrogen atom and a linear alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom.

4及びR5は、それぞれ水素原子であるか、或いはそれぞれ水酸基であるのが好ましい。また、水酸基の立体配位はα配置又はβ配置のどちらでもよいが、何れか一方がα配置であり、他方がβ配置であるのが好ましい。 R 4 and R 5 are each preferably a hydrogen atom or each preferably a hydroxyl group. Further, the steric coordination of the hydroxyl group may be either α configuration or β configuration, but it is preferable that either one is α configuration and the other is β configuration.

尚、上記式(1)で表される化合物は、光学異性体を含むものであるが、いずれの異性体でも、ラセミ体でもよい。   The compound represented by the above formula (1) includes an optical isomer, but any isomer or racemate may be used.

上記式(1)のうち、電位依存性チャネル阻害作用の点で、下記の化合物1〜6、8及び9が好ましく、化合物1〜6がより好ましく、化合物1〜3、6が更に好ましく、化合物1、2及び6がより更に好ましい。   Of the above formula (1), the following compounds 1 to 6, 8 and 9 are preferred, compounds 1 to 6 are more preferred, compounds 1 to 3 and 6 are still more preferred, in terms of potential-dependent channel inhibitory action, 1, 2 and 6 are even more preferred.

Figure 2011201818
Figure 2011201818

Figure 2011201818
Figure 2011201818

上記式(1)で表される化合物は、主に公知の化学合成によって製造できる(特許文献4〜5及び非特許文献3〜6)。例えば、非特許文献3に開示されているように、無水フタル酸、無水脂肪酸、NaOAcから縮合反応によりアルキリデンフタリド(例えば、化合物2)を得ることができ、さらにはアルキリデンフタリドをPd/Cを触媒として還元することによりアルキルフタリド(例えば、化合物1)を得ることができる。
また、上記式(1)で表される化合物は市販品として入手可能なものや植物から抽出・単離できるものもあるので、これを使用しても良い。
The compound represented by the above formula (1) can be produced mainly by known chemical synthesis (Patent Documents 4 to 5 and Non-Patent Documents 3 to 6). For example, as disclosed in Non-Patent Document 3, alkylidene phthalide (for example, Compound 2) can be obtained from phthalic anhydride, fatty acid anhydride, and NaOAc by a condensation reaction, and further, alkylidene phthalide is converted into Pd / C. Is used as a catalyst to obtain an alkyl phthalide (for example, Compound 1).
In addition, the compound represented by the above formula (1) may be a commercially available product or may be extracted / isolated from a plant.

1)式(1)〔環Aはベンゼン環、XはCR23(ここで、R3が水素原子)かつR4及びR5は水素原子〕の場合、無水フタル酸と無水脂肪酸、NaOAcから縮合反応により、3−アルキリデンフタリドを合成し、3−アルキリデンフタリドからPd/Cを触媒として還元することにより製造することができる(非特許文献3)。 1) In the case of formula (1) [ring A is a benzene ring, X is CR 2 R 3 (where R 3 is a hydrogen atom) and R 4 and R 5 are hydrogen atoms], phthalic anhydride and fatty acid anhydride, NaOAc From the 3-alkylidene phthalide, a 3-alkylidene phthalide is synthesized and reduced using Pd / C as a catalyst (Non-patent Document 3).

2)式(1)〔環Aはベンゼン環、XはCR23(ここで、R3がアルキル基)かつR4及びR5は水素原子〕の場合、無水フタル酸とグリニャール試薬により、もしくはアシル安息香酸とグリニャール試薬から製造することができる(特許文献4)。 2) In the case of formula (1) [ring A is a benzene ring, X is CR 2 R 3 (where R 3 is an alkyl group) and R 4 and R 5 are hydrogen atoms], by phthalic anhydride and Grignard reagent, Or it can manufacture from an acylbenzoic acid and a Grignard reagent (patent document 4).

3)式(1)〔環Aはベンゼン環、XはC=CH−R1かつR4及びR5は水素原子〕の場合、無水フタル酸、無水脂肪酸、NaOAcから縮合反応により製造することができる(非特許文献3)。 3) In the case of formula (1) [ring A is a benzene ring, X is C═CH—R 1 and R 4 and R 5 are hydrogen atoms], it can be produced from phthalic anhydride, anhydrous fatty acid, NaOAc by a condensation reaction. Yes (Non-Patent Document 3).

4)式(1)〔環Aはベンゼン環、XはCR23(ここで、R3が水素原子)かつR4及びR5は水酸基〕の場合、例えば、3−ブチル−6,7−ジメトキシフタリドから三臭化ホウ素によりメチル基を脱離し、3−ブチル−6,7−ジヒドロキシフタリドが製造できる(特許文献5)ので、これに準じて製造することができる。 4) In the case of formula (1) [ring A is a benzene ring, X is CR 2 R 3 (where R 3 is a hydrogen atom) and R 4 and R 5 are hydroxyl groups), for example, 3-butyl-6,7 A methyl group is eliminated from dimethoxyphthalide with boron tribromide to produce 3-butyl-6,7-dihydroxyphthalide (Patent Document 5), which can be produced according to this.

5)式(1)〔環Aはベンゼン環、XはC=CH−R1かつR4及びR5は水酸基〕の場合、例えば3−ブチリデン−6,7−ジメトキシフタリドから三臭化ホウ素によりメチル基を脱離し、3−ブチリデン−6,7−ジヒドロキシフタリドが製造できる(非特許文献4)ので、これに準じて製造することができる。 5) In the case of formula (1) [ring A is a benzene ring, X is C═CH—R 1 and R 4 and R 5 are hydroxyl groups], for example, 3-butylidene-6,7-dimethoxyphthalide to boron tribromide The methyl group can be eliminated by the above, and 3-butylidene-6,7-dihydroxyphthalide can be produced (Non-patent Document 4), and can be produced according to this.

6)式(1)〔環Aは一部不飽和の6員環、XはC=CH−R1かつR4及びR5は水酸基〕の場合、例えば、リグスチリドからm−クロロ過安息香酸により6,7−エポキシ体を合成し、6,7−エポキシ体から過塩素酸による加水分解により、センキュノリドH(化合物4a)が製造できる(非特許文献5)ので、これに準じて製造することができる。 6) In the case of formula (1) [ring A is a partially unsaturated 6-membered ring, X is C═CH—R 1 and R 4 and R 5 are hydroxyl groups], for example, from ligustilide to m-chloroperbenzoic acid Sencunolide H (Compound 4a) can be produced by synthesizing a 6,7-epoxy compound and hydrolyzing with 6,7-epoxy compound with perchloric acid (Non-Patent Document 5). it can.

7)式(1)〔環Aは一部不飽和の6員環、XはCR23(ここで、R3が水素原子)かつR4及びR5は水酸基〕の場合、例えば、センキュノリドAからm−クロロ過安息香酸により、6,7−エポキシ体を合成し、6,7−エポキシ体から過塩素酸による加水分解により、センキュノリドJ(化合物5a)が製造できる(非特許文献5)ので、これに準じて製造することができる 7) In the case of formula (1) [ring A is a partially unsaturated 6-membered ring, X is CR 2 R 3 (where R 3 is a hydrogen atom) and R 4 and R 5 are hydroxyl groups), for example, sencunolide Senkyunolide J (compound 5a) can be produced by synthesizing a 6,7-epoxy compound from A with m-chloroperbenzoic acid and hydrolyzing the 6,7-epoxy compound with perchloric acid (Non-patent Document 5). So it can be manufactured according to this

8)式(1)〔環Aは一部不飽和の6員環、XはCR23(ここで、R3が水素原子)かつR4及びR5は水素原子〕の場合、例えばペンタジオン酸エチルとアクロレインから Ethyl 2-formylcyclohex-5-enoateを合成し、Ethyl 2-formylcyclohex-5-enoateとBuMgBrを反応させクニジリドを、またクニジリドをAl2O3で処理することで、セダノリド(化合物6)が製造できる(非特許文献6)ので、これに準じて製造することができる 8) In the case of formula (1) [ring A is a partially unsaturated 6-membered ring, X is CR 2 R 3 (where R 3 is a hydrogen atom) and R 4 and R 5 are hydrogen atoms), for example, pentadione Ethyl 2-formylcyclohex-5-enoate was synthesized from ethyl acetate and acrolein, and then treated with Ethyl 2-formylcyclohex-5-enoate and BuMgBr to treat kunidylide and cnidylide with Al 2 O 3 to produce sedanolide (compound 6 ) Can be manufactured (Non-Patent Document 6), and can be manufactured according to this.

尚、本発明による電位依存性カチオンチャネル阻害剤は、本発明の化合物のうち1種のみを含有するのでもよく、2種以上含有するのでもよい。   The voltage-gated cation channel inhibitor according to the present invention may contain only one of the compounds of the present invention, or may contain two or more.

後記実施例に示すように、本発明の化合物は、生体由来受容器細胞の電位依存性カチオンチャネルにより生じる電気的活動を抑制すること、言い換えれば、神経の活動電位の発生や伝達を抑制できること、すなわち電位依存性カチオンチャネル阻害作用を有することから、生物の種々の感覚を抑制又は調整するために用いることができる。例えば、皮膚末梢神経系のナトリウム又はカルシウムチャネル阻害は皮膚耐性閾値を増加させることができる(特許文献1)。後記実施例に示すように、電位依存性カチオンチャネル抑制率とマスキングスコア(不快臭)とに相関関係が認められることから、本発明の植物又はその抽出物は、不快臭のマスキングのために用いることもできる。   As shown in the Examples below, the compound of the present invention suppresses the electrical activity generated by the voltage-gated cation channel of living body-derived receptor cells, in other words, can suppress the generation and transmission of nerve action potentials, That is, since it has a potential-dependent cation channel inhibitory action, it can be used to suppress or adjust various sensations of an organism. For example, inhibition of sodium or calcium channels in the skin peripheral nervous system can increase the skin tolerance threshold (Patent Document 1). As shown in the examples below, since the correlation between the voltage-dependent cation channel inhibition rate and the masking score (unpleasant odor) is recognized, the plant of the present invention or its extract is used for masking unpleasant odor. You can also.

ここに「皮膚耐性閾値」とは、この値を超えると皮膚は外部刺激に対し、知覚不全の兆候、すなわち皮膚領域における多かれ少なかれ痛みのある感覚、例えば刺痛、チクチクする痛み、痒み又は掻痒、火傷感、暖温感、不快感、激痛および/又は赤み又は紅斑等を伴った反応を起こすようになる皮膚の興奮性閾値を意味するものである。   Here, the “skin tolerance threshold” exceeds the value of the skin against external stimuli, a sign of sensory failure, ie a more or less painful sensation in the skin area, eg stinging, tingling pain, itching or pruritus, It means the excitability threshold of the skin that causes a reaction with burns, warmth, discomfort, severe pain and / or redness or erythema.

また、「外部刺激」とは、例えば界面活性剤や防腐剤、又は香料など刺激性を有する化合物、及び環境、食物、風、摩擦、シェービング、石鹸、カルシウム濃度の高い硬水、温度変化、毛糸などを意味するものである。   In addition, “external stimuli” include, for example, compounds having stimulating properties such as surfactants, preservatives, and fragrances, and the environment, food, wind, friction, shaving, soap, hard water with high calcium concentration, temperature change, yarn, etc. Means.

ここで、本発明における電位依存性カチオンチャネル阻害とは、電位依存性カチオンチャネルからの細胞内へのイオンの流入を阻害することを云う。本発明において阻害される電位依存性カチオンチャネルとしては、電位依存性Na+チャネル、電位依存性K+チャネル、電位依存性Ca2+チャネルが挙げられる。このうち、電位依存性Ca2+チャネルは、更に、電気生理学的、薬理学的性質から、L−,N,P−,Q−,R−,及びT−typeに分類することができ、これらは何れも本発明の化合物の標的である。 Here, the inhibition of the voltage-dependent cation channel in the present invention refers to inhibiting the inflow of ions from the voltage-dependent cation channel into the cell. Examples of the voltage-gated cation channel inhibited in the present invention include voltage-gated Na + channel, voltage-gated K + channel, and voltage-gated Ca 2+ channel. Among these, voltage-gated Ca 2+ channels can be further classified into L-, N, P-, Q-, R-, and T-type based on electrophysiological and pharmacological properties. Are both targets of the compounds of the present invention.

また、上記抑制又は調整される種々の感覚としては、皮膚や粘膜で受容される触覚、圧覚、温覚、冷覚、痛覚、及び筋、腱や関節からの感覚を含む、体性感覚;臓器感覚及び内臓痛を含む内臓感覚;視覚、聴覚、味覚、嗅覚及び平衡感覚を含む特殊感覚;ならびに、その他の感覚(例えば、掻痒感、しびれ、神経痛、疼痛、その他不快感等)が挙げられる。 これらのあらゆる感覚は、電位依存性カチオン阻害物質により抑制、軽減又は改善され得る。又、これらの種々の感覚は、しばしば刺激への感受性が亢進し、嗅覚過敏、又は痛覚過敏(hyperalgesia)、異痛症(alodynia)、痒み過敏などの皮膚知覚過敏といった不快な症状を呈するが、電位依存性カチオンチャネルを阻害すれば、これらの症状のうち末梢知覚神経活動の亢進に起因する症状の予防、改善又は治療に利用できる。   In addition, the various sensations that are suppressed or adjusted include somatic sensations including tactile sensation, pressure sensation, warm sensation, cold sensation, pain sensation, and sensations from muscles, tendons, and joints; Visceral sensations including sensations and visceral pain; special sensations including vision, hearing, taste, olfaction and balance sensation; and other sensations (eg, pruritus, numbness, neuralgia, pain, other discomfort, etc.). Any of these sensations can be suppressed, reduced or improved by voltage-dependent cation inhibitors. These various sensations are often more sensitive to stimuli and exhibit unpleasant symptoms such as hypersensitivity, or hyperalgesia, allodynia, and hypersensitivity to the skin such as itching. If the voltage-gated cation channel is inhibited, it can be used for the prevention, amelioration, or treatment of symptoms caused by increased peripheral sensory nerve activity among these symptoms.

なお、皮膚痛覚過敏とは、痛みの感覚が亢進し、痛みとなる刺激をより強く感じる感覚異常のことを、異痛症とは通常では疼痛をもたらさない刺激でも全て疼痛として認識される感覚異常のことを、痒み過敏とは普段であれば痒みを感じない刺激に対しても痒みを感じる感覚異常のことをいう。   Cutaneous hyperalgesia is a sensory abnormality in which the sensation of pain is enhanced and the stimulus that causes pain becomes stronger. Allodynia is a sensory abnormality that is recognized as pain even if the stimulus does not normally cause pain. That is, itching sensitivity is a sensory abnormality that feels itching even for stimuli that do not usually feel itching.

よって、本発明の化合物は、電位依存性カチオンチャネル阻害剤、知覚過敏改善剤及びマスキング剤(以下、「電位依存性カチオンチャネル阻害剤等」とも云う)として使用することができ、また当該電位依存性カチオンチャネル阻害剤等を製造するために使用することができる。   Therefore, the compound of the present invention can be used as a voltage-dependent cation channel inhibitor, a hypersensitivity improving agent, and a masking agent (hereinafter, also referred to as “voltage-dependent cation channel inhibitor etc.”). It can be used to produce a cationic cation channel inhibitor or the like.

従って、本発明の電位依存性カチオンチャネル阻害剤等は、電位依存性カチオンチャネル阻害、知覚過敏改善又はマスキングのための医薬品、医薬部外品、化粧品、ハウスケア製品、食品、機能性食品若しくは飼料等として、又はこれら医薬品等に配合するための素材又は製剤として有用である。   Therefore, the voltage-gated cation channel inhibitor of the present invention is a drug, quasi-drug, cosmetic, house care product, food, functional food or feed for voltage-gated cation channel inhibition, hypersensitivity improvement or masking. It is useful as a raw material or a preparation for blending with these medicines and the like.

本発明の化合物を含む医薬品、医薬部外品又はその他の組成物等としては、医学または獣医学分野で使用される麻酔剤、鎮静剤、鎮痛剤、鎮咳剤、抗炎症剤、過敏症やアレルギー反応などの過剰な感覚の抑制剤、痒み止め、ペインクリニック用医薬や介護や旅行で使用される吸引・点鼻による嗅覚抑制剤等の医薬品及び医薬部外品;抗カビ剤、液体タイプの衣料用抗菌仕上げ剤、衣料用洗剤、衣料用柔軟剤、衣料用漂白剤、住居用洗剤、排水口用洗剤、浴室用洗剤、トイレ用洗剤、トイレ用芳香防臭洗浄剤、洗濯機用洗剤、台所用洗浄剤、食器用洗浄剤、消臭剤等のハウスケア製品;皮膚過敏症抑制作用を有する入浴剤や化粧料、知覚過敏抑制作用を有する歯磨き粉やマウスウォッシュ等やウエットティッシュ、制汗剤、ふき取りシート等のボディケア製品等が挙げられる。   Examples of pharmaceuticals, quasi drugs or other compositions containing the compound of the present invention include anesthetics, sedatives, analgesics, antitussives, anti-inflammatory agents, hypersensitivity and allergic reactions used in the medical or veterinary field. Drugs and quasi-drugs, such as anti-sensation agents such as excessive sensation, anti-itch, medicine for pain clinics, and olfactory depressant with aspiration and nasal nose used in nursing care and travel; anti-fungal agents, liquid-type clothing Antibacterial finishing agent, clothing detergent, clothing softener, clothing bleach, residential detergent, drain cleaner, bathroom cleaner, toilet cleaner, toilet deodorant cleaner, washing machine detergent, kitchen cleaner House care products such as detergents, dishwashing agents, deodorants, etc .; bathing agents and cosmetics that suppress skin hypersensitivity, toothpaste and mouthwash that suppress hypersensitivity, wet tissues, antiperspirants, wipes Etc. Medicare products, and the like.

本発明の化合物を含む医薬品、医薬部外品又はその他の組成物等としては、医学または獣医学分野で使用される麻酔剤、鎮静剤、鎮痛剤、鎮咳剤、抗炎症剤、過敏症やアレルギー反応などの過剰な感覚の抑制剤、痒み止め、ペインクリニック用医薬や介護や旅行で使用される吸引・点鼻による嗅覚抑制剤等の医薬品及び医薬部外品;抗カビ剤、液体タイプの衣料用抗菌仕上げ剤、衣料用洗剤、衣料用柔軟剤、衣料用漂白剤、住居用洗剤、排水口用洗剤、浴室用洗剤、トイレ用洗剤、トイレ用芳香防臭洗浄剤、洗濯機用洗剤、台所用洗浄剤、食器用洗浄剤、消臭剤等のハウスケア製品;皮膚過敏症抑制作用を有する入浴剤や化粧料、知覚過敏抑制作用を有する歯磨き粉やマウスウォッシュ等やウエットティッシュ、制汗剤、ふき取りシート等のボディケア製品等が挙げられる。   Examples of pharmaceuticals, quasi drugs or other compositions containing the compound of the present invention include anesthetics, sedatives, analgesics, antitussives, anti-inflammatory agents, hypersensitivity and allergic reactions used in the medical or veterinary field. Drugs and quasi-drugs, such as anti-sensation agents such as excessive sensation, anti-itch, medicine for pain clinics, and olfactory depressant with aspiration and nasal nose used in nursing care and travel; anti-fungal agents, liquid-type clothing Antibacterial finishing agent, clothing detergent, clothing softener, clothing bleach, residential detergent, drain cleaner, bathroom cleaner, toilet cleaner, toilet deodorant cleaner, washing machine detergent, kitchen cleaner House care products such as detergents, dishwashing agents, deodorants, etc .; bathing agents and cosmetics that suppress skin hypersensitivity, toothpaste and mouthwash that suppress hypersensitivity, wet tissues, antiperspirants, wipes Etc. Medicare products, and the like.

本発明の化合物を含む医薬品、医薬部外品は、標的とする感覚、又は標的とする対象や身体部位等に応じて、任意の投与形態で投与することができる。標的とする感覚としては上述のとおりであり、標的とする対象や身体部位としては、例えば、生体、ならびに生体由来の組織、器官及び細胞が挙げられる。   The pharmaceutical and quasi-drug containing the compound of the present invention can be administered in any dosage form depending on the target sensation or the target or body part to be targeted. The target sensation is as described above, and examples of the target and body part to be targeted include living bodies and tissues, organs and cells derived from living bodies.

投与形態としては、経口投与及び非経口投与が挙げられる。経口投与のための剤型としては、錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤のような固形投薬形態、あるいはエリキシル、シロップおよび懸濁液のような液体投薬形態が挙げられる。非経口投与のための経路としては、注射、輸液、経皮、経粘膜、経鼻、経腸、吸入、坐剤、ボーラス等が挙げられ、剤型としては、錠剤、カプセル、液体、粉末、顆粒、軟膏、スプレー、ミスト、クリーム、乳液、ジェル、ペースト、ローション、パップ、プラスター、スティック、シート等が挙げられる。   Examples of the dosage form include oral administration and parenteral administration. Dosage forms for oral administration include solid dosage forms such as tablets, coated tablets, granules, powders, capsules, or liquid dosage forms such as elixirs, syrups and suspensions. Routes for parenteral administration include injection, infusion, transdermal, transmucosal, nasal, enteral, inhalation, suppository, bolus, etc., and dosage forms include tablets, capsules, liquids, powders, Granules, ointments, sprays, mists, creams, emulsions, gels, pastes, lotions, pops, plasters, sticks, sheets and the like.

上記製剤には、本発明の化合物に、必要に応じて、任意の他の成分と組み合わせて使用されてもよい。好ましい他の成分としては、薬学的に許容される担体が挙げられる。薬学的に許容される担体の具体的な例としては、賦形剤、結合剤、崩壊剤、滑沢剤、希釈剤、浸透圧調整剤、pH調整剤、乳化剤、防腐剤、安定剤、酸化防止剤、着色剤、紫外線吸収剤、保湿剤、増粘剤、光沢剤、活性増強剤、矯味剤、矯臭剤等が挙げられる。本発明の電位依存性カチオンチャネル阻害剤は、さらに、公知の他の薬効成分(例えば、他のイオンチャネル阻害剤、感覚抑制若しくは調整剤、抗炎症剤、殺菌剤等)と組み合わせて使用してもよい。   In the above preparation, the compound of the present invention may be used in combination with any other component, if necessary. Preferred other ingredients include pharmaceutically acceptable carriers. Specific examples of pharmaceutically acceptable carriers include excipients, binders, disintegrants, lubricants, diluents, osmotic pressure adjusting agents, pH adjusting agents, emulsifiers, preservatives, stabilizers, oxidation Inhibitors, colorants, ultraviolet absorbers, humectants, thickeners, brighteners, activity enhancers, flavoring agents, flavoring agents and the like can be mentioned. The voltage-gated cation channel inhibitor of the present invention is further used in combination with other known medicinal ingredients (for example, other ion channel inhibitors, sensory suppression or regulators, anti-inflammatory agents, fungicides, etc.). Also good.

医薬品、医薬部外品、その他の組成物等における本発明の電位依存性カチオンチャネル阻害剤の配合量は、その使用形態や目的により異なるが、例えば感覚抑制に使用する場合、通常、0.01〜50質量%、好ましくは0.1〜10質量%、より好ましくは0.1〜5質量%である。   The compounding amount of the voltage-dependent cation channel inhibitor of the present invention in pharmaceuticals, quasi-drugs, other compositions and the like varies depending on the use form and purpose, but for example, when used for sensory suppression, it is usually 0.01. -50 mass%, preferably 0.1-10 mass%, more preferably 0.1-5 mass%.

また、本願発明を含む食品及び飼料等には、例えば、パン類、麺類、菓子類、ゼリー類、乳製品、冷凍食品、インスタント食品、澱粉加工製品、加工肉製品、その他加工食品、飲料、スープ類、調味料及び栄養補助食品等の食品;牛、豚、鶏、羊、馬等に用いる家畜用飼料、ウサギ、ラット、マウス等に用いる小動物用飼料、マグロ、ウナギ、タイ、ハマチ、エビ等に用いる魚介類用飼料、犬、猫、小鳥、リス等に用いるペットフード等の飼料等が挙げられる。   The food and feed containing the present invention include, for example, breads, noodles, confectionery, jelly, dairy products, frozen foods, instant foods, processed starch products, processed meat products, other processed foods, beverages and soups. Foods such as seafood, seasonings and dietary supplements; livestock feed for cattle, pigs, chickens, sheep, horses, etc., feed for small animals for rabbits, rats, mice, etc., tuna, eel, Thailand, hamachi, shrimp, etc. And feed for fish and shellfish used for food, and feed for pet food used for dogs, cats, small birds, squirrels and the like.

上記食品や飼料には、本発明の化合物に、必要に応じて、任意の他の成分と組み合わせて使用されてもよい。好ましい他の成分としては、食品や飼料分野で許容される担体が挙げられる。当該許容される担体の具体的な例としては、溶剤、軟化剤、油脂、乳化剤、防腐剤、香料、安定剤、着色剤、紫外線吸収剤、酸化防止剤、保湿剤、増粘剤、ゲル化剤、保型剤、pH調整剤、調味料、防腐剤、栄養補強剤等が挙げられる。   In the above food and feed, the compound of the present invention may be used in combination with any other component, if necessary. Preferred other components include carriers that are acceptable in the food and feed fields. Specific examples of such acceptable carriers include solvents, softeners, fats and oils, emulsifiers, preservatives, fragrances, stabilizers, colorants, UV absorbers, antioxidants, humectants, thickeners, gelling. Agents, shape-preserving agents, pH adjusters, seasonings, preservatives, nutritional supplements and the like.

食品や飼料の形態としては、特に限定されないが、液状、半固体状、固体状の他、上記の経口投与製剤と同様の、錠剤、丸剤、カプセル剤、液剤、シロップ剤、粉末剤、顆粒剤等の形態であってもよい。   The form of food and feed is not particularly limited, but in addition to liquid, semi-solid and solid forms, tablets, pills, capsules, liquids, syrups, powders and granules similar to those for oral administration It may be in the form of an agent or the like.

また、食品又は飼料中の、本発明化合物の含有量は、その使用形態により異なるが、乾燥物換算で、通常0.001〜50質量%であり、0.01〜10質量%が好ましく、0.1〜5質量%がより好ましい。
本発明化合物を医薬品として或いは医薬品に配合して使用する場合の投与量は、患者の状態、体重、性別、年齢又はその他の要因に従って変動し得るが、経口投与の場合の成人1人当たりの1日の投与量は、通常、本発明化合物として、0.001〜100gが好ましい。また、上記製剤は、任意の投与計画に従って投与され得るが、1日1回〜数回に分け、数週間〜数カ月間継続して投与するのが好ましい。
Moreover, although content of this invention compound in a foodstuff or feed changes with the usage forms, it is 0.001-50 mass% normally in dry matter conversion, 0.01-10 mass% is preferable, 0 More preferably, the content is 1 to 5% by mass.
When the compound of the present invention is used as a pharmaceutical or in combination with a pharmaceutical, the dosage may vary according to the patient's condition, body weight, sex, age or other factors, but the daily dose per adult for oral administration The dose of is usually preferably 0.001 to 100 g as the compound of the present invention. Moreover, although the said formulation can be administered according to arbitrary administration schedules, it is preferable to divide once to several times a day, and to administer continuously for several weeks to several months.

以下、本発明を具体的に説明するために実施例及び試験例を挙げるが本発明はこれらの実施例に限定されるものではない。   Hereinafter, examples and test examples will be given to specifically describe the present invention, but the present invention is not limited to these examples.

〔フタリド類縁体〕
化合物1a:3−ブチルフタリド〔3-Butylphthalide:3‐ブチルイソベンゾフラン‐1(3H)‐オン〕S体(製造例は後述)
化合物1b:3−ブチルフタリド〔3-Butylphthalide:3‐ブチルイソベンゾフラン‐1(3H)‐オン〕R体(製造例は後述)
化合物2:3-ブチリデンフタリド〔3-Butylidenephthalide:3‐ブチリデンイソベンゾフラン‐1(3H)‐オン〕(購入先:和光純薬工業)
化合物3:3-オクチルフタリド〔3-Octylphthalide:3‐オクチルイソベンゾフラン‐1(3H)‐オン〕S体(購入先:花王)
化合物4a: センキュノリドH〔Senkyunolide H:(3Z,6S)‐3‐ブチリデン4,5,6,7‐テトラヒドロ‐6α,7α‐ジヒドロキシイソベンゾフラン‐1(3H)‐オン〕(製造例は後述)
化合物4b:センキュノリドI〔Senkyunolide I:(3Z,6S)‐3‐ブチリデン‐4,5,6,7‐テトラヒドロ‐6α,7β‐ジヒドロキシイソベンゾフラン‐1(3H)‐オン〕(製造例は後述)
化合物5a:センキュノリドJ〔Senkyunolide J:rel‐3α*‐ブチル‐4,5,6,7‐テトラヒドロ‐6α*,7β*‐ジヒドロキシ‐1(3H)‐イソベンゾフラノン〕(製造例は後述)
化合物5b:センキュノリドN〔Senkyunolide N:(3S)‐4,5,6,7‐テトラヒドロ‐6α,7β‐ジヒドロキシ‐3β‐ブチルイソベンゾフラン‐1(3H)‐オン〕(製造例は後述)
化合物6:セダノリド(ネオクニジリド)(製造例は後述)
化合物7:3,3−ジメチルフタリド(製造例は後述))
化合物8:3−メチル−3−エチルフタリド(製造例は後述)
化合物9:3−メチル−3−ヘキシルフタリド(製造例は後述)
化合物10:3,3−ジブチルフタリド(製造例は後述)
化合物11:3−メチル−3−オクチルフタリド(製造例は後述)
化合物12:3,3−ジイソペンチルフタリド(製造例は後述)
[Phthalide analogues]
Compound 1a: 3-Butylphthalide [3-Butylphthalide: 3-Butylisobenzofuran-1 (3H) -one] S form (Production examples are described later)
Compound 1b: 3-Butylphthalide [3-Butylphthalide: 3-Butylisobenzofuran-1 (3H) -one] R form (Production example will be described later)
Compound 2: 3-Butylidenephthalide [3-Butylidenephthalide: 3-butylideneisobenzofuran-1 (3H) -one] (Purchased by: Wako Pure Chemical Industries, Ltd.)
Compound 3: 3-octylphthalide [3-Octylphthalide: 3-octylisobenzofuran-1 (3H) -one] S form (supplier: Kao)
Compound 4a: Senkyunolide H: (3Z, 6S) -3-butylidene 4,5,6,7-tetrahydro-6α, 7α-dihydroxyisobenzofuran-1 (3H) -one] (Production examples will be described later)
Compound 4b: Senkyunolide I: (3Z, 6S) -3-butylidene-4,5,6,7-tetrahydro-6α, 7β-dihydroxyisobenzofuran-1 (3H) -one] (Production examples will be described later)
Compound 5a: Senkyunolide J [rel-3α * -butyl-4,5,6,7-tetrahydro-6α * , 7β * -dihydroxy-1 (3H) -isobenzofuranone] (Production examples will be described later)
Compound 5b: Senkyunolide N [(3S) -4,5,6,7-tetrahydro-6α, 7β-dihydroxy-3β-butylisobenzofuran-1 (3H) -one] (Production examples will be described later)
Compound 6: sedanolide (neocnidilide) (Production examples are described later)
Compound 7: 3,3-dimethylphthalide (Production examples are described later)
Compound 8: 3-methyl-3-ethylphthalide (Production examples are described later)
Compound 9: 3-methyl-3-hexylphthalide (Production examples are described later)
Compound 10: 3,3-dibutylphthalide (Production examples are described later)
Compound 11: 3-methyl-3-octylphthalide (Production examples are described later)
Compound 12: 3,3-diisopentylphthalide (Production examples are described later)

製造例1:化合物1a、1bの製造
無水フタル酸60g、無水吉草酸79.3g、および酢酸ナトリウム21gの混合物を170℃で7時間加熱し、後処理後、減圧蒸留によりブチリデンフタリドを得た。このブチリデンフタリドをエタノールに溶解し、5%Pd/C(2g,5wt%)を加えて水素圧40atmで2時間水添を行い、ろ過後、減圧蒸留により3−ブチルフタリド39.6gを得た。得られた3−ブチルフタリドを光学分割カラム(Chiral Cell OB, ヘキサン:イソプロピルアルコール=9:1)で光学分割し、S体(1a)およびR体(1b)を得た。
Production Example 1: Production of Compounds 1a and 1b A mixture of 60 g of phthalic anhydride, 79.3 g of valeric anhydride, and 21 g of sodium acetate was heated at 170 ° C. for 7 hours, and after treatment, butylidenephthalide was obtained by distillation under reduced pressure. . This butylidene phthalide was dissolved in ethanol, 5% Pd / C (2 g, 5 wt%) was added, hydrogenated at a hydrogen pressure of 40 atm for 2 hours, and after filtration, 39.6 g of 3-butyl phthalide was obtained by distillation under reduced pressure. . The obtained 3-butylphthalide was optically resolved with an optical resolution column (Chiral Cell OB, hexane: isopropyl alcohol = 9: 1) to obtain S form (1a) and R form (1b).

得られた化合物S体(1a)の1H NMRデータ(CDCl3)δ:0.87(t,3H,J=6.8Hz)、1.29-1.49(m,4H)、1.73(m,1H)、2.01(m,1H)、7.42(dd,1H,J=7.5、1.0Hz)、7.49(ddd,1H,J=7.5、7.5,1.0Hz)、7.64(ddd,1H,J=7.5、7.5,1.0Hz)、7.85(dd,1H,J=7.5、1.0Hz)/ [α]D:−71
得られた化合物R体(1b)の1H NMRデータ(CDCl3)δ:0.87(t,3H,J=6.8Hz)、1.29-1.49(m,4H)、1.73(m,1H)、2.01(m,1H)、7.42(dd,1H,J=7.5、1.0Hz)、7.49(ddd,1H,J=7.5、7.5,1.0Hz)、7.64(ddd,1H,J=7.5、7.5,1.0Hz)、7.85(dd,1H,J=7.5、1.0Hz)/ [α]D:+71
1 H NMR data (CDCl 3 ) δ of the obtained Compound S form (1a): 0.87 (t, 3H, J = 6.8 Hz), 1.29-1.49 (m, 4H), 1.73 (m, 1H), 2.01 ( m, 1H), 7.42 (dd, 1H, J = 7.5, 1.0Hz), 7.49 (ddd, 1H, J = 7.5, 7.5, 1.0Hz), 7.64 (ddd, 1H, J = 7.5, 7.5, 1.0Hz) , 7.85 (dd, 1H, J = 7.5, 1.0 Hz) / [α] D : −71
1 H NMR data (CDCl 3 ) δ of the obtained Compound R form (1b): 0.87 (t, 3H, J = 6.8 Hz), 1.29-1.49 (m, 4H), 1.73 (m, 1H), 2.01 ( m, 1H), 7.42 (dd, 1H, J = 7.5, 1.0Hz), 7.49 (ddd, 1H, J = 7.5, 7.5, 1.0Hz), 7.64 (ddd, 1H, J = 7.5, 7.5, 1.0Hz) , 7.85 (dd, 1H, J = 7.5, 1.0 Hz) / [α] D : +71

製造例2:化合物4a、4b、5a、5bの製造
新和物産株式会社より入手した日本センキュウ(Cnidium officinale)200gを50vol%エタノール2Lで2週間室温抽出・ろ過し、抽出液1.8Lを得た。抽出液をロータリーエバポレーターで濃縮し、固形物約10gを得た。固形物10gを、山善ハイフラッシュカラム(インジェクトカラム:Lサイズ、メインカラム3Lサイズ、A:ヘキサン、B:酢酸エチル、0%B→100%B(400min)→100%B(500min)、10mL/min, 100mLずつ分画)にて中圧シリカゲルクロマトに供し、ジヒドロキシフタリドを含む画分(Fr.11以降、ブチルフタリドよりも高極性な画分)約1.5gを得た。ジヒドロキシフタリドを含む画分1.5gをODS−HPLC分画に供した(カラム:GL-Science,Inertsil-ODS, 10x250mm, A:Water, B:MeOH, 15B%→71%B(20min)→100%B(20.1min)→100%B(35min)→15%B(35.1min)→15%B(45min), 10mL/min, 40℃, UV280nm, 14.0〜21.5minまでを、0.5minずつ分画(5mL/Fr.), sample; 1.5g/1.8mL EtOHを100μLずつ、計18回繰り返し分取)。各画分から不純物の脂肪酸を活性アルミナで除去し、NMRスペクトルを測定した。文献値との比較から、センキュノリドJとNの1:1混合物がFr.5に(5mg)、センキュノリドIがFr.8〜9に(10mg)、センキュノリドHがFr.10〜11に(5mg)分離されたことを確認した。
Production Example 2: Production of compounds 4a, 4b, 5a and 5b 200 g of Cnidium officinale obtained from Shinwa Bussan Co., Ltd. was extracted with 2 L of 50 vol% ethanol for 2 weeks at room temperature to obtain 1.8 L of an extract. It was. The extract was concentrated with a rotary evaporator to obtain about 10 g of a solid. 10 g of solid matter was added to Yamazen Hi-Flash column (injection column: L size, main column 3 L size, A: hexane, B: ethyl acetate, 0% B → 100% B (400 min) → 100% B (500 min), 10 mL) / min, fractions of 100 mL each) were subjected to medium pressure silica gel chromatography to obtain about 1.5 g of a fraction containing dihydroxyphthalide (Fr. 11 and later, a fraction more polar than butylphthalide). A fraction containing 1.5 g of dihydroxyphthalide was subjected to ODS-HPLC fractionation (column: GL-Science, Inertsil-ODS, 10 × 250 mm, A: Water, B: MeOH, 15B% → 71% B (20 min) → 100% B (20.1min) → 100% B (35min) → 15% B (35.1min) → 15% B (45min), 10mL / min, 40 ℃, UV280nm, 14.0 ~ 21.5min in 0.5min steps (5 mL / Fr.), Sample; 1.5 g / 1.8 mL EtOH, 100 μL each, repeated 18 times in total). The impurity fatty acid was removed from each fraction with activated alumina, and the NMR spectrum was measured. From a comparison with literature values, a 1: 1 mixture of sencunolide J and N was found to be Fr. 5 (5 mg), Sencunolide I was Fr. 8-9 (10 mg), Sencunolide H is Fr. It was confirmed that it was separated into 10 to 11 (5 mg).

Fr.5の化合物(センキュノリドJとN混合物)の13C NMRデータ;(13.8, 13.8, 21.4, 21.8, 22.3, 22.4, 26.5, 26.7, 26.7, 27.0, 31.8, 31.8, 68.0, 68.6, 71.6, 71.9, 82.7, 82.8, 126.2, 126.3, 165.6, 165.8, 172.4, 172.5 ppm)
Fr.8〜9の化合物(センキュノリドI)の13C NMRデータ;(13.8, 19.1, 22.2, 26.6, 28.1, 67.8, 71.8, 114.7, 125.0, 147.9, 153.1, 169.2 ppm)
Fr.10〜11の化合物(センキュノリドH)の13C NMRデータ;(13.8, 18.2, 22.3, 25.7, 28.1, 63.5, 67.1, 114.6, 125.2, 148.2, 153.2, 169.4 ppm)
Fr. 13 C NMR data of 5 compounds (mixture of sencunolide J and N); (13.8, 13.8, 21.4, 21.8, 22.3, 22.4, 26.5, 26.7, 26.7, 27.0, 31.8, 31.8, 68.0, 68.6, 71.6, 71.9, 82.7 , 82.8, 126.2, 126.3, 165.6, 165.8, 172.4, 172.5 ppm)
Fr. 13 C NMR data of 8-9 compounds (sencunolide I); (13.8, 19.1, 22.2, 26.6, 28.1, 67.8, 71.8, 114.7, 125.0, 147.9, 153.1, 169.2 ppm)
Fr. 13 C NMR data of 10 to 11 compounds (sencunolide H); (13.8, 18.2, 22.3, 25.7, 28.1, 63.5, 67.1, 114.6, 125.2, 148.2, 153.2, 169.4 ppm)

製造例3:化合物6(セダノリド[ネオクニジリド])の製造
参考文献(Agric. biol. Chem., 51(12), pp 3369〜3373, 1987)に従い、(±)-1-hepten-3-olと2,4-pentadienoic acidから(S)−triene エステル体を合成し、触媒として4.4'-thiobis(2-tert-butyl-5-methylphenol)を用いてトルエン中で220℃・24時間加熱し分子内Diels-Alder反応させ、環化物を得た。その後、環化物を24時間、1,8-diazabicyclo[5.4.0]undec-7-eneとともにテトラヒドロフラン中で還流し、反応液中から主生成物をTLC分取(展開溶媒ヘキサン:酢酸エチル=7:3)することで、化合物6(セダノリド[ネオクニジリド])を得た。
化合物6の13C NMRデータ;(13.7, 22.3, 26.7, 34.3, 81.3, 121.7, 125.5, 126.0, 128.9, 133.9, 150.0, 170.6 ppm)
Production Example 3 Production of Compound 6 (Sedanolide [Neocnidilide]) According to the reference (Agric. Biol. Chem., 51 (12), pp 3369-3373, 1987), (±) -1-hepten-3-ol and (S) -triene ester is synthesized from 2,4-pentadienoic acid and heated in toluene at 220 ° C for 24 hours using 4.4'-thiobis (2-tert-butyl-5-methylphenol) as a catalyst. Diels-Alder reaction was performed to obtain a cyclized product. Thereafter, the cyclized product was refluxed in tetrahydrofuran with 1,8-diazabicyclo [5.4.0] undec-7-ene for 24 hours, and the main product was separated from the reaction solution by TLC fractionation (developing solvent hexane: ethyl acetate = 7 : 3) Compound 6 (sedanolide [neocnidilide]) was obtained.
13 C NMR data of Compound 6; (13.7, 22.3, 26.7, 34.3, 81.3, 121.7, 125.5, 126.0, 128.9, 133.9, 150.0, 170.6 ppm)

製造例4:化合物7〜12の製造
化合物7(3,3−ジメチルフタリド)の合成
窒素雰囲気下、500mL容量の4口フラスコ中、乾燥金属マグネシウム3.78g(155mmol)に乾燥ジエチルエーテルを20mL加えた。室温で乾燥ジエチルエーテル20mL中のヨウ化メチル21.1g(148mmol)を30分間で滴下し、室温で30分間攪拌後、乾燥THF80mL中の無水フタル酸10.0g(67.5mmol)を40分間で滴下した。この溶液を60℃で1.5時間攪拌した後、室温で濃塩酸を40mL加え、100℃で2時間攪拌した。この反応溶液を水150mLに注いだ後、有機相を分離後、酢酸エチルで抽出し、飽和食塩水で洗浄後、濃縮した。残渣をシリカゲルカラムクロマトグラフィーを用い、展開液にヘキサン/酢酸エチル(20/3)を使用し、3,3−ジメチルフタリドを6.3g(収率57.5%)得た。
Production Example 4: Production of Compounds 7 to 12 Synthesis of Compound 7 (3,3-dimethylphthalide) 20 mL of dry diethyl ether was added to 3.78 g (155 mmol) of dry metal magnesium in a 500 mL capacity four-necked flask under a nitrogen atmosphere. added. Methyl iodide (21.1 g, 148 mmol) in 20 mL of dry diethyl ether was added dropwise at room temperature over 30 minutes. After stirring at room temperature for 30 minutes, 10.0 g (67.5 mmol) of phthalic anhydride in 80 mL of dry THF was added over 40 minutes. It was dripped. The solution was stirred at 60 ° C. for 1.5 hours, 40 mL of concentrated hydrochloric acid was added at room temperature, and the mixture was stirred at 100 ° C. for 2 hours. The reaction solution was poured into 150 mL of water, the organic phase was separated, extracted with ethyl acetate, washed with saturated brine, and concentrated. The residue was subjected to silica gel column chromatography, and hexane / ethyl acetate (20/3) was used as a developing solution to obtain 6.3 g (yield 57.5%) of 3,3-dimethylphthalide.

得られた化合物7の1H NMRデータ(CDCl3)δ:1.67(s,6H)、7.41(dd,1H,J=7.5,0.7Hz)、7.51(ddd,1H,J=7.5、7.5、0.7Hz)、7.67(ddd,1H,J=7.5、7.5、0.9Hz)、7.87(dd,1H,J=7.5、0.9Hz) 1 H NMR data (CDCl 3 ) δ of the obtained compound 7: 1.67 (s, 6H), 7.41 (dd, 1H, J = 7.5, 0.7 Hz), 7.51 (ddd, 1H, J = 7.5, 7.5, 0.7 Hz), 7.67 (ddd, 1H, J = 7.5, 7.5, 0.9 Hz), 7.87 (dd, 1H, J = 7.5, 0.9 Hz)

化合物8(3−メチル−3−エチルフタリド)の合成
窒素雰囲気下、100mL容量の4口フラスコ中、乾燥金属マグネシウム0.34g(14.0mmol)に乾燥THFを5mL加えた。室温で乾燥THF10mL中の臭化エチル1.46g(13.4mmol)を10分間で滴下し、室温で10分間攪拌後、乾燥THF10mL中のo−アセチル安息香酸1.0g(6.09mmol)を10分間で滴下した。この溶液を60℃で1.5時間攪拌した後、室温で濃塩酸を10mL加え、100℃で2時間攪拌した。この反応溶液を水150mLに注いだ後、有機相を分離後、酢酸エチルで抽出し、飽和食塩水で洗浄後、濃縮した。残渣を、シリカゲルカラムクロマトグラフィーを用いて、展開液にヘキサン/酢酸エチル(3/1)を使用し、3−メチル−3−エチルフタリドを0.86g(収率80.1%)得た。
Synthesis of Compound 8 (3-methyl-3-ethylphthalide) 5 mL of dry THF was added to 0.34 g (14.0 mmol) of dry metal magnesium in a 100 mL 4-neck flask under a nitrogen atmosphere. 1.46 g (13.4 mmol) of ethyl bromide in 10 mL of dry THF at room temperature was added dropwise over 10 minutes, stirred at room temperature for 10 minutes, and then 1.0 g (6.09 mmol) of o-acetylbenzoic acid in 10 mL of dry THF was added. Dropped in minutes. The solution was stirred at 60 ° C. for 1.5 hours, 10 mL of concentrated hydrochloric acid was added at room temperature, and the mixture was stirred at 100 ° C. for 2 hours. The reaction solution was poured into 150 mL of water, the organic phase was separated, extracted with ethyl acetate, washed with saturated brine, and concentrated. The residue was subjected to silica gel column chromatography, and hexane / ethyl acetate (3/1) was used as a developing solution to obtain 0.86 g (yield: 80.1%) of 3-methyl-3-ethylphthalide.

得られた化合物8の1H NMRデータ(CDCl3)δ:0.77(dt,3H,J=7.4,1.5Hz)、1.65(ds,3H,J=1.5Hz)、1.83-2.19(m,2H)、7.38(dd,1H,J=7.5、0.8Hz)、7.52(ddd,1H,J=7.5、7.4,0.8Hz)、7.68(ddd,1H,J=7.5、7.4,1.1Hz)、7.88(dd,1H,J=7.5、0.8Hz) 1 H NMR data (CDCl 3 ) δ of the obtained compound 8: 0.77 (dt, 3H, J = 7.4, 1.5 Hz), 1.65 (ds, 3H, J = 1.5 Hz), 1.83-2.19 (m, 2H), 7.38 (dd, 1H, J = 7.5, 0.8Hz), 7.52 (ddd, 1H, J = 7.5, 7.4, 0.8Hz), 7.68 (ddd, 1H, J = 7.5, 7.4, 1.1Hz), 7.88 (dd, 1H, J = 7.5, 0.8Hz)

化合物9(3−メチル−3−ヘキシルフタリド)の合成
窒素雰囲気下、200mL容量の4口フラスコ中、乾燥金属マグネシウム1.70g(69.9mmol)に乾燥THFを20mL加えた。室温で乾燥THF20mL中の臭化ヘキシル11.1g(67.0mmol)を10分間で滴下し、室温で10分間攪拌後、乾燥THF30mL中のo−アセチル安息香酸5.0g(30.5mmol)を10分間で滴下した。この溶液を60℃で2時間攪拌した後、室温で濃塩酸を20mL加え、100℃で1時間攪拌した。この反応溶液を水150mLに注いだ後、有機相を分離後、酢酸エチルで抽出し、飽和食塩水で洗浄後、濃縮した。副生成物として生じるヘキサノールを減圧蒸留で除き、残渣を、シリカゲルカラムクロマトグラフィーを用いて、展開液にヘキサン/酢酸エチル(30/1)を使用し、3−メチル−3−ヘキシルフタリドを5.70g(収率80.4%)得た。
Synthesis of Compound 9 (3-methyl-3-hexylphthalide) Under a nitrogen atmosphere, 20 mL of dry THF was added to 1.70 g (69.9 mmol) of dry metal magnesium in a 200 mL capacity four-necked flask. 11.1 g (67.0 mmol) of hexyl bromide in 20 mL of dry THF at room temperature was added dropwise over 10 minutes. After stirring for 10 minutes at room temperature, 5.0 g (30.5 mmol) of o-acetylbenzoic acid in 30 mL of dry THF was added. Dropped in minutes. The solution was stirred at 60 ° C. for 2 hours, 20 mL of concentrated hydrochloric acid was added at room temperature, and the mixture was stirred at 100 ° C. for 1 hour. The reaction solution was poured into 150 mL of water, the organic phase was separated, extracted with ethyl acetate, washed with saturated brine, and concentrated. Hexanol produced as a by-product was removed by distillation under reduced pressure, and the residue was subjected to silica gel column chromatography, hexane / ethyl acetate (30/1) was used as a developing solution, and 5-methyl-3-hexylphthalide was added to 5 .70 g (yield 80.4%) was obtained.

得られた化合物9の1H NMRデータ(CDCl3)δ:0.83(t,3H,J=6.9Hz)、1.19-1.33(br,8H)、1.64(s,3H)、1.74-2.11(m,2H)、7.37(dd,1H,J=7.5、1.0Hz)、7.50(ddd,1H,J=7.5、7.5,1.0Hz)、7.67(ddd,1H,J=7.5、7.5,1.0Hz)、7.67(ddd,1H,J=7.5、7.5,1.0Hz)、7.87(dd,1H,J=7.5、1.0Hz) 1 H NMR data (CDCl 3 ) δ of the obtained compound 9: 0.83 (t, 3H, J = 6.9 Hz), 1.19-1.33 (br, 8H), 1.64 (s, 3H), 1.74-2.11 (m, 2H), 7.37 (dd, 1H, J = 7.5, 1.0 Hz), 7.50 (ddd, 1H, J = 7.5, 7.5, 1.0 Hz), 7.67 (ddd, 1H, J = 7.5, 7.5, 1.0 Hz), 7.67 (ddd, 1H, J = 7.5, 7.5,1.0Hz), 7.87 (dd, 1H, J = 7.5, 1.0Hz)

化合物10(3,3−ジブチルフタリド)の合成
無水フタル酸1.48g(10mmol)のTHF溶液に、nBuMgCl試薬を3.22g(20mmol)滴下し、酸性化後、低沸成分を減圧蒸留で除去し、残渣をシリカゲルカラムクロマトグラフィーを用い、展開液にヘキサン/酢酸エチル(30/1)を使用し、3,3−ジブチルフタリドを1.48g(収率60.2%)得た。
Synthesis of Compound 10 (3,3-dibutylphthalide) 3.22 g (20 mmol) of nBuMgCl reagent was added dropwise to a THF solution of 1.48 g (10 mmol) of phthalic anhydride, and after acidification, the low boiling point component was distilled under reduced pressure. The residue was removed by silica gel column chromatography, and hexane / ethyl acetate (30/1) was used as a developing solution to obtain 1.48 g (yield 60.2%) of 3,3-dibutylphthalide.

得られた化合物10の1H NMRデータ(CDCl3)δ:0.85(t,6H,J=6.8Hz)、1.20-1.40(br,8H)、1.80-2.20(m,4H)、7.37(dd,1H,J=7.5、1.0Hz)、7.50(ddd,1H,J=7.5、7.5,1.0Hz)、7.67(ddd,1H,J=7.5、7.5,1.0Hz)、7.87(dd,1H,J=7.5、1.0Hz) 1 H NMR data (CDCl 3 ) δ of the obtained compound 10: 0.85 (t, 6H, J = 6.8 Hz), 1.20-1.40 (br, 8H), 1.80-2.20 (m, 4H), 7.37 (dd, 1H, J = 7.5, 1.0Hz), 7.50 (ddd, 1H, J = 7.5, 7.5, 1.0Hz), 7.67 (ddd, 1H, J = 7.5, 7.5, 1.0Hz), 7.87 (dd, 1H, J = (7.5, 1.0Hz)

化合物11(3−メチル−3−オクチルフタリド)の合成
窒素雰囲気下、200mL容量の4口フラスコ中、乾燥金属マグネシウム0.34g(14.0mmol)に乾燥THFを5mL加えた。室温で乾燥THF10mL中の臭化オクチル2.59g(13.4mmol)を10分間で滴下し、室温で10分間攪拌後、乾燥THF10mL中のo−アセチル安息香酸1.0g(6.09mmol)を10分間で滴下した。この溶液を60℃で1.5時間攪拌した後、室温で濃塩酸を10mL加え、100℃で2時間攪拌した。この反応溶液を水150mLに注いだ後、有機相を分離後、酢酸エチルで抽出し、飽和食塩水で洗浄後、濃縮した。副生成物として生じるオクタノールを減圧蒸留で除き、残渣を、シリカゲルカラムクロマトグラフィーを用いて、展開液にヘキサン/酢酸エチル(30/1)を使用し、3−メチル−3−オクチルフタリドを1.32g(収率83.2%)得た。
Synthesis of Compound 11 (3-methyl-3-octylphthalide) 5 mL of dry THF was added to 0.34 g (14.0 mmol) of dry metal magnesium in a 200 mL capacity four-necked flask under a nitrogen atmosphere. 2.59 g (13.4 mmol) of octyl bromide in 10 mL of dry THF at room temperature was added dropwise over 10 minutes. After stirring for 10 minutes at room temperature, 1.0 g (6.09 mmol) of o-acetylbenzoic acid in 10 mL of dry THF was added. Dropped in minutes. The solution was stirred at 60 ° C. for 1.5 hours, 10 mL of concentrated hydrochloric acid was added at room temperature, and the mixture was stirred at 100 ° C. for 2 hours. The reaction solution was poured into 150 mL of water, the organic phase was separated, extracted with ethyl acetate, washed with saturated brine, and concentrated. Octanol produced as a by-product was removed by distillation under reduced pressure, and the residue was subjected to silica gel column chromatography, hexane / ethyl acetate (30/1) was used as a developing solution, and 3-methyl-3-octylphthalide was 1 Obtained .32 g (yield 83.2%).

得られた化合物11の1H NMRデータ(CDCl3)δ:0.85(t,3H,J=6.8Hz)、1.20(br,12H)、1.64(s,3H)、1.74-2.09(m,2H)、7.37(dd,1H,J=7.5、1.0Hz)、7.50(ddd,1H,J=7.5、7.5,1.0Hz)、7.67(ddd,1H,J=7.5、7.5,1.0Hz)、7.87(dd,1H,J=7.5、1.0Hz) 1 H NMR data (CDCl 3 ) δ of the obtained compound 11: 0.85 (t, 3H, J = 6.8 Hz), 1.20 (br, 12H), 1.64 (s, 3H), 1.74-2.09 (m, 2H) 7.37 (dd, 1H, J = 7.5, 1.0Hz), 7.50 (ddd, 1H, J = 7.5, 7.5, 1.0Hz), 7.67 (ddd, 1H, J = 7.5, 7.5, 1.0Hz), 7.87 (dd , 1H, J = 7.5, 1.0Hz)

化合物12(3,3−ジイソペンチルフタリド)の合成
無水フタル酸1.48g(10mmol)のTHF溶液に、iPeMgCl試薬を3.86g(22mmol)滴下し、酸性化後、低沸成分を減圧蒸留で除去し、残渣を、シリカゲルカラムクロマトグラフィーを用いて、展開液にヘキサン/酢酸エチル(30/1)を使用し、3,3−ジブチルフタリドを1.86g(収率67.9%)得た。
Synthesis of Compound 12 (3,3-diisopentylphthalide) To a THF solution of 1.48 g (10 mmol) of phthalic anhydride, 3.86 g (22 mmol) of iPeMgCl reagent was dropped, and after acidification, the low boiling point component was reduced in pressure. The residue was removed by distillation, and silica gel column chromatography was used. Hexane / ethyl acetate (30/1) was used as a developing solution, and 1.86 g of 3,3-dibutylphthalide (yield 67.9%). )Obtained.

得られた化合物12の1H NMRデータ(CDCl3)δ:0.72(m,2H)、0.78(d,6H,J=6.6Hz)、0.80(d,6H,J=6.6Hz)、1.13(m,2H)、1.43(m,2H)、1.85(m,2H)、2.04(m,2H)、7.31(dd,1H,J=7.5、1.0Hz)、7.50(ddd,1H,J=7.5、7.5,1.0Hz)、7.65(ddd,1H,J=7.5、7.5,1.0Hz)、7.86(dd,1H,J=7.5、1.0Hz) 1 H NMR data (CDCl 3 ) δ of the obtained compound 12: 0.72 (m, 2H), 0.78 (d, 6H, J = 6.6 Hz), 0.80 (d, 6H, J = 6.6 Hz), 1.13 (m , 2H), 1.43 (m, 2H), 1.85 (m, 2H), 2.04 (m, 2H), 7.31 (dd, 1H, J = 7.5, 1.0Hz), 7.50 (ddd, 1H, J = 7.5, 7.5 , 1.0Hz), 7.65 (ddd, 1H, J = 7.5, 7.5, 1.0Hz), 7.86 (dd, 1H, J = 7.5, 1.0Hz)

試験例1:電位依存性カチオンチャネル阻害効果確認試験
1.嗅細胞の単離
アカハライモリより公知の方法(Kurahashiら, J. Physiol. (1989), 419: 177-192)に従って嗅細胞を単離し、正常リンガー液に浸した。単離方法を簡単に示すと、氷水中で冬眠状態にしたイモリにダブルピスを施し、頭蓋を切開し嗅粘膜を取り出す。取り出した嗅粘膜を0.1%コラゲナーゼ溶液中で37℃にて5分間インキュベートし、コラゲナーゼを洗い流したあと、ガラスピペットにて組織を粉砕し細胞を単離した。正常リンガー液としては、NaCl 110mM、KCl 3.7 mM、CaCl2 3 mM、MgCl2 1 mM、グルコース 15 mM、ピルビン酸ナトリウム 1 mM、HEPES 10 mM、フェノールレッド 0.001%(w/v)、pH 7.4(NaOHで調整)を用いた。
Test Example 1: Voltage-dependent cation channel inhibitory effect confirmation test Isolation of olfactory cells Olfactory cells were isolated according to a method known from Kakarai Mori (Kurahashi et al., J. Physiol. (1989), 419: 177-192) and immersed in normal Ringer's solution. To briefly show the isolation method, a double piss is applied to a newt hibernated in ice water, the skull is cut open, and the olfactory mucosa is removed. The removed olfactory mucosa was incubated in a 0.1% collagenase solution at 37 ° C. for 5 minutes to wash away the collagenase, and the tissue was crushed with a glass pipette to isolate cells. As normal Ringer's solution, NaCl 110 mM, KCl 3.7 mM, CaCl 2 3 mM, MgCl 2 1 mM, glucose 15 mM, sodium pyruvate 1 mM, HEPES 10 mM, phenol red 0.001% (w / v), pH 7.4 ( Adjusted with NaOH).

2.電気的活動の測定
〔A.設定〕 単離した嗅細胞を全細胞記録法により膜電位を固定し、膜電流の計測を行った(Kawaiら, J. Gen. Physiol. (1997), vol.109: 265-272)。電極は、ホウケイ酸ガラスキャピラリー(直径1.2mm)を用い、電極作成用プラー(P-97, SUTTER INSTRUMENT CO.)にて作製した(電極抵抗6.0MΩ前後)。電極内には、電極内溶液と銀塩化銀線を挿入し、銀塩化銀線はパッチクランプアンプ(EPC10, HEKA)と接続し、膜電位の固定、脱分極刺激を行った。
電極内溶液としては、CsCl 119 mM、HEPES 10 mM、CaCl2 1mM、EGTA 5mM、フェノールレッド 0.001%(w/v)、pH7.4(CsOHで調整)を用いた。
膜電流の記録は、パッチクランプアンプに接続したコンピュータ(IBM互換機)にて行い(Sampling frequency, 1kHz)、測定、解析にはPatch Masterソフトウェア(HEKA)を用いた。試験物質の添加(吹きかけ)には、圧力制御装置を用いた。
圧力制御装置とは、エアーコンプレッサーより送り込まれた圧縮空気を、コンピューター制御にて任意の圧力まで減圧し、設定した時間、その圧縮空気を、試験物質を充填したガラスピペット尾部へ送り込む装置である(Itoら、日本生理学雑誌, 1995,vol.57,127-133)。
2. Measurement of electrical activity [A. Setting] Membrane currents were measured after the isolated olfactory cells were fixed by whole cell recording (Kawai et al., J. Gen. Physiol. (1997), vol. 109: 265-272). The electrode was prepared using a borosilicate glass capillary (diameter 1.2 mm) with an electrode creation puller (P-97, SUTTER INSTRUMENT CO.) (Electrode resistance around 6.0 MΩ). The electrode solution and silver-silver chloride wire were inserted into the electrode, and the silver-silver chloride wire was connected to a patch clamp amplifier (EPC10, HEKA) to fix the membrane potential and stimulate depolarization.
As the solution in the electrode, CsCl 119 mM, HEPES 10 mM, CaCl 2 1 mM, EGTA 5 mM, phenol red 0.001% (w / v), pH 7.4 (adjusted with CsOH) were used.
The membrane current was recorded by a computer (IBM compatible machine) connected to a patch clamp amplifier (Sampling frequency, 1 kHz), and Patch Master software (HEKA) was used for measurement and analysis. A pressure control device was used for the addition (spraying) of the test substance.
The pressure control device is a device that decompresses compressed air sent from an air compressor to an arbitrary pressure by computer control, and sends the compressed air to a glass pipette tail filled with a test substance for a set time ( Ito et al., Physiological Journal of Japan, 1995, vol.57, 127-133).

〔B.手順〕 試験物質(ブチルフタリド)による電位依存性カチオンチャネル活性への影響を調べるため、単離した嗅細胞の膜電位を−90mVに固定し、200ミリ秒間隔で20ミリ秒間、膜電位を−20mVへ脱分極させ、脱分極直後に生じる内向き電流のピーク強度(図1、|a|=〔脱分極直後に生じる内向き電流値〕−〔ベースライン値〕)を測定した。脱分極刺激を繰り返し続けながら、試験物質(2%溶液/溶媒:エタノール)を、正常リンガー液1mLあたり20または5μLの量で混合し、嗅細胞近傍(10μm)に先端が来るようにセットしたガラスピペット(先端口径1μm)を通じて吹きかけることにより(650ミリ秒間、圧力100kPa及び50kPa)嗅細胞に添加し、それに伴う内向き電流の変化(図1、|b|=〔ピーク強度が最も抑制されたときの内向き電流値〕−〔ベースライン値〕)を調べた。この吹きかけを5回連続して行った。さらに、エキス添加直前の脱分極によって生じた内向き電流のピーク強度(a)の平均値Aを、エキス添加直後の脱分極によって生じた内向き電流のピーク強度(b)の平均値Bを算出した。   [B. Procedure] In order to investigate the influence of the test substance (butylphthalide) on the voltage-dependent cation channel activity, the membrane potential of the isolated olfactory cells was fixed at -90 mV, and the membrane potential was -20 mV for 20 milliseconds at 200 millisecond intervals. The peak intensity of the inward current generated immediately after depolarization (FIG. 1, | a | = [inward current value generated immediately after depolarization] − [baseline value]) was measured. A glass in which the test substance (2% solution / solvent: ethanol) is mixed in an amount of 20 or 5 μL per mL of normal Ringer solution while the depolarization stimulation is repeated, and is set so that the tip comes near the olfactory cell (10 μm) Added to olfactory cells by spraying through a pipette (tip diameter 1 μm) (650 milliseconds, pressures 100 kPa and 50 kPa), and accompanying inward current change (FIG. 1, | b | = [when peak intensity is most suppressed) Inward current value]-[baseline value]). This spraying was performed 5 times in succession. Further, the average value A of the inward current peak intensity (a) generated by depolarization immediately before the addition of the extract is calculated, and the average value B of the inward current peak intensity (b) generated by depolarization immediately after the addition of the extract is calculated. did.

尚、試験中、稀に試験物質添加に伴い、嗅覚受容体が応答し、CNGチャネルに由来する内向き電流が観察される場合が起きるが、このようなケースは除外した。このケースは、試験物質が試験に用いた嗅細胞上の嗅覚受容体のアゴニストとして作用することにより生じたと考えられる。CNGチャネル電流は、その強度、ピーク形状、持続時間などから電位依存性チャネル電流と容易に区別することができる。   During the test, the olfactory receptor responds rarely with the addition of the test substance, and an inward current derived from the CNG channel is observed, but this case was excluded. This case is thought to be caused by the test substance acting as an agonist of the olfactory receptor on the olfactory cells used in the test. The CNG channel current can be easily distinguished from the voltage-dependent channel current due to its strength, peak shape, duration, and the like.

ブチルフタリドを他のフタリド類縁体に代え、新たな嗅細胞を用いて、この測定を同様にして行った。   This measurement was performed in the same manner using new olfactory cells, replacing butylphthalide with other phthalide analogs.

〔D.結果〕 以下の式で、「B:ピーク強度が最も抑制されたときの内向き電流値(b)の平均値」及び「A:試験物質添加直前の脱分極直後に生じる内向き電流値(a)の平均値」から「内向き電流抑制率(%)」を算出し、この結果をもとに、各試験物質添加による電位依存性カチオンチャネルの電気的活動に対する抑制能を評価した。なお、内向き電流抑制率が高い成分ほど、電位依存性カチオンチャネル阻害効果が高いものとなる。   [D. Results] In the following equations, “B: average value of inward current value (b) when peak intensity is most suppressed” and “A: inward current value generated immediately after depolarization immediately before addition of test substance (a ) "Inward current inhibition rate (%)" was calculated from the "average value", and based on this result, the ability to inhibit the electrical activity of the voltage-dependent cation channel by the addition of each test substance was evaluated. In addition, a component with a higher inward current suppression rate has a higher potential-dependent cation channel inhibition effect.

内向き電流抑制率(%)=〔1−(A/B)〕×100   Inward current suppression rate (%) = [1- (A / B)] × 100

各フタリド類縁体の内向き電流抑制率を図2及び3に示す。   The inward current suppression rate of each phthalide analog is shown in FIGS.

参考例:電位依存性チャネル阻害作用とマスキング効果との相関関係
図4及び表2に示すように、内向き電流抑制率(%)とマスキングスコアとに相関関係が認められたので、電位依存性カチオンチャネル阻害作用の強い成分は不快臭のマスキング素材として有用である。
Reference example: Correlation between voltage-dependent channel inhibitory action and masking effect As shown in FIG. 4 and Table 2, there is a correlation between the inward current inhibition rate (%) and the masking score, so there is a potential dependence. A component having a strong cation channel inhibitory action is useful as a masking material for unpleasant odors.

〔官能評価試験〕
官能評価の嗅覚マスキング試験をパネラー20名に対して実施した。悪臭物質として1%イソ吉草酸を、対照として悪臭に対する嗅覚感度低下効果が知られている1,8−シネオールを用いた。
悪臭2μLと、表2に示す0.1%濃度の評価化合物の試験溶液 4μLを別々の綿球(直径1cm)にしみこませ、別々の50mL注射筒内で12時間、室温で揮発させた。注射筒内で気化したイソ吉草酸と評価化合物をフタ付きのPP容器(容積500mL)内へ注入し、混和させた。
評価は、パネラー自身がPP容器のフタをわずかに開け、容器内の匂いを嗅ぎ、イソ吉草酸の匂いに対するマスキング強度を判定した。
マスキング強度の評価は、気化したイソ吉草酸のみを注入したPP容器内の臭気強度と比較し、以下の6段階のマスキングスコアにより行った。この結果を表2に示した。
[Sensory evaluation test]
An olfactory masking test for sensory evaluation was performed on 20 panelists. As a malodorous substance, 1% isovaleric acid was used, and as a control, 1,8-cineole, which is known to have an effect of reducing olfactory sensitivity to malodor, was used.
2 μL of bad odor and 4 μL of the test solution of the evaluation compound having a concentration of 0.1% shown in Table 2 were soaked in separate cotton balls (diameter 1 cm) and volatilized at room temperature for 12 hours in separate 50 mL syringes. The isovaleric acid vaporized in the syringe and the evaluation compound were poured into a PP container (capacity 500 mL) with a lid and mixed.
In the evaluation, the paneler himself opened the lid of the PP container slightly, sniffed the smell in the container, and judged the masking strength against the smell of isovaleric acid.
The masking strength was evaluated by comparing the odor strength in the PP container into which only vaporized isovaleric acid was injected, and the following six levels of masking score. The results are shown in Table 2.

0:マスキングされていない
1:マスキング効果がごくわずかに認められる
2:マスキング効果がやや認められる
3:マスキング効果が十分認められる
4:ほとんどマスキングされている
5:完全にマスキングされている
0: Not masked 1: Slight masking effect 2: Slight masking effect 3: Sufficient masking effect 4: Almost masked 5: Completely masked

Figure 2011201818
Figure 2011201818

Claims (5)

下記式(1)
Figure 2011201818
〔環Aは、飽和、一部不飽和又は完全な不飽和の6員環を示し、Xは、C=CH−R1(ここで、R1は炭素数1〜12のアルキル基を示す)、又はCR23(ここで、R2は炭素数1〜12のアルキル基を示し、R3は水素原子又は炭素数1〜5のアルキル基を示す)を示し、R4及びR5はそれぞれ同一又は異なって水素原子又は水酸基を示す。〕で表されるフタリド類縁体を有効成分とする電位依存性カチオンチャネル阻害剤。
Following formula (1)
Figure 2011201818
[Ring A represents a saturated, partially unsaturated or completely unsaturated 6-membered ring, and X represents C═CH—R 1 (wherein R 1 represents an alkyl group having 1 to 12 carbon atoms) Or CR 2 R 3 (wherein R 2 represents an alkyl group having 1 to 12 carbon atoms, R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms), and R 4 and R 5 represent Each is the same or different and represents a hydrogen atom or a hydroxyl group. ] The voltage-dependent cation channel inhibitor which uses the phthalide analog represented by this as an active ingredient.
前記R1及びR2が炭素数3〜8の直鎖アルキル基である請求項1記載の電位依存性カチオンチャネル阻害剤。 The voltage-gated cation channel inhibitor according to claim 1, wherein R 1 and R 2 are linear alkyl groups having 3 to 8 carbon atoms. 前記R3が水素原子である請求項1又は2記載の電位依存性カチオンチャネル阻害剤。 The voltage-gated cation channel inhibitor according to claim 1 or 2, wherein R 3 is a hydrogen atom. 前記R4及びR5がそれぞれ水素原子であるか、もしくはそれぞれ水酸基である請求項1〜3の何れか1項記載の電位依存性カチオンチャネル阻害剤。 The voltage-dependent cation channel inhibitor according to any one of claims 1 to 3, wherein each of R 4 and R 5 is a hydrogen atom or a hydroxyl group. 前記フタリド類縁体が、3−ブチルフタリド、3−オクチルフタリド、3−ブチリデンフタリド、セダノリド、センキュノリドH又はセンキュノリドIである請求項1〜4の何れか1項記載の電位依存性カチオンチャネル阻害剤。   The voltage-dependent cation channel inhibitor according to any one of claims 1 to 4, wherein the phthalide analog is 3-butylphthalide, 3-octylphthalide, 3-butylidenephthalide, sedanolide, sencunolide H, or sencunolide I. .
JP2010071645A 2010-03-26 2010-03-26 Potential-dependent cation channel inhibitor Withdrawn JP2011201818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010071645A JP2011201818A (en) 2010-03-26 2010-03-26 Potential-dependent cation channel inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071645A JP2011201818A (en) 2010-03-26 2010-03-26 Potential-dependent cation channel inhibitor

Publications (1)

Publication Number Publication Date
JP2011201818A true JP2011201818A (en) 2011-10-13

Family

ID=44878884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071645A Withdrawn JP2011201818A (en) 2010-03-26 2010-03-26 Potential-dependent cation channel inhibitor

Country Status (1)

Country Link
JP (1) JP2011201818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105330631A (en) * 2015-10-21 2016-02-17 济南诚汇双达化工有限公司 Method used for preparing n-butylphathlide via one pot method
CN108912132A (en) * 2018-07-20 2018-11-30 成都苑东生物制药股份有限公司 A method of preparing 7- butyl furans simultaneously [3,4-b] pyridine -5 (7H) -one
CN111377893A (en) * 2018-12-29 2020-07-07 江苏先声药业有限公司 Synthetic method of 3-n-butyl-l (3H) -isobenzofuranone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105330631A (en) * 2015-10-21 2016-02-17 济南诚汇双达化工有限公司 Method used for preparing n-butylphathlide via one pot method
CN108912132A (en) * 2018-07-20 2018-11-30 成都苑东生物制药股份有限公司 A method of preparing 7- butyl furans simultaneously [3,4-b] pyridine -5 (7H) -one
CN111377893A (en) * 2018-12-29 2020-07-07 江苏先声药业有限公司 Synthetic method of 3-n-butyl-l (3H) -isobenzofuranone
CN111377893B (en) * 2018-12-29 2023-10-20 江苏先声药业有限公司 Synthesis method of 3-n-butyl-l (3H) -isobenzofuranone

Similar Documents

Publication Publication Date Title
CN102482249A (en) Tofa analogs useful in treating dermatological disorders or conditions
JP2009079038A (en) Use of natural egfr inhibitor to prevent side effect due to retinoid therapy, soap, and other stimuli that activate the epidermal growth receptor
KR20130040854A (en) Expression modulator for clock gene period
EP3061448B1 (en) Composition containing eugenol as active ingredient for preventing or treating atopic dermatitis
TWI250872B (en) Carbamate compounds for use in preventing or treating bipolar disorder
JP2011201818A (en) Potential-dependent cation channel inhibitor
CN107405329B (en) Composition for improving circadian rhythm
RU2738648C2 (en) Using the compound for treating chronic anxiety or acute anxiety
US11324706B2 (en) Composition for inhibiting growth of breast cancer stem cells containing phenylacetaldehyde
JP5581120B2 (en) Voltage-gated cation channel inhibitor
US8481016B2 (en) Method for inhibition of potential-dependent cation channel
JPH10175854A (en) External preparation for skin for improving water (of chinese medicine idea)
JP7091572B2 (en) Compositions and Limonoids Characterized by Promotion of Collagen Production
JP5923375B2 (en) CGRP response promoter
JP5392742B2 (en) Melanin production inhibitor
EP2120855A2 (en) Use of chroman-4-on-derivatives
JP5733909B2 (en) Voltage-gated cation channel inhibitor
JP2007031302A (en) Adiponectin production accelerator and metabolic syndrome preventive
JP2013184921A (en) Expression modulator for clock gene
CN104262302B (en) L-AA-6-(E-2-decylenic acid) ester or derivatives thereof and their application
JP2013147475A (en) Cation channel inhibitor and olfactory desensitizer composition including the same
JP2013249293A (en) Lipase activity inhibitor, antifungal agent, and dandruff inhibitor
JP2009269903A (en) Voltage-gated cation channel inhibitor
CN104177318A (en) L-ascorbic acid-6-(10-hydroxyl-2-caproleic acid) esters or derivatives thereof and application of esters or derivatives
JP5925606B2 (en) Antifungal agent and antidandruff agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130903