JP2011201770A - Method for producing valuable substance from waste liquid - Google Patents

Method for producing valuable substance from waste liquid Download PDF

Info

Publication number
JP2011201770A
JP2011201770A JP2011115371A JP2011115371A JP2011201770A JP 2011201770 A JP2011201770 A JP 2011201770A JP 2011115371 A JP2011115371 A JP 2011115371A JP 2011115371 A JP2011115371 A JP 2011115371A JP 2011201770 A JP2011201770 A JP 2011201770A
Authority
JP
Japan
Prior art keywords
sodium
waste liquid
hydrofluoric acid
acid
silicofluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011115371A
Other languages
Japanese (ja)
Other versions
JP5495392B2 (en
Inventor
Mutsuhiro Tanaka
睦浩 田中
Kenji Yamada
憲侍 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morita Kagaku Kogyo Co Ltd
Shinko Pantec Co Ltd
Original Assignee
Morita Kagaku Kogyo Co Ltd
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morita Kagaku Kogyo Co Ltd, Kobelco Eco Solutions Co Ltd filed Critical Morita Kagaku Kogyo Co Ltd
Priority to JP2011115371A priority Critical patent/JP5495392B2/en
Publication of JP2011201770A publication Critical patent/JP2011201770A/en
Application granted granted Critical
Publication of JP5495392B2 publication Critical patent/JP5495392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Silicon Compounds (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce sodium silicofluoride by using, as a raw material, hydrosilicofluoric acid contained in a fluorine-based waste liquid or generated in a treating process of the fluorine-based waste liquid.SOLUTION: Sodium silicofluoride is produced by reacting hydrosilicofluoric acid contained in a fluorine-based waste liquid with a sodium compound or by reacting hydrosilicofluoric acid formed by the reaction of hydrogen fluoride contained in the fluorine-based waste liquid with a silicon oxide compound, with the sodium compound. It is possible to produce sodium silicofluoride having a quality at an industrial chemical level.

Description

本発明は、フッ素系廃液に含まれる、或いはフッ素系廃液の処理過程で発生するケイフッ化水素酸を原料として、工業用薬品として有用なケイフッ化ナトリウムを製造する方法に関するものである。   The present invention relates to a method for producing sodium silicofluoride useful as an industrial chemical, using hydrosilicofluoric acid contained in a fluorine-based waste liquid or generated in the process of treatment of a fluorine-based waste liquid as a raw material.

半導体製造産業、液晶製造産業、及び太陽電池製造産業等の産業では、ケイ素化合物のエッチングやケイ素基盤洗浄等の工程において、多量のフッ化水素酸が、単独或いは塩酸等の酸と適当な比率で混合された混酸として使用されている。それに伴い、使用後のフッ素系廃液量も増加しており、地球環境保全及び資源の有効利用の観点からその適切な処理が望まれている。そして、その処理も産業廃棄物として処理するのではなく、フッ素資源の有効利用のため、その廃液を原料として使用し、工業薬品を製造する方法の確立が求められている。 In industries such as the semiconductor manufacturing industry, the liquid crystal manufacturing industry, and the solar cell manufacturing industry, a large amount of hydrofluoric acid alone or in an appropriate ratio with acids such as hydrochloric acid is used in processes such as etching of silicon compounds and cleaning of silicon substrates. Used as a mixed acid. Along with this, the amount of fluorinated waste liquid after use has also increased, and appropriate treatment is desired from the viewpoint of global environmental conservation and effective use of resources. And the treatment is not treated as industrial waste, but establishment of a method for producing industrial chemicals using the waste liquid as a raw material is required for effective utilization of fluorine resources.

フッ素系廃液の廃物の負荷を軽減するためのいくつかの方法が報告されている。その例として、ケイ素を含む場合、難溶性のケイフッ化ナトリウムを生成するナトリウム化合物やカリウム化合物を加え、ケイフッ化ナトリウムやケイフッ化カリウムとして取り除き、処理後の液をガラスのケミカルエッチング剤として再利用する方法がある(例えば、特許文献1参照)。   Several methods have been reported to reduce the waste load of fluorinated effluents. As an example, when silicon is included, a sodium compound or potassium compound that forms poorly soluble sodium silicofluoride is added, removed as sodium silicofluoride or potassium silicofluoride, and the treated liquid is reused as a chemical etchant for glass. There exists a method (for example, refer patent document 1).

また、ガラスのケミカルエッチング廃液に対して、まずナトリウム化合物やカリウム化合物を加えて廃液中のケイフッ化水素酸及びホウフッ化水素酸を難溶性のケイフッ化ナトリウムまたはホウフッ化物として固定化処理した後、カルシウム塩を加えてフッ素を固定化するか、ホウフッ化物を含有する場合はあらかじめアルミニウム化合物を加えてホウフッ化物をホウ酸とフッ化物に分解した後、カルシウム塩を加えてフッ素の固定化処理を行う方法がある(例えば、特許文献2参照)。   In addition, after adding sodium compound and potassium compound to the chemical etching waste liquid of glass and fixing the hydrofluoric acid and borofluoric acid in the waste liquid as hardly soluble sodium silicofluoride or borofluoride, calcium A method of immobilizing fluorine by adding salt or, if borofluoride is contained, adding an aluminum compound in advance to decompose borofluoride into boric acid and fluoride, and then adding calcium salt to fix the fluorine (See, for example, Patent Document 2).

しかしながら、これらの方法は、ケイフッ化物の製造に関して、操作の手順、原料化合物の選定、原料化合物の量、原料化合物の投入方法等、工業的製法として必要な条件については検討されていない。
したがって、これらの方法で回収したケイフッ化ナトリウムは、廃水の処理過程でフッ素を除去するための方法において発生した産業廃棄物であって、かなり純度が低く工業用薬品としての価値は極めて低い。
However, these methods have not been examined for the conditions necessary for industrial production, such as operation procedures, selection of raw material compounds, amount of raw material compounds, input method of raw material compounds, etc. with respect to the production of silicofluoride.
Therefore, sodium silicofluoride recovered by these methods is an industrial waste generated in a method for removing fluorine in the treatment process of wastewater, and has a very low purity and extremely low value as an industrial chemical.

特許第3623663号公報Japanese Patent No. 3623663

特許第3635643号公報Japanese Patent No. 36356643

本発明は、半導体製造産業、液晶製造産業、及び太陽電池製造産業等の産業から排出されるフッ素系廃液に含まれる、或いはフッ素系廃液の処理過程で発生するケイフッ化水素酸を原料として、工業薬品として有用なケイフッ化ナトリウムを製造する方法を提供することを目的とするものである。   The present invention is based on hydrofluoric acid contained in fluorine waste liquid discharged from industries such as semiconductor manufacturing industry, liquid crystal manufacturing industry, and solar cell manufacturing industry, or generated in the process of processing fluorine waste liquid. It aims at providing the method of manufacturing sodium silicofluoride useful as a chemical | medical agent.

フッ素系廃液に含まれるケイフッ化水素酸については、例えば、特許文献2に記載されているように、ケイフッ化水素酸はナトリウム化合物で処理することにより難溶性のケイフッ化ナトリウムとして分離できるが、フッ素系廃液には、消費されなかったフッ化水素酸を多量に含有しているので、ナトリウム化合物で処理したときにフッ化ナトリウムや酸性フッ化ナトリウムが生成するため、この方法では、工業薬品レベルの品位のケイフッ化ナトリウムを製造することは困難である。   As for hydrosilicofluoric acid contained in the fluorine-based waste liquid, for example, as described in Patent Document 2, hydrosilicic acid can be separated as hardly soluble sodium silicofluoride by treatment with a sodium compound. Since the system waste liquid contains a large amount of hydrofluoric acid that has not been consumed, sodium fluoride and sodium acid fluoride are produced when it is treated with a sodium compound. It is difficult to produce high grade sodium fluorosilicate.

したがって、前記特許文献記載の方法はあくまでも廃液中のフッ素を除去するための方法に過ぎず、ケイフッ化ナトリウムを製造する方法には適さない。   Therefore, the method described in the above-mentioned patent document is only a method for removing fluorine in the waste liquid and is not suitable for a method for producing sodium silicofluoride.

本発明者等は、鋭意研究の結果、フッ素系廃液に含まれる、或いはフッ素系廃液の処理過程で発生するケイフッ化水素酸を原料として、工業用薬品として有用なケイフッ化ナトリウムを製造する方法を見出した。すなわち、フッ素系廃液に含まれる、或いはフッ素系廃液の処理過程で発生するケイフッ化水素酸を原料として、工業用薬品レベルの品位のケイフッ化ナトリウムを製造するための、操作の手順、原料化合物の選定、原料化合物の量、原料化合物の投入方法について種々検討し、工業的に確立し得る方法を完成するに至った。   As a result of intensive research, the present inventors have developed a method for producing sodium silicofluoride useful as an industrial chemical, using hydrosilicofluoric acid contained in the fluorine-based waste liquid or generated in the treatment process of the fluorine-based waste liquid as a raw material. I found it. That is, an operation procedure for producing sodium silicofluoride of a grade of industrial chemicals using hydrosilicofluoric acid contained in a fluorine-based waste liquid or generated in the process of treating a fluorine-based waste liquid as a raw material, Various studies were made on selection, the amount of raw material compound, and the method of charging the raw material compound, and a method that can be established industrially has been completed.

本発明は、フッ素系廃液に含まれる、或いはフッ素系廃液に含まれるフッ化水素を酸化珪素化合物と反応させる過程で発生するケイフッ化水素酸をナトリウム化合物と反応させることによって、ケイフッ化ナトリウムを製造する方法に関するものである。   The present invention produces sodium silicofluoride by reacting hydrofluoric acid contained in fluorine waste liquid or in the process of reacting hydrogen fluoride contained in fluorine waste liquid with a silicon oxide compound with a sodium compound. It is about how to do.

以下に、本発明について、詳細に説明する。   The present invention is described in detail below.

フッ素系廃液中に含まれるケイフッ化水素酸は、ナトリウム化合物と反応させケイフッ化ナトリウムとすることができるが、フッ化水素酸が共存する場合、ケイフッ化ナトリウムを製造する過程で、ナトリウム化合物と反応し、フッ化ナトリウムや酸性フッ化ナトリウムが生成するのでケイフッ化ナトリウムの純度が低減する。したがって、フッ化水素酸は酸化ケイ素化合物と反応させてケイフッ化水素酸に変換しておかなければならない。使用する酸化ケイ素化合物としては、二酸化ケイ素、一酸化ケイ素、及びケイ酸ナトリウムを挙げることができる。   Hydrofluorosilicic acid contained in the fluorine-based waste liquid can be reacted with a sodium compound to form sodium silicofluoride, but when hydrofluoric acid coexists, it reacts with the sodium compound in the process of producing sodium silicofluoride. In addition, since sodium fluoride and sodium acid fluoride are produced, the purity of sodium silicofluoride is reduced. Therefore, hydrofluoric acid must be converted to silicohydrofluoric acid by reacting with the silicon oxide compound. Examples of the silicon oxide compound used include silicon dioxide, silicon monoxide, and sodium silicate.

そして、本発明の目的であるケイフッ化ナトリウムを製造するためには、反応させる酸化ケイ素化合物のケイ素のモル数がフッ化水素酸のモル数に対して0.20から0.33倍であればよい。 And in order to manufacture the sodium silicofluoride which is the object of the present invention, if the number of moles of silicon of the silicon oxide compound to be reacted is 0.20 to 0.33 times the number of moles of hydrofluoric acid Good.

Figure 2011201770
Figure 2011201770

これは、酸化ケイ素化合物として二酸化ケイ素の一例である式(1)に示す酸化ケイ素化合物とフッ化水素酸の反応において、酸化ケイ素化合物を過剰にして化学平衡をケイフッ化水素酸の生成方向へ促進させるためである。   This is an example of silicon dioxide as a silicon oxide compound. In the reaction of the silicon oxide compound shown in Formula (1) with hydrofluoric acid, the silicon oxide compound is excessive to promote the chemical equilibrium toward the production of silicofluoric acid. This is to make it happen.

なお、酸化ケイ素化合物のケイ素のモル数が、フッ化水素酸のモル数に対して、0.20倍以下であると、フッ化水素酸を完全にケイフッ化水素酸に変換できない。0.33倍以上の場合は経済的でない。   Note that when the number of moles of silicon in the silicon oxide compound is 0.20 times or less with respect to the number of moles of hydrofluoric acid, hydrofluoric acid cannot be completely converted to silicofluoric acid. If it is 0.33 times or more, it is not economical.

実際には、合成槽中において廃液を攪拌しながら、酸化ケイ素化合物を添加していき、フッ化水素酸を酸化ケイ素化合物と反応させてケイフッ化水素酸とし、過剰の酸化ケイ素化合物はろ過して除去する。   In practice, while stirring the waste liquid in the synthesis tank, the silicon oxide compound is added, hydrofluoric acid is reacted with the silicon oxide compound to form silicohydrofluoric acid, and the excess silicon oxide compound is filtered. Remove.

次に、前記の方法で調整した液にナトリウム化合物を添加し、ケイフッ化ナトリウムを合成する。ナトリウム化合物としては、水酸化ナトリウム、炭酸ナトリウム、及び炭酸水素ナトリウムが使用できる。ナトリウム化合物の添加方法は、固体の状態で投入してもよいが、適当な濃度の水溶液にして添加する方が、反応を制御しやすい。   Next, a sodium compound is added to the liquid prepared by the above method to synthesize sodium fluorosilicate. As the sodium compound, sodium hydroxide, sodium carbonate, and sodium hydrogen carbonate can be used. The sodium compound may be added in a solid state, but the reaction can be easily controlled by adding an aqueous solution having an appropriate concentration.

廃液とナトリウム化合物の投入は、全量を一度に行ってもよいが、ケイフッ化ナトリウムの析出と分離を何回かに分けながら段階的に行ってもよい。また、ナトリウム化合物の投入量は、フッ素系廃液には、塩酸やホウフッ化水素のような他の種類の酸も含まれている場合もあり、ケイフッ化ナトリウムを収率よく回収するためには、ケイフッ化水素酸のモル数に対し、2.10から3.30倍が最適である。   The waste liquid and the sodium compound may be added all at once, or may be performed step by step while separating and separating sodium silicofluoride several times. In addition, the amount of sodium compound input may include other types of acids such as hydrochloric acid and borofluoride in the fluorine-based waste liquid. In order to recover sodium silicofluoride in a high yield, The optimum is 2.10 to 3.30 times the number of moles of hydrofluoric acid.

また、ナトリウム化合物の投入量は、ナトリウム化合物に含まれるナトリウムのモル数でケイフッ化水素酸のモル数に対し、2.10〜3.30倍投入する。これは、本発明の目的であるケイフッ化ナトリウムを得るためには、式(2)で示す反応についてナトリウム化合物を過剰に添加することで、ケイフッ化ナトリウムが生成される方へ促進させるためである。ナトリウム化合物添加量がケイフッ化水素酸のモル数に対し2.10倍を下回ると、ケイフッ化水素酸をケイフッ化ナトリウムとして完全に回収できない。また、3.30倍を上回ることは、経済的でない。   The sodium compound is added in an amount of 2.10 to 3.30 times the number of moles of sodium hydrofluoric acid in terms of the number of moles of sodium contained in the sodium compound. This is because in order to obtain sodium silicofluoride which is the object of the present invention, the sodium compound is excessively added to the reaction represented by the formula (2) to promote sodium silicofluoride to be produced. . If the amount of sodium compound added is less than 2.10 times the number of moles of silicofluoric acid, the hydrosilicofluoric acid cannot be completely recovered as sodium silicofluoride. Moreover, exceeding 3.30 times is not economical.

Figure 2011201770
Figure 2011201770

なお、ナトリウム化合物は、廃液中にホウフッ化水素酸が含まれる場合、ホウフッ化ナトリウムを生成させるが、投入量がそれに含まれるナトリウムのモル数でケイフッ化水素酸のモル数に対し、2.10〜3.30倍であれば、十分溶解し結晶となって析出はしない。   The sodium compound generates sodium borofluoride when the waste liquid contains borohydrofluoric acid. However, the amount of sodium compound contained in the waste liquid is 2.10 with respect to the number of moles of sodium hydrofluoric acid. If it is -3.30 time, it melt | dissolves sufficiently and becomes a crystal | crystallization and does not precipitate.

ケイフッ化ナトリウムを合成するとき、反応温度を35〜70℃の間で調整すると、35℃未満の場合と比較してケイフッ化ナトリウムの高純度で大きな結晶が得られるので、ケイフッ化ナトリウムを遠心分離機等のろ過器で反応液と分離する作業が円滑になり、工業的製法としてより有利になる。また、反応温度が70℃以上になると、反応液からケイフッ化水素酸が蒸発することや熱エネルギーを過剰に加えることになり、現実的ではない。さらに反応温度の調整は、反応装置を加熱して制御してもよいが、ナトリウム化合物の水溶液を反応温度が35〜70℃になるように予め加熱して投入すると、より結晶が大きく成長するので有利である。   When synthesizing sodium silicofluoride, if the reaction temperature is adjusted between 35 and 70 ° C., large crystals of sodium silicofluoride with high purity can be obtained compared to the case of less than 35 ° C. The operation of separating the reaction solution with a filter such as a machine becomes smooth, which is more advantageous as an industrial production method. On the other hand, when the reaction temperature is 70 ° C. or higher, the hydrofluoric acid is evaporated from the reaction solution or excessive heat energy is added, which is not realistic. Further, the reaction temperature may be adjusted by heating the reaction apparatus, but if an aqueous solution of sodium compound is previously heated and added so that the reaction temperature is 35 to 70 ° C., crystals grow larger. It is advantageous.

以上の発明によって製造したケイフッ化ナトリウムは、遠心ろ過機のようなろ過機で分離した後、乾燥して製品とする。   The sodium silicofluoride produced by the above invention is separated by a filter such as a centrifugal filter and then dried to obtain a product.

請求項1記載の発明によれば、半導体製造産業、液晶製造産業、及び太陽電池製造産業等の産業から排出されるフッ素系廃液に含まれる、或いはフッ素系廃液の処理過程で発生するケイフッ化水素酸を原料として、工業用薬品であるケイフッ化ナトリウムを製造することができ、地球環境保護及び限られた資源の有効利用に益するところ大である。   According to the first aspect of the present invention, hydrogen silicofluoride contained in a fluorine-based waste liquid discharged from industries such as the semiconductor manufacturing industry, the liquid crystal manufacturing industry, and the solar cell manufacturing industry, or generated during the treatment of the fluorine-based waste liquid. Using acid as a raw material, it is possible to produce sodium silicofluoride, which is an industrial chemical, which is great for the protection of the global environment and the effective use of limited resources.

請求項2記載の発明によれば、廃液に含まれるフッ化水素酸を、酸化ケイ素化合物である二酸化ケイ素、一酸化ケイ素、ケイ酸ナトリウムとのいずれかと反応させ、予めケイフッ化水素酸に変換することで、ケイフッ化水素酸を製造することができる。   According to the invention described in claim 2, hydrofluoric acid contained in the waste liquid is reacted with any one of silicon dioxide, silicon monoxide, and sodium silicate, which is a silicon oxide compound, and converted into silicohydrofluoric acid in advance. Thus, silicohydrofluoric acid can be produced.

請求項3記載の発明によれば、廃液に含まれるフッ化水素酸と酸化ケイ素化合物である二酸化ケイ素、一酸化ケイ素、ケイ酸ナトリウムのいずれかを、酸化ケイ素化合物のケイ素のモル数がフッ化水素酸のモル数に対して0.20から0.33倍で反応させることで、ケイフッ化水素酸を製造することができる。   According to the third aspect of the present invention, any one of hydrofluoric acid and silicon oxide compound silicon dioxide, silicon monoxide, and sodium silicate contained in the waste liquid is fluorinated. By reacting with 0.20 to 0.33 times the number of moles of hydroacid, hydrofluoric acid can be produced.

請求項4記載の発明によれば、ナトリウム化合物である水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムのいずれかを、ケイフッ化水素酸のモル数の2.10から3.30倍で反応させることでケイフッ化ナトリウムの製造ができる。   According to invention of Claim 4, any one of sodium hydroxide which is a sodium compound, sodium carbonate, and sodium hydrogencarbonate is made to react by 2.10 to 3.30 times the mole number of silicofluoric acid. Sodium silicofluoride can be produced.

請求項5の発明によれば、反応温度を35〜70℃の間で調整するか、あるいは、ナトリウム化合物の水溶液をあらかじめ加熱して投入して反応温度が35〜70℃になるように調整することにより、ケイフッ化ナトリウムの製造を可能にすることができる。   According to the invention of claim 5, the reaction temperature is adjusted between 35 and 70 ° C., or an aqueous solution of sodium compound is previously heated and adjusted so that the reaction temperature becomes 35 to 70 ° C. This makes it possible to produce sodium silicofluoride.

以下に、本発明の実施例を詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。   Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.

(実施例1)
フッ素系廃液処理工程から得られた、フッ化水素酸5.50重量%を含む廃液400kgを原水とし、1mのポリエチレン容器に取った。これにフッ化水素酸量のモル数の0.28倍の二酸化ケイ素粉末18.5kgを投入し攪拌し、二酸化ケイ素を溶解させてフッ化水素を完全にケイフッ化水素酸にした。そして、過剰分の二酸化ケイ素をろ過機で分離した。
ろ過液を分析して確認したところ、フッ化水素酸の濃度は0.01重量%以下で、ケイフッ化水素酸の濃度は、18.2重量%であった。
このろ過液410kgを1mの本体が鉄製で内面がポリプロピレンライニングされたジャケット付反応器に計り採り、反応器のジャケットに減圧蒸気を流して液温を45℃に加熱した。
次に、液を攪拌しながら、炭酸水素ナトリウムの粉末103kg(ケイフッ化水素酸のモル数の2.30倍)を炭酸ガスの発生を調整しながら、少しずつ添加した。添加終了後、3時間攪拌をした。そのとき、反応熱も発生して、反応温度は58℃になった。
反応液を1日間放冷した。その後、結晶を遠心ろ過機で分離し後、乾燥させて、ケイフッ化ナトリウム98.9kgを得た。
その分析結果は、純度99.5重量%、平均粒子径(d50)が113μmであった。
Example 1
400 kg of waste liquid containing 5.50% by weight of hydrofluoric acid obtained from the fluorine-based waste liquid treatment step was used as raw water, and taken into a 1 m 3 polyethylene container. To this was added 18.5 kg of silicon dioxide powder 0.28 times the number of moles of hydrofluoric acid, and the mixture was stirred to dissolve the silicon dioxide to completely convert the hydrogen fluoride into silicofluoric acid. And the excess silicon dioxide was isolate | separated with the filter.
When the filtrate was analyzed and confirmed, the concentration of hydrofluoric acid was 0.01% by weight or less, and the concentration of silicohydrofluoric acid was 18.2% by weight.
410 kg of this filtrate was weighed into a reactor with a jacket of 1 m 3 body made of iron and the inner surface of which was lined with polypropylene, and the liquid temperature was heated to 45 ° C. by flowing reduced pressure steam through the jacket of the reactor.
Next, 103 kg of sodium hydrogen carbonate powder (2.30 times the number of moles of silicofluoric acid) was added little by little while adjusting the generation of carbon dioxide gas while stirring the liquid. After completion of the addition, the mixture was stirred for 3 hours. At that time, reaction heat was also generated and the reaction temperature reached 58 ° C.
The reaction was allowed to cool for 1 day. Thereafter, the crystals were separated with a centrifugal filter and then dried to obtain 98.9 kg of sodium silicofluoride.
As a result of the analysis, the purity was 99.5% by weight and the average particle size (d50) was 113 μm.

(実施例2)
フッ素系廃液処理工程から得られた、フッ化水素酸5.70重量%を含む廃液500kgを原水とし、1mのポリエチレン容器に取った。これにフッ化水素酸量のモル数の0.30倍のニ酸化ケイ素粉末25.7kgを投入し攪拌し、二酸化ケイ素を溶解させてフッ化水素を完全にケイフッ化水素酸にした。そして、過剰分の二酸化ケイ素をろ過機で分離した。
ろ過液を分析して確認したところ、フッ化水素酸の濃度は0.01重量%以下で、ケイフッ化水素酸の濃度は、18.1重量%であった。
この液を攪拌しながら、45℃に加熱した20重量%水酸化ナトリウム溶液312kg(ケイフッ化水素酸のモル数の2.36倍)を80分かけて滴下し、滴下終了後、4時間攪拌した。そのとき、反応温度は48℃になった。
反応液を1日間放冷した後、結晶を遠心ろ過機で分離し後、乾燥させて、ケイフッ化ナトリウム121kgを得た。
その分析結果は、純度99.8重量%、平均粒子径(d50)が65μmであった。
(Example 2)
500 kg of waste liquid containing 5.70% by weight of hydrofluoric acid obtained from the fluorine waste liquid treatment step was used as raw water and placed in a 1 m 3 polyethylene container. To this was added 25.7 kg of silicon dioxide powder, 0.30 times the number of moles of hydrofluoric acid, and the mixture was stirred to dissolve silicon dioxide to completely convert hydrogen fluoride to silicofluoric acid. And the excess silicon dioxide was isolate | separated with the filter.
When the filtrate was analyzed and confirmed, the concentration of hydrofluoric acid was 0.01% by weight or less, and the concentration of silicohydrofluoric acid was 18.1% by weight.
While stirring this liquid, 312 kg of a 20 wt% sodium hydroxide solution heated to 45 ° C. (2.36 times the number of moles of silicofluoric acid) was added dropwise over 80 minutes, and the mixture was stirred for 4 hours after completion of the addition. . At that time, the reaction temperature reached 48 ° C.
After the reaction solution was allowed to cool for 1 day, the crystals were separated by a centrifugal filter and then dried to obtain 121 kg of sodium silicofluoride.
As a result of the analysis, the purity was 99.8% by weight and the average particle size (d50) was 65 μm.

(実施例3)
フッ素系廃液処理工程から得られた、フッ化水素酸3.20重量%を含む廃液330kgを原水とし、1mのポリエチレン容器に取った。これにフッ化水素酸量のモル数の0.25倍の二酸化ケイ素粉末7.91kgを投入し攪拌し、二酸化ケイ素を溶解させてフッ化水素を完全にケイフッ化水素酸にした。そして、過剰分の二酸化ケイ素をろ過機で分離した。
ろ過液を分析して確認したところ、フッ化水素酸の濃度は0.01重量%以下で、ケイフッ化水素酸の濃度は、14.3重量%であった。
この液を攪拌しながら、70℃に加熱した20重量%塩化ナトリウム溶液250kg(ケイフッ化水素酸のモル数の2.56倍)を50分かけて滴下し、滴下終了後、3時間攪拌した。そのとき、反応熱も発生して、反応温度は55℃になった。
反応液を1日間放冷した。その後、結晶を遠心ろ過機で分離し、乾燥させて、ケイフッ化ナトリウム64.5kgを得た。
その分析結果は、純度99.7重量%、平均粒子径(d50)が101μmであった。
(Example 3)
330 kg of waste liquid containing 3.20% by weight of hydrofluoric acid obtained from the fluorine waste liquid treatment step was used as raw water and placed in a 1 m 3 polyethylene container. To this, 7.91 kg of silicon dioxide powder of 0.25 times the number of moles of hydrofluoric acid was added and stirred to dissolve the silicon dioxide to completely convert the hydrogen fluoride into silicohydrofluoric acid. And the excess silicon dioxide was isolate | separated with the filter.
When the filtrate was analyzed and confirmed, the concentration of hydrofluoric acid was 0.01% by weight or less, and the concentration of silicohydrofluoric acid was 14.3% by weight.
While stirring this solution, 250 kg of a 20 wt% sodium chloride solution heated to 70 ° C. (2.56 times the number of moles of silicofluoric acid) was added dropwise over 50 minutes, and the mixture was stirred for 3 hours after completion of the addition. At that time, reaction heat was also generated and the reaction temperature reached 55 ° C.
The reaction was allowed to cool for 1 day. Thereafter, the crystals were separated with a centrifugal filter and dried to obtain 64.5 kg of sodium silicofluoride.
As a result of the analysis, the purity was 99.7% by weight and the average particle size (d50) was 101 μm.

(比較例)
フッ素系廃液処理工程から得られた、フッ化水素酸3.20重量%を含む廃液330kgを原水とし、1mのポリエチレン容器に取った。これにフッ化水素酸量のモル数の0.17倍の二酸化ケイ素粉末6.37kgを投入し攪拌し、二酸化ケイ素を溶解させてフッ化水素を完全にケイフッ化水素酸にした。そして、過剰分の二酸化ケイ素をろ過機で分離した。
ろ過液を分析して確認したところ、フッ化水素酸の濃度は1.30重量%で、ケイフッ化水素酸の濃度は、13.5重量%であった。
この液を攪拌しながら、室温の20重量%塩化ナトリウム溶液188kg(ケイフッ化水素酸のモル数の2.04倍)を50分かけて滴下し、滴下終了後、3時間攪拌した。そのとき、反応熱が発生したが、反応温度は26℃になった。
反応液を1日間放冷した後、実施例3のときの3.5倍の時間をかけて結晶を遠心ろ過機で分離した後、乾燥させて、ケイフッ化ナトリウム52.7kgを得た。
その分析結果は、純度86.7重量%、平均粒子径(d50)が13.5μmであった。さらに、X線回折分析で調査したところ、ケイフッ化ナトリウムの他に、フッ化ナトリウム及び酸性フッ化ナトリウムが含まれており、工業用薬品として要求される品位を大きく下回ることが判明した。
(Comparative example)
330 kg of waste liquid containing 3.20% by weight of hydrofluoric acid obtained from the fluorine waste liquid treatment step was used as raw water and placed in a 1 m 3 polyethylene container. To this, 6.37 kg of silicon dioxide powder of 0.17 times the number of moles of hydrofluoric acid was added and stirred to dissolve the silicon dioxide so that the hydrogen fluoride was completely converted to silicofluoric acid. And the excess silicon dioxide was isolate | separated with the filter.
When the filtrate was analyzed and confirmed, the concentration of hydrofluoric acid was 1.30% by weight and the concentration of silicohydrofluoric acid was 13.5% by weight.
While stirring this solution, 188 kg of a 20 wt% sodium chloride solution at room temperature (2.04 times the number of moles of hydrofluoric acid) was added dropwise over 50 minutes, and the mixture was stirred for 3 hours after completion of the addition. At that time, heat of reaction was generated, but the reaction temperature became 26 ° C.
After the reaction solution was allowed to cool for 1 day, the crystals were separated by a centrifugal filter over 3.5 times as in Example 3, and then dried to obtain 52.7 kg of sodium silicofluoride.
As a result of the analysis, the purity was 86.7% by weight, and the average particle size (d50) was 13.5 μm. Furthermore, as a result of investigation by X-ray diffraction analysis, it has been found that sodium fluoride and sodium acid fluoride are contained in addition to sodium silicofluoride, which is far below the quality required for industrial chemicals.

Claims (5)

フッ素系廃液に含まれる、或いはフッ素系廃液の処理過程で発生するケイフッ化水素酸を、ナトリウム化合物である水酸化ナトリウム、炭酸ナトリウム、及び炭酸水素ナトリウムのいずれかと反応させ、ケイフッ化ナトリウムを製造する方法。   Sodium silicofluoride is produced by reacting hydrofluoric acid contained in the fluorine waste liquid or generated during the treatment of the fluorine waste liquid with any of the sodium compounds sodium hydroxide, sodium carbonate, and sodium hydrogen carbonate. Method. 廃液に含まれるフッ化水素酸を、酸化ケイ素化合物である二酸化ケイ素、一酸化ケイ素、ケイ酸ナトリウムとのいずれかと反応させ、予めケイフッ化水素酸に変換することを特徴とする、請求項1記載のケイフッ化ナトリウムの製造方法。   The hydrofluoric acid contained in the waste liquid is reacted with any one of silicon dioxide, silicon monoxide, and sodium silicate, which is a silicon oxide compound, and converted into silicohydrofluoric acid in advance. Of manufacturing sodium silicofluoride. 廃液に含まれるフッ化水素酸と酸化ケイ素化合物である二酸化ケイ素、一酸化ケイ素、ケイ酸ナトリウムのいずれかを、酸化ケイ素化合物のケイ素のモル数がフッ化水素酸のモル数に対して0.20から0.33倍で反応させることで、フッ化水素酸をケイフッ化水素酸に完全に変換せしめることを特徴とする請求項1又は2に記載のケイフッ化ナトリウムの製造方法。   One of hydrofluoric acid and silicon oxide compounds silicon dioxide, silicon monoxide, and sodium silicate contained in the waste liquid is set so that the number of moles of silicon in the silicon oxide compound is less than the number of moles of hydrofluoric acid. The method for producing sodium silicofluoride according to claim 1 or 2, wherein hydrofluoric acid is completely converted to silicohydrofluoric acid by reacting at 20 to 0.33 times. ナトリウム化合物である水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムのいずれかをケイフッ化水素酸のモル数の2.10から3.30倍で反応させること特徴とする請求項1ないし請求項3のいずれかに記載のケイフッ化ナトリウムの製造方法。   Any one of sodium hydroxide, sodium carbonate, and sodium hydrogen carbonate, which is a sodium compound, is reacted at 2.10 to 3.30 times the number of moles of hydrofluoric acid. A method for producing sodium silicofluoride according to claim 1. 反応温度を35℃〜70℃の間で調整するか、ナトリウム化合物の水溶液を反応温度が35〜70℃になるように加熱して投入し、ケイフッ化ナトリウムを合成することを特徴とする請求項1又は請求項4に記載のケイフッ化ナトリウムの製造方法。   The reaction temperature is adjusted between 35 ° C. and 70 ° C., or an aqueous solution of a sodium compound is heated and added so that the reaction temperature becomes 35 to 70 ° C. to synthesize sodium silicofluoride. The manufacturing method of the sodium silicofluoride of Claim 1 or Claim 4.
JP2011115371A 2011-05-24 2011-05-24 Method for producing valuable materials from waste liquid Active JP5495392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115371A JP5495392B2 (en) 2011-05-24 2011-05-24 Method for producing valuable materials from waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115371A JP5495392B2 (en) 2011-05-24 2011-05-24 Method for producing valuable materials from waste liquid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009283556A Division JP5421088B2 (en) 2009-12-15 2009-12-15 Method for producing valuable materials and hydrochloric acid from waste liquid

Publications (2)

Publication Number Publication Date
JP2011201770A true JP2011201770A (en) 2011-10-13
JP5495392B2 JP5495392B2 (en) 2014-05-21

Family

ID=44878847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115371A Active JP5495392B2 (en) 2011-05-24 2011-05-24 Method for producing valuable materials from waste liquid

Country Status (1)

Country Link
JP (1) JP5495392B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203096A (en) * 2015-04-23 2016-12-08 株式会社Nsc Method for treating waste liquid containing silicofluoric acid
CN106829983A (en) * 2017-03-31 2017-06-13 瓮福(集团)有限责任公司 A kind of preparation method of sodium metasilicate
KR20170131688A (en) 2016-04-01 2017-11-29 사사키카가쿠야쿠힌 가부시키가이샤 Alkali metal salt-containing molded article and method for regenerating acidic aqueous solution using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991992A (en) * 1972-12-30 1974-09-03
JPS57149816A (en) * 1981-03-09 1982-09-16 Mitsui Toatsu Chem Inc Manufacture of sodium silicofluoride from waste gas containing fluorine
JPH05279009A (en) * 1992-03-31 1993-10-26 Mitsui Toatsu Chem Inc Sodium silicofluoride composition
JP2008189484A (en) * 2007-02-01 2008-08-21 Morita Kagaku Kogyo Kk Method and apparatus for separating/recovering acid component from waste liquid containing hydrofluoric acid and silicofluoric acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991992A (en) * 1972-12-30 1974-09-03
JPS57149816A (en) * 1981-03-09 1982-09-16 Mitsui Toatsu Chem Inc Manufacture of sodium silicofluoride from waste gas containing fluorine
JPH05279009A (en) * 1992-03-31 1993-10-26 Mitsui Toatsu Chem Inc Sodium silicofluoride composition
JP2008189484A (en) * 2007-02-01 2008-08-21 Morita Kagaku Kogyo Kk Method and apparatus for separating/recovering acid component from waste liquid containing hydrofluoric acid and silicofluoric acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203096A (en) * 2015-04-23 2016-12-08 株式会社Nsc Method for treating waste liquid containing silicofluoric acid
KR20170131688A (en) 2016-04-01 2017-11-29 사사키카가쿠야쿠힌 가부시키가이샤 Alkali metal salt-containing molded article and method for regenerating acidic aqueous solution using the same
CN106829983A (en) * 2017-03-31 2017-06-13 瓮福(集团)有限责任公司 A kind of preparation method of sodium metasilicate
CN106829983B (en) * 2017-03-31 2020-03-27 瓮福(集团)有限责任公司 Preparation method of sodium silicate

Also Published As

Publication number Publication date
JP5495392B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP4316393B2 (en) Calcium fluoride manufacturing method, recycling method and recycling method
EP2123600A1 (en) Processes for producing phosphorus pentafluoride and hexafluorophosphate
KR20170088873A (en) Production of Lithium Hydroxide
CN107999001B (en) Method for preparing bromide
TWI439414B (en) Method for producing hexafluorophosphate
KR20160065820A (en) Method for purifying phosphorus pentafluoride
US8920763B2 (en) Method for producing lithium carbonate
JP5495392B2 (en) Method for producing valuable materials from waste liquid
CN105002521B (en) A kind of method that impurity magnesium in electrolytic manganese system is removed using fluorine-containing mineral
JP5421088B2 (en) Method for producing valuable materials and hydrochloric acid from waste liquid
JP6623673B2 (en) Method for producing calcium fluoride
WO2005068356A1 (en) Method for producing hydrogen fluoride
CN103449481B (en) The method preparing lithium carbonate
JP2006231245A (en) Method for treating silicon sludge
JP5489766B2 (en) Method for producing alkali metal silicofluoride and nitric acid from waste liquid
WO2009113088A2 (en) A process for manufacturing of potassium fluoride
KR101865262B1 (en) Method for refining carbon concentration using edta
JP2013220955A (en) Method and apparatus for producing calcium fluoride
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
JP4566642B2 (en) Method for producing sulfonium compound
JP4589779B2 (en) Generation method of hydrogen gas
EP1314696A1 (en) Method for preparing aluminum sulfate, aluminum sulfate and waste water treatment using the obtained aluminum sulfate
RU2264984C1 (en) Method of production of potassium chloride
EP3126290A2 (en) High purity synthetic fluorite and process for preparing the same
CN109650947A (en) A kind of method of industrial waste sulfuric acid production hydrogen sulfate potash fertilizer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5495392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250