JP2011199620A - Communication apparatus - Google Patents

Communication apparatus Download PDF

Info

Publication number
JP2011199620A
JP2011199620A JP2010064509A JP2010064509A JP2011199620A JP 2011199620 A JP2011199620 A JP 2011199620A JP 2010064509 A JP2010064509 A JP 2010064509A JP 2010064509 A JP2010064509 A JP 2010064509A JP 2011199620 A JP2011199620 A JP 2011199620A
Authority
JP
Japan
Prior art keywords
reference signals
channel
received
frequency response
multiplexed signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010064509A
Other languages
Japanese (ja)
Inventor
Hidefumi Mochida
英史 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010064509A priority Critical patent/JP2011199620A/en
Priority to PCT/JP2011/050760 priority patent/WO2011090028A1/en
Priority to CN2011800067063A priority patent/CN102725969A/en
Priority to US13/514,701 priority patent/US9014149B2/en
Publication of JP2011199620A publication Critical patent/JP2011199620A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a communication apparatus capable of further improving channel estimation accuracy by suitably separating multiplexed reference signals.SOLUTION: A base station device 1 includes a channel estimation part 10 for estimating respective channel characteristics of a plurality of reception signals. The channel estimation part 10 subjects the transmission path frequency response of a reception multiple signal obtained by multiplexing a plurality of reference signals by cyclic shift to discrete cosine transform, and estimates the channel characteristics based on a transmission path time response obtained thereby.

Description

本発明は、多重化された参照信号を分離してチャネル推定する機能を有する通信装置に関する。   The present invention relates to a communication apparatus having a function of estimating a channel by separating multiplexed reference signals.

LTE(Long−Term Evolution)などの通信規格では、ユーザ端末から基地局装置への上りリンクのスケジューリングにおいて、時間及び周波数領域のスケジューリングのほか、空間多重(Spatial Division Multiplexing)スケジューリングが行われる。
空間多重スケジューリングは、同一周波数領域が同時に複数のユーザ端末に割り当てられるマルチユーザMIMO(Multiple Input Multiple Output)によって行われる。例えば、LTEの空間多重スケジューリングでは、同一のリソースブロック(RB;ユーザ割り当ての最小単位)が同時に複数のユーザ端末に割り当てられることになる。
In communication standards such as LTE (Long-Term Evolution), spatial scheduling (spatial division multiplexing) scheduling is performed in addition to time and frequency domain scheduling in uplink scheduling from a user terminal to a base station apparatus.
Spatial multiplexing scheduling is performed by multi-user MIMO (Multiple Input Multiple Output) in which the same frequency region is simultaneously allocated to a plurality of user terminals. For example, in LTE spatial multiplexing scheduling, the same resource block (RB; minimum unit for user allocation) is simultaneously allocated to a plurality of user terminals.

LTEの上りリンクでマルチユーザMIMOを行う場合、複数のユーザ端末の参照信号は、サイクリックシフトを用いた符号多重により伝送される。複数のユーザ端末から同時に送信された信号は多重信号として基地局装置により受信される。基地局装置は、受信した多重信号を各ユーザ端末ごとの信号に分離し、ユーザ端末ごとのチャネル推定に用いる(例えば、非特許文献1参照)。   When multi-user MIMO is performed in the uplink of LTE, reference signals of a plurality of user terminals are transmitted by code multiplexing using cyclic shift. Signals transmitted simultaneously from a plurality of user terminals are received by the base station apparatus as multiplexed signals. The base station apparatus separates the received multiplexed signal into signals for each user terminal and uses them for channel estimation for each user terminal (see Non-Patent Document 1, for example).

服部武 編著、「OFDM/OFDMA教科書」、初版、株式会社インプレスR&D、2008,p310−p312Takeshi Hattori, “OFDM / OFDMA Textbook”, First Edition, Impress R & D, Inc., 2008, p310-p312

上記基地局装置は、サイクリックシフトによって符号多重された参照信号を分離するために、通常、多重化された参照信号の伝送路周波数応答をIDFT(Inverse Discrete Fourier Transform:逆離散フーリエ変換)によって時間領域に変換し、その後、窓関数を用いて各ユーザごとの伝送路時間応答に分離し、分離した各ユーザごとそれぞれの伝送路時間応答についてDFT(Discrete Fourier Transform:離散フーリエ変換)を行い再び周波数領域の信号に変換することで、各ユーザごとのチャネル特性を推定する。   In order to separate the reference signal code-multiplexed by the cyclic shift, the base station apparatus normally converts the frequency response of the multiplexed reference signal to time by IDFT (Inverse Discrete Fourier Transform). Then, it is divided into transmission channel time responses for each user using a window function, DFT (Discrete Fourier Transform) is performed on the transmission channel time responses for each separated user, and the frequency is again obtained. By converting the signal into a region signal, the channel characteristics for each user are estimated.

しかし、上記方法で多重化された信号を分離し推定されるチャネル特性は、帯域の両端に歪みが生じやすいという問題を有していた。その理由は、以下の通りである。すなわち、多重化された参照信号の伝達係数をIDFTによって時間領域に変換する際、有限個のデータを切り出して周期拡張するため、拡張部分の境界でデータが不連続となり、高次の係数が発生し易く、この結果、時間領域に変換した後のデータにおける遅延広がりが大きくなることが考えられる。このようにデータの遅延広がりが大きくなると、その後に窓関数を用いて各ユーザごとのデータに分離する際に、その窓幅以上にデータの広がりが大きくなることで、窓幅外のデータについて損失が生じるために、推定チャネル特性に歪みが生じると考えられる。   However, the channel characteristics estimated by separating signals multiplexed by the above method have a problem that distortion is likely to occur at both ends of the band. The reason is as follows. That is, when the transmission coefficient of the multiplexed reference signal is converted to the time domain by IDFT, a finite number of data is cut out and the period is extended, so the data becomes discontinuous at the boundary of the extended part, and higher order coefficients are generated As a result, it is conceivable that the delay spread in the data after conversion to the time domain becomes large. When the delay spread of data becomes large in this way, when data is divided into data for each user using a window function after that, the spread of data becomes larger than the window width, so that data outside the window width is lost. Therefore, it is considered that the estimated channel characteristics are distorted.

上記のように、推定したチャネル特性の帯域の両端に歪みが生じると、当該チャネル特性を用いた復調処理に悪影響を及ぼすおそれがあるため、このような歪みを抑制しチャネル推定精度をより高めることができる技術が嘱望されていた。   As described above, if distortion occurs at both ends of the estimated channel characteristic band, it may adversely affect the demodulation processing using the channel characteristic. Therefore, such distortion is suppressed and channel estimation accuracy is further improved. The technology that can be used was envied.

本発明はこのような事情に鑑みてなされたものであり、多重化された参照信号を好適に分離し、チャネル推定精度をより高めることができる通信装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a communication apparatus that can appropriately separate multiplexed reference signals and further improve channel estimation accuracy.

(1)本発明は、サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を離散コサイン変換することで得られる前記受信多重信号の伝送路時間応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴としている。 (1) The present invention provides a communication apparatus including a channel estimation unit that estimates channel characteristics of a plurality of received signals each including the plurality of reference signals from a received multiplexed signal in which a plurality of reference signals are multiplexed by cyclic shift. And the channel estimation unit performs channel characteristics of each of the plurality of received signals based on a channel time response of the received multiplexed signal obtained by performing discrete cosine transform on the channel frequency response of the received multiplexed signal. It is characterized by estimating.

(2)より具体的には、前記チャネル推定部は、前記受信多重信号の伝送路周波数応答を離散コサイン変換し、前記受信多重信号の伝送路時間応答を得る第一変換部と、前記受信多重信号の伝送路時間応答から前記複数の参照信号それぞれの伝送路時間応答に分離する窓処理部と、分離した前記複数の参照信号それぞれの伝送路時間応答を、逆離散コサイン変換し、前記複数の参照信号それぞれの伝送路周波数応答を得る第二変換部と、を備え、前記複数の参照信号それぞれの伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定するものであることが好ましい。 (2) More specifically, the channel estimation unit performs a discrete cosine transform on a transmission channel frequency response of the received multiplexed signal to obtain a transmission channel time response of the received multiplexed signal, and the reception multiplexing A window processing unit that separates a transmission path time response of each of the plurality of reference signals from a transmission path time response of the signal, and an inverse discrete cosine transform of each of the separated transmission path time responses of the plurality of reference signals. A second converter that obtains a transmission path frequency response of each of the reference signals, and estimates channel characteristics of each of the plurality of received signals based on the transmission path frequency responses of the plurality of reference signals. Is preferred.

上記構成の通信装置によれば、チャネル推定部の第一変換部が、受信多重信号の伝送路周波数応答を離散コサイン変換によって伝送路時間応答に変換するので、上記従来例のIDFTでみられる周期拡張時のデータの不連続な部分が生じるのを防止することができ、受信多重信号の伝送路時間応答における複数の参照信号それぞれの伝送路時間応答に生じる遅延広がりが大きくなるのを防止できる。このため、窓処理部によって複数の参照信号それぞれの伝送路時間応答に分離する際におけるデータ損失を抑制することができ、この結果、推定するチャネル特性に歪みが生じるのを抑制することができ、チャネル推定精度を高めることができる。   According to the communication apparatus having the above configuration, the first conversion unit of the channel estimation unit converts the transmission channel frequency response of the received multiplexed signal into a transmission channel time response by discrete cosine transform, so that the period seen in the IDFT of the conventional example is used. It is possible to prevent a discontinuous portion of data at the time of expansion from occurring, and it is possible to prevent an increase in delay spread occurring in the transmission path time response of each of the plurality of reference signals in the transmission path time response of the received multiplexed signal. For this reason, it is possible to suppress data loss at the time of separation into transmission path time responses of a plurality of reference signals by the window processing unit, and as a result, it is possible to suppress distortion from occurring in channel characteristics to be estimated, Channel estimation accuracy can be increased.

(3)また、本発明は、サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を偶対称拡張処理を行うことで得られる被処理関数に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴としている。 (3) In addition, the present invention includes a channel estimation unit that estimates channel characteristics of a plurality of received signals including each of the plurality of reference signals from a received multiplexed signal obtained by multiplexing a plurality of reference signals by cyclic shift. A communication device, wherein the channel estimation unit estimates channel characteristics of each of the plurality of received signals based on a function to be processed obtained by performing even-symmetric extension processing on a transmission channel frequency response of the received multiplexed signal It is characterized by doing.

(4)より具体的には、前記チャネル推定部は、前記受信多重信号の伝送路周波数応答に、前記複数の参照信号それぞれのサイクリックシフトに基づく複素定数を乗算することによって前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答を、前記複数の参照信号ごとに得る乗算部と、前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答について偶対称拡張処理することで、前記複数の参照信号ごとの前記被処理関数を得る拡張処理部と、前記複数の参照信号ごとの前記被処理関数それぞれから、もとの周波数にシフトさせた前記複数の参照信号の伝送路周波数応答のみを取得するフィルタ部と、を備え、前記複数の参照信号の伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定するものであることが好ましい。 (4) More specifically, the channel estimator multiplies the transmission path frequency response of the received multiplexed signal by a complex constant based on a cyclic shift of each of the plurality of reference signals. A transmission frequency response of the received multiplexed signal obtained by shifting the transmission channel frequency response to the original frequency for each of the plurality of reference signals, and a transmission channel frequency response of the plurality of reference signals. An expansion processing unit that obtains the function to be processed for each of the plurality of reference signals by performing even-symmetric extension processing on the transmission line frequency response of the received multiplexed signal shifted to the frequency of A filter unit that obtains only transmission path frequency responses of the plurality of reference signals shifted to original frequencies from each of the functions to be processed, Based on the sending passage frequency response, it is preferable that estimates the plurality of received signals each channel characteristics.

上記構成の通信装置によれば、チャネル推定部の拡張処理部が、受信多重信号の伝送路周波数応答について偶対称拡張処理を行うので、フィルタ部によって複数の参照信号の伝送路周波数応答を分離し取得する際におけるデータ損失を抑制することができる。この結果、推定するチャネル特性に歪みが生じるのを抑制することができ、チャネル推定精度を高めることができる。
また、本発明の通信装置では、周波数領域内で複数の参照信号それぞれの伝送路周波数応答を取得するので、IDFT等の演算量が多い処理を行う必要がなく、装置に対する負荷を軽減できる構成とすることができる。
According to the communication device having the above configuration, the extension processing unit of the channel estimation unit performs even-symmetrical extension processing on the transmission channel frequency response of the received multiplexed signal, so that the filter unit separates the transmission channel frequency responses of the plurality of reference signals. Data loss during acquisition can be suppressed. As a result, the channel characteristics to be estimated can be prevented from being distorted, and the channel estimation accuracy can be improved.
Further, in the communication apparatus of the present invention, since the transmission path frequency response of each of the plurality of reference signals is acquired in the frequency domain, it is not necessary to perform a process with a large amount of calculation such as IDFT, and the load on the apparatus can be reduced. can do.

(5)前記複数の拡張処理部は、前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記多重信号の伝送路周波数応答の周波数軸の前後に、前記フィルタ部の群遅延の長さ分だけ拡張するものであることが好ましく、この場合、必要最小限のデータ分をもって拡張しつつ、フィルタ部によるデータ損失をより効果的に抑制することができる。 (5) The plurality of extension processing units may include a group of the filter units before and after the frequency axis of the channel frequency response of the multiplexed signal obtained by shifting the channel frequency response of the plurality of reference signals to the original frequency. It is preferable to extend the data by the length of the delay, and in this case, data loss due to the filter unit can be more effectively suppressed while expanding with the minimum necessary data.

(6)さらに、フィルタ部により取得される伝送路時間応答には、当該フィルタ部を通過することにより生じる遅延成分が含まれるので、前記チャネル推定部は、前記複数のフィルタ部により取得される前記複数の参照信号の伝送路周波数応答の部分において生じる遅延成分を除去する複数の除去部をさらに備えていることが好ましく、これにより、複数の参照信号それぞれの伝送路時間応答を、より精度よく取得することができる。 (6) Furthermore, since the transmission path time response acquired by the filter unit includes a delay component generated by passing through the filter unit, the channel estimation unit is acquired by the plurality of filter units. It is preferable to further include a plurality of removal units for removing delay components generated in the transmission channel frequency response portion of the plurality of reference signals, thereby acquiring the transmission channel time responses of the plurality of reference signals with higher accuracy. can do.

(7)また、本発明は、サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を偶対称性に基づく処理を行うことにより、前記複数の受信信号それぞれのチャネル特性を推定することを特徴としている。
上記構成の通信装置によれば、チャネル推定部が、受信多重信号の伝送路周波数応答に対して偶対称性に基づく処理を行うので、当該処理後の伝送路周波数応答から複数の参照信号の伝送路周波数応答を分離し取得する際におけるデータ損失を抑制することができる。この結果、推定するチャネル特性に歪みが生じるのを抑制することができ、チャネル推定精度を高めることができる。
(7) Further, the present invention includes a channel estimation unit that estimates channel characteristics of a plurality of received signals each including the plurality of reference signals from a received multiplexed signal in which a plurality of reference signals are multiplexed by cyclic shift. In the communication apparatus, the channel estimation unit estimates channel characteristics of each of the plurality of received signals by performing processing based on even symmetry on a transmission channel frequency response of the received multiplexed signal. .
According to the communication apparatus having the above configuration, the channel estimation unit performs processing based on even symmetry with respect to the transmission channel frequency response of the received multiplexed signal, so that transmission of a plurality of reference signals from the transmission channel frequency response after the processing is performed. Data loss in separating and acquiring the road frequency response can be suppressed. As a result, the channel characteristics to be estimated can be prevented from being distorted, and the channel estimation accuracy can be improved.

(8)また、本発明は、サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、前記チャネル推定部は、前記受信多重信号の伝送路周波数応答に、前記複数の参照信号それぞれのサイクリックシフトに基づく複素定数を乗算することによって前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答を、前記複数の参照信号ごとに得る乗算部と、前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答それぞれから、もとの周波数にシフトさせた前記複数の参照信号の伝送路周波数応答のみを取得するフィルタ部と、を備え、前記複数の参照信号の伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴としている。 (8) In addition, the present invention includes a channel estimation unit that estimates channel characteristics of a plurality of received signals each including the plurality of reference signals from a received multiplexed signal in which a plurality of reference signals are multiplexed by cyclic shift. The communication device, wherein the channel estimation unit multiplies a transmission path frequency response of the received multiplexed signal by a complex constant based on a cyclic shift of each of the plurality of reference signals. A multiplier that obtains a transmission path frequency response of the received multiplexed signal, the frequency response of which is shifted to the original frequency, for each of the plurality of reference signals, and a transmission path frequency response of the plurality of reference signals to the original frequency. Only the transmission line frequency response of the plurality of reference signals shifted to the original frequency is taken from each of the transmission line frequency responses of the received multiplexed signals that have been shifted. Comprising a filter unit for a, on the basis of the transmission channel frequency responses of the plurality of reference signals it is characterized by estimating the plurality of received signals each channel characteristics.

上記構成の通信装置によれば、周波数領域内で複数の参照信号それぞれの伝送路周波数応答を取得するので、IDFT等の演算量が多い処理を行う必要がなく簡易な構成とすることができる。   According to the communication apparatus having the above configuration, since the transmission path frequency response of each of the plurality of reference signals is acquired in the frequency domain, it is not necessary to perform processing with a large amount of calculation such as IDFT, and the configuration can be simplified.

本発明の通信装置によれば、多重化された参照信号を好適に分離し、チャネル推定精度をより高めることができる。   According to the communication apparatus of the present invention, it is possible to favorably separate multiplexed reference signals and further improve channel estimation accuracy.

LTE方式における無線通信システムの構成を示す概略図である。It is the schematic which shows the structure of the radio | wireless communications system in a LTE system. 基地局装置の受信系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the receiving system of a base station apparatus. チャネル推定部の構成を示すブロック図である。It is a block diagram which shows the structure of a channel estimation part. 離散コサイン変換による周期拡張の態様を説明するための図であり、(a)は、離散コサイン変換の場合、(b)は、IDFTの場合を示している。It is a figure for demonstrating the aspect of the period expansion by discrete cosine transformation, (a) is the case of discrete cosine transformation, (b) has shown the case of IDFT. 伝送路周波数応答を時間領域に変換したときの態様を説明するための図であり、(a)は、離散コサイン変換の場合の一例、(b)は、IDFTの場合の一例を示している。It is a figure for demonstrating the aspect when a transmission line frequency response is converted into a time domain, (a) shows an example in the case of discrete cosine transformation, (b) has shown an example in the case of IDFT. 本発明の第二の実施形態に係る基地局装置が備えるチャネル推定部の構成を示すブロック図である。It is a block diagram which shows the structure of the channel estimation part with which the base station apparatus which concerns on 2nd embodiment of this invention is provided. (a)は、偶対称拡張処理を行った後の被処理関数の一例を模式的に示した図であり、(b)は、LPF部により得られる一のユーザ端末の伝送路周波数応答を示した模式図である。(A) is the figure which showed typically an example of the to-be-processed function after performing even-symmetrical extension processing, (b) shows the transmission-line frequency response of one user terminal obtained by the LPF part. It is a schematic diagram. 各実施例及び比較例のチャネル推定結果を表したグラフであり、(a−1),(a−2)は、実施例1、(b−1),(b−2)は、実施例2、(c−1),(c−2)は、比較例のチャネル推定結果を示したグラフである。It is the graph showing the channel estimation result of each Example and the comparative example, (a-1) and (a-2) are Example 1, (b-1) and (b-2) are Example 2. , (C-1) and (c-2) are graphs showing the channel estimation results of the comparative example. 上記シミュレーションにより検証した実施例1及び比較例によるチャネル推定結果によって復調した際のデータをコンスタレーションマップに示した一例であり、(a)は、実施例1によるもの、(b)は、比較例によるものを示している。It is an example which showed in the constellation map the data at the time of demodulating by the channel estimation result by Example 1 and the comparative example which were verified by the said simulation, (a) is based on Example 1, (b) is a comparative example. Shows that.

以下、本発明の好ましい実施形態について添付図面を参照しながら説明する。なお、本実施形態では、通信方式としてLTEを例として説明するが、これに限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the present embodiment, LTE is described as an example of a communication method, but the present invention is not limited to this.

〔第一の実施形態〕
〔1.通信システムの構成〕
図1は、LTE方式における無線通信システムの構成を示す概略図である。この無線通信システムは、基地局装置1と、ユーザ端末2a,2bと、を備えている。
基地局装置1は、複数のアンテナを備えており、基地局装置1及びユーザ端末2a,2bは、マルチユーザMIMO伝送を行う機能を有している。
[First embodiment]
[1. Configuration of communication system]
FIG. 1 is a schematic diagram illustrating a configuration of a radio communication system in the LTE scheme. This wireless communication system includes a base station device 1 and user terminals 2a and 2b.
The base station apparatus 1 includes a plurality of antennas, and the base station apparatus 1 and the user terminals 2a and 2b have a function of performing multiuser MIMO transmission.

この通信システムでは、下り回線は直交周波数多重分割多元接続(OFDMA)が採用され、上り回線は単一キャリア周波数分割多元接続(SC−FDMA)が採用されている。
LTEの上り回線のフレームは、周波数多重分割により複数のユーザ端末によって共用され、基地局装置への多元接続が可能となっている。また、周波数多重に加えて、空間多重も行われる。
In this communication system, the downlink employs orthogonal frequency division division multiple access (OFDMA), and the uplink employs single carrier frequency division multiple access (SC-FDMA).
The LTE uplink frame is shared by a plurality of user terminals by frequency division division, and multiple access to the base station apparatus is possible. In addition to frequency multiplexing, spatial multiplexing is also performed.

LTEでは、フレーム中にリソースブロック(RB)と呼ばれるユーザ割り当ての最小単位が設定されており、図1に示すように、1リソースブロックは、7又は6シンボル×12サブキャリアである。LTEの上りのデータチャネルにおいては、1スロットのうちの4シンボル目においては、全サブキャリアが、既知信号である参照信号(Reference Signal)とされており、図1では黒塗りの丸印で示している。以下では、参照信号を「パイロット信号」ともいう。
1リソースブロック内における他のシンボルはデータ信号(Data Signal)とされており、図1では白抜きの丸印で示している。
In LTE, a minimum unit of user allocation called a resource block (RB) is set in a frame. As shown in FIG. 1, one resource block is 7 or 6 symbols × 12 subcarriers. In the uplink data channel of LTE, in the fourth symbol of one slot, all subcarriers are used as reference signals (Reference Signals) that are known signals, and are indicated by black circles in FIG. ing. Hereinafter, the reference signal is also referred to as a “pilot signal”.
Other symbols in one resource block are data signals (Data Signal), and are indicated by white circles in FIG.

空間多重が行われているある1つのリソースブロックに着目すると、複数のユーザ端末2a,2bは、その1つのリソースブロックの信号x,xを用いて同時に送信することになる。
このため、基地局装置1は、送信信号x,xが多重化された信号(受信信号y1,y2)を複数のアンテナ3(3a,3b)それぞれで受信する。つまり、アンテナ3aが受信する受信信号yは、送信信号xに対応する受信信号y1x1と、送信信号xに対応する受信信号y1x2とが多重化され、アンテナ3bが受信する受信信号yは、送信信号xに対応する受信信号y2x1と、送信信号xに対応する受信信号y2x2とが多重化されている。
基地局装置1は、複数のアンテナ3a,3bそれぞれで受信した受信信号y,yから、当該受信信号y,yそれぞれに含まれる受信パイロット信号を取得する。この受信パイロット信号は、送信信号x,xそれぞれに対応するパイロット信号が多重化されている。
Focusing on one resource block in which spatial multiplexing is performed, a plurality of user terminals 2a and 2b transmit simultaneously using signals x 1 and x 2 of the one resource block.
Therefore, the base station apparatus 1 receives the transmitted signal x 1, the signal x 2 is multiplexed (received signal y1, y2) a plurality of antennas 3 (3a, 3b), respectively. That is, the received signal y 1 by the antenna 3a is received, the received signal y 1x1 corresponding to the transmission signal x 1, the received signal y 1x2 corresponding to the transmission signal x 2 are multiplexed, the received signal by the antenna 3b receives y 2 is the received signal y 2x1 corresponding to the transmission signal x 1, the received signal y 2x2 corresponding to the transmission signal x 2 are multiplexed.
The base station apparatus 1 acquires the received pilot signals included in the received signals y 1 and y 2 from the received signals y 1 and y 2 received by the plurality of antennas 3a and 3b, respectively. In this reception pilot signal, pilot signals corresponding to the transmission signals x 1 and x 2 are multiplexed.

ユーザ端末2a,2bは、送信信号x,xに含まれるパイロット信号について、サイクリックシフト処理を行った上で当該送信信号x,xを送信する。サイクリックシフト処理は、各ユーザ端末ごとで、パイロット信号を周波数軸方向に異なるシフト量で巡回シフトさせる処理であり、これにより基地局装置1で多重化されて受信される受信パイロット信号は分離可能である。 User terminals 2a, 2b, for the pilot signal included in the transmitted signal x 1, x 2, and transmits the transmission signal x 1, x 2 after performing cyclic shift processing. The cyclic shift process is a process of cyclically shifting the pilot signal by a different shift amount in the frequency axis direction for each user terminal, whereby the received pilot signal multiplexed and received by the base station apparatus 1 can be separated. It is.

基地局装置1は、受信信号y,yから取得する多重化された受信パイロット信号に基づいて、送信信号x,xそれぞれに対応する受信パイロット信号それぞれの周波数応答を分離して取得し、送信信号x,xそれぞれに対応する受信信号のチャネル推定を行う。基地局装置1は、推定したチャネルを用いて、多重化された他のデータ信号から各ユーザごとのデータ信号を分離し、各ユーザ端末2a,2bそれぞれに対応する受信データ信号x^,x^を取得するように構成されている。 Based on the multiplexed received pilot signal acquired from the received signals y 1 and y 2 , the base station apparatus 1 acquires the frequency responses of the received pilot signals corresponding to the transmitted signals x 1 and x 2 separately. Then, the channel estimation of the received signals corresponding to the transmission signals x 1 and x 2 is performed. The base station apparatus 1 separates the data signal for each user from the multiplexed other data signal using the estimated channel, and receives the received data signal x ^ 1 , x corresponding to each user terminal 2a, 2b. ^ Is configured to obtain 2 .

〔2.基地局装置の構成〕
図2は、基地局装置1の受信系の要部構成を示すブロック図である。
本発明の第一の実施形態の通信装置としての基地局装置1は、アンテナ3が接続された受信部4の他、FFT部5、分離・等化部6、IDFT部7、復調部8、及びチャネル推定部10を備えている。基地局装置1は、これら各部を、基地局装置1が備える複数のアンテナ3(3a,3b)ごとそれぞれに備えている。
[2. Configuration of base station apparatus]
FIG. 2 is a block diagram illustrating a main configuration of the reception system of the base station apparatus 1.
A base station apparatus 1 as a communication apparatus according to the first embodiment of the present invention includes an FFT unit 5, a separation / equalization unit 6, an IDFT unit 7, a demodulation unit 8, in addition to a reception unit 4 to which an antenna 3 is connected. And a channel estimation unit 10. The base station apparatus 1 includes these units for each of the plurality of antennas 3 (3a, 3b) included in the base station apparatus 1.

受信部4は、増幅器、A/D変換器等を備えており、複数のアンテナ3が受信する受信信号yを増幅するとともにデジタル信号に変換した信号y(k)(k=1,2,・・・L、Lは、サンプリング時間中に含まれるサンプル数)をFFT部5に出力する。
FFT部5は、信号y(k)について、高速フーリエ変換し、時間領域から周波数領域のデータに変換してサブキャリア等を分波し、サブキャリアを除いたデータ信号を分離・等化部6に出力する。また、FFT部5は、周波数領域に変換したデータ信号の内、受信パイロット信号r(k)をチャネル推定部10に出力する。
The receiving unit 4 includes an amplifier, an A / D converter, and the like, and amplifies the received signal y received by the plurality of antennas 3 and converts the signal y (k) (k = 1, 2,...) Into a digital signal. .., L and L are output to the FFT unit 5 as the number of samples included in the sampling time.
The FFT unit 5 performs fast Fourier transform on the signal y (k), converts it from time domain to frequency domain data, demultiplexes subcarriers, etc., and separates and equalizes the data signal excluding the subcarriers. Output to. Further, the FFT unit 5 outputs the received pilot signal r (k) to the channel estimation unit 10 among the data signals converted into the frequency domain.

チャネル推定部10は、受信パイロット信号r(k)に基づいて、複数のユーザ端末2a,2bに対応する受信信号のチャネル特性を推定し、その推定結果を分離・等化部6に出力する。
分離・等化部6は、チャネル推定部10により推定された複数のユーザ端末2a,2bそれぞれの受信信号(例えば、受信信号yの場合、受信信号y1x1,y1x2)のチャネル推定結果に基づいて、FFT部5から与えられる周波数領域のデータ信号を各ユーザ端末ごとのデータ信号に分離し、等化処理を行う。
The channel estimation unit 10 estimates channel characteristics of received signals corresponding to the plurality of user terminals 2 a and 2 b based on the received pilot signal r (k), and outputs the estimation result to the separation / equalization unit 6.
Separating and equalizing unit 6, a plurality of user terminals 2a estimated by the channel estimation unit 10, 2b each of the received signals (e.g., if the received signal y 1, the received signal y 1x1, y 1x2) on the channel estimation result of Based on this, the frequency domain data signal given from the FFT unit 5 is separated into data signals for each user terminal, and equalization processing is performed.

分離・等化部6により各ユーザ端末ごとに分離、等化されたデータ信号は、IDFT部7に与えられ、時間領域のデータに変換された後、復調部8によって復調される。   The data signal separated and equalized for each user terminal by the separation / equalization unit 6 is given to the IDFT unit 7, converted into time domain data, and demodulated by the demodulation unit 8.

〔3.チャネル推定部の構成〕
図3は、チャネル推定部10の構成を示すブロック図である。
チャネル推定部10は、図に示すように、除算部11、DCT部12、窓処理部13、及び、複数のIDCT部14を備えている。
除算部11は、FFT部5から与えられる受信パイロット信号r(k)から、既知信号である基本パイロット信号s(k)を除算することで正規化し、受信パイロット信号r(k)の伝送路周波数応答h(k)を得る。
受信パイロット信号r(k)は、各ユーザ端末が送信したパイロット信号が多重化された多重信号であり、下記式(1)のように表される。
[3. Configuration of channel estimation unit]
FIG. 3 is a block diagram illustrating a configuration of the channel estimation unit 10.
The channel estimation unit 10 includes a division unit 11, a DCT unit 12, a window processing unit 13, and a plurality of IDCT units 14, as shown in the figure.
The division unit 11 normalizes the received pilot signal r (k) given from the FFT unit 5 by dividing the basic pilot signal s (k), which is a known signal, and transmits the channel frequency of the received pilot signal r (k). A response h (k) is obtained.
The received pilot signal r (k) is a multiplexed signal obtained by multiplexing the pilot signals transmitted from each user terminal, and is represented by the following equation (1).

式(1)中、h(k)(n=1〜N)は、各ユーザ端末ごとの伝送路周波数応答、Nは、ユーザ端末の数、αは、下記式(2)で示される、各ユーザ端末ごとの周波数領域におけるシフト量である。
α = 2πncs / N (ncs = 0,1,・・・,N−1)
・・・(2)
In Expression (1), h n (k) (n = 1 to N) is a transmission path frequency response for each user terminal, N is the number of user terminals, and α n is expressed by Expression (2) below. The shift amount in the frequency domain for each user terminal.
α n = 2πn cs / N (n cs = 0, 1,..., N−1)
... (2)

除算部11は、既知の基本パイロット信号s(k)を除算することで、下記式(3)に示される、受信パイロット信号r(k)の伝送路周波数応答h(k)を得る。   The division unit 11 divides the known basic pilot signal s (k) to obtain a transmission channel frequency response h (k) of the received pilot signal r (k) represented by the following equation (3).

第一変換部としてのDCT部12は、除算部11が得た受信パイロット信号r(k)の伝送路周波数応答h(k)について、離散コサイン変換(DCT:Discrete Cosine Transform)を行うことで、時間領域に変換し、下記式(4)に示される、伝送路時間応答H(t)(k=1,2,・・・L、Lは、サンプリング時間中に含まれるサンプル数)を得る。   The DCT unit 12 as the first conversion unit performs discrete cosine transform (DCT: Discrete Cosine Transform) on the transmission channel frequency response h (k) of the received pilot signal r (k) obtained by the division unit 11. By converting to the time domain, a transmission path time response H (t) (k = 1, 2,... L, L is the number of samples included in the sampling time) shown in the following equation (4) is obtained.

上記のようにDCT部12は、周波数を余弦関数によって表すことで、周波数領域のデータを時間領域に変換する。
窓処理部13は、DCT部12が得た、受信パイロット信号r(k)の伝送路時間応答H(t)について、各ユーザ端末ごとの受信パイロット信号の伝送路時間応答に分離する窓処理を行う。
受信パイロット信号r(k)の伝送路時間応答H(t)は、下記式(5)のように示される。
As described above, the DCT unit 12 converts the frequency domain data into the time domain by expressing the frequency with a cosine function.
The window processing unit 13 performs window processing for separating the transmission channel time response H (t) of the received pilot signal r (k) obtained by the DCT unit 12 into the transmission channel time response of the received pilot signal for each user terminal. Do.
The transmission path time response H (t) of the received pilot signal r (k) is expressed by the following equation (5).

なお、上記式(5)中、Tは、シンボル長である。
複数の参照信号それぞれの伝送路時間応答である、各ユーザ端末ごとの受信パイロット信号の伝送路時間応答H(t)(n=1,・・・N)は、上記式(5)に示すように、時間軸方向に「T/N」の間隔ごとに配列される。
窓処理部13は、受信パイロット信号r(k)の伝送路時間応答H(t)から、上記のように時間軸方向に配列された各ユーザ端末ごとの受信パイロット信号の伝送路時間応答H(t)(以下、単に伝送路時間応答H(t)ともいう)を切り出すことで、各ユーザ端末ごとの伝送路時間応答H(t)に分離する。
In the above equation (5), T is the symbol length.
The transmission channel time response H n (t) (n = 1,... N) of the received pilot signal for each user terminal, which is the transmission channel time response of each of the plurality of reference signals, is expressed by the above equation (5). In this way, they are arranged at intervals of “T / N” in the time axis direction.
From the transmission channel time response H (t) of the received pilot signal r (k), the window processing unit 13 transmits the transmission channel time response H n of the received pilot signal for each user terminal arranged in the time axis direction as described above. By cutting out (t) (hereinafter, also simply referred to as transmission path time response H n (t)), it is separated into transmission path time responses H n (t) for each user terminal.

また、窓処理部13は、分離した各ユーザ端末ごとの伝送路時間応答H(t)それぞれに対して、時間軸方向のオフセット量(上記式(5)中、「nT/N」)を除くことで、サイクリックシフト処理によってシフトされた(時間軸方向の)位置から元の位置に戻す処理も行う。 Further, the window processing unit 13 calculates an offset amount in the time axis direction (“nT / N” in the above equation (5)) for each transmission path time response H n (t) for each separated user terminal. By removing, the process of returning to the original position from the position (in the time axis direction) shifted by the cyclic shift process is also performed.

窓処理部13は、分離した各ユーザ端末ごとの伝送路時間応答H(t)を、IDCT部14に出力する。
第二変換部としてのIDCT部14は、ユーザ端末の伝送路時間応答H(t)について、逆離散コサイン変換(IDCT:Inverse Discrete Cosine Transform)を行うことで、周波数領域に変換し、下記式(6)に示される、ユーザ端末ごとの受信パイロット信号の伝送路周波数応答h(k)を得る。
The window processing unit 13 outputs the transmission path time response H n (t) for each separated user terminal to the IDCT unit 14.
The IDCT unit 14 as the second conversion unit converts the transmission channel time response H n (t) of the user terminal into a frequency domain by performing inverse discrete cosine transform (IDCT: Inverse Discrete Cosine Transform). The transmission channel frequency response h n (k) of the received pilot signal for each user terminal shown in (6) is obtained.

各IDCT部14は、上記のようにして得た、ユーザ端末ごとの受信パイロット信号の伝送路周波数応答h(k)を、各ユーザ端末に対応する受信信号のチャネル特性の推定結果として、分離・等化部6に出力する。 Each IDCT unit 14 separates the channel frequency response h n (k) of the received pilot signal for each user terminal obtained as described above as the estimation result of the channel characteristics of the received signal corresponding to each user terminal. Output to the equalization unit 6.

上記構成の基地局装置1によれば、チャネル推定部10のDCT部12が、多重化された受信パイロット信号r(k)の伝送路周波数応答h(k)を離散コサイン変換によって、伝送路時間応答H(t)に変換するので、上記従来例のIDFTでみられる周期拡張時のデータの不連続な部分が生じるのを防止することができ、受信パイロット信号r(k)の伝送路時間応答H(t)における、各ユーザ端末ごとの受信パイロット信号それぞれの伝送路時間応答H(t)に生じる遅延広がりが大きくなるのを防止できる。 According to the base station apparatus 1 having the above configuration, the DCT unit 12 of the channel estimation unit 10 performs transmission line time response h (k) of the multiplexed received pilot signal r (k) by means of discrete cosine transform. Since the response is converted into the response H (t), it is possible to prevent the occurrence of a discontinuous portion of the data at the time of the period extension seen in the IDFT of the conventional example, and the transmission path time response of the received pilot signal r (k). It is possible to prevent the delay spread occurring in the transmission path time response H n (t) of each received pilot signal for each user terminal from increasing in H (t).

図4は、離散コサイン変換による周期拡張の態様を説明するための図であり、(a)は、離散コサイン変換の場合、(b)は、IDFTの場合を示している。
IDFTは、データ長がLである元の周波数領域信号を周期拡張した可算無限個の信号系列に対し、離散時間フーリエ変換を適用することで、時間領域への変換を行う演算である。このため、図4(b)に示すように、拡張部分の境界においてデータが不連続となりやすい。この不連続性は、高次の係数の増大を招き、時間領域変換後の遅延広がりを大きくする原因となってしまう。
一方、離散コサイン変換は、データ長がLである元の関数信号を、境界点で偶対称となるような拡張を施すことにより生成される信号に対し、離散フーリエ変換を適用することと等価である。そのため、離散コサイン変換では、図4(a)に示すように、拡張部分の境界においてデータの連続性が保たれる。
この拡張部分の境界における連続性から、離散コサイン変換は、信号成分を低周波数側に集中させるという特性をもつ。したがって、時間領域に変換した後のデータにおける遅延広がりを小さく抑えることができる。
FIGS. 4A and 4B are diagrams for explaining a mode of period extension by discrete cosine transform. FIG. 4A shows a case of discrete cosine transform, and FIG. 4B shows a case of IDFT.
IDFT is an operation for performing conversion to the time domain by applying discrete-time Fourier transform to a countless infinite number of signal sequences obtained by periodically extending an original frequency domain signal whose data length is L. For this reason, as shown in FIG. 4B, data tends to be discontinuous at the boundary of the extended portion. This discontinuity causes an increase in higher-order coefficients and causes a delay spread after time domain conversion to be increased.
On the other hand, the discrete cosine transform is equivalent to applying the discrete Fourier transform to the signal generated by extending the original function signal whose data length is L to be even symmetric at the boundary point. is there. Therefore, in the discrete cosine transform, data continuity is maintained at the boundary of the extended portion as shown in FIG.
Due to the continuity at the boundary of the extended portion, the discrete cosine transform has a characteristic of concentrating signal components on the low frequency side. Accordingly, it is possible to suppress the delay spread in the data after being converted into the time domain.

図5は、伝送路周波数応答を時間領域に変換したときの態様を説明するための図であり、(a)は、離散コサイン変換の場合の一例、(b)は、IDFTの場合の一例を示している。図中、横軸は時間、縦軸は電力を示している。また、図5では、2つの隣接するユーザ端末のデータを表しており、黒塗りの四角印、及び白抜きの四角印でそれぞれを描き分けている。
図において、離散コサイン変換の場合、IDFTの場合と比較して時間軸方向の広がりが小さく、一のユーザ端末のデータが窓幅の範囲内に収まる。一方、IDFTの場合、時間方向の広がりが大きく、また、窓幅を超える位置に比較的大きい値をもつ信号が存在しており、これら窓幅外に位置するデータは、取得されず損失することとなる。
FIGS. 5A and 5B are diagrams for explaining an aspect when the transmission line frequency response is converted into the time domain. FIG. 5A is an example in the case of discrete cosine transform, and FIG. 5B is an example in the case of IDFT. Show. In the figure, the horizontal axis represents time and the vertical axis represents power. Further, FIG. 5 shows data of two adjacent user terminals, which are drawn separately by black square marks and white square marks.
In the figure, in the case of discrete cosine transform, the spread in the time axis direction is smaller than in the case of IDFT, and the data of one user terminal falls within the window width range. On the other hand, in the case of IDFT, the spread in the time direction is large, and there is a signal having a relatively large value at a position exceeding the window width, and data located outside the window width is not acquired and lost. It becomes.

このように、本実施形態によれば、時間領域に変換した後のデータにおける遅延広がりを小さく抑えることができるので、窓処理部13によって、ユーザ端末ごとそれぞれの伝送路時間応答H(t)に分離する際に、データ部分が窓処理における窓幅以上に広がるのを抑制でき、データ損失を抑制することができる。この結果、推定チャネル特性に歪みが生じるのを抑制することができ、チャネル推定精度を高めることができる。 As described above, according to the present embodiment, since the delay spread in the data after being converted into the time domain can be suppressed to a small value, the transmission time response H n (t) for each user terminal by the window processing unit 13. In the separation, the data portion can be prevented from spreading beyond the window width in the window processing, and data loss can be suppressed. As a result, distortion in the estimated channel characteristics can be suppressed, and the channel estimation accuracy can be increased.

また、本実施形態において、多重化された受信パイロット信号r(k)の伝送路周波数応答h(k)を離散コサイン変換によって、伝送路時間応答H(t)に変換したときに、図5に示すように、所定の閾値以下の電力の信号を雑音とみなして除くように構成することもできる。この場合、データ信号に含まれる雑音の影響を抑えることができる。
なお、上記所定の閾値以下の電力の信号を雑音とみなして除く構成は、IDFTによるチャネル推定においても用いることができる。
Further, in this embodiment, when the transmission channel frequency response h (k) of the multiplexed received pilot signal r (k) is converted into the transmission channel time response H (t) by discrete cosine transform, FIG. As shown, a signal having a power lower than a predetermined threshold may be regarded as noise and removed. In this case, the influence of noise included in the data signal can be suppressed.
Note that the configuration in which a signal having power less than or equal to the predetermined threshold is regarded as noise and removed can also be used in channel estimation by IDFT.

〔第二の実施形態〕
図6は、本発明の第二の実施形態に係る基地局装置1が備えるチャネル推定部10の構成を示すブロック図である。
本実施形態のチャネル推定部10は、除算部11と、乗算部21と、拡張処理部22と、LPF(ローパスフィルタ)23と、遅延成分除去部24とを備えている。
除算部11は、上記第一の実施形態と同様、FFT部5から与えられる受信パイロット信号r(k)から、既知信号である基本パイロット信号s(k)を除算することで、多重化された受信パイロット信号r(k)の伝送路周波数応答h(k)を得る。
[Second Embodiment]
FIG. 6 is a block diagram illustrating a configuration of the channel estimation unit 10 included in the base station device 1 according to the second embodiment of the present invention.
The channel estimation unit 10 of the present embodiment includes a division unit 11, a multiplication unit 21, an extension processing unit 22, an LPF (low-pass filter) 23, and a delay component removal unit 24.
The division unit 11 is multiplexed by dividing the basic pilot signal s (k), which is a known signal, from the received pilot signal r (k) given from the FFT unit 5 as in the first embodiment. A transmission channel frequency response h (k) of the received pilot signal r (k) is obtained.

乗算部21は、各ユーザ端末ごとに設定されたパイロット信号それぞれのサイクリックシフトに基づくシフト量(を表す複素定数e−jαNk)を、受信パイロット信号r(k)の伝送路周波数応答h(k)に乗算することで、各ユーザ端末ごとの伝送路周波数応答h(k)をもとの周波数にシフトさせた伝送路周波数応答h’(k)を得る。
乗算部21は、もとの周波数にシフトさせた伝送路周波数応答h’(k)を、各ユーザ端末の受信パイロット信号ごとに対応して得る。
The multiplier 21 calculates the shift amount (representing a complex constant e −jαNk ) based on the cyclic shift of each pilot signal set for each user terminal, and the transmission channel frequency response h (k) of the received pilot signal r (k). ) To obtain a transmission channel frequency response h n ′ (k) obtained by shifting the transmission channel frequency response h n (k) of each user terminal to the original frequency.
The multiplier 21 obtains the transmission channel frequency response h n ′ (k) shifted to the original frequency corresponding to each received pilot signal of each user terminal.

拡張処理部22は、乗算部21がユーザ端末の受信パイロット信号の伝送路周波数応答h(k)(以下、単に伝送路周波数応答h(k)ともいう)をもとの周波数にシフトさせた伝送路周波数応答h’(k)について偶対称拡張処理を行い、偶対称拡張処理を行った被処理関数を、各ユーザ端末ごとに対応して得る。
図7(a)は、偶対称拡張処理を行った後の被処理関数h’’(k)の一例を模式的に示した図である。
The extension processing unit 22 causes the multiplication unit 21 to shift the transmission channel frequency response h n (k) (hereinafter also simply referred to as transmission channel frequency response h n (k)) of the received pilot signal of the user terminal to the original frequency. The even-numbered symmetric expansion processing is performed on the transmission channel frequency response h n ′ (k), and the processed function that has been subjected to the even-symmetrical expansion processing is obtained for each user terminal.
FIG. 7A is a diagram schematically illustrating an example of the function to be processed h n ″ (k) after the even symmetric extension processing is performed.

図に示すように、被処理関数h’’(k)は、伝送路周波数応答h(k)を構成するデータD1と、その周波数軸前後に配置された拡張データD2,D3とを有している。これら拡張データD2,D3は、データD1との境界に対してデータD1と線対称となるように設けられ、データD1に対して偶対称とされている。 As shown in the figure, the function to be processed h n ″ (k) has data D1 constituting the transmission line frequency response h (k) and extension data D2 and D3 arranged before and after the frequency axis. ing. The extension data D2 and D3 are provided so as to be line-symmetric with the data D1 with respect to the boundary with the data D1, and are even-symmetric with respect to the data D1.

また、拡張データD2,D3は、LPF23の群遅延の長さとなるように設けられている。本実施形態では、後述するようにLPF23は、群遅延の長さがタップ長の1/2となるFIR(Finite Impulse Response)フィルタにより構成されており、拡張データD2,D3は、LPF23のタップ長の1/2となるように設けられている。従って、データD1(伝送路周波数応答h(k))を構成する各要素を、下記式(7)で表した場合、
伝送路周波数応答h(k)=[x(1),x(2),・・・,x(L)]
・・・(7)
伝送路周波数応答h(k)に偶対称拡張処理を行った被処理関数被処理関数h’’(k)を構成する要素は、下記式(8)のように表すことができる。
被処理関数h’’(k)=[x(M/2),x((M/2)−1),・・・
・・・,x(1),x(1),・・・,x(L),x(L−1),・・・
・・・,x(L−(M/2)−1)]
・・・(8)
The extension data D2 and D3 are provided so as to have the length of the group delay of the LPF 23. In the present embodiment, as will be described later, the LPF 23 is configured by an FIR (Finite Impulse Response) filter whose group delay length is ½ the tap length, and the extension data D2 and D3 are the tap lengths of the LPF 23. It is provided so that it may be 1/2. Therefore, when each element constituting the data D1 (transmission path frequency response h (k)) is expressed by the following formula (7),
Transmission path frequency response h (k) = [x (1), x (2),..., X (L)]
... (7)
Elements constituting the processed function processed function h n ″ (k) obtained by subjecting the transmission line frequency response h (k) to the even symmetric extension processing can be expressed as the following formula (8).
Processed function h n ″ (k) = [x (M / 2), x ((M / 2) −1),.
..., x (1), x (1), ..., x (L), x (L-1), ...
..., x (L- (M / 2) -1)]
... (8)

なお、上記式(8)中、MはLPF23のタップ長である。
また、上記式(8)中、「x(M/2),x((M/2)−1),・・・,x(1)」の部分が、拡張データD2の部分であり、「x(L−1),・・・,x(L−(M/2)−1)」の部分が、拡張データD3の部分である。
In the above formula (8), M is the tap length of the LPF 23.
In the above formula (8), the parts “x (M / 2), x ((M / 2) −1),..., X (1)” are the parts of the extension data D2, The part of “x (L−1),..., x (L− (M / 2) −1)” is the part of the extension data D3.

LPF23は、例えば、FIRフィルタにより構成されており、拡張処理部22が得る上記被処理関数h’’(k)から、もとの周波数にシフトさせたユーザ端末の伝送路周波数応答h(k)のみを取得する機能を有している。
すなわち、上記被処理関数h’’(k)は、一のユーザ端末の伝送路周波数応答h(k)がもとの周波数にシフトされているので、この部分のみを通過させ、他の部分を通過させないように、LPF23のカットオフ値を設定することで、当該LPF23は、もとの周波数にシフトさせたユーザ端末の伝送路周波数応答h(k)のみを取得することができる。
The LPF 23 is constituted by, for example, an FIR filter, and the transmission frequency response h n () of the user terminal shifted to the original frequency from the processed function h n ″ (k) obtained by the extension processing unit 22. k) has a function to acquire only.
That is, the object to be processed function h n '' (k), since the transmission channel frequency response h n of the one user terminal (k) is shifted to the original frequency, passed through this part only, of the other By setting the cut-off value of the LPF 23 so as not to pass the portion, the LPF 23 can acquire only the transmission channel frequency response h n (k) of the user terminal shifted to the original frequency.

遅延成分除去部24は、LPF23により得られる各ユーザ端末の伝送路周波数応答h(k)において発生が不可避な遅延成分を除去する機能を有している。
図7(b)は、LPF23により得られる一のユーザ端末の伝送路周波数応答h(k)を示した模式図である。図に示すように、一のユーザ端末の伝送路周波数応答h(k)を構成するデータd1の低周波数側には、LPF23を通過することで生じる遅延成分が存在している。この遅延成分は、一般に、LPF23のタップ長分の長さで生じるものであり、LPF23を通過した後における、遅延成分を含む一のユーザ端末の伝送路周波数応答h(k)を構成する要素は、下記式(9)により表される。
一のユーザ端末の伝送路周波数応答h(k)(遅延成分を含む)=
[h(1),h(2),・・・,h(L+M)]
・・・(9)
The delay component removing unit 24 has a function of removing a delay component inevitably generated in the transmission channel frequency response h n (k) of each user terminal obtained by the LPF 23.
FIG. 7B is a schematic diagram showing the transmission path frequency response h n (k) of one user terminal obtained by the LPF 23. As shown in the figure, there is a delay component generated by passing through the LPF 23 on the low frequency side of the data d1 constituting the transmission line frequency response h n (k) of one user terminal. This delay component generally occurs with a length corresponding to the tap length of the LPF 23, and is an element constituting the transmission path frequency response h n (k) of one user terminal including the delay component after passing through the LPF 23. Is represented by the following formula (9).
Transmission path frequency response h n (k) of one user terminal (including delay component) =
[H n (1), h n (2),..., H n (L + M)]
... (9)

また、式(9)に示す一のユーザ端末の伝送路周波数応答h(k)から遅延成分を除去した一のユーザ端末の伝送路周波数応答h(k)は、下記式(10)により表される。
一のユーザ端末の伝送路周波数応答h(k)=
[h(M+1),h(M+2),・・・,h(M+L)]
・・・(10)
Further, transmission channel frequency response h n of the one user terminal obtained by removing the delay component from the equation (9) transmission channel frequency response h n of the one user terminal shown in (k) (k) is the following formula (10) expressed.
Channel frequency response h n (k) of one user terminal =
[H n (M + 1), h n (M + 2),..., H n (M + L)]
... (10)

このように、本実施形態では、LPF23を通過した後の一のユーザ端末の伝送路周波数応答h(k)に含まれる遅延成分を除去する遅延成分除去部24を備えているので、各ユーザ端末ごとの伝送路時間応答h(k)を、より精度よく取得することができる。
以上のようにして、本実施形態のチャネル推定部10は、遅延成分除去部24により遅延成分を除くことで得られる各ユーザ端末ごとの受信パイロット信号の伝送路周波数応答h(k)を、各ユーザ端末に対応する受信信号のチャネル特性の推定結果として、分離・等化部6に出力する。
As described above, the present embodiment includes the delay component removing unit 24 that removes the delay component included in the transmission channel frequency response h n (k) of one user terminal after passing through the LPF 23. The transmission path time response h n (k) for each terminal can be acquired with higher accuracy.
As described above, the channel estimation unit 10 of the present embodiment obtains the transmission channel frequency response h n (k) of the received pilot signal for each user terminal obtained by removing the delay component by the delay component removal unit 24, The estimation result of the channel characteristics of the received signal corresponding to each user terminal is output to the separation / equalization unit 6.

上記構成の基地局装置1によれば、チャネル推定部10の拡張処理部22が、受信パイロット信号r(k)の伝送路周波数応答h(k)について偶対称拡張処理を行うので、乗算部21及びLPF23によって各ユーザ端末ごとの伝送路周波数応答h(k)を分離し取得する際におけるデータ損失を抑制することができる。この結果、推定チャネル特性に歪みが生じるのを抑制することができ、チャネル推定精度を高めることができる。
また、本実施形態の基地局装置1では、周波数領域内で各ユーザ端末ごとの伝送路周波数応答h(k)を取得するので、IDFT等の演算量が多い処理を行う必要がなく、装置に対する負荷を軽減できる構成とすることができる。
According to the base station apparatus 1 having the above configuration, the extension processing unit 22 of the channel estimation unit 10 performs the even symmetric extension processing on the transmission channel frequency response h (k) of the received pilot signal r (k). and it is possible to suppress the data loss at the time of obtaining separate transmission channel frequency responses h n for each user terminal (k) by the LPF 23. As a result, distortion in the estimated channel characteristics can be suppressed, and the channel estimation accuracy can be increased.
Further, in the base station apparatus 1 of the present embodiment, since the transmission path frequency response h n (k) for each user terminal is acquired in the frequency domain, there is no need to perform processing with a large amount of calculation such as IDFT, etc. It can be set as the structure which can reduce the load with respect to.

また、本実施形態において、拡張処理部22は、偶対称拡張処理は、LPF23の群遅延の長さ分(拡張データD2,D3)だけ拡張するので、必要最小限のデータ分をもって拡張しつつ、LPF23によるデータ損失をより効果的に抑制することができる。   Further, in the present embodiment, the expansion processing unit 22 extends the even symmetrical expansion processing by the length of the group delay of the LPF 23 (extension data D2, D3). Data loss due to the LPF 23 can be more effectively suppressed.

なお、本発明は、上記各実施形態に限定されることはない。上記各実施形態では、本発明の通信装置を基地局装置に適用した場合を例示したが、ユーザ端末側に適用することもできる。   The present invention is not limited to the above embodiments. In each of the above embodiments, the case where the communication apparatus of the present invention is applied to the base station apparatus is illustrated, but it can also be applied to the user terminal side.

また、上記第二の実施形態において、チャネル推定部10は、除算部11と、乗算部21と、拡張処理部22と、LPF23と、遅延成分除去部24とを備えている場合を例示したが、これらの内、拡張処理部22を省略した形、すなわち、除算部11と、乗算部21と、LPF23と、遅延成分除去部24とによってチャネル推定部10を構成することもできる。   In the second embodiment, the channel estimation unit 10 includes the division unit 11, the multiplication unit 21, the extension processing unit 22, the LPF 23, and the delay component removal unit 24. Of these, the channel estimator 10 can be configured by a form in which the extended processor 22 is omitted, that is, the divider 11, the multiplier 21, the LPF 23, and the delay component remover 24.

この場合、乗算部21が得た、各ユーザ端末の受信パイロット信号ごとのもとの周波数にシフトさせた伝送路周波数応答h’(k)は、そのままLPF23に出力される。
LPF23は、もとの周波数にシフトさせた伝送路周波数応答h’(k)から、もとの周波数にシフトさせたユーザ端末の伝送路周波数応答h(k)のみを取得する。遅延成分除去部24は、LPF23により得られる各ユーザ端末の伝送路周波数応答h(k)に含まれる遅延成分を除去する。
以上のようにして、上記構成のチャネル推定部10は、各ユーザ端末ごとの受信パイロット信号の伝送路周波数応答h(k)を、各ユーザ端末に対応する受信信号のチャネル特性の推定結果として得ることができる。
In this case, the transmission channel frequency response h n ′ (k) obtained by the multiplication unit 21 and shifted to the original frequency for each received pilot signal of each user terminal is output to the LPF 23 as it is.
The LPF 23 acquires only the transmission channel frequency response h n (k) of the user terminal shifted to the original frequency from the transmission channel frequency response h n ′ (k) shifted to the original frequency. The delay component removing unit 24 removes a delay component included in the transmission path frequency response h n (k) of each user terminal obtained by the LPF 23.
As described above, the channel estimation unit 10 configured as described above uses the channel frequency response h n (k) of the received pilot signal for each user terminal as the estimation result of the channel characteristics of the received signal corresponding to each user terminal. Obtainable.

上記構成のチャネル推定部10を備えた基地局装置によれば、周波数領域内で複数の受信パイロット信号それぞれの伝送路周波数応答を取得することができるので、IDFT等の演算量が多い処理を行う必要がなく簡易な構成とすることができる。   According to the base station apparatus including the channel estimation unit 10 having the above-described configuration, the transmission path frequency response of each of the plurality of received pilot signals can be acquired in the frequency domain, and thus processing with a large amount of computation such as IDFT is performed. There is no need and a simple configuration can be obtained.

〔効果の確認について〕
本発明者は、上記各実施形態による基地局装置によって、多重化された受信パイロット信号を分離してチャネル推定するシミュレーションを行い、従来方法でチャネル推定を行った場合と比較してその効果の検証を行った。
比較例としては、上記従来例で述べたように、多重化された受信パイロット信号の伝送路周波数応答をIDFTによって伝送路時間応答に変換し、分離した後、DFTによって周波数領域に変換する方法によりチャネル推定を行う基地局装置を用いた。
本発明の実施例としては、上記第一の実施形態で示した、DCT部及びIDCT部を備えた基地局装置1を実施例1とし、第二の実施形態で示した、LPF部を備えた基地局装置1を実施例2とした。
[About confirmation of effect]
The inventor performs a simulation for channel estimation by separating multiplexed received pilot signals by the base station apparatus according to each of the above embodiments, and verifies the effect as compared with the case where channel estimation is performed by a conventional method. Went.
As a comparative example, as described in the above-described conventional example, the transmission channel frequency response of the multiplexed received pilot signal is converted into a transmission channel time response by IDFT, separated, and then converted to the frequency domain by DFT. A base station apparatus that performs channel estimation was used.
As an example of the present invention, the base station apparatus 1 having the DCT unit and the IDCT unit shown in the first embodiment is used as Example 1, and the LPF unit shown in the second embodiment is provided. The base station apparatus 1 was set as Example 2.

検証方法としては、ユーザ端末2つ分のパイロット信号が多重化された受信パイロット信号を用い、実施例1,2、及び比較例それぞれで同一条件下に設定した上で、チャネル推定についてのシミュレーションを行い、そのシミュレーションによって得られた推定結果をグラフに表すことで比較した。   As a verification method, a received pilot signal in which pilot signals for two user terminals are multiplexed is used under the same conditions in the first and second embodiments and the comparative example, and then a simulation for channel estimation is performed. The comparison was made by representing the estimation results obtained by the simulation in a graph.

図8は、各実施例及び比較例のチャネル推定結果を表したグラフであり、(a−1),(a−2)は、実施例1、(b−1),(b−2)は、実施例2、(c−1),(c−2)は、比較例のチャネル推定結果を示したグラフである。図7において、横軸は、周波数、縦軸は、振幅を示しており、図面左側に一方のユーザ端末のチャネル推定結果、右側に他方のユーザ端末のチャネル推定結果を示している。
図中、比較例によるチャネル推定結果を見ると、帯域の両端に歪みが生じていることが判る。
一方、実施例1,2によるチャネル推定結果では、比較例に見られるような歪みは見られず、精度よくチャネル推定されていることが判る。
FIG. 8 is a graph showing the channel estimation results of each example and comparative example. (A-1) and (a-2) are Example 1, (b-1) and (b-2) are Example 2, (c-1) and (c-2) are graphs showing the channel estimation results of the comparative example. In FIG. 7, the horizontal axis indicates the frequency, and the vertical axis indicates the amplitude. The channel estimation result of one user terminal is shown on the left side of the drawing, and the channel estimation result of the other user terminal is shown on the right side.
In the figure, it can be seen that distortion occurs at both ends of the band when the channel estimation result according to the comparative example is seen.
On the other hand, in the channel estimation results according to the first and second embodiments, it can be seen that the channel estimation is performed with high accuracy without the distortion seen in the comparative example.

図9は、上記シミュレーションにより検証した実施例1及び比較例によるチャネル推定結果によって復調した際のデータをコンスタレーションマップに示した一例であり、(a)は、実施例1によるもの、(b)は、比較例によるものを示している。
比較例によるものは、各データが各ビット位置周辺に散在しているのに対して、実施例1によるものは、各データそれぞれが各ビット位置に精度よく復調されていることが判る。
このように、本検証における条件下では、本実施形態による基地局装置1は、従来方法によるものと比較して、チャネル推定精度を向上でき、復調精度を高めることが明らかとなった。
FIG. 9 is an example in which data when demodulated based on channel estimation results according to Example 1 and the comparative example verified by the above simulation are shown in a constellation map, (a) is according to Example 1, and (b). Indicates a comparative example.
In the comparative example, each data is scattered around each bit position, whereas in the first example, each data is accurately demodulated at each bit position.
Thus, under the conditions in this verification, it has become clear that the base station apparatus 1 according to the present embodiment can improve the channel estimation accuracy and the demodulation accuracy as compared with the conventional method.

なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 基地局装置(通信装置)
10 チャネル推定部
12 DCT部(第一変換部)
13 窓処理部
14 IDCT部(第二変換部)
21 乗算部
22 拡張処理部
23 LPF(フィルタ部)
24 遅延成分除去部(除去部)
1 Base station equipment (communication equipment)
10 channel estimation unit 12 DCT unit (first conversion unit)
13 Window processing unit 14 IDCT unit (second conversion unit)
21 Multiplying unit 22 Extended processing unit 23 LPF (filter unit)
24 Delay component removal unit (removal unit)

Claims (8)

サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、
前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を離散コサイン変換することで得られる前記受信多重信号の伝送路時間応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴とする通信装置。
A communication apparatus comprising a channel estimation unit that estimates channel characteristics of a plurality of received signals including each of the plurality of reference signals from a received multiplexed signal obtained by multiplexing a plurality of reference signals by cyclic shift,
The channel estimation unit estimates channel characteristics of each of the plurality of received signals based on a transmission channel time response of the received multiplexed signal obtained by performing discrete cosine transform on the channel frequency response of the received multiplexed signal. A communication device characterized by the above.
前記チャネル推定部は、
前記受信多重信号の伝送路周波数応答を離散コサイン変換し、前記受信多重信号の伝送路時間応答を得る第一変換部と、
前記受信多重信号の伝送路時間応答から前記複数の参照信号それぞれの伝送路時間応答に分離する窓処理部と、
分離した前記複数の参照信号それぞれの伝送路時間応答を、逆離散コサイン変換し、前記複数の参照信号それぞれの伝送路周波数応答を得る第二変換部と、を備え、
前記複数の参照信号それぞれの伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定する請求項1に記載の通信装置。
The channel estimation unit
A discrete cosine transform of a transmission line frequency response of the received multiplexed signal, and a first conversion unit for obtaining a transmission path time response of the received multiplexed signal;
A window processing unit that separates a transmission path time response of the received multiplexed signal into a transmission path time response of each of the plurality of reference signals;
A second transform unit that performs inverse discrete cosine transform on each of the separated channel time responses of the plurality of reference signals to obtain a channel frequency response of each of the plurality of reference signals, and
The communication apparatus according to claim 1, wherein channel characteristics of each of the plurality of received signals are estimated based on transmission path frequency responses of the plurality of reference signals.
サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、
前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を偶対称拡張処理を行うことで得られる被処理関数に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴とする通信装置。
A communication apparatus comprising a channel estimation unit that estimates channel characteristics of a plurality of received signals including each of the plurality of reference signals from a received multiplexed signal obtained by multiplexing a plurality of reference signals by cyclic shift,
The channel estimation unit estimates channel characteristics of each of the plurality of received signals based on a function to be processed obtained by performing even-symmetric extension processing on a transmission line frequency response of the received multiplexed signal. Communication device.
前記チャネル推定部は、
前記受信多重信号の伝送路周波数応答に、前記複数の参照信号それぞれのサイクリックシフトに基づく複素定数を乗算することによって前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答を、前記複数の参照信号ごとに得る乗算部と、
前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答について偶対称拡張処理することで、前記複数の参照信号ごとの前記被処理関数を得る拡張処理部と、
前記複数の参照信号ごとの前記被処理関数それぞれから、もとの周波数にシフトさせた前記複数の参照信号の伝送路周波数応答のみを取得するフィルタ部と、を備え、
前記複数の参照信号の伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定する請求項3に記載の通信装置。
The channel estimation unit
The transmission channel frequency response of the plurality of reference signals is shifted to the original frequency by multiplying the transmission channel frequency response of the received multiplexed signal by a complex constant based on the cyclic shift of each of the plurality of reference signals. A multiplier for obtaining a transmission line frequency response of the received multiplexed signal for each of the plurality of reference signals;
The function to be processed for each of the plurality of reference signals is obtained by performing even-symmetric extension processing on the channel frequency response of the received multiplexed signal obtained by shifting the channel frequency responses of the plurality of reference signals to the original frequency. An extension processing unit;
A filter unit that obtains only the transmission channel frequency response of the plurality of reference signals shifted to the original frequency from each of the functions to be processed for each of the plurality of reference signals,
The communication apparatus according to claim 3, wherein channel characteristics of each of the plurality of received signals are estimated based on transmission path frequency responses of the plurality of reference signals.
前記複数の拡張処理部は、前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記多重信号の伝送路周波数応答の周波数軸の前後に、前記フィルタ部の群遅延の長さ分だけ拡張する請求項4に記載の通信装置。   The plurality of extension processing units have a group delay length of the filter unit before and after the frequency axis of the channel frequency response of the multiplexed signal obtained by shifting the channel frequency responses of the plurality of reference signals to the original frequency. The communication apparatus according to claim 4, wherein the communication apparatus is expanded by a certain amount. 前記チャネル推定部は、前記複数のフィルタ部により取得される前記複数の参照信号の伝送路周波数応答において生じる遅延成分を除去する除去部をさらに備えている請求項4又は5に記載の通信装置。   The communication device according to claim 4, wherein the channel estimation unit further includes a removal unit that removes a delay component generated in transmission path frequency responses of the plurality of reference signals acquired by the plurality of filter units. サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、
前記チャネル推定部が、前記受信多重信号の伝送路周波数応答を偶対称性に基づく処理を行うことにより、前記複数の受信信号それぞれのチャネル特性を推定することを特徴とする通信装置。
A communication apparatus comprising a channel estimation unit that estimates channel characteristics of a plurality of received signals including each of the plurality of reference signals from a received multiplexed signal obtained by multiplexing a plurality of reference signals by cyclic shift,
The communication apparatus, wherein the channel estimation unit estimates a channel characteristic of each of the plurality of received signals by performing a process based on even symmetry on a transmission path frequency response of the received multiplexed signal.
サイクリックシフトにより複数の参照信号が多重化された受信多重信号から前記複数の参照信号それぞれを含む複数の受信信号のチャネル特性を推定するチャネル推定部を備えた通信装置であって、
前記チャネル推定部は、
前記受信多重信号の伝送路周波数応答に、前記複数の参照信号それぞれのサイクリックシフトに基づく複素定数を乗算することによって前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答を、前記複数の参照信号ごとに得る乗算部と、
前記複数の参照信号の伝送路周波数応答をもとの周波数にシフトさせた前記受信多重信号の伝送路周波数応答それぞれから、もとの周波数にシフトさせた前記複数の参照信号の伝送路周波数応答のみを取得するフィルタ部と、を備え、
前記複数の参照信号の伝送路周波数応答に基づいて、前記複数の受信信号それぞれのチャネル特性を推定することを特徴とする通信装置。
A communication apparatus comprising a channel estimation unit that estimates channel characteristics of a plurality of received signals including each of the plurality of reference signals from a received multiplexed signal obtained by multiplexing a plurality of reference signals by cyclic shift,
The channel estimation unit
The transmission channel frequency response of the plurality of reference signals is shifted to the original frequency by multiplying the transmission channel frequency response of the received multiplexed signal by a complex constant based on the cyclic shift of each of the plurality of reference signals. A multiplier for obtaining a transmission line frequency response of the received multiplexed signal for each of the plurality of reference signals;
Only the transmission channel frequency response of the plurality of reference signals shifted to the original frequency from the transmission channel frequency response of the received multiplexed signal obtained by shifting the transmission channel frequency response of the plurality of reference signals to the original frequency. A filter unit for obtaining
A communication apparatus that estimates channel characteristics of each of the plurality of received signals based on transmission path frequency responses of the plurality of reference signals.
JP2010064509A 2010-01-22 2010-03-19 Communication apparatus Pending JP2011199620A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010064509A JP2011199620A (en) 2010-03-19 2010-03-19 Communication apparatus
PCT/JP2011/050760 WO2011090028A1 (en) 2010-01-22 2011-01-18 Communication apparatus and base station apparatus
CN2011800067063A CN102725969A (en) 2010-01-22 2011-01-18 Communication apparatus and base station apparatus
US13/514,701 US9014149B2 (en) 2010-01-22 2011-01-18 Communication apparatus and base station apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064509A JP2011199620A (en) 2010-03-19 2010-03-19 Communication apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014017492A Division JP2014112920A (en) 2014-01-31 2014-01-31 Communication device

Publications (1)

Publication Number Publication Date
JP2011199620A true JP2011199620A (en) 2011-10-06

Family

ID=44877257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010064509A Pending JP2011199620A (en) 2010-01-22 2010-03-19 Communication apparatus

Country Status (1)

Country Link
JP (1) JP2011199620A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098147A1 (en) * 2005-03-16 2006-09-21 Fujitsu Limited Wireless communication apparatus and channel estimation and separation methods in multi-input system
JP2008028515A (en) * 2006-07-19 2008-02-07 Nec Corp Receiver, receiving method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098147A1 (en) * 2005-03-16 2006-09-21 Fujitsu Limited Wireless communication apparatus and channel estimation and separation methods in multi-input system
JP2008028515A (en) * 2006-07-19 2008-02-07 Nec Corp Receiver, receiving method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013059217; 小林英雄 他: '離散コサイン変換を用いたOFDM伝送路推定方式の提案' 電子情報通信学会技術研究報告 Vol.103, No.456, 20031113, pp.45-50, 一般社団法人電子情報通信学会 *

Similar Documents

Publication Publication Date Title
US9379917B2 (en) System and method for channel estimation for generalized frequency division multiplexing (GFDM)
WO2011090028A1 (en) Communication apparatus and base station apparatus
US8218696B2 (en) Receiving apparatus, receiving method, integrated circuit, digital television receiver, and program
EP2840749A1 (en) Receiver and receive method for a filtered multicarrier signal
US9680681B2 (en) Transmission apparatus, reception apparatus, and communication system
US20120320961A1 (en) Channel estimation for ofdm systems
KR102204180B1 (en) Method of wireless communication with a multi-antenna receiver
JP4612511B2 (en) Receiving apparatus and receiving method
US20080181341A1 (en) Receiver Apparatus
EP3482540B1 (en) Improved channel estimation in ofdm communication systems
EP2840745B1 (en) Method and apparatus for channel estimation using an adaptive windowing approach
US10122566B2 (en) Delay span classification for OFDM systems using selective filtering in the frequency domain
JP2014112920A (en) Communication device
JP5414484B2 (en) Fourier transform circuit, receiver and Fourier transform method
KR20220161365A (en) Reference signal channel estimation
JP2011199620A (en) Communication apparatus
JP2009141514A (en) Channel estimation apparatus and wireless communication system
KR20120008834A (en) adaptive form Channel estimative apparatus Using DWT
JP6779226B2 (en) Transmitter, communication device, transmission signal generation method, receiver and demodulation method
JP6869449B1 (en) Transmission line equalization processing device and transmission line equalization processing method
JP2014121070A (en) Equalizer and equalization method and receiver
WO2012114769A1 (en) Channel estimation device and channel estimation method
JP6486570B2 (en) Reception device, communication device, and demodulation method
JP6192857B2 (en) Equalizer, equalization method, and receiver
JP5968593B2 (en) Channel estimation apparatus and channel estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708