JP2011200911A - Zirconia-carbon-containing refractory and immersion nozzle disposed with the refractory - Google Patents

Zirconia-carbon-containing refractory and immersion nozzle disposed with the refractory Download PDF

Info

Publication number
JP2011200911A
JP2011200911A JP2010070742A JP2010070742A JP2011200911A JP 2011200911 A JP2011200911 A JP 2011200911A JP 2010070742 A JP2010070742 A JP 2010070742A JP 2010070742 A JP2010070742 A JP 2010070742A JP 2011200911 A JP2011200911 A JP 2011200911A
Authority
JP
Japan
Prior art keywords
refractory
carbon
zirconia
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010070742A
Other languages
Japanese (ja)
Inventor
Katsumi Morikawa
勝美 森川
Hironari Uchida
裕也 内田
Takenori Yoshitomi
丈記 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2010070742A priority Critical patent/JP2011200911A/en
Publication of JP2011200911A publication Critical patent/JP2011200911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material combining corrosion resistance and high spalling properties of a zirconia-carbon-containing refractory in a high zirconia region in which the content of ZrOexceeds about 80 mass%, and to provide a nozzle for continuous casting capable withstanding a long time operation in continuous casting by using the material.SOLUTION: The zirconia-carbon-containing refractory wherein a bond by carbon is formed between aggregate particles and the content of zirconia exceeds 80 mass%, contains zirconia and carbon, wherein the ratio of the number of particles having cracks inside the particles to the whole the number of zirconia particles composing the refractory, which can not pass through sieve mesh with a nominal opening of 150 μm of a JIS standard sieve is <25% by a method by observation for the polished cross sections of the particles, the apparent porosity after reduction firing at 1,000°C of the refractory is 12 to 20%, and the ratio of pore size of ≥10 μm in the open pores after the reduction firing at 1,000°C of the refractory is ≤30%.

Description

本発明は,鋼の連続鋳造に使用される浸漬ノズル,その他のノズル等に配設されるジルコニア含有耐火物およびその耐火物を配設した浸漬ノズル,ロングノズル等の連続鋳造用ノズルに関する。   The present invention relates to a submerged nozzle used for continuous casting of steel, a zirconia-containing refractory disposed in other nozzles, and a continuous casting nozzle such as a submerged nozzle provided with the refractory and a long nozzle.

鋼の連続鋳造において使用される浸漬ノズルは,タンディッシュからモールドに溶鋼を移送するために使用される。   Immersion nozzles used in continuous casting of steel are used to transfer molten steel from the tundish to the mold.

浸漬ノズルは,溶鋼と大気との接触を防ぐことで溶鋼の酸化を防止すると同時に,モールド内部へ整流化した状態で溶鋼を注入する。これにより,溶鋼上表面に浮上しているスラグや溶鋼中に存在する非金属介在物が溶鋼中に混入することが防止され,鋼の品質が改善されると同時に操業の安定性が確保される。   The immersion nozzle prevents the molten steel from oxidizing by preventing contact between the molten steel and the atmosphere, and at the same time injects the molten steel into the mold in a rectified state. This prevents slag floating on the upper surface of the molten steel and non-metallic inclusions present in the molten steel from being mixed into the molten steel, improving the quality of the steel and ensuring operational stability. .

一般に,モールド内部の溶鋼上表面には,モールドパウダー層と呼ばれる熔融ガラス層が存在する。この熔融ガラス層は,CaO,SiO,NaO,KO,Al,CaF,C等を含有する。 Generally, a molten glass layer called a mold powder layer exists on the upper surface of the molten steel inside the mold. This molten glass layer contains CaO, SiO 2 , Na 2 O, K 2 O, Al 2 O 3 , CaF 2 , C, and the like.

このような熔融ガラス層の成分は浸漬ノズルの構成材料であるAl,SiO,C等に対しては強い浸食性を持っている。この耐蝕性ため浸漬ノズルは,長時間の操業に際して問題を生じる。 Such a component of the molten glass layer has a strong erosion property with respect to Al 2 O 3 , SiO 2 , C and the like which are constituent materials of the immersion nozzle. Due to this corrosion resistance, the immersion nozzle causes problems during long-time operation.

したがって,浸漬ノズルのモールドパウダーと接触する部位(以下,係る部位を単に「パウダー部」という。)には,熔融ガラスに対して耐蝕性が高いジルコニア含有材料を適用することが多い。また,熱衝撃性を確保する必要から,パウダー部用の材料としては,一般には,ジルコニア−炭素(ZrO−C)質耐火物が適用されている。 Therefore, a zirconia-containing material having high corrosion resistance with respect to molten glass is often applied to a portion of the immersion nozzle that comes into contact with the mold powder (hereinafter, the portion is simply referred to as “powder part”). Moreover, since it is necessary to ensure thermal shock resistance, zirconia-carbon (ZrO 2 —C) refractory is generally used as a material for the powder part.

とくに,パウダー部の耐蝕性の改善は,ノズルの寿命にも直結するため,従来から様々な改善が行われてきた。   In particular, the improvement of the corrosion resistance of the powder part has a direct effect on the life of the nozzle, so various improvements have been made.

一般的には,材料中のZrO含有率を上げることにより耐蝕性が向上することが知られており,従来から,パウダー部用の材料としては主にZrO含有率を上げて耐蝕性の改善を図っている。 In general, it is known that the corrosion resistance is improved by increasing the ZrO 2 content in the material. Conventionally, as a material for the powder part, the corrosion resistance is mainly increased by increasing the ZrO 2 content. We are trying to improve.

一方では,ジルコニア含有率を上げるとジルコニア−炭素含有耐火物の熱膨張率や弾性率の上昇を招くため,使用時の割れを引き起こし,操業に支障を与えるという問題がある。耐熱衝撃性を改善するためには黒鉛含有率を増やせばよい。しかしながら,上述のように,黒鉛量の増加は耐蝕性の低下を招くことから,ジルコニア含有率と黒鉛含有率とのバランスが重要となる。   On the other hand, increasing the zirconia content causes an increase in the coefficient of thermal expansion and elastic modulus of the zirconia-carbon-containing refractory, which causes cracks during use and hinders operation. In order to improve the thermal shock resistance, the graphite content should be increased. However, as described above, an increase in the amount of graphite leads to a decrease in corrosion resistance, so the balance between the zirconia content and the graphite content is important.

とくに,アルミナ−黒鉛質耐火物やアルミナ−シリカ−黒鉛質耐火物を本体部に使用し,パウダー部にジルコニア−炭素含有耐火物を使用するように,材質が異なる数種類の耐火物から構成された浸漬ノズルには,受鋼時の熱的な構造安定性が重要である。   In particular, alumina-graphite refractories and alumina-silica-graphite refractories were used for the main body, and zirconia-carbon containing refractories were used for the powder part. For the immersion nozzle, thermal structural stability during steel receiving is important.

この観点から,ジルコニア−炭素含有耐火物内のZrOは比較的リニアな熱膨張特性を示すCaO,MgO,Y等を3〜10質量%含有する部分安定化骨材や完全安定化骨材原料を適用するのが一般的である。このような場合,骨材間を接着する一定量の結合炭素も必要不可欠であることから,パウダー部に使用されるジルコニア−炭素含有耐火物中のZrO成分の含有率は約86質量%が上限となる。 From this point of view, ZrO 2 in zirconia-carbon-containing refractories is partially stabilized aggregate containing 3 to 10% by mass of CaO, MgO, Y 2 O 3 etc., which exhibits relatively linear thermal expansion characteristics, and is completely stabilized. It is common to apply aggregate materials. In such a case, since a certain amount of bonded carbon for bonding the aggregates is indispensable, the content of the ZrO 2 component in the zirconia-carbon-containing refractory used for the powder part is about 86% by mass. It becomes the upper limit.

しかしながら,とくに高い耐熱衝撃性が要求される操業条件下においては,パウダー部用耐火物としてのZrO成分の含有率は80質量%以下で使用されている。 However, under operating conditions where particularly high thermal shock resistance is required, the content of the ZrO 2 component as a powder part refractory is 80% by mass or less.

このような特性と制限を有するパウダー部に使用されるZrO−C用耐火物に関しては,耐蝕性と耐スポーリング性との両方を高めるための試みが様々になされてきた。 Various attempts have been made to improve both the corrosion resistance and the spalling resistance of the refractories for ZrO 2 —C used in the powder part having such characteristics and limitations.

例えば,特許文献1には,ジルコニア原料70〜95質量%,黒鉛5〜30質量%からなり,ジルコニアの粒度構成が45μm以下のジルコニア粒子が70%以上である耐蝕性に優れたジルコニア−黒鉛質耐火物が開示されている。これは主として,ジルコニアを粒度構成が45μm以下の微粉にして,ジルコニアを脱安定化することにより細粒化してスラグ中へ分散し,分散した脱安定化ジルコニアによりスラグの見かけ上の粘性を増加させ,耐火物へのスラグの浸潤を抑制して,耐火物の溶損を抑制し,耐用性を向上させようとするものである。しかしながら,特許文献1のような,ジルコニア粒の微粉化を図っても,耐火物組織としての構造を脆弱化させることもあり,却って耐蝕性を低下させることもある。このように、特許文献1に記載のジルコニア−黒鉛質耐火物及びジルコニア−黒鉛材料は,耐熱衝撃性と耐蝕性の双方を十分に満足するものとはいえない。   For example, Patent Document 1 discloses a zirconia-graphite material excellent in corrosion resistance, comprising 70 to 95% by mass of a zirconia raw material and 5 to 30% by mass of graphite, and having a zirconia particle size constitution of 45 μm or less and 70% or more of zirconia particles. Refractories are disclosed. This is mainly because zirconia is made into a fine powder having a particle size composition of 45 μm or less, and zirconia is destabilized to be finely divided and dispersed in the slag. The dispersed destabilized zirconia increases the apparent viscosity of the slag. Therefore, it is intended to suppress the infiltration of slag into the refractory, to suppress the refractory melting, and to improve the durability. However, even if the zirconia grains are pulverized as in Patent Document 1, the structure as the refractory structure may be weakened, and the corrosion resistance may be lowered instead. Thus, it cannot be said that the zirconia-graphite refractory and the zirconia-graphite material described in Patent Document 1 sufficiently satisfy both the thermal shock resistance and the corrosion resistance.

また,特許文献2には,シリカ含有率が0.30質量%以下であるCaO安定化ジルコニア原料50〜90質量%,バデライト原料0〜30質量%(但し,CaO安定化ジルコニア原料とバデライト原料の合計量が60〜91質量%),及び黒鉛原料10〜35質量%を含有してなるジルコニア−黒鉛材料を連続鋳造用浸漬ノズルの熔融モールド・パウダーと接触する部位に配設した連続鋳造用浸漬ノズルが開示されている。これは主として,CaO安定化ジルコニア粒子中のシリカ含量を低減することにより,浸漬ノズルのパウダー部に配設されたジルコニア・グラファイト材料中のジルコニア粒のモールドパウダーによる分解反応を抑制しようとするものである。しかし,特許文献2のようなジルコニア粒内のシリカの含有量のみでの改善では,ジルコニア粒子表面での初期の反応によるジルコニア粒のモールドパウダー内へ溶解を抑制する効果は或る程度期待できるものの,シリカも多量に含んで溶融状態にあるモールドパウダーにジルコニア粒が曝される部分は変化がなく,特にZrO含有量が80質量%程度を超える領域の,高度な耐蝕性を要求するジルコニア含有量のジルコニア−黒鉛質耐火物では,十分な耐蝕性の改善はできない。 Patent Document 2 discloses that a CaO-stabilized zirconia raw material having a silica content of 0.30% by mass or less is 50 to 90% by mass, a badelite raw material 0 to 30% by mass (however, a CaO-stabilized zirconia raw material and a badelite raw material Dip for continuous casting in which a zirconia-graphite material containing a total amount of 60 to 91% by mass) and 10 to 35% by mass of a graphite raw material is disposed in a portion of the continuous casting immersion nozzle in contact with the molten mold powder. A nozzle is disclosed. This is mainly to reduce the silica content in the CaO-stabilized zirconia particles, thereby suppressing the decomposition reaction of the zirconia particles in the zirconia-graphite material placed in the powder part of the immersion nozzle by the mold powder. is there. However, improvement by only the silica content in the zirconia particles as in Patent Document 2 can be expected to some extent to suppress the dissolution of zirconia particles into the mold powder due to the initial reaction on the surface of the zirconia particles. There is no change in the part where the zirconia grains are exposed to the mold powder that contains a large amount of silica and is in a molten state, and especially contains zirconia that requires high corrosion resistance in the region where the ZrO 2 content exceeds about 80% by mass. The amount of zirconia-graphitic refractory cannot sufficiently improve corrosion resistance.

さらに特許文献3には,電融ジルコニアをジルコニア原料としたジルコニア−炭素系耐火物であって,前記電融ジルコニアの結晶粒のうち,40μm〜300μmの粒子径範囲の粒子中,個数割合で20%以上が亀裂がなく且つ低融物を含まない健全粒子であるジルコニア−炭素系耐火物が開示されている。これはZrO含有量が80質量%未満のZGに関し,内部に亀裂を有する電融ZrO原料割合の増加がZGの耐食性の低下を惹き起こすことを示している。しかし,特許文献3にはZGの耐食性が低下すること自体は開示されてはいるが,これを回避する手段は開示されていない。ましてや,特許文献3によっては,近年のZrO含有量が80質量%を超えるZGに対する,内部に亀裂を有する電融ZrO原料を使用することは極めて困難である。 Further, Patent Document 3 discloses a zirconia-carbon refractory using electrofused zirconia as a zirconia raw material, and the number of particles in the particle diameter range of 40 μm to 300 μm is 20 in terms of the number of particles. Zirconia-carbon refractories are disclosed that are healthy particles with no cracks and containing no low melt. This indicates that with respect to ZG having a ZrO 2 content of less than 80% by mass, an increase in the proportion of the fused ZrO 2 raw material having cracks inside causes a decrease in the corrosion resistance of ZG. However, although Patent Document 3 discloses itself that the corrosion resistance of ZG is lowered, a means for avoiding this is not disclosed. Furthermore, depending on Patent Document 3, it is extremely difficult to use a fused ZrO 2 raw material having cracks inside against ZG having a ZrO 2 content of more than 80% by mass in recent years.

このように,とくに近年の市場のニーズの高い,ZrO含有量が80質量%を超えるZGに対する耐食性及び耐熱衝撃性の十分に効果のある改善策は未だ見出されていない。 Thus, there has not yet been found a sufficiently effective improvement measure for corrosion resistance and thermal shock resistance against ZG having a high ZrO 2 content of more than 80% by mass, especially in recent years.

特開平11−302073号公報JP-A-11-302073 特開平8−1293号公報JP-A-8-1293 特開平9−142927号公報JP-A-9-142927

本発明は,ZrO含有率が約80質量%を超える高ジルコニア領域におけるジルコニア−炭素含有耐火物の耐蝕性と高いスポーリング性を兼備した材質を提供し,その材質を使用することによって連続鋳造の長時間操業に耐え得る連続鋳造用ノズルを提供する。 The present invention provides a material having both corrosion resistance and high spalling property of zirconia-carbon-containing refractories in a high zirconia region in which the ZrO 2 content exceeds about 80% by mass, and continuous casting is achieved by using the material. A continuous casting nozzle that can withstand long-term operation.

本発明は,このZrO含有率が約80質量%を超える高ジルコニア領域におけるジルコニア−炭素含有耐火物の耐蝕性と耐摩耗性は,その耐火物に使用されるジルコニア原料の純度や鉱物組成以外に,ジルコニア原料粒子の形態も大きな影響を及ぼすという本願発明者による新規な知見に基づく。 In the present invention, the corrosion resistance and wear resistance of the zirconia-carbon-containing refractory in the high zirconia region where the ZrO 2 content exceeds about 80% by mass are other than the purity and mineral composition of the zirconia raw material used in the refractory. In addition, this is based on a novel finding by the present inventor that the form of the zirconia raw material particles has a great influence.

すなわち,このZrOを含有する耐火物の耐蝕性と耐摩耗性に大きな影響を及ぼすジルコニア原料粒子の形態の影響は,耐蝕性と耐熱衝撃性との微妙なバランスを維持するように設計されたZrOの含有割合が80質量%を超えるいわゆる高ZrO含有のジルコニア−炭素含有耐火物について,大きく現れること,そして,ZrO粒子のうちでも粗粒域,つまりJIS標準篩いの公称目開き150μmの篩い網を通過できない粒子による影響の方が,微粒域,つまり150μmの篩い網を通過する粒子による影響よりも大きいことを見出したものである。 In other words, the influence of the form of the zirconia raw material particles, which greatly affects the corrosion resistance and wear resistance of the refractory containing ZrO 2 , was designed to maintain a delicate balance between corrosion resistance and thermal shock resistance. The zirconia-carbon-containing refractories containing so-called high ZrO 2 in which the content ratio of ZrO 2 exceeds 80% by mass appears to be large, and among the ZrO 2 particles, a coarse grain region, that is, a nominal opening of a JIS standard sieve 150 μm It has been found that the influence of the particles that cannot pass through the sieving screen is larger than the influence of the particles passing through the fine particle region, that is, the 150 μm sieving screen.

本発明において原料としての粒子の形態とは,粒子内の亀裂の有無をいい,亀裂とはジルコニア粒子をその組織内部において分断する空間をいう。そして,この原料粒子の亀裂は,その原料製造中に生じるものである。   In the present invention, the form of particles as a raw material refers to the presence or absence of cracks in the particles, and the crack refers to a space where the zirconia particles are divided within the structure. And the crack of this raw material particle arises during the raw material manufacture.

また,本発明の対象となるジルコニア粒子は,ZrOを主成分とし,このジルコニアは安定化,部分安定化,未安定化したものの何れでもよい。また,安定化材はいずれの成分であってもよい。 Moreover, the zirconia particles to be the subject of the present invention are mainly composed of ZrO 2 , and this zirconia may be any of stabilized, partially stabilized, and unstabilized particles. The stabilizing material may be any component.

さらに,本発明でZrOの量に関する表示は,通常分離することが困難なHfOを含み,CaO,MgO,Y等の安定化剤を除外した量をいう。 Furthermore, the indication relating to the amount of ZrO 2 in the present invention refers to the amount that excludes stabilizers such as CaO, MgO, Y 2 O 3 and the like, which contain HfO 2 that is usually difficult to separate.

またさらに,「炭素の結合」とは,有機質結合材が非酸化雰囲気で炭素化して耐火物を構成する粒子等の間を相互に接着又は固定するように形成した組織をいう。   Furthermore, “carbon bond” refers to a structure in which an organic binder is carbonized in a non-oxidizing atmosphere so that particles or the like constituting the refractory are adhered or fixed to each other.

以下に,本発明をジルコニア−黒鉛質耐火物の溶融モールドパウダーによる溶損現象を具体的に例示しながら述べる。   Hereinafter, the present invention will be described with specific examples of the erosion phenomenon caused by molten mold powder of zirconia-graphitic refractory.

まず,上記ZrO粒子の大きさが,150μmを境に耐火物の耐食性等の影響が異なる理由としては,次のように考えられる。 First, the reason why the size of the ZrO 2 particles differs in the influence of the corrosion resistance of the refractory on the boundary of 150 μm is considered as follows.

ジルコニア粒子の細粒化現象を伴う脱安定化現象により,モールドパウダーやスラグのフィルム(以下「スラグフィルム」という。)に接した耐火物の稼働面ではZrOの濃度の高い耐火物層が形成され,その保護膜的機能により耐食性が向上する。そして,150μm以上の粒子に亀裂が入っていると,粒子中の亀裂に溶融スラグが浸透し,亀裂部で脱安定化を促進し粒子を崩壊させる。本来細粒化により稼働面近傍にとどまり保護膜形成に寄与し耐食性を向上させるジルコニア成分がスラグフィルム中に脱落するため稼働界面のジルコニア濃度を高めることができずに保護膜的機能が低下する。 A refractory layer with a high ZrO 2 concentration is formed on the working surface of the refractory in contact with the mold powder or slag film (hereinafter referred to as “slag film”) due to the destabilization phenomenon accompanied by the pulverization of zirconia particles. The corrosion resistance is improved by its protective film function. And if the particle | grains of 150 micrometers or more have a crack, molten slag will permeate | transmit the crack in particle | grains, will promote destabilization in a crack part and will collapse particle | grains. Originally, the zirconia component that stays in the vicinity of the working surface by fine graining and contributes to the formation of the protective film and improves the corrosion resistance is dropped into the slag film, so the zirconia concentration at the working interface cannot be increased and the protective film function is lowered.

また,ジルコニア−炭素含有耐火物において亀裂が存在するジルコニア粒子を使用すると耐蝕性及び耐熱衝撃性が低下するのは,
1.ジルコニア粒子が耐火物の操業での使用中に崩壊し,耐火物組織から脱落しやすくなり,脱落部分が耐火物組織の欠陥になること,
2.この耐火物組織の欠陥部分にはモールドパウダー等の侵食性の物質が浸透し,この浸透部分から組織の欠損部分が拡大すること,
3.脱落部分が耐火物組織の構造的欠陥となって,耐熱衝撃性抵抗性を低下させること,
4.また,ジルコニア粒子の亀裂内にもモールドパウダー等の侵食性の物質が浸透し,ジルコニア粒子自体の溶損〜消失等を促進すること,
5.このような脱落や粒子の消失等による耐火物組織中での欠陥部分の大きさは,粗粒として存在した部分が,微粒として存在していた部分よりも大きい,すなわち,欠損部分が粗粒のジルコニアにおいて顕著な大きさになって,耐火物組織への影響も大きくなること等のメカニズムによるものと考えられる。
In addition, when using zirconia particles with cracks in zirconia-carbon refractories, the corrosion resistance and thermal shock resistance decrease.
1. Zirconia particles collapse during use in refractory operation, and easily fall off from the refractory structure, and the detachment part becomes a defect in the refractory structure;
2. An erodible material such as mold powder penetrates into the defective part of the refractory structure, and the defect part of the tissue expands from the penetrated part.
3. The drop-off part becomes a structural defect of the refractory structure, reducing the thermal shock resistance resistance,
4). In addition, erodible substances such as mold powder penetrate into the cracks in the zirconia particles, and promote erosion to disappearance of the zirconia particles themselves.
5. The size of the defect part in the refractory structure due to such dropping or particle disappearance is such that the part present as coarse grains is larger than the part present as fine grains, that is, the defect part is coarse grain. This is thought to be due to a mechanism such as the remarkable size of zirconia and the greater impact on the refractory structure.

すなわち,本発明は,骨材粒子間に炭素による結合が形成されたジルコニア含有量が80質量%を超えるジルコニア−炭素含有耐火物において,ジルコニア−炭素含有耐火物を構成するジルコニア粒子のうち,粗粒領域,すなわちJIS標準篩いの公称目開き150μmの篩い網を通過できないジルコニア粒子を対象にする。そして,150μmの篩い網を通過できないジルコニア粒子の個数全体を100とするときに,これに対して粒子内部に亀裂を有する粒子個数の割合を25%未満とするものである。   That is, the present invention relates to a zirconia-carbon-containing refractory having a zirconia content exceeding 80 mass% in which a carbon bond is formed between aggregate particles. The zirconia particles that cannot pass through the sieving net of the grain region, that is, the JIS standard sieve having a nominal mesh size of 150 μm are used. When the total number of zirconia particles that cannot pass through a 150 μm sieve screen is 100, the ratio of the number of particles having cracks inside the particles is less than 25%.

内部に亀裂を有する粒子個数の割合が漸増するのに伴って耐蝕性と耐熱衝撃性は漸次低下するが,25%以上になるとそれらの低下が顕著になる。内部に亀裂を有する粒子の個数割合は,一般的にジルコニア原料として入手できる市販品ごとにさまざまである。   Corrosion resistance and thermal shock resistance gradually decrease as the ratio of the number of particles having cracks inside gradually increases. However, when the ratio is 25% or more, such decrease becomes remarkable. The number ratio of particles with internal cracks varies for each commercial product that is generally available as a zirconia raw material.

この内部に亀裂を有する粒子の個数割合を知るには,対象の耐火物を顕微鏡観察してその視野面積内に存在する150μmを越える粒子の個数を数え,目視による亀裂を有する粒子個数を数えることによって,その個数の割合を求める方法,すなわち,試料の研磨断面の観察による方法を採ることができる。   In order to know the ratio of the number of particles having cracks inside, the object refractory is observed with a microscope, the number of particles exceeding 150 μm existing in the visual field area is counted, and the number of particles having cracks is visually counted. Thus, a method for obtaining the ratio of the numbers, that is, a method by observing the polished cross section of the sample can be adopted.

本発明は,このZrO含有率が約80質量%を超える高ジルコニア領域におけるジルコニア−炭素含有耐火物の耐蝕性と耐熱衝撃性を改善するために,当該耐火物の1000℃還元焼成後の,見掛け気孔率を12%以上20%以下とし,かつ,当該耐火物の1000℃還元焼成後の開放気孔中の10μm以上の気孔径の割合を30%以下とする。 In order to improve the corrosion resistance and thermal shock resistance of the zirconia-carbon-containing refractory in the high zirconia region in which the ZrO 2 content exceeds about 80% by mass, the present invention, The apparent porosity is 12% or more and 20% or less, and the ratio of the pore diameter of 10 μm or more in the open pores after the 1000 ° C. reduction firing of the refractory is 30% or less.

この見掛け気孔率は,JIS R 2205に示される方法で測定できる。この見掛け気孔率として測定される気孔は,後述の「開口気孔」と同一の気孔であって,組織内の閉ざされた気孔(密閉気孔)を除いた外部に開かれた気孔をいう。この外部に開かれた気孔はすなわちモールドパウダー等の耐火物組織への直接の侵入経路ともなる。   This apparent porosity can be measured by the method shown in JIS R 2205. The pores measured as the apparent porosity are the same pores as “open pores” described later, and are pores opened to the outside excluding closed pores (sealed pores) in the tissue. The pores opened to the outside also serve as a direct entry path to a refractory structure such as mold powder.

1000℃還元焼成後の見掛け気孔率が12%未満では,耐蝕性は向上させることができるものの,耐熱衝撃性が低下し,鋳造初期にノズルが破壊する虞が大きくなる。1000℃還元焼成後の見掛け気孔率が20%を越えると,組織が粗になりすぎて破壊抵抗性が小さくなるため,耐熱衝撃性の低下が顕著になり,さらには耐熱衝撃性も低下する。   If the apparent porosity after reduction firing at 1000 ° C. is less than 12%, the corrosion resistance can be improved, but the thermal shock resistance is lowered, and the possibility that the nozzle breaks in the early stage of casting increases. If the apparent porosity after reduction firing at 1000 ° C. exceeds 20%, the structure becomes too coarse and the fracture resistance becomes small, so that the thermal shock resistance is significantly reduced, and further, the thermal shock resistance is also lowered.

なお,ここで,1000℃非酸化雰囲気焼成後と特定したのは,1000℃非酸化雰囲気焼成後に存在する炭素は,連続鋳造等のその後の操業において,さらに高温度に曝されても,存在し得る状態であることによる。すなわち,1000℃未満での温度域での非酸化雰囲気焼成後に炭素成分が存在していても,その存在又は存在量は,炭素源となる樹脂又はタール若しくはピッチ等が未反応で或る可能性があって不安定である。1000℃非酸化雰囲気焼成後であれば炭素は安定した形態になるので,1000℃以上の温度になる操業に供する初期状態をほぼ現わしているといえる。   Note that the carbon after the non-oxidizing atmosphere firing at 1000 ° C. is specified here even if the carbon existing after the non-oxidizing atmosphere firing at 1000 ° C. is exposed to higher temperatures in subsequent operations such as continuous casting. By being in a state to get. That is, even if a carbon component is present after firing in a non-oxidizing atmosphere in a temperature range of less than 1000 ° C., the presence or amount of the carbon component may be unreacted with resin or tar or pitch as a carbon source. Is unstable. Since carbon is in a stable form after firing at 1000 ° C. in a non-oxidizing atmosphere, it can be said that it almost represents an initial state for operation at a temperature of 1000 ° C. or higher.

さらに,連続鋳造のモールド内溶鋼表面に熔融パウダーが存在する条件の操業にこの耐火物を適用する場合においては,その開口気孔の気孔径が10μm以上で熔融パウダーが浸入し易いこと,及び10μm以上の気孔の数量割合と耐蝕性との間には相関関係があること,また全開口気孔中の,気孔径が10μm以上の気孔の体積割合が少なくなるほど耐蝕性は向上し,この割合が30%以下の場合に顕著に向上することを本発明者らは見出した。   Furthermore, when this refractory is applied to an operation in which molten powder exists on the surface of the molten steel in the mold of continuous casting, the pore diameter of the opening pore is 10 μm or more, and the molten powder can easily enter, and 10 μm or more. There is a correlation between the number ratio of pores and the corrosion resistance, and the smaller the volume ratio of pores with a pore diameter of 10 μm or more in the total open pores, the more the corrosion resistance is improved. The present inventors have found that the improvement is remarkable in the following cases.

これは,部分的にでも存在する10μm以上の気孔に熔融パウダーが侵入することで,その気孔付近の炭素基質をはじめとする部分的な耐火物組織の喪失や崩壊を生じ,そのような損傷を生じた耐火物組織部分が多いほど耐火物組織の損傷を拡大,連結し易くして広範囲の耐火物組織の損傷を促進するためと考えられる。   This is because the molten powder penetrates into pores of 10 μm or more that exist even partially, resulting in the partial loss or collapse of the refractory structure including the carbon substrate near the pores. This is probably because the more refractory structures produced, the greater the damage to the refractory structures, and the easier it is to connect them to promote damage to a wide range of refractory structures.

なお,気孔径が10μm以上の気孔の体積割合が0%,言い換えると全開口気孔の気孔径は,10μm未満であることが最も好ましく,それによる物性への悪影響が及ぶ可能性が小さいため,10μm以上の気孔の体積割合の下限値は,設ける必要はない。   It should be noted that the volume ratio of pores having a pore diameter of 10 μm or more is 0%, in other words, the pore diameter of all open pores is most preferably less than 10 μm, and it is less likely to adversely affect the physical properties. It is not necessary to provide the lower limit value of the volume ratio of the pores.

また,本発明においては,最大長さが45μm以下の結晶質のフリーの炭素基質材料の存在量が,当該ジルコニア−炭素含有耐火物組織内に存在する全ての結晶質のフリーの炭素基質材料耐火物中の40質量%以上とすることによって,前述の見掛け気孔率が12%以上20%以下,10μm以上の気孔径の割合が30%以下である耐火物を調整しやすくなる。   Further, in the present invention, the amount of crystalline free carbon substrate material having a maximum length of 45 μm or less is refractory to all crystalline free carbon substrate materials present in the zirconia-carbon-containing refractory structure. By setting it as 40 mass% or more in a thing, it becomes easy to adjust the refractory whose above-mentioned apparent porosity is 12% or more and 20% or less, and the ratio of the pore diameter of 10 micrometers or more is 30% or less.

ここで「フリーの炭素」とは,例えば,炭化珪素,炭化硼素等の金属との化合物を除く固体の炭素を意味する。また,「炭素基質材料」とは,フリーの炭素からなる耐火物組織の一部の構成物の全てをいう。すなわち,構成物が結晶質であるか非晶質であるかに拘わらず,例えば,黒鉛,カーボンブラック等のように,フリーの炭素から構成される粒子または非粒子状の網目状,繊維状等のいわゆる結合機能を有する炭素質組織等の連続的な構造体を意味する。   Here, “free carbon” means solid carbon excluding a compound with a metal such as silicon carbide or boron carbide. In addition, “carbon substrate material” refers to all the components of a part of a refractory structure made of free carbon. In other words, regardless of whether the composition is crystalline or amorphous, for example, particles or non-particulate mesh, fiber, etc. composed of free carbon such as graphite, carbon black, etc. It means a continuous structure such as a carbonaceous tissue having a so-called bonding function.

したがって,本発明の耐火物内の炭素基質材料とは,鱗状黒鉛や土壌黒鉛などの黒鉛質若しくは非晶質のカーボンブラックなどの粗粒子若しくは微粒子,又は結合機能を担うマトリクス組織としての網目状炭素等を含む。   Therefore, the carbon substrate material in the refractory according to the present invention includes coarse particles or fine particles such as graphitic or amorphous carbon black such as scaly graphite and soil graphite, or a network carbon as a matrix structure having a binding function. Etc.

このような耐火物の見掛け気孔率,気孔径の割合は後述の通り,成形工程におけるはい土の性状調整や成形圧力調整等によっても得ることができる。   The ratio of the apparent porosity and the pore diameter of such a refractory can also be obtained by adjusting the properties of the soil in the molding process or adjusting the molding pressure, as will be described later.

また,最大長さが45μm以下の結晶質であるフリーの炭素基質材料粒子を,耐火物組織内の結晶質であるフリーの全炭素基質材料中の40質量%以上とすることにより耐火物の充填性を向上させることができ,前述の見掛け気孔率,気孔径の割合を備えた耐火物を得やすくなる。   In addition, the free carbon matrix material particles with a maximum length of 45 μm or less are filled with refractory by making the mass of the free carbon matrix material, which is crystalline within the refractory structure, 40% by mass or more. It is easy to obtain a refractory having the aforementioned apparent porosity and pore diameter ratio.

また,最大長さが45μm以下の結晶質であるフリーの炭素基質材料粒子を,耐火物組織内の結晶質であるフリーの全炭素基質材料中の40質量%以上とすることは,ジルコニア粒子に対する炭素基質材料の相対的な体積割合及び比表面積が増加することになる。すなわちジルコニア粒子と結合機能を担う炭素と一体的な構造に近い炭素基質材料との接触面積が大きくなることにもなる。このことで,内部の亀裂から崩壊等を生じて小径化したジルコニア粒子を脱落させずに耐火物組織内に止めておく効果も生じる。   In addition, if the free carbon matrix material particles having a maximum length of 45 μm or less are 40% by mass or more based on the total free carbon matrix material being crystalline in the refractory structure, The relative volume fraction and specific surface area of the carbon substrate material will increase. In other words, the contact area between the zirconia particles and the carbon having a bonding function and the carbon substrate material close to an integral structure is increased. This also has the effect of retaining the zirconia particles, which have been reduced in size due to internal cracking and the like, without falling off within the refractory structure.

結晶質であるフリーの炭素基質材料を,その最大長さを45μmによって分別する理由は,この最大長さが45μmを越えると,その成形時のはい土を構成する原料粒子間の絡み合いが多くなって相互の滑り現象が減少して相対的に粗な組織になりやすいことにある。またこのような性状を支配する「最大長さが45μmを越える結晶質であるフリーの炭素基質材料粒子」とは,炭素基質材料のうち,黒鉛質のものをいい,かつ,天然の鱗状黒鉛に相当する。   The reason why the free carbon substrate material that is crystalline is separated by its maximum length of 45 μm is that if this maximum length exceeds 45 μm, the entanglement between the raw material particles constituting the soil during the molding increases. Therefore, the mutual slip phenomenon is reduced and a relatively coarse structure is likely to be formed. In addition, “free carbon substrate material particles with a maximum length exceeding 45 μm” governing such properties refers to carbonaceous materials among carbon substrate materials, and to natural scaly graphite. Equivalent to.

なお,前記のジルコニア−炭素含有耐火物組織内の最大長さが45μm以下の結晶質であるフリーの炭素基質材料粒子は,その組織観察により存在を容易に調べることは可能であるが,当該耐火物組織内の全ての結晶質であるフリーの炭素基質材料中の40質量%以上であることは,次のような方法で同定することができる。   The presence of free carbon matrix material particles having a maximum length of 45 μm or less in the zirconia-carbon-containing refractory structure can be easily examined by observing the structure. It can be identified by the following method that it is 40% by mass or more in the free carbon substrate material which is all crystalline in the physical structure.

1.当該耐火物を400℃乃至500℃酸化雰囲気中で48時間以上熱処理して結合部分(非晶質の単粒子の炭素を含む)の炭素を除去し,
2.その残部から45μmを越える炭素基質原料を篩いにより分離し,
3.その篩い上部及び篩い下部それぞれにつき,フリーの炭素基質原料のみの質量を同定し(例えば,篩い上部を1000℃以上の酸化雰囲気中で熱処理して炭素成分を完全に除去する。その熱処理で除去された質量が45μmを越えるフリーの炭素基質原料の質量とみなすことができる。篩い下部についても同様である。),
4.前記3で同定された篩い上部と篩い下のフリーの炭素基質原料の質量合計する,
5.前記3の篩い上部のフリーの炭素基質原料の質量をこの4による合計値で除す。
この5の値を45μm以下の結晶質であるフリーの炭素基質材料粒子の割合とし,この割合を判定の対象(40%以上)とすることができる。
1. The refractory is heat-treated at 400 ° C. to 500 ° C. in an oxidizing atmosphere for 48 hours or more to remove carbon in the bonded portion (including amorphous single-particle carbon),
2. The carbon substrate raw material exceeding 45 μm is separated from the remainder by sieving,
3. For each of the upper part of the sieve and the lower part of the sieve, the mass of only the free carbon substrate raw material is identified (for example, the upper part of the sieve is heat-treated in an oxidizing atmosphere of 1000 ° C. or more to completely remove the carbon component. The mass of the free carbon substrate material exceeding 45 μm, and the same applies to the lower part of the sieve).
4). Summing the mass of the free carbon substrate raw material above and below the sieve identified in 3 above,
5. The mass of the free carbon substrate raw material at the top of the 3 sieve is divided by the total value obtained by this 4.
The value of 5 can be set as a ratio of free carbon substrate material particles that are crystalline of 45 μm or less, and this ratio can be a determination target (40% or more).

そこで本発明は,当該耐火物の1000℃還元焼成後の開放気孔中の10μm以上の気孔径の割合を30%以下とする。   Therefore, in the present invention, the ratio of the pore diameter of 10 μm or more in the open pores after 1000 ° C. reduction firing of the refractory is set to 30% or less.

ここで,「10μm以上の気孔径の割合」とは,「全開口気孔」中の気孔径が10μm以上の気孔の体積と「全開口気孔の体積」との割合をいい,この気孔径はJIS R 1655 水銀圧入法による成形体気孔径分布の測定方法により求めることができる。   Here, “the ratio of the pore diameter of 10 μm or more” means the ratio between the volume of the pores having a pore diameter of 10 μm or more in the “total opening pores” and the “volume of all opening pores”. R 1655 It can be determined by a method for measuring the pore size distribution of a molded product by mercury porosimetry.

ところで,内部に亀裂を有するジルコニア粒子が存在するジルコニア−炭素質耐火物は,内部に亀裂を有するジルコニア粒子が存在すること自体で耐熱衝撃性が劣る。それに加えて耐火物前述の手段によって緻密になった本発明の高ZrO成分を含有する耐火物は,耐蝕性には優れているものの,耐熱衝撃性は低下する傾向になる。 By the way, a zirconia-carbonaceous refractory having zirconia particles having cracks therein is inferior in thermal shock resistance due to the presence of zirconia particles having cracks therein. In addition, the refractory containing the high ZrO 2 component of the present invention, which has been made dense by the above-mentioned means, is excellent in corrosion resistance, but tends to decrease the thermal shock resistance.

そこで本発明の耐火物においては,前記の本発明に係るジルコニア−炭素含有耐火物において,前記耐火物の組織中に,直径50nm以下の繊維状組織を有する炭素基質材料を含有させて耐熱衝撃性を顕著に向上させることもできる。   Therefore, in the refractory of the present invention, the zirconia-carbon-containing refractory according to the present invention contains a carbon substrate material having a fibrous structure having a diameter of 50 nm or less in the structure of the refractory, and has a thermal shock resistance. Can be remarkably improved.

前記の直径50nm以下の繊維状組織を有する炭素基質材料は,本発明の耐火物の組織中でも,とくに結合機能を担う炭素の組織(マトリックス)中に存在することで,ジルコニア−炭素含有耐火物の耐熱衝撃性を大幅に向上させることができる。   The carbon substrate material having a fibrous structure having a diameter of 50 nm or less is present in the refractory structure of the present invention, particularly in the carbon structure (matrix) that bears the binding function, so that the zirconia-carbon-containing refractory can be obtained. Thermal shock resistance can be greatly improved.

この直径50nm以下の繊維状組織を有する炭素基質材料を含む組織により,ジルコニア−炭素含有耐火物の耐熱衝撃性を大幅に向上させることができる理由は,次のように考えられる。   The reason why the thermal shock resistance of the zirconia-carbon-containing refractory can be greatly improved by the structure including the carbon matrix material having a fibrous structure having a diameter of 50 nm or less is considered as follows.

ジルコニア−炭素含有耐火物の組織は,骨材としてのジルコニア粒子,黒鉛等の骨材粒子としての炭素基質材料等と骨材粒子間等の結合機能を担う炭素の組織とからなる。これらジルコニア骨材粒子が黒鉛等の炭素質骨材と結合機能を担う炭素の組織に取り囲まれるように三次元的に構成されている。この結合機能を担う炭素の組織は黒鉛をフィラーとして三次元的に繋がっているため,この組織の性質がジルコニア−炭素含有耐火物の機械的な応力に関わるマクロ物性に大きな影響を及ぼす。   The structure of the zirconia-carbon-containing refractory is composed of a zirconia particle as an aggregate, a carbon matrix material as an aggregate particle such as graphite, and a carbon structure having a bonding function between the aggregate particles. These zirconia aggregate particles are three-dimensionally configured so as to be surrounded by a carbon structure having a binding function with a carbonaceous aggregate such as graphite. Since the carbon structure responsible for this bonding function is three-dimensionally connected using graphite as a filler, the properties of this structure greatly affect the macro physical properties related to the mechanical stress of the zirconia-carbon containing refractory.

一方,骨材粒子間を繋ぐ炭素の結合は,一般には高残炭性を示すフェノール樹脂を非酸化焼成することによって形成される。この炭素は,一般的に非晶質のグラッシーカーボン(以下,単に「ガラス状炭素」という。)と呼ばれるものであり,緻密で弾性率が高く脆い性質を有する。   On the other hand, the carbon bond connecting the aggregate particles is generally formed by non-oxidizing and firing a phenol resin exhibiting a high carbon residue. This carbon is generally called amorphous glassy carbon (hereinafter simply referred to as “glassy carbon”), and has a dense, high elastic modulus and brittle nature.

直径50nm以下の繊維状組織を有する炭素基質材料(以下,単に「繊維状炭素」という。)は,それ自体3次元的に不規則な配向をし,またそれら繊維状炭素は相互に複雑に絡み合って組織内に分散されている。このような構造の炭素基質材料は,それ自体が高い機械的な変形能を有し,かつ高い応力分散又は応力吸収能をも有している,いわゆる「柔構造体」である。したがってこのような柔構造体を含む炭素の結合のマトリックス部分も柔構造化する。   A carbon matrix material having a fibrous structure having a diameter of 50 nm or less (hereinafter, simply referred to as “fibrous carbon”) is itself three-dimensionally irregularly oriented, and these fibrous carbons are intertwined in a complicated manner. Distributed throughout the organization. The carbon substrate material having such a structure is a so-called “flexible structure” which itself has a high mechanical deformability and also has a high stress dispersion or stress absorption capability. Accordingly, the carbon bond matrix portion including such a flexible structure also becomes flexible.

ここで,「直径50nm以下の繊維状炭素の組織」とは,カーボンナノチューブ(以下単に「CNT」という。)やカーボンナノファイバー(以下単に「CNF」という。)のようなナノスケールの極微細な繊維状(アスペクト比が概ね3以上の構造)の炭素及びその集合組織をいう。   Here, “a fibrous carbon structure having a diameter of 50 nm or less” means a nanoscale ultrafine such as a carbon nanotube (hereinafter simply referred to as “CNT”) or a carbon nanofiber (hereinafter simply referred to as “CNF”). Carbon (fibrous) (structure with an aspect ratio of approximately 3 or more) and its texture.

またこの繊維状炭素はガラス状炭素や炭素の他の組織に比べて引っ張り強度にも優れており,組織強化材として機能する。したがって,この繊維状炭素によって,炭素の結合の破壊靱性も高くなる。   Moreover, this fibrous carbon is excellent in tensile strength compared with glassy carbon or other structures of carbon, and functions as a structure reinforcing material. Therefore, this fibrous carbon also increases the fracture toughness of carbon bonds.

このような繊維状炭素を炭素の結合のマトリックス内に微細な黒鉛微粉末やカーボンブラックなどとフィラーとして3次元的に連続的に分散して配置させることで,その炭素の結合のマトリクス部分が柔構造化,かつ高靱性化した結合組織(以下,単に「繊維状炭素含有組織」という。)となる。すなわち,炭素系繊維フィラーとしての繊維状炭素を含む炭素の結合組織を骨材粒子等の間の耐火物組織内に連続的に構成させることで,その耐火物が柔構造化,かつ高靱性化し,その耐火物のマクロ物性が改善され,弾性率,熱膨張率が低減され,またミクロ組織の強度も向上することで耐火物の破壊に至る破壊の起点の発生をも抑制し,高い破壊抵抗性を得ることができると考えられる。   Such fibrous carbon is dispersed and arranged three-dimensionally as fine graphite fine powder or carbon black as filler in a carbon bond matrix so that the carbon bond matrix portion is soft. It becomes a structured and toughened connective structure (hereinafter simply referred to as “fibrous carbon-containing structure”). In other words, by continuously forming a carbon connective structure containing fibrous carbon as a carbon-based fiber filler in the refractory structure between aggregate particles, the refractory is made flexible and tough. The macrophysical properties of the refractory are improved, the elastic modulus and thermal expansion coefficient are reduced, and the strength of the microstructure is also improved, thereby suppressing the occurrence of the starting point of destruction leading to the destruction of the refractory. It is thought that sex can be obtained.

連続鋳造用ノズルに使用されるカーボン・マトリックスにおける炭素質フィラー間に存在する炭素の結合の厚さは数百nm程度である。微細な繊維状組織による連続性を高めるためには繊維状組織の構成単位が細かいほどよいと考えられる。50nmを超えるとフィラーとなる炭素基質原料との微細な接着が十分でなくなるため50nm以下が好ましい。   The thickness of the carbon bonds existing between the carbonaceous fillers in the carbon matrix used in the continuous casting nozzle is on the order of several hundred nm. In order to improve the continuity by a fine fibrous structure, it is considered that the finer the structural unit of the fibrous structure, the better. If it exceeds 50 nm, fine adhesion with the carbon substrate raw material to be a filler is not sufficient, so 50 nm or less is preferable.

本発明によって以下の効果を奏する。
第1に,ZrO含有率が80質量%を超える高ジルコニア含有率のジルコニア−炭素含有耐火物において,内部に亀裂が存在する150μm以上のジルコニア粒子を使用しつつ,耐蝕性と耐熱衝撃性を高度に確保することが可能となる。
The present invention has the following effects.
To a 1, ZrO 2 content high zirconia content of zirconia exceeds 80 mass% - in the carbon-containing refractories, while using 150μm or zirconia particles cracks are present therein, the corrosion resistance and thermal shock resistance It is possible to ensure a high degree.

第2に,ジルコニア−炭素含有耐火物内に45μm以下の特定の大きさの炭素基質材料を特定割合以下で存在させることにより,本発明の耐火物を容易に,また安定的に製造することができ,さらに耐蝕性と耐熱衝撃性を向上させることができる。   Secondly, the refractory of the present invention can be easily and stably produced by allowing a carbon substrate material having a specific size of 45 μm or less to exist in a zirconia-carbon-containing refractory at a specific ratio or less. In addition, corrosion resistance and thermal shock resistance can be improved.

第3に,炭素質を主とするマトリックス部分に直径50nm以下の繊維状組織を有する炭素基質材料を配することにより,さらに耐熱衝撃性を向上させることが可能となる。   Thirdly, it is possible to further improve the thermal shock resistance by disposing a carbon substrate material having a fibrous structure having a diameter of 50 nm or less in a matrix portion mainly composed of carbon.

粒子内部に亀裂を有するZrO原料粒子を示す。It shows a ZrO 2 raw material particles having a crack inside the particles. 粒子内部に亀裂を有さないZrO原料粒子を示す。ZrO 2 raw material particles having no cracks inside the particles are shown. 粒子内部に亀裂を有する150μm以上のZrO原料粒子を配合した耐火物の侵食試験後の断面の拡大写真を示す。It shows an enlarged photograph of a cross section after the corrosion test of the refractory blended with 150μm or more ZrO 2 raw material particles having a crack inside the particles. 粒子内部に亀裂を有さない150μm以上のZrO原料粒子を配合した耐火物の侵食試験後の断面の拡大写真を示す。It shows an enlarged photograph of a cross section after the corrosion test of the refractory blended with 150μm or more ZrO 2 raw material particles having no crack inside the particles. 本発明の直径50nm以下の炭素質繊維状組織を含有しない耐火物の炭素質の結合組織の拡大写真を示す。The enlarged photograph of the carbonaceous connective structure of the refractory which does not contain the carbonaceous fibrous structure of diameter 50nm or less of this invention is shown. 本発明の耐火物の,直径50nm以下の炭素質繊維状組織が無定形炭素の組織中に含有されている炭素質の結合組織の炭素質繊維状部分の拡大写真(TEM画像)を示す。同図aは炭素質の結合組織の割合が2割程度(面積割合)のものを,bは炭素質の結合組織の割合が同程度(面積割合)のものを,cは炭素質の結合組織のほぼ全体が繊維状組織で満たされているものをそれぞれ示す。The enlarged photograph (TEM image) of the carbonaceous fibrous part of the carbonaceous connective structure in which the carbonaceous fibrous structure of diameter 50nm or less of the refractory material of this invention is contained in the structure | tissue of an amorphous carbon is shown. Figure a shows a carbonaceous connective tissue ratio of about 20% (area ratio), b shows a carbonaceous connective tissue ratio (area ratio), and c shows a carbonaceous connective tissue. Each of which is substantially filled with a fibrous structure.

本発明の耐火物は,下記の方法によって製造される。   The refractory of the present invention is manufactured by the following method.

まず,ジルコニア粒子の原料中,150μmを超えるサイズのジルコニアの粒子が,図1に示す亀裂が内在する原料を図2に示す亀裂が内在しない原料との合計量に対し25質量%になるように調製する。   First, zirconia particles having a size exceeding 150 μm in the raw material of zirconia particles are 25% by mass with respect to the total amount of the raw material with cracks shown in FIG. 1 and the raw material without cracks shown in FIG. Prepare.

本発明の耐火物を連続鋳造用の浸漬ノズルに適用する場合,調製されたジルコニアの原料粒子を,黒鉛等の他の原料と共に混和してはい土を作製し,その後CIPで成形,乾燥,焼成,加工等の一般的な工程による製造法を採る。   When the refractory material of the present invention is applied to an immersion nozzle for continuous casting, the prepared zirconia raw material particles are mixed with other raw materials such as graphite to produce a clay, and then molded, dried and fired with CIP , Adopt the manufacturing method by general process such as processing.

1000℃還元焼成後の見掛け気孔率を12%以上20%以下に調整するには,成形工程で,成形圧力を調整する。成形時の圧力を高くすると緻密化即ち気孔率を低下させる傾向,低くすると粗化即ち気孔率を上昇させる傾向となる。またこの成形に供するはい土の湿潤状態を調整することでも調整することができるが,この調整幅を大きくすると組織内の欠陥を生じやすいので,圧力による調整方法の方が好ましい。   In order to adjust the apparent porosity after reduction firing at 1000 ° C. to 12% or more and 20% or less, the molding pressure is adjusted in the molding process. When the pressure during molding is increased, densification, that is, the porosity tends to decrease, and when it is lowered, roughening, that is, the porosity tends to increase. Moreover, although it can also adjust by adjusting the wet state of the earth soil used for this shaping | molding, since the defect in a structure | tissue will arise easily when this adjustment width | variety is enlarged, the adjustment method by a pressure is more preferable.

本発明の耐火物を構成するジルコニア原料粒のサイズを,数水準の集団に分級し,各分級されたサイズごとの集団それぞれの配合割合を変化させる等の方法を採ることができる。例えば,最密充填に近い割合の方向に調整すると,その構成によって得られた耐火物の組織は密になる傾向,その逆の構成割合の方向では耐火物の組織は粗になる傾向となる。   The size of the zirconia raw material grains constituting the refractory according to the present invention can be classified into groups of several levels, and the mixing ratio of each group for each classified size can be changed. For example, when the adjustment is made in the direction close to the closest packing, the structure of the refractory obtained by the configuration tends to be dense, and in the opposite direction, the structure of the refractory tends to become coarse.

図3は,粒子内部に亀裂を有する150μm以上のZrO原料粒子を配合した耐火物の侵食試験後の断面の拡大写真を示す。150μm以上のZrO原料粒子(骨材)に亀裂が入っていると,骨材中の亀裂に溶融スラグが浸透し,亀裂部で脱安定化を促進し,骨材を崩壊させる。本来,細粒化により稼働面近傍にとどまり,保護膜形成に寄与し,耐食性を向上させるジルコニア成分がスラグフィルム中に脱落するため,稼働界面のジルコニア濃度をたかめることができずに保護膜機能が低下する。 FIG. 3 shows an enlarged photograph of a cross section after an erosion test of a refractory compounded with 150 μm or more ZrO 2 raw material particles having cracks inside the particles. If the ZrO 2 raw material particles (aggregate) of 150 μm or more have cracks, molten slag penetrates into the cracks in the aggregate, promotes destabilization at the cracks, and collapses the aggregate. Originally, the zirconia component that stays in the vicinity of the working surface due to the finer grain and contributes to the formation of the protective film and improves the corrosion resistance is dropped into the slag film, so that the protective film function cannot be increased without increasing the zirconia concentration at the working interface. descend.

図4は,粒子内部に亀裂を有さない150μm以上のZrO原料粒子を配合した耐火物の侵食試験後の断面の拡大写真を示す。ZrO骨材の細粒化現象を伴う脱安定化現象により,スラグフィルムに接した稼働面では,ZrO濃度の高い耐火物層が形成され,その保護膜的機能により耐食性が向上する。 FIG. 4 shows an enlarged photograph of a cross section after an erosion test of a refractory containing 150 μm or more ZrO 2 raw material particles having no cracks inside the particles. Due to the destabilization phenomenon accompanied by the fine graining phenomenon of ZrO 2 aggregate, a refractory layer having a high ZrO 2 concentration is formed on the working surface in contact with the slag film, and the corrosion resistance is improved by its protective film function.

最大長さが45μm以下の結晶質であるフリーの炭素基質材料を40質量%以上とするには,微粉黒鉛の添加が最も好ましい。同量添加の場合,粗大な黒鉛に比べて,微粉黒鉛添加ではジルコニア粒子間に存在する黒鉛が増すため,成形時の内部摩擦を低減し気孔径の粗大化を防止することが可能となる。   In order to make the free carbon substrate material having a maximum length of 45 μm or less in a crystalline state into 40% by mass or more, addition of fine graphite is most preferable. When the same amount is added, compared to coarse graphite, the addition of fine graphite increases the amount of graphite that exists between the zirconia particles, so it is possible to reduce internal friction during molding and prevent the pore diameter from becoming coarse.

このほかに,固体潤滑性能の優れた,カーボンブラックの単独あるいは併用使用も可能である。微粉黒鉛との併用使用の場合は約0.5質量%以上約5質量%以下とすることが,好ましい。0.5質量%未満ではカーボンブラックを使用することでもたらされる固体潤滑性の改善効果が乏しく,5質量%を越えると,耐火物組織が粗になりやすく,またラミネーション等を誘発可能性が生じ始める。   In addition, carbon black with excellent solid lubricating performance can be used alone or in combination. In the case of use in combination with fine graphite, it is preferably about 0.5 mass% or more and about 5 mass% or less. If the amount is less than 0.5% by mass, the effect of improving the solid lubricity caused by using carbon black is poor. If the amount exceeds 5% by mass, the refractory structure tends to be rough and may cause lamination. start.

カーボンブラックとしては,単球状粒子の使用が好ましいが,アグリゲートが発達したブドウの房状(いわゆるクラスター状)のカーボンブラックの使用も可能である。   As the carbon black, it is preferable to use monospherical particles, but it is also possible to use a bunch of grapes (so-called cluster-like) carbon black in which aggregates are developed.

ジルコニアと炭素を含有する耐火物に,直径50nm以下の炭素質繊維状組織を有する炭素基質材料を含有させるには,例えば次のような方法を採ることができる。   In order to incorporate a carbon substrate material having a carbonaceous fibrous structure having a diameter of 50 nm or less into a refractory containing zirconia and carbon, for example, the following method can be employed.

第1に,本発明の耐火物を100質量%とするときに0.01質量%以上〜1.0質量%以下程度(マトリクス部の炭素量に対してはその炭素量を100質量%とするときに0.3質量%以上〜12.5質量%以下程度)の直径50nm以下の繊維状の炭素質原料をはい土製造時に,耐火物の炭素質の結合材を形成する溶液を含む有機質の樹脂,ピッチやタール等,またはカーボンブラック等の微細な炭素質原料に分散させる方法が挙げられる。   First, when the refractory of the present invention is 100% by mass, it is about 0.01% by mass to 1.0% by mass (with respect to the carbon content of the matrix portion, the carbon content is 100% by mass). (Occasionally 0.3 mass% to 12.5 mass% or less) Fibrous carbonaceous raw material with a diameter of 50 nm or less is used to produce an organic material containing a solution that forms a refractory carbonaceous binder during the production of the soil. Examples thereof include a method of dispersing in a fine carbonaceous raw material such as resin, pitch or tar, or carbon black.

第2に,本発明の耐火物を100質量%とするときに0.03質量%以上〜0.3質量%以下程度(マトリクス部の炭素量に対してはその炭素量を100質量%とするときに0.3質量%〜6.0質量%以下程度)の遷移金属として,耐火物の炭素質の結合材を形成する溶液を含む有機質の樹脂,ピッチやタール等,またはカーボンブラック等の微細な炭素質原料に分散させて混合し,この混練はい土をCIPなどにより成形し,600〜1200℃,好ましくは900〜1100℃の非酸化雰囲気中で熱処理を行う。   Second, when the refractory of the present invention is 100% by mass, it is about 0.03% by mass to 0.3% by mass (with respect to the carbon content of the matrix portion, the carbon content is 100% by mass). As a transition metal (sometimes about 0.3% to 6.0% by mass), organic resin containing a solution that forms a refractory carbonaceous binder, pitch, tar, etc., fine particles such as carbon black The mixture is dispersed and mixed in a carbonaceous raw material, and the kneaded clay is formed by CIP or the like, and heat-treated in a non-oxidizing atmosphere at 600 to 1200 ° C., preferably 900 to 1100 ° C.

図5は,本発明の直径50nm以下の炭素質繊維状組織を含有しない耐火物の炭素質の結合組織の拡大写真を示し,図6のa,b,cは,本発明の耐火物の,直径50nm以下の炭素質繊維状組織が含有されている炭素質の結合組織の炭素質繊維状部分の拡大写真を示す。   FIG. 5 shows an enlarged photograph of a carbonaceous connective structure of a refractory containing no carbonaceous fibrous structure having a diameter of 50 nm or less according to the present invention, and a, b, and c in FIG. The enlarged photograph of the carbonaceous fibrous part of the carbonaceous connective tissue containing the carbonaceous fibrous structure of diameter 50nm or less is shown.

耐火物組織中より炭素質の結合組織を観察する方法としては,たとえば,耐火物組織を乳鉢により粉砕し,水などの分散液に分散させ,静沈後の上澄み液をTEM観察用グリッドですくい,固定化させることで観察可能である。図6のa,b,cはそれぞれ50nm以下の炭素繊維状組織を含む炭素質の結合組織を観察したTEM像である。炭素繊維状組織とは,図6のaのようにTEM画像における視野中の面積に着目したときの炭素繊維状組織の割合が少ない(2割程度)のものから,図6のbのように無定形と繊維状組織を同程度含むもの,図6のcのようにほぼ全体が繊維状組織で満たされているものまでを指す。   As a method of observing the carbonaceous connective structure in the refractory structure, for example, the refractory structure is pulverized with a mortar and dispersed in a dispersion such as water, and the supernatant liquid after settling is scooped with a TEM observation grid. , It can be observed by immobilization. In FIG. 6, a, b, and c are TEM images obtained by observing a carbonaceous connective structure including a carbon fibrous structure of 50 nm or less. The carbon fibrous structure has a small proportion (about 20%) of the carbon fibrous structure when attention is paid to the area in the field of view in the TEM image as shown in FIG. This refers to a material that contains the same degree of amorphous and fibrous structure, and one that is almost entirely filled with a fibrous structure as shown in FIG.

これらの拡大写真に見られるとおり,両者の間には,次のような相互に異なる差異が認められる。炭素質繊維状組織を含有しない図5の場合は均質でガラス状の組織となっていて,当該組織に柔軟性をもたらすような変形能に富むような構造の構成物や変形を許容するような空隙等は観られない。これに対して直径50nm以下の炭素繊維状組織を含む炭素質の結合組織である図6のa,b,cの場合は,当該組織に柔軟性をもたらすような変形能に富む繊維状構成物が不規則な3次元配置をしており,またこのような繊維状構成物の周辺は当該結合構造の変形を許容するような空隙等が見られる。   As can be seen in these enlarged photographs, there are the following differences between them. In the case of FIG. 5 which does not contain a carbonaceous fibrous structure, it is a homogeneous and glass-like structure, and a structure having a deformable structure or deformation that allows flexibility to the structure is allowed. There are no voids. On the other hand, in the case of FIGS. 6A, 6B and 6C, which are carbonaceous connective structures including a carbon fibrous structure having a diameter of 50 nm or less, a fibrous structure rich in deformability that provides flexibility to the structure. Are irregular three-dimensional arrangements, and voids or the like that allow deformation of the joint structure can be seen around the fibrous structure.

このような炭素繊維状組織を含むことにより,耐熱衝撃性を改善することが可能となる。因みに,直径50nm以下の炭素繊維状組織の質量を直接に,かつ正確に同定することは技術的に困難である。したがって,前述のように,加工をした間接的に組織を観察することでその存在が確認できれば,耐熱衝撃性を改善する効果は期待できる。   By including such a carbon fibrous structure, it is possible to improve thermal shock resistance. Incidentally, it is technically difficult to directly and accurately identify the mass of a carbon fibrous structure having a diameter of 50 nm or less. Therefore, as described above, if the existence can be confirmed by observing the processed structure indirectly, the effect of improving the thermal shock resistance can be expected.

なお,上述した微細な炭素質原料に分散させる遷移金属は,液状でも粉体でもよく,合金状態,または化合物の状態等何れの形態でもよい。また熱処理によって得た耐火物中の遷移金属は,合金を含む金属の状態または化合物の状態等何れの形態でもよい。   The transition metal dispersed in the fine carbonaceous raw material described above may be liquid or powder, and may be in any form such as an alloy state or a compound state. Further, the transition metal in the refractory obtained by the heat treatment may be in any form such as a metal state including an alloy or a compound state.

以下に示す実施例イ−実施例ホにおいて使用したZrO原料粒子の化学成分,粒度毎の亀裂混入粒子の割合を表1に示す。同表において,原料Aは亀裂混入率が高く,原料Bは亀裂混入率が低いタイプである。 Table 1 shows the chemical composition of the ZrO 2 raw material particles used in Examples I to Example H shown below, and the ratio of cracked particles for each particle size. In the table, raw material A is a type with a high crack mixing rate, and raw material B is a type with a low crack mixing rate.

以下の各実施例の表2から表5には,供試材の骨材の配合割合,45μm以下の黒鉛原料,供試材の化学成分,それに,物理特性,化学特性を示す。   Tables 2 to 5 of the following examples show the mixing ratio of the aggregate of the test material, the graphite raw material of 45 μm or less, the chemical composition of the test material, and the physical characteristics and chemical characteristics.

溶損性の評価は,大気下,1550〜1570℃で溶解した低炭鋼の表面にモールパウダーを約30mm浮かべたルツボ(内径150mm)中に,所定のジルコニアーグラファイトの角柱サンプル(20×20×160mm)を120分間浸漬し,引き上げたのちに,(溶鋼/溶融パウダー)界面での最大溶損量を比較して行った。溶融パウダーとしてはCaO/SiO重量比が1.0のものを使用した。 The evaluation of the meltability was carried out in a predetermined zirconia graphite prism sample (20 × 20) in a crucible (inner diameter: 150 mm) in which a molding powder was floated about 30 mm on the surface of low carbon steel melted at 1550 to 1570 ° C. in the atmosphere. X160 mm) was immersed for 120 minutes and pulled up, and the maximum amount of erosion at the (molten steel / molten powder) interface was compared. A molten powder having a CaO / SiO 2 weight ratio of 1.0 was used.

表中の耐食性評価指標は,粒子内に亀裂が存在するZrO原料粒子の割合が,実施例イにおいて最少,すなわち,粒子内に亀裂が存在するZrO原料粒子の個数割合との関係で,耐食性が最も高い実施例である実施例4の侵食程度を100とした指数である。 The corrosion resistance evaluation index in the table is that the ratio of ZrO 2 raw material particles having cracks in the particles is the smallest in Example i, that is, the relationship with the number ratio of ZrO 2 raw material particles having cracks in the particles. It is an index in which the degree of erosion of Example 4, which is an example having the highest corrosion resistance, is 100.

ちなみに,ZrO成分が80質量%で,粒子内に亀裂が存在するZrO原料粒子の個数割合が7%程度(実施例4と同程度)のものの耐食性評価指標は約120である。したがって,耐食性評価指標が120以下であれば,本発明の効果が得られていると判断でき,高耐食性ZG材質として機能を発揮するレベルであるとみなすことができる。 Incidentally, the corrosion resistance evaluation index is about 120 when the ZrO 2 component is 80% by mass and the number ratio of ZrO 2 raw material particles having cracks in the particles is about 7% (same as in Example 4). Therefore, if the corrosion resistance evaluation index is 120 or less, it can be determined that the effect of the present invention is obtained, and can be regarded as a level that exhibits the function as the high corrosion resistance ZG material.

また,スポーリングの試験方法は,端面を同材質の蓋で閉じた円筒状のサンプル(外径150/内径100mm×高さ80mmh)を所定の温度まで上げて,蓋をした側よりサンプル内部に水が入らないように水中に浸漬し熱衝撃を与えて割れの有無により限界のΔTを確認した。   In addition, the spalling test method is to raise a cylindrical sample (outer diameter 150 / inner diameter 100 mm × height 80 mmh) whose end face is closed with a lid made of the same material to a predetermined temperature, and into the sample from the lid side. It was immersed in water so that water did not enter, was subjected to thermal shock, and the limit ΔT was confirmed by the presence or absence of cracks.

この試験方法による1250℃以上での水冷試験で割れが発生しない熱衝撃性を示す材質は,実操業では全く問題のないレベルの耐熱衝撃性であることがわかっている。したがって,実炉で安定して使用可能な耐熱衝撃性レベルは水冷スポーリングで1250℃をクリアーする必要がある。   It has been found that a material exhibiting thermal shock resistance that does not cause cracking in a water cooling test at 1250 ° C. or higher by this test method has a thermal shock resistance level at which there is no problem in actual operation. Therefore, the thermal shock resistance level that can be stably used in an actual furnace needs to be cleared to 1250 ° C. by water-cooled spalling.

実施例イ
この実施例イは,表1に示す原料AおよびBを所定比率で混合して150μm以上(表中+150μmと表記)の粒度域での亀裂含有粒子の割合を変化させた原料を調整して耐食性および耐熱衝撃性を評価した結果である。
Example I In this example I, raw materials A and B shown in Table 1 were mixed at a predetermined ratio, and the raw materials were prepared by changing the ratio of crack-containing particles in the particle size range of 150 μm or more (indicated as +150 μm in the table). This is the result of evaluating the corrosion resistance and thermal shock resistance.

表2にその供試材と結果を示す。   Table 2 shows the test materials and results.

150μm以上の粒度域での亀裂混入割合が25%を超えた比較例1〜比較例3の場合に耐食性が大幅に低下した。また,実施例1〜実施例4は,150μm以上の粒度域での亀裂混入割合が25%以下という条件を満たすものであった。   In the case of Comparative Examples 1 to 3 in which the crack mixing ratio in the particle size range of 150 μm or more exceeded 25%, the corrosion resistance was significantly lowered. In addition, Examples 1 to 4 satisfy the condition that the crack mixing ratio in a particle size region of 150 μm or more is 25% or less.

なお,耐食性評価指標が120以下であれば,高耐食性ZG材質として機能を発揮するレベルである。また,実炉で安定して使用可能な耐熱衝撃性レベルは水冷スポーリングで1250℃をクリアーする必要がある。この耐熱衝撃性レベルであれば浸漬ノズルとして割れることなく安定して使用できる。   In addition, if the corrosion resistance evaluation index is 120 or less, it is a level that exhibits a function as a high corrosion resistance ZG material. In addition, the thermal shock resistance level that can be stably used in an actual furnace must be cleared to 1250 ° C. by water-cooled spalling. If it is this thermal shock resistance level, it can be stably used as an immersion nozzle without cracking.

実施例ロ
この実施例ロは,見掛け気孔率をほぼ一定として,黒鉛原料の45μm以下の割合を変化させることによって焼成後の10μm以上の気孔径割合を変化させた試験結果を示す。
Example B This example B shows the test results in which the apparent porosity is substantially constant and the ratio of the pore diameter of 10 μm or more after firing is changed by changing the ratio of the graphite raw material of 45 μm or less.

表3にその供試材料と試験結果を示す。同表における実施例4,5,6,7は,同様の評価指標で,85〜115の間にあり,合格したが,比較例4の場合,123で,且つ,気孔径割合が32%では耐食性の低下が見られ不合格となった。   Table 3 shows the test materials and test results. Examples 4, 5, 6 and 7 in the same table are the same evaluation indices and are between 85 and 115, and passed, but in the case of Comparative Example 4, it is 123 and the pore diameter ratio is 32%. Decline in corrosion resistance was seen and it was rejected.

実施例ハ
この実施例ハは,炭素結合部組織を炭素繊維状組織を含む結合形態に変化させた試験結果である。
Example C This Example C is a test result obtained by changing the carbon bond structure to a bond form including a carbon fibrous structure.

表4にその供試料と結果を示す。同表における実施例8の炭素繊維状組織は,図6のaのようなTEM画像における視野中の面積割合が2割程度のものである。実施例5をベースに炭素結合部組織を炭素繊維状組織を含む結合形態に変化させた。耐食性の変化は見られず,結合を炭素繊維状組織にすることで耐熱衝撃性が改善した。   Table 4 shows the samples and the results. The carbon fibrous structure of Example 8 in the table has an area ratio in the visual field in the TEM image as shown in FIG. Based on Example 5, the carbon bond structure was changed to a bond form containing a carbon fibrous structure. There was no change in corrosion resistance, and the thermal shock resistance was improved by using a carbon fiber structure for the bonds.

なお,この結果から,炭素結合部の組織内の炭素繊維状組織が,図6のb−cのようにTEM画像における視野中の面積割合が多くなると耐熱衝撃性がさらに改善すると考えられる。   From this result, it is considered that the thermal shock resistance is further improved when the area ratio in the field of view in the TEM image of the carbon fibrous structure in the structure of the carbon bond portion is increased as shown in FIG.

実施例ニ
この実施例ニは,大きさ150μm未満(表中−150μmと表記)のジルコニア粒子の亀裂含有粒子の割合を増加させた例を示す。
Example D This Example D shows an example in which the ratio of crack-containing particles of zirconia particles having a size of less than 150 μm (denoted as −150 μm in the table) is increased.

表5にその供試材と試験結果を示す。同表に示す実施例9は,実施例4をベースにジルコニア粒度の亀裂含有粒子の割合を増加させた。表3で見られたような耐食性と耐熱衝撃性とも大きな変化は認められなかった。これにより,ジルコニア原料粒子として管理すべき粒度範囲は150μm以上であることがわかる。   Table 5 shows the test materials and test results. In Example 9 shown in the table, the ratio of crack-containing particles having a zirconia particle size was increased based on Example 4. There was no significant change in both corrosion resistance and thermal shock resistance as seen in Table 3. This shows that the particle size range to be managed as zirconia raw material particles is 150 μm or more.

実施例ホ
この実施例ホは,見掛け気孔率の影響について調査した。
Example E This Example E investigated the effect of apparent porosity.

表6にその供試材と試験結果を示す。同表における実施例8の配合を成形時の可塑性を変化させて,具体的にははい土の性状を変化させ,見掛け気孔率の影響について調査した。   Table 6 shows the test materials and test results. The effect of apparent porosity was investigated by changing the plasticity at the time of molding of the formulation of Example 8 in the table, specifically changing the properties of the soil.

見掛け気孔率が20%を超えると耐熱衝撃性は大きな変化はないが,耐食性が低下して不合格となった。一方,11.5%の見掛け気孔率の比較例6では,耐食性は非常に優れるが,耐熱衝撃性の低下が認められて不合格となった。   When the apparent porosity exceeded 20%, the thermal shock resistance did not change greatly, but the corrosion resistance decreased and the test was rejected. On the other hand, in Comparative Example 6 having an apparent porosity of 11.5%, the corrosion resistance was very excellent, but a decrease in the thermal shock resistance was observed and the test was rejected.

本発明の耐火物は,製銑・製鋼プロセス等において使用する各種窯炉又はノズル等の機能性部品に使用する耐火物に利用することができる。とくに,連続鋳造用のタンディッシュ−モールド間の溶鋼注入に使用する浸漬ノズルのモールドパウダー部用の耐火物として好適である。   The refractory material of the present invention can be used as a refractory material used for functional parts such as various kilns or nozzles used in the steelmaking and steelmaking processes. In particular, it is suitable as a refractory for a mold powder part of an immersion nozzle used for molten steel injection between a tundish and a mold for continuous casting.

また,溶鋼取鍋からタンディッシュへ溶鋼を排出するために使用するいわゆるロングノズルの,タンディッシュ内の溶融スラグに接する領域に配設する耐火物としても好適である。   Moreover, it is suitable also as a refractory material arrange | positioned in the area | region which contacts the molten slag in a tundish of what is called a long nozzle used in order to discharge | emit molten steel from a molten steel ladle to a tundish.

Claims (5)

骨材粒子間に炭素による結合が形成されたジルコニアの含有量が80質量%を超えるジルコニア−炭素含有耐火物において,
当該耐火物を構成するジルコニア粒子がJIS標準篩いの公称目開き150μmの篩い網を通過できないジルコニア粒子個数全体に対して,粒子の研磨断面の観察による方法で粒子内部に亀裂を有する粒子個数の割合が25%未満であり,
当該耐火物の1000℃還元焼成後の見掛け気孔率が12%以上20%以下であって,
かつ,
当該耐火物の1000℃還元焼成後の開放気孔中の10μm以上の気孔径の割合が,30%以下であるジルコニアおよび炭素を含有する耐火物。
In a zirconia-carbon-containing refractory in which the content of zirconia in which carbon bonds are formed between aggregate particles exceeds 80% by mass,
Percentage of the number of particles having cracks inside the particles by the method of observing the polished cross section of the particles with respect to the total number of zirconia particles in which the zirconia particles constituting the refractory cannot pass through a sieve screen having a nominal aperture of 150 μm of a JIS standard sieve Is less than 25%,
The apparent porosity of the refractory after 1000 ° C. reduction firing is 12% or more and 20% or less,
And,
A refractory containing zirconia and carbon having a pore diameter ratio of 10 μm or more in open pores after reduction firing of the refractory at 1000 ° C. of 30% or less.
前記のジルコニアおよび炭素を含有する耐火物の組織内において,最大長さが45μm以下の結晶質であるフリーの炭素基質材料粒子が,当該耐火物の組織内の全ての結晶質であるフリーの炭素基質材料中の40質量%以上である請求項1に記載のジルコニアおよび炭素を含有する耐火物。   In the refractory structure containing zirconia and carbon, the free carbon matrix material particles having a maximum length of 45 μm or less are free carbon that is all crystalline in the refractory structure. The refractory containing zirconia and carbon according to claim 1, which is 40% by mass or more based on the substrate material. 前記ジルコニアおよび炭素を含有する耐火物の組織内には,直径50nm以下の炭素質繊維状組織を有する炭素基質材料が含有されている請求項1または請求項2に記載のジルコニアおよび炭素を含有する耐火物。   The zirconia and carbon according to claim 1 or 2, wherein the refractory structure containing zirconia and carbon contains a carbon substrate material having a carbonaceous fibrous structure having a diameter of 50 nm or less. Refractory. 請求項1ないし請求項3のいずれかに記載の耐火物をモールド内の溶融パウダーに接する領域に配設した連続鋳造用ノズル。   A nozzle for continuous casting in which the refractory according to any one of claims 1 to 3 is disposed in a region in contact with molten powder in a mold. 請求項1ないし請求項3のいずれかに記載の耐火物をタンディッシュ内の溶融スラグに接する領域に配設した連続鋳造用ノズル。   A nozzle for continuous casting in which the refractory according to any one of claims 1 to 3 is disposed in a region in contact with the molten slag in the tundish.
JP2010070742A 2010-03-25 2010-03-25 Zirconia-carbon-containing refractory and immersion nozzle disposed with the refractory Pending JP2011200911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070742A JP2011200911A (en) 2010-03-25 2010-03-25 Zirconia-carbon-containing refractory and immersion nozzle disposed with the refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070742A JP2011200911A (en) 2010-03-25 2010-03-25 Zirconia-carbon-containing refractory and immersion nozzle disposed with the refractory

Publications (1)

Publication Number Publication Date
JP2011200911A true JP2011200911A (en) 2011-10-13

Family

ID=44878192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070742A Pending JP2011200911A (en) 2010-03-25 2010-03-25 Zirconia-carbon-containing refractory and immersion nozzle disposed with the refractory

Country Status (1)

Country Link
JP (1) JP2011200911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159342A (en) * 2015-03-04 2016-09-05 品川リフラクトリーズ株式会社 Immersion nozzle for continuous casting, and method for continuous casting of steel
JP7071605B1 (en) 2022-03-02 2022-05-19 黒崎播磨株式会社 Refractory and refractory members for continuous casting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142927A (en) * 1995-11-13 1997-06-03 Kurosaki Refract Co Ltd Zirconia-carbon refractory
JP2009221031A (en) * 2008-03-13 2009-10-01 Kurosaki Harima Corp Zirconia-carbon-containing refractory and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142927A (en) * 1995-11-13 1997-06-03 Kurosaki Refract Co Ltd Zirconia-carbon refractory
JP2009221031A (en) * 2008-03-13 2009-10-01 Kurosaki Harima Corp Zirconia-carbon-containing refractory and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159342A (en) * 2015-03-04 2016-09-05 品川リフラクトリーズ株式会社 Immersion nozzle for continuous casting, and method for continuous casting of steel
JP7071605B1 (en) 2022-03-02 2022-05-19 黒崎播磨株式会社 Refractory and refractory members for continuous casting
WO2023167008A1 (en) * 2022-03-02 2023-09-07 黒崎播磨株式会社 Refractory product for use in continuous casting, and refractory product member
JP2023128028A (en) * 2022-03-02 2023-09-14 黒崎播磨株式会社 Refractory for continuous casting and refractory member

Similar Documents

Publication Publication Date Title
JP5255574B2 (en) Zirconium lite refractory raw material and plate brick
JP6279068B2 (en) Steel casting refractories, sliding nozzle device plate, and method for producing steel casting refractories
US8084122B2 (en) Zirconia-carbon-containing refractory and method for producing same
JP5016609B2 (en) High durability sleeve brick
JP4410796B2 (en) Continuous casting nozzle
KR101310737B1 (en) Nozzle for continuous casting
JP4132212B2 (en) Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same
JP6148476B2 (en) Zirconia-carbon-containing refractory and immersion nozzle for continuous casting of steel, and zirconia-carbon-containing refractory manufacturing method and steel continuous casting immersion nozzle
JP2011200911A (en) Zirconia-carbon-containing refractory and immersion nozzle disposed with the refractory
JP5134516B2 (en) Continuous casting nozzle
JP4751277B2 (en) Non-adhesive continuous casting nozzle
TWI762076B (en) refractory
JP4456443B2 (en) Pitch-containing difficult adhesion continuous casting nozzle
JP6204825B2 (en) Immersion nozzle
US20230028785A1 (en) Refractory product
JP4589151B2 (en) Nozzle for continuous casting and continuous casting method
KR100349243B1 (en) digestion nozzle for continous casting
JP2006068805A (en) Hardly adhesive continuous casting nozzle containing zirconia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507