JP2011200849A - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP2011200849A
JP2011200849A JP2010073583A JP2010073583A JP2011200849A JP 2011200849 A JP2011200849 A JP 2011200849A JP 2010073583 A JP2010073583 A JP 2010073583A JP 2010073583 A JP2010073583 A JP 2010073583A JP 2011200849 A JP2011200849 A JP 2011200849A
Authority
JP
Japan
Prior art keywords
discharge electrode
electrode
discharge
counter electrode
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010073583A
Other languages
Japanese (ja)
Other versions
JP5432792B2 (en
Inventor
Junpei Oe
純平 大江
Shoji Machi
昌治 町
Hiroshi Suda
洋 須田
Yasuhiro Komura
泰浩 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010073583A priority Critical patent/JP5432792B2/en
Priority to PCT/JP2011/055733 priority patent/WO2011118413A1/en
Priority to TW100109371A priority patent/TW201204472A/en
Publication of JP2011200849A publication Critical patent/JP2011200849A/en
Application granted granted Critical
Publication of JP5432792B2 publication Critical patent/JP5432792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an electrostatic atomizer to eject a greater amount of electrostatically atomized spray.SOLUTION: The electrostatic atomizer includes a first discharge electrode 2 connected to a high-voltage power source 1 at either of the lower potential side or the higher potential side thereof relative to the standard potential, a first counter electrode 3 disposed to face the first discharge electrode 2, a second discharge electrode 4 connected to the first counter electrode 3, and a second counter electrode 5 disposed to face the second discharge electrode 4 and connected to the high-voltage power source 1 at the other of the lower potential side or the higher potential side relative to the standard potential. The first counter electrode 3 and the second discharge electrode 4 are connected to the high-voltage power source 1 at the standard potential point. The first discharge electrode 2 and the second discharge electrode 4 are each equipped with a means 6 of feeding a liquid to the same.

Description

本発明は、静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer.

従来から、放電電極の先端部に水を供給し、放電電極と対向電極との間に高電圧を印加することで、ナノメータサイズの帯電微粒子水を生成することが従来から知られている。   Conventionally, it has been known to generate nanometer-sized charged fine particle water by supplying water to the tip of the discharge electrode and applying a high voltage between the discharge electrode and the counter electrode.

また、多量の帯電微粒子水を生成するため、放電電極と対向電極とよりなる静電霧化部を、単一の高圧電源に並列接続することも特許文献1により知られている。   In addition, Patent Document 1 discloses that an electrostatic atomization unit including a discharge electrode and a counter electrode is connected in parallel to a single high-voltage power source in order to generate a large amount of charged fine particle water.

特開2006−334503号公報JP 2006-334503 A

しかしながら、特許文献1に示された従来例は、放電電極と対向電極との間の距離の差により、距離が近い方に多くの放電電流が流れ、静電霧化が早く開始され易い。この開始され易い方の放電電極で静電霧化が開始されると、放電電極の先端部に供給された水がクーロン力で引張られて対向電極側に向けてテイラーコーンとして形成され、よりいっそう対向電極までの距離が短くなり、この放電電極には多くの放電電流が流れる。   However, in the conventional example disclosed in Patent Document 1, due to the difference in distance between the discharge electrode and the counter electrode, a large amount of discharge current flows closer to the distance, and electrostatic atomization is easily started earlier. When electrostatic atomization is started at the discharge electrode that is more likely to be started, the water supplied to the tip of the discharge electrode is pulled by the Coulomb force and formed as a Taylor cone toward the counter electrode, and more. The distance to the counter electrode is shortened, and a large amount of discharge current flows through the discharge electrode.

このようにして、複数の静電霧化部のうち、早く静電霧化が開始され易い方のみ静電霧化を行い、他の静電霧化部ではあまり静電霧化が行われない現象が生じるおそれがあり、結果的に複数の静電霧化部を設けたにもかかわらず、静電霧化量の大幅な増加を発揮できないという問題がある。   In this way, only one of the plurality of electrostatic atomizers that is likely to start electrostatic atomization earlier is subjected to electrostatic atomization, and other electrostatic atomizers do not perform much electrostatic atomization. As a result, there is a problem that a large increase in the amount of electrostatic atomization cannot be achieved despite the provision of a plurality of electrostatic atomization units.

また、上記特許文献1に示された従来例は、高圧電源に並列に接続した複数の霧化電極に対して各々抵抗を直列接続して霧化電極と対向電極との間の電極間電圧を調整して各静電霧化部における放電状態を統一しようとしている。しかし、複数の抵抗を調整するのは難しく、特に、テイラーコーンの形成はばらつきがあり、各放電部における静電霧化量を目的の量に設定するのが難しく、結局、このものも静電霧化量の増加が十分発揮できるとは言い難い。   Further, in the conventional example shown in Patent Document 1, a resistance is connected in series to a plurality of atomizing electrodes connected in parallel to a high-voltage power source, and an interelectrode voltage between the atomizing electrode and the counter electrode is set. It is trying to unify the discharge state in each electrostatic atomization part by adjusting. However, it is difficult to adjust a plurality of resistances, and in particular, the formation of the Taylor cone varies, and it is difficult to set the amount of electrostatic atomization in each discharge part to a target amount. It is hard to say that the increase in the amount of atomization can be fully demonstrated.

本発明の上記従来例の問題点に鑑みて発明したものであって、静電霧化量を増加させることができる静電霧化装置を提供するにある。   It is invented in view of the problems of the conventional example of the present invention, and is to provide an electrostatic atomizing device capable of increasing the amount of electrostatic atomization.

本発明の静電霧化装置は、高圧電源の基準電位よりも低電位側又は高電位側のいずれか一方に接続する第1放電電極と、この第1放電電極に対向する第1対向電極と、この第1対向電極に接続する第2放電電極と、この第2放電電極に対向し且つ前記高圧電源の基準電位よりも低電位側又は高電位側のいずれか他方に接続する第2対向電極とを備え、前記第1対向電極と前記第2放電電極を前記高圧電源の基準電位点に接続し、前記第1放電電極、前記第2放電電極に液を供給する液供給手段を備えて成ることを特徴とする。   The electrostatic atomizer of the present invention includes a first discharge electrode connected to either the lower potential side or the higher potential side than the reference potential of the high-voltage power supply, and a first counter electrode facing the first discharge electrode. A second discharge electrode connected to the first counter electrode, and a second counter electrode facing the second discharge electrode and connected to either the lower potential side or the higher potential side of the reference potential of the high-voltage power source And a liquid supply means for connecting the first counter electrode and the second discharge electrode to a reference potential point of the high-voltage power source and supplying a liquid to the first discharge electrode and the second discharge electrode. It is characterized by that.

ここで、前記第1放電電極と前記第1対向電極の電位差と、前記第2放電電極と前記第2対向電極の電位差が同じであることが好ましい。   Here, it is preferable that the potential difference between the first discharge electrode and the first counter electrode and the potential difference between the second discharge electrode and the second counter electrode are the same.

また、前記第1放電電極と前記第1対向電極の電位差と、前記第2放電電極と前記第2対向電極の電位差が異なることも好ましい。   It is also preferable that the potential difference between the first discharge electrode and the first counter electrode is different from the potential difference between the second discharge electrode and the second counter electrode.

本発明は、第1対向電極と第2放電電極を高圧電源の基準電位点に接続し、第1放電電極、第2放電電極に液を供給する液供給手段を備えているので、第1放電電極と第1対向電極の電位差、第2放電電極と第2対向電極の電位差をそれぞれ固定的な電位差にできる。これにより、第1放電電極と第1対向電極との間で行われる静電霧化、第2放電電極と第2対向電極との間で行われる静電霧化をそれぞれ安定して行うことができ、静電霧化量を増加させることができる。   In the present invention, since the first counter electrode and the second discharge electrode are connected to the reference potential point of the high-voltage power source and the liquid supply means for supplying the liquid to the first discharge electrode and the second discharge electrode is provided, the first discharge The potential difference between the electrode and the first counter electrode and the potential difference between the second discharge electrode and the second counter electrode can be fixed potential differences. Thereby, the electrostatic atomization performed between the 1st discharge electrode and the 1st counter electrode and the electrostatic atomization performed between the 2nd discharge electrode and the 2nd counter electrode can be performed stably, respectively. And the amount of electrostatic atomization can be increased.

本発明の静電霧化装置の概略構成図である。It is a schematic block diagram of the electrostatic atomizer of this invention.

以下、本発明を添付図面に示す実施形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

静電霧化装置は、2つの静電霧化部7a、7bを備えている。一方の静電霧化部7aは、第1放電電極2と、この第1放電電極2に対向する対向電極3で構成する。また、他方の静電霧化部7bは、第2放電電極4と、この第2放電電極4に対向する第2対向電極5で構成する。   The electrostatic atomizer includes two electrostatic atomizers 7a and 7b. One electrostatic atomizing portion 7 a is composed of a first discharge electrode 2 and a counter electrode 3 facing the first discharge electrode 2. The other electrostatic atomizing portion 7 b includes a second discharge electrode 4 and a second counter electrode 5 that faces the second discharge electrode 4.

第1放電電極2を、高圧電源1の基準電位よりも低電位側又は高電位側のいずれか一方に接続する。また、第1対向電極3と第2放電電極4とを接続し、第2対向電極5を高圧電源1の基準電位よりも低電位側又は高電位側のいずれか他方に接続する。   The first discharge electrode 2 is connected to either the lower potential side or the higher potential side than the reference potential of the high-voltage power supply 1. In addition, the first counter electrode 3 and the second discharge electrode 4 are connected, and the second counter electrode 5 is connected to either the lower potential side or the higher potential side than the reference potential of the high-voltage power supply 1.

また、第1対向電極3と第2放電電極4を接続している回路の途中を高圧電源1の基準電位点に接続する。   Further, the middle of the circuit connecting the first counter electrode 3 and the second discharge electrode 4 is connected to the reference potential point of the high-voltage power supply 1.

第1放電電極2、第2放電電極4にはそれぞれ液供給手段6により液が供給されるようになっている。そして、第1放電電極2と第1対向電極3との間、第2放電電極4と第2対向電極5との間に高圧電源1から高電圧を印加することで、第1放電電極2の先端部に供給された液を静電霧化すると共に、第2放電電極4の先端部に供給された液を静電霧化する。   Liquid is supplied to the first discharge electrode 2 and the second discharge electrode 4 by the liquid supply means 6. Then, by applying a high voltage from the high-voltage power source 1 between the first discharge electrode 2 and the first counter electrode 3 and between the second discharge electrode 4 and the second counter electrode 5, The liquid supplied to the tip portion is electrostatically atomized and the liquid supplied to the tip portion of the second discharge electrode 4 is electrostatically atomized.

図1に示す実施形態では、高圧電源1の基準電位(実施形態では基準電位が0V)よりも低電位側である負極に第1放電電極2を接続し、高圧電源1の正極に第2対向電極5を接続している。また、図1に示す実施形態では、第1放電電極2と第1対向電極3の電位差V1と、第2放電電極4と第2対向電極5の電位差V2が同じになるように設定している。   In the embodiment shown in FIG. 1, the first discharge electrode 2 is connected to the negative electrode on the lower potential side than the reference potential of the high-voltage power supply 1 (in the embodiment, the reference potential is 0 V), and the positive electrode of the high-voltage power supply 1 is second-opposed. The electrode 5 is connected. In the embodiment shown in FIG. 1, the potential difference V1 between the first discharge electrode 2 and the first counter electrode 3 and the potential difference V2 between the second discharge electrode 4 and the second counter electrode 5 are set to be the same. .

液供給手段6により供給される液としては、水、あるいは、水に有効成分を混入した水溶液、あるいは、水以外の液が採用できる。   As the liquid supplied by the liquid supply means 6, water, an aqueous solution in which an active ingredient is mixed in water, or a liquid other than water can be employed.

第1放電電極2の先端部、第2放電電極4の先端部に液を供給するには、液溜め部に溜めた液を毛細管現象を利用して供給したり、加圧により液を供給したり、重力を利用して流下又は滴下することで液を供給したり、あるいは、ペルチェユニット6aのような冷却手段により空気中の水分を冷却して結露水を生成することで第1放電電極2、第2放電電極4に液(水)を供給するようになっている。   In order to supply the liquid to the distal end portion of the first discharge electrode 2 and the distal end portion of the second discharge electrode 4, the liquid stored in the liquid reservoir portion is supplied using a capillary phenomenon, or the liquid is supplied by pressurization. The first discharge electrode 2 by supplying liquid by flowing or dropping using gravity, or by generating moisture by cooling water in the air by a cooling means such as the Peltier unit 6a. The liquid (water) is supplied to the second discharge electrode 4.

図1に示す実施形態では、第1放電電極2、第2放電電極4に液を供給する液供給手段6を冷却手段により構成している。以下、第1放電電極2、第2放電電極4に供給される液を水として説明する。   In the embodiment shown in FIG. 1, the liquid supply means 6 for supplying liquid to the first discharge electrode 2 and the second discharge electrode 4 is constituted by a cooling means. Hereinafter, the liquid supplied to the first discharge electrode 2 and the second discharge electrode 4 will be described as water.

ペルチェユニット6aは、一対のペルチェ回路板を、互いの回路が向き合うように対向させ、多数列設してある熱電素子を両ペルチェ回路板間で挟持すると共に隣接する熱電素子同士を両側の回路で電気的に接続している。そして熱電素子に通電すると、一方のペルチェ回路板側から他方のペルチェ回路板側に向けて熱が移動するように構成している。   In the Peltier unit 6a, a pair of Peltier circuit boards are opposed to each other so that their circuits face each other, and many rows of thermoelectric elements are sandwiched between the two Peltier circuit boards, and adjacent thermoelectric elements are connected by circuits on both sides. Electrically connected. When the thermoelectric element is energized, heat is transferred from one Peltier circuit board side toward the other Peltier circuit board side.

一方の側のペルチェ回路板の外側には冷却部9を接続している。また、他方の側のペルチェ回路板の外側には放熱部10を接続しており、実施形態では放熱部10として放熱フィンの例を示している。   A cooling unit 9 is connected to the outside of the Peltier circuit board on one side. Moreover, the heat radiating part 10 is connected to the outside of the Peltier circuit board on the other side, and in the embodiment, an example of a heat radiating fin is shown as the heat radiating part 10.

ペルチェユニット6aに通電することで、第1放電電極2、第2放電電極4を冷却して空気中の水分を結露水として第1放電電極2、第2放電電極4に生成させることで、水を供給するようになっている。   By energizing the Peltier unit 6a, the first discharge electrode 2 and the second discharge electrode 4 are cooled, and moisture in the air is generated in the first discharge electrode 2 and the second discharge electrode 4 as condensed water. To supply.

なお、図1に示す実施形態では、第1放電電極2、第2放電電極4を冷却するペルチェユニット6aが別々の例を示しているが、単一のペルチェユニット6aの冷却部9に第1放電電極2と第2放電電極4を接続してもよい。この場合は、ペルチェユニット6aが一つでよく、静電霧化装置の小型化に寄与する。   In the embodiment shown in FIG. 1, the Peltier unit 6 a that cools the first discharge electrode 2 and the second discharge electrode 4 is shown as a separate example, but the first Peltier unit 6 a includes a first cooling unit 9. The discharge electrode 2 and the second discharge electrode 4 may be connected. In this case, one Peltier unit 6a is sufficient, which contributes to downsizing of the electrostatic atomizer.

静電霧化装置を運転すると、ペルチェユニット6aに通電されて冷却部9が冷却され、冷却部9が冷却されることで第1放電電極2、第2放電電極4がそれぞれ冷却され、空気中の水分を結露して第1放電電極2の先端部、第2放電電極4の先端部に水(結露水)を供給する。   When the electrostatic atomizer is operated, the Peltier unit 6a is energized to cool the cooling unit 9, and the cooling unit 9 is cooled to cool the first discharge electrode 2 and the second discharge electrode 4, respectively. The water is condensed to supply water (condensed water) to the tip of the first discharge electrode 2 and the tip of the second discharge electrode 4.

このように第1放電電極2の先端部に水が供給され、第2放電電極4の先端部に水が供給された状態で、第1放電電極2と第1の対向電極3、第2の放電電極4と第2の対向電極5との間に高電圧を印加する。高電圧を印加すると、第1放電電極2、第2の放電電極4の各先端部に供給された水の液面が局所的に錐状に盛り上がり(テイラーコーン)が形成され、第1放電電極2、第2の放電電極4の各先端部で静電霧化が行われる。   Thus, in a state where water is supplied to the tip of the first discharge electrode 2 and water is supplied to the tip of the second discharge electrode 4, the first discharge electrode 2, the first counter electrode 3, and the second A high voltage is applied between the discharge electrode 4 and the second counter electrode 5. When a high voltage is applied, the level of the water supplied to the tip portions of the first discharge electrode 2 and the second discharge electrode 4 is locally raised in a cone shape (Taylor cone), and the first discharge electrode is formed. 2. Electrostatic atomization is performed at each tip of the second discharge electrode 4.

テイラーコーンが形成されて静電霧化がなされるのは以下のような理由による。   The Taylor cone is formed and electrostatic atomization is performed for the following reason.

つまり、第1放電電極2、第2の放電電極4の各先端部にテイラーコーンが形成されると、該テイラーコーンの先端部に電荷が集中してこの部分における電界強度が大きくなって、更にテイラーコーンを成長させる。このようにテイラーコーンが成長し該テイラーコーンの先端部に電荷が集中して電荷の密度が高密度となると、テイラーコーンの先端部分の水が大きなエネルギー(高密度となった電荷の反発力)を受ける。このように、テイラーコーンの先端部分の水が大きなエネルギーを受けると、表面張力を超えて分裂・飛散(レイリー分裂)を繰り返してマイナスに帯電したナノメータサイズの帯電微粒子水を大量に生成する。   That is, when a Taylor cone is formed at each tip of the first discharge electrode 2 and the second discharge electrode 4, electric charges concentrate on the tip of the Taylor cone, and the electric field strength at this portion increases. Grow Taylor corn. When the Taylor cone grows and the charge concentrates at the tip of the Taylor cone and the charge density becomes high, the water at the tip of the Taylor cone has a large energy (the repulsive force of the high density charge). Receive. Thus, when the water at the tip of the Taylor cone receives a large amount of energy, a large amount of nanometer-sized charged fine particle water that is negatively charged by repeating splitting and scattering (Rayleigh splitting) exceeding the surface tension is generated.

このように、第1放電電極2、第2放電電極4の各先端部に供給された水を静電霧化することで生成されるナノメータサイズの帯電微粒子水にはスーパーオキサイドラジカルやヒドロキシラジカルといったラジカルが含まれる。したがって、ナノメータサイズの帯電微粒子水を放出対象空間に放出することで、帯電微粒子水に含まれているスーパオキサイドラジカルやヒドロキシラジカルといったラジカルにより放出対象空間内の脱臭、除菌、アレルゲン物質の不活性化を行うことができる。   Thus, the nanometer-sized charged fine particle water generated by electrostatic atomization of the water supplied to the tip portions of the first discharge electrode 2 and the second discharge electrode 4 includes superoxide radicals and hydroxy radicals. Includes radicals. Therefore, by releasing nanometer-sized charged fine particle water into the discharge target space, deodorization, sterilization, and allergen substance inactivation in the discharge target space by radicals such as superoxide radicals and hydroxy radicals contained in the charged fine particle water Can be made.

ここで、図1の実施形態においては、高圧電源1の基準電位よりも低電位側の負極に第1放電電極2を接続し、高電位側の正極に第2対向電極5を接続し、第1放電電極2と第1対向電極3の電位差V1と、第2放電電極4と第2対向電極5の電位差V2を同じに設定しているので、V1=V2で且つV1、V2が設定された値に固定化される。したがって、2つの静電霧化部7a、7bにおける放電量を同じにでき、静電霧化量が安定し、2つの静電霧化部7a、7bにおいて、マイナスに帯電したほぼ同一粒子径のナノメータサイズの帯電微粒子水を安定して多量に生成できる。例えば、2つの静電霧化部7a、7bにおいて、いずれも平均粒子径が10〜30ナノメータの帯電微粒子水を安定して大量に生成できる。   Here, in the embodiment of FIG. 1, the first discharge electrode 2 is connected to the negative electrode on the lower potential side than the reference potential of the high-voltage power supply 1, the second counter electrode 5 is connected to the positive electrode on the high potential side, Since the potential difference V1 between the first discharge electrode 2 and the first counter electrode 3 and the potential difference V2 between the second discharge electrode 4 and the second counter electrode 5 are set to be the same, V1 = V2 and V1 and V2 are set. Fixed to a value. Therefore, the discharge amount in the two electrostatic atomizing portions 7a and 7b can be made the same, the electrostatic atomization amount is stable, and the two electrostatic atomizing portions 7a and 7b have substantially the same particle diameters that are negatively charged. Nanometer-sized charged fine particle water can be stably generated in large quantities. For example, the two electrostatic atomizers 7a and 7b can stably generate a large amount of charged fine particle water having an average particle diameter of 10 to 30 nanometers.

次に、他の実施形態を示す。   Next, another embodiment is shown.

本実施形態においては、第1放電電極2と第1対向電極3の電位差V1と、第2放電電極4と第2対向電極5の電位差V2が異なるように設定している。   In the present embodiment, the potential difference V1 between the first discharge electrode 2 and the first counter electrode 3 and the potential difference V2 between the second discharge electrode 4 and the second counter electrode 5 are set to be different.

つまり、V1≠V2で且つV1、V2がそれぞれ設定された値に固定化される。したがって、一方の静電霧化部7aの放電量が設定された放電量となり、安定して静電霧化が行われる。また、他方の静電霧化部7bも上記静電霧化部7aの放電量とは異なる別の設定された放電量となり、安定して静電霧化が行われる。   That is, V1 ≠ V2 and V1 and V2 are fixed to set values. Therefore, the discharge amount of the one electrostatic atomizer 7a becomes the set discharge amount, and electrostatic atomization is performed stably. Further, the other electrostatic atomizing portion 7b also has a different discharge amount different from the discharge amount of the electrostatic atomizing portion 7a, and the electrostatic atomization is stably performed.

ここで、第1放電電極2、第2放電電極4にそれぞれ供給する水の供給量や、V1、V2を任意に設定することで、一方の静電霧化部7aの静電霧化量と別の静電霧化部7bの静電霧化量を異ならせたり、一方の静電霧化部7aで生成するナノメータサイズの帯電微粒子水の平均粒子径と、他方の静電霧化部7b生成するナノメータサイズの帯電微粒子水の平均粒子径を異ならせることができる。例えば、一方の静電霧化部7aで平均粒子径が10〜30ナノメータの帯電微粒子水を安定して生成し、他方の静電霧化部7aで平均粒子径が90〜110ナノメータの帯電微粒子水を安定して生成することができる。   Here, the amount of water supplied to each of the first discharge electrode 2 and the second discharge electrode 4 and the electrostatic atomization amount of one electrostatic atomization unit 7a can be set by arbitrarily setting V1 and V2. The electrostatic atomization amount of another electrostatic atomizer 7b is varied, the average particle diameter of nanometer-sized charged fine particle water generated by one electrostatic atomizer 7a, and the other electrostatic atomizer 7b. The average particle diameter of the generated nanometer-sized charged fine particle water can be varied. For example, one electrostatic atomizing section 7a stably generates charged fine particle water having an average particle diameter of 10 to 30 nanometers, and the other electrostatic atomizing section 7a has charged fine particles having an average particle diameter of 90 to 110 nanometers. Water can be generated stably.

これにより、例えば、第1放電電極2で生成した帯電微粒子水の放出空間と、第2放電電極4で生成した帯電微粒子水の放出空間を異ならせた場合、一方側と他方側とで帯電微粒子水の放出量や、放出する帯電微粒子水の平均粒子径を異ならせることが可能となる。また、第1放電電極2、第2放電電極4で生成した帯電微粒子水をそれぞれ同一空間に放出する場合、帯電微粒子水の放出量を多くできるだけでなく、放出するナノメータサイズの帯電微粒子水として平均粒子径の巾が広い(平均粒子径のピーク値が2つある)帯電微粒子水を放出できる。   Thereby, for example, when the discharge space of the charged fine particle water generated at the first discharge electrode 2 and the discharge space of the charged fine particle water generated at the second discharge electrode 4 are made different, the charged fine particle is different on one side and the other side. It becomes possible to vary the amount of water discharged and the average particle diameter of the discharged charged fine particle water. In addition, when the charged fine particle water generated by the first discharge electrode 2 and the second discharge electrode 4 is discharged into the same space, not only the discharge amount of the charged fine particle water can be increased, but also the discharged nanometer-sized charged fine particle water can be averaged. Charged fine particle water having a wide particle diameter range (having two peak values of average particle diameter) can be discharged.

図1の実施形態では、第1放電電極2を低電位側である負極、第2対向電極5を高電位側である正極に接続したが、第1放電電極2を高電位側、第2対向電極5を低電位側に接続してもよく、この場合は、2つの静電霧化部7a、7bともプラスに帯電したナノメータサイズの帯電微粒子水を安定して多量に生成できる。   In the embodiment of FIG. 1, the first discharge electrode 2 is connected to the negative electrode on the low potential side, and the second counter electrode 5 is connected to the positive electrode on the high potential side, but the first discharge electrode 2 is connected to the high potential side and the second counter electrode. The electrode 5 may be connected to the low potential side. In this case, both the two electrostatic atomizing portions 7a and 7b can stably generate a large amount of charged nanometer-sized charged fine particle water.

1 高圧電源
2 第1放電電極
3 第1対向電極
4 第2放電電極
5 第2対向電極
6 液供給手段
DESCRIPTION OF SYMBOLS 1 High voltage power supply 2 1st discharge electrode 3 1st counter electrode 4 2nd discharge electrode 5 2nd counter electrode 6 Liquid supply means

Claims (3)

高圧電源の基準電位よりも低電位側又は高電位側のいずれか一方に接続する第1放電電極と、この第1放電電極に対向する第1対向電極と、この第1対向電極に接続する第2放電電極と、この第2放電電極に対向し且つ前記高圧電源の基準電位よりも低電位側又は高電位側のいずれか他方に接続する第2対向電極とを備え、前記第1対向電極と前記第2放電電極を前記高圧電源の基準電位点に接続し、前記第1放電電極、前記第2放電電極に液を供給する液供給手段を備えて成ることを特徴とする静電霧化装置。   A first discharge electrode connected to either the lower potential side or the higher potential side than the reference potential of the high-voltage power source, a first counter electrode opposed to the first discharge electrode, and a first discharge electrode connected to the first counter electrode Two discharge electrodes, and a second counter electrode facing the second discharge electrode and connected to either the lower potential side or the higher potential side than the reference potential of the high-voltage power source, and the first counter electrode, An electrostatic atomizer comprising: a liquid supply means for connecting the second discharge electrode to a reference potential point of the high-voltage power supply and supplying a liquid to the first discharge electrode and the second discharge electrode. . 前記第1放電電極と前記第1対向電極の電位差と、前記第2放電電極と前記第2対向電極の電位差が同じであることを特徴とする請求項1記載の静電霧化装置。   The electrostatic atomizer according to claim 1, wherein the potential difference between the first discharge electrode and the first counter electrode is the same as the potential difference between the second discharge electrode and the second counter electrode. 前記第1放電電極と前記第1対向電極の電位差と、前記第2放電電極と前記第2対向電極の電位差が異なることを特徴とする請求項1記載の静電霧化装置。


The electrostatic atomizer according to claim 1, wherein a potential difference between the first discharge electrode and the first counter electrode is different from a potential difference between the second discharge electrode and the second counter electrode.


JP2010073583A 2010-03-26 2010-03-26 Electrostatic atomizer Expired - Fee Related JP5432792B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010073583A JP5432792B2 (en) 2010-03-26 2010-03-26 Electrostatic atomizer
PCT/JP2011/055733 WO2011118413A1 (en) 2010-03-26 2011-03-11 Electrostatic atomizer
TW100109371A TW201204472A (en) 2010-03-26 2011-03-18 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010073583A JP5432792B2 (en) 2010-03-26 2010-03-26 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2011200849A true JP2011200849A (en) 2011-10-13
JP5432792B2 JP5432792B2 (en) 2014-03-05

Family

ID=44672974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073583A Expired - Fee Related JP5432792B2 (en) 2010-03-26 2010-03-26 Electrostatic atomizer

Country Status (3)

Country Link
JP (1) JP5432792B2 (en)
TW (1) TW201204472A (en)
WO (1) WO2011118413A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144758B (en) * 2017-12-26 2020-01-21 中国科学院工程热物理研究所 Spray cooling device based on electrostatic atomization
CN110529944B (en) * 2019-09-06 2021-02-26 郑兰洁 Air purifier for machine part machining workshop

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137966A (en) * 2003-11-04 2005-06-02 Matsushita Electric Works Ltd Electrostatic atomizer
JP2006334503A (en) * 2005-06-01 2006-12-14 Matsushita Electric Works Ltd Electrostatic atomizing apparatus
JP2008226647A (en) * 2007-03-13 2008-09-25 Shishido Seidenki Kk Ion generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137966A (en) * 2003-11-04 2005-06-02 Matsushita Electric Works Ltd Electrostatic atomizer
JP2006334503A (en) * 2005-06-01 2006-12-14 Matsushita Electric Works Ltd Electrostatic atomizing apparatus
JP2008226647A (en) * 2007-03-13 2008-09-25 Shishido Seidenki Kk Ion generator

Also Published As

Publication number Publication date
JP5432792B2 (en) 2014-03-05
TW201204472A (en) 2012-02-01
WO2011118413A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP4396580B2 (en) Electrostatic atomizer
JP5592689B2 (en) Electrostatic atomizer
EP2623208A1 (en) Electrostatic atomization device
JP6657505B2 (en) Electrostatic spray device and electrostatic spray method
JP2013075265A (en) Electrostatic atomizing device
JP6090637B2 (en) Active ingredient generator
TWI324088B (en) Electrostatically atomizing device
JP4120685B2 (en) Electrostatic atomizer
JP5432792B2 (en) Electrostatic atomizer
JP2007289871A (en) Electrostatic atomizer
WO2013080686A1 (en) Electrostatic atomizing device
US20130146683A1 (en) Electrostatic atomizing device
JP2009172560A (en) Electrostatic atomizer
JP2014231047A (en) Electrostatic atomizer
JP5968716B2 (en) Electrostatic spraying equipment
CN109123981B (en) Charged particle generating device and hair care device
JP2010227808A (en) Electrostatic atomization apparatus
JP2011200850A (en) Electrostatic atomizer
JP2009268944A (en) Electrostatic atomizing device
JP5654822B2 (en) Electrostatic atomizer
JP2007167761A (en) Electrostatic atomization apparatus
JP2013075266A (en) Electrostatic atomiser
CN102655939A (en) Electrostatic atomization device
JP4645528B2 (en) Electrostatic atomizer
JP4900208B2 (en) Electrostatic atomizer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees