JP2011199506A - Radio repeater - Google Patents

Radio repeater Download PDF

Info

Publication number
JP2011199506A
JP2011199506A JP2010062938A JP2010062938A JP2011199506A JP 2011199506 A JP2011199506 A JP 2011199506A JP 2010062938 A JP2010062938 A JP 2010062938A JP 2010062938 A JP2010062938 A JP 2010062938A JP 2011199506 A JP2011199506 A JP 2011199506A
Authority
JP
Japan
Prior art keywords
antenna
antennas
base station
radio
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010062938A
Other languages
Japanese (ja)
Other versions
JP5302253B2 (en
Inventor
Naoki Okamoto
直樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010062938A priority Critical patent/JP5302253B2/en
Publication of JP2011199506A publication Critical patent/JP2011199506A/en
Application granted granted Critical
Publication of JP5302253B2 publication Critical patent/JP5302253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radio repeater by which spatial multiplexing with satisfactory characteristics is attained even when repeaters are installed in visible positions in MIMO transmission.SOLUTION: From a base station 30, signals transmitted by vertically polarized waves which are linearly-polarized waves from two antennas 31a, 31b are transmitted. On the other hand, the signals are received by an antenna 21a of rightward circularly polarized waves in a repeater 10a and received by an antenna 21b of leftward circularly polarized waves in a repeater 10b. Then the signals are amplified by the repeater 10a and transmitted again by the vertically polarized waves from antennas 22a, 22b.

Description

本発明は、MIMOなどの空間多重方式を用い、大容量伝送を可能にする無線通信システムに用いる無線中継装置に関するものである。   The present invention relates to a radio relay apparatus used in a radio communication system that enables large-capacity transmission using a spatial multiplexing scheme such as MIMO.

無線通信システム、例えば携帯電話等の場合、高い位置に設置された基地局と移動局でシステムが構成され、簡単な構成としては、半径1000m等のサービスエリアを1つの基地局が受け持ち、基地局と移動局が通信を行う方法がある。しかしながら、無線は直進性があり、遮蔽されたところには届きにくく、また、遠距離になると伝搬減衰があるため、通信不能エリア(いわゆる圏外)となるため、それを回避する技術としてリピータ(又はブースタとも呼ばれる)がある。   In the case of a wireless communication system such as a mobile phone, a system is configured by a base station and a mobile station installed at a high position. As a simple configuration, one base station is in charge of a service area with a radius of 1000 m, etc. There is a method in which the mobile station communicates. However, since the radio is straight, it is difficult to reach the shielded area, and there is propagation attenuation at a long distance, so it becomes an incommunicable area (so-called out-of-service area). Also called a booster).

非特許文献1には、山間部などのトラフィックの少ない屋外エリアに設置されたリピータについて記載されている。図10は、非特許文献1に記載されている従来のリピータ局の例を示す図である。この図では、基地局101からの信号をリピータ102の対基地局用アンテナ103が受信し、その信号を増幅して圏外である山間部に対して対移動局用アンテナ104から電波を放出し、携帯電話である移動局105が受信して、サービスエリアの確保を行う。図10では、基地局101からの送信が記載されているが、移動局105から送信した場合は、逆のルートで基地局101が受信する。   Non-Patent Document 1 describes a repeater installed in an outdoor area with low traffic such as a mountainous area. FIG. 10 is a diagram illustrating an example of a conventional repeater station described in Non-Patent Document 1. In FIG. In this figure, the signal from the base station 101 is received by the antenna for base station 103 of the repeater 102, the signal is amplified, and the radio wave is emitted from the antenna for mobile station 104 to the mountainous area outside the service area. The mobile station 105, which is a mobile phone, receives and secures a service area. In FIG. 10, transmission from the base station 101 is described, but when transmitted from the mobile station 105, the base station 101 receives it through the reverse route.

NTTドコモジャーナル Vol15 No.1 P31NTT Docomo Journal Vol15 No. 1 P31

近年、伝送速度の高速化のためにMIMO(Multi Input Multi Output)技術が提案されている。MIMO技術は、複数の送受信アンテナを用いて送受信する技術で、伝搬路特性の違いを利用するものであり、信号の空間多重を行うことができる。   In recent years, a MIMO (Multi Input Multi Output) technique has been proposed to increase the transmission speed. The MIMO technology is a technology for transmitting and receiving using a plurality of transmission / reception antennas, and utilizes a difference in propagation path characteristics, and can perform spatial multiplexing of signals.

図11にモデルを示す。この図では、基地局121、リピータ122、移動局123のそれぞれ2本のアンテナによる空間多重を示しており、一方向のみを示しているが、実際には双方向の通信では双方向のMIMOとなる。   FIG. 11 shows the model. In this figure, spatial multiplexing by two antennas each of the base station 121, the repeater 122, and the mobile station 123 is shown, and only one direction is shown. Become.

MIMO方式において、複数のアンテナを用いることにより空間多重伝送が可能になる。これは、各アンテナ間の伝搬関数が異なることを利用し、多重して伝送したものを分離する技術で、空間多重とか、SDMとか、そのままMIMO伝送として言う場合もある。MIMOで、空間多重する場合(今後、区別のためにMIMO−SDMと称する)、空間の伝達関数の違いを利用しているため、MIMO−SDM送信を中継するリピータも、空間多重数と同一数の増幅器系統が必要となる。図11では、リピータ122は、2系統122a,122bが用意される。各々は独立しており、それぞれのリピータ122a,122bが有している2つのアンテナに到来する入力信号も独立と考えることができる。   In the MIMO scheme, spatial multiplexing transmission becomes possible by using a plurality of antennas. This is a technique for separating the multiplexed transmissions by utilizing the fact that the propagation functions between the antennas are different, and may be referred to as spatial multiplexing, SDM, or MIMO transmission as it is. In the case of spatial multiplexing with MIMO (hereinafter referred to as MIMO-SDM for distinction), since the difference in spatial transfer function is used, the number of repeaters that relay MIMO-SDM transmission is the same as the number of spatial multiplexing. Amplifier system is required. In FIG. 11, the repeater 122 is provided with two systems 122a and 122b. Each is independent, and the input signals arriving at the two antennas of the respective repeaters 122a and 122b can also be considered independent.

また、伝搬路の特性で考えた場合、分離には伝搬路の違いを用いることから、アンテナの相関が高くなると分離性能が劣化する問題がある。
その例を図12に示す。これは、送信2本、受信2本の空間多重数2のMIMO−SDMの特性を示したものである。この例は、基地局121から移動局123へ送信した場合の特性であり、リピータは介していない。図12には、2本の受信アンテナの相関を変えたときの誤り率特性を示しており、横軸がS/N、縦軸がビットエラーレートである。相関としては、0(無相関)と、0.3,0.6,0.9の4種類を示している。受信アンテナ相関がゼロの時に対して、受信アンテナ相関が0.3、0.6、0.9となってくるとビットエラーが増加して特性が劣化する。
Further, when considering the characteristics of the propagation path, since the difference in the propagation path is used for the separation, there is a problem that the separation performance deteriorates when the correlation of the antenna becomes high.
An example is shown in FIG. This shows the characteristics of a MIMO-SDM with a spatial multiplexing number of 2 for two transmissions and two receptions. This example is a characteristic when transmitted from the base station 121 to the mobile station 123, and no repeater is used. FIG. 12 shows the error rate characteristics when the correlation between the two receiving antennas is changed. The horizontal axis represents S / N, and the vertical axis represents the bit error rate. As correlation, four types of 0 (no correlation) and 0.3, 0.6, and 0.9 are shown. When the reception antenna correlation is 0.3, 0.6, and 0.9 when the reception antenna correlation is zero, the bit error increases and the characteristics deteriorate.

通常の受信移動局では、障害物がない状態の「見通し」とならない環境が一般的であり相関は低いうえに、移動環境で使うことが多いので、例え相関が高い状態があったとしても、その状態が続くことは少ない。ところが、図10に示されるような設置環境で設置されるリピータ102では、基地局101とリピータ局102は見通し且つ固定設置環境になることが想定され、リピータで用意される2系統のアンテナについては、相関が高くなる可能性がある。   In a normal receiving mobile station, an environment that does not become a `` line of sight '' with no obstacles is common and the correlation is low, and since it is often used in a mobile environment, even if there is a state where the correlation is high, The situation is unlikely to continue. However, in the repeater 102 installed in the installation environment as shown in FIG. 10, it is assumed that the base station 101 and the repeater station 102 have a line-of-sight and fixed installation environment. Correlation may be high.

図10において、伝搬路は、基地局−リピータ間とリピータ−基地局間に2つ独立に存在し、一方(基地局−リピータ間)の相関が高くなると、もう一方(リピータ−移動局間)の相関が低くても、全体の相関が高くなってしまうため、空間多重の多重性能が劣化してしまう。このような相関問題は、リピータをMIMO化する場合に問題となることが予想される。
また、空間多重しない利用(複数アンテナによるダイバシティ利用)においても、空間相関が高くなると特性が劣化することはもちろんである。
In FIG. 10, two propagation paths exist independently between the base station and the repeater and between the repeater and the base station. When the correlation between one (base station and the repeater) increases, the other (between the repeater and the mobile station). Even if the correlation is low, the overall correlation becomes high, so that the multiplexing performance of spatial multiplexing deteriorates. Such a correlation problem is expected to be a problem when the repeater is made MIMO.
In addition, even in use without spatial multiplexing (diversity use with a plurality of antennas), it goes without saying that the characteristics deteriorate as the spatial correlation increases.

そこで、本発明は、MIMO伝送において、見通し位置にリピータを設置した場合においても、特性の良い空間多重、あるいはダイバシティ通信を実現できる無線中継装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a radio relay apparatus that can realize spatial multiplexing or diversity communication with good characteristics even when a repeater is installed at a line-of-sight position in MIMO transmission.

本発明は、複数のアンテナを持つ無線基地局との間で送受信するための複数の対基地局用アンテナと、複数のアンテナを持つ無線移動局との間で送受信するための複数の対移動局用送信アンテナとを備え、対をなす対基地局用アンテナと対移動局用送信アンテナとの間で、無線基地局と無線移動局間の通信信号を増幅する多アンテナ入力多アンテナ出力方式の無線中継装置において、
前記対基地局用アンテナの少なくとも一対は無線基地局のアンテナと異なる偏波特性を有し、且つ前記一対の対基地局用アンテナは、各アンテナ間の相関を基地局のアンテナと同一の偏波方式の場合よりも低くする偏波方式を用いることを特徴とする。
The present invention relates to a plurality of antennas for a base station for transmitting / receiving to / from a radio base station having a plurality of antennas and a plurality of mobile stations for transmitting / receiving to / from a radio mobile station having a plurality of antennas A multi-antenna input multi-antenna output radio system that amplifies a communication signal between a radio base station and a radio mobile station between a pair of antennas for a base station and a transmit antenna for a mobile station In the relay device,
At least one pair of the antennas for the base station has a polarization characteristic different from that of the antenna for the radio base station, and the pair of antennas for the base station has the same bias as the antenna of the base station. It is characterized by using a polarization method that is lower than that of the wave method.

ここで、すべての前記対移動局用アンテナは、無線移動局のアンテナと同じ偏波特性を有することを特徴とする。
あるいは、前記対移動局用アンテナの少なくとも一対は、無線移動局のアンテナと異なる偏波特性を有し、且つ前記一対の対移動局用アンテナは、各アンテナ間の相関を移動局のアンテナと同一の偏波方式の場合よりも低くする偏波方式を用いることを特徴とする。
Here, all the antennas for mobile stations have the same polarization characteristics as the antennas of the radio mobile stations.
Alternatively, at least a pair of the mobile station antennas have polarization characteristics different from those of the radio mobile station antennas, and the pair of mobile station antennas has a correlation between the antennas and the mobile station antennas. It is characterized by using a polarization system that is lower than the case of the same polarization system.

また、本発明は、前記対基地局用アンテナあるいは前記移動局用アンテナの相関を低くする偏波方式とは、一対の直交関係の偏波である。
ここで、前記一対の直交関係の偏波とは、無線基地局及び無線移動局のアンテナが直線偏波である場合に、右旋円偏波あるいは左旋円偏波であってもよいし、無線基地局及び無線移動局のアンテナが直線偏波である場合に、該直線偏波に対して、各々偏波面を傾けるとともに直交している直線偏波であってもよい。
In the present invention, the polarization method for reducing the correlation between the antenna for the base station or the antenna for the mobile station is a pair of orthogonally polarized waves.
Here, the pair of orthogonally polarized waves may be a right-handed circularly polarized wave or a left-handed circularly polarized wave when the antennas of the radio base station and the radio mobile station are linearly polarized waves. When the antennas of the base station and the radio mobile station are linearly polarized waves, they may be linearly polarized waves that are inclined with respect to the linearly polarized waves and are orthogonal to each other.

また、本発明は、対基地局用アンテナと対移動局用アンテナ間の各々の増幅系統には、アンテナの偏波の利得特性に関する制御情報をやり取りする手段を有し、前記制御情報に基づいて、一定の送信電力あるいは受信電力が得られるように、増幅系統間の増幅度を制御することを特徴とする。
ここで、アンテナが送信アンテナの場合、さらに送信出力を制御することを特徴とする。
また、前記制御情報は、アンテナが有している偏波を考慮した指向性利得に関する情報を含み、前記指向性利得に基づいて、増幅系統間の増幅度を制御し、送信出力を制御することを特徴とする。
Further, the present invention has means for exchanging control information regarding the gain characteristics of the polarization of the antenna in each amplification system between the antenna for the base station and the antenna for the mobile station, and based on the control information The amplification degree between the amplification systems is controlled so that constant transmission power or reception power can be obtained.
Here, when the antenna is a transmission antenna, the transmission output is further controlled.
The control information includes information on the directivity gain in consideration of the polarization of the antenna, and based on the directivity gain, the degree of amplification between the amplification systems is controlled and the transmission output is controlled. It is characterized by.

以上のように、本発明によれば、MIMO対応の多入力多出力対応の中継器に本発明を用いることにより、見通し位置に無線中継装置を設置した場合においても、良好な空間多重を実現することができるようになる。   As described above, according to the present invention, by using the present invention for a MIMO-compatible multi-input / multi-output compatible repeater, even when a wireless repeater is installed at the line-of-sight position, good spatial multiplexing is realized. Will be able to.

本発明に係る無線中継装置(リピータ)の実施例を示すブロック図である。It is a block diagram which shows the Example of the radio relay apparatus (repeater) which concerns on this invention. 第1実施例の基地局、リピータ、移動局のアンテナの偏波関係を説明する図である。It is a figure explaining the polarization relationship of the antenna of the base station of 1st Example, a repeater, and a mobile station. 各偏波の電界と磁界の関係を示す図であり、(a)は直線偏波(垂直偏波)、(b)は右旋偏波、(c)は右旋偏波を示す。It is a figure which shows the relationship between the electric field and magnetic field of each polarization, (a) shows linear polarization (vertical polarization), (b) shows right-handed polarization, and (c) shows right-handed polarization. 基地局からリピータを経由して移動局へ送信した場合における各装置のアンテナの偏波方式を示す図であり、(a)は第1、第2実施例を示し、(b)は第3実施例を示す。It is a figure which shows the polarization system of the antenna of each apparatus at the time of transmitting to a mobile station via a repeater from a base station, (a) shows 1st, 2nd Example, (b) is 3rd implementation. An example is shown. 基地局からリピータを経由して移動局へ送信した場合の第4実施例における各装置のアンテナの偏波方式を示す図である。It is a figure which shows the polarization system of the antenna of each apparatus in 4th Example at the time of transmitting to a mobile station via a repeater from a base station. 移動局からリピータを経由して基地局へ送信した場合の第5実施例における各装置のアンテナの偏波方式を示す図である。It is a figure which shows the polarization system of the antenna of each apparatus in 5th Example at the time of transmitting to a base station via a repeater from a mobile station. 第6実施例における無線中継装置(リピータ)を示すブロック図である。It is a block diagram which shows the radio relay apparatus (repeater) in 6th Example. 第7実施例のアンテナの偏波関係を説明する図である。It is a figure explaining the polarization relation of the antenna of the 7th example. リピータを経由して移動局と基地局の間で送受信した場合の第7実施例における各装置のアンテナの偏波方式を示す図である。It is a figure which shows the polarization system of the antenna of each apparatus in 7th Example at the time of transmitting / receiving between a mobile station and a base station via a repeater. MIMO方式におけるリピータを用いた従来の無線通信システムを示す図である。It is a figure which shows the conventional radio | wireless communications system using the repeater in a MIMO system. 従来の基地局、リピータ、移動局のアンテナの偏波関係を説明する図である。It is a figure explaining the polarization relationship of the antenna of the conventional base station, a repeater, and a mobile station. アンテナの相関に対する、誤り率特性とS/Nの関係を示す図である。It is a figure which shows the relationship between an error rate characteristic and S / N with respect to the correlation of an antenna.

以下、本発明の実施の形態を、添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明に係る無線中継装置(リピータ)の実施例を示すブロック図である。このリピータは、2系統のアンプ系を有し、対基地局用アンテナ21a,21bと、対移動局用アンテナ22a,22bによるMIMO方式の無線中継装置であり、一つの対基地局用アンテナと一つの対移動局用アンテナを対をなす組として接続する2つの増幅系統のリピータ10a,10bから構成される。   FIG. 1 is a block diagram showing an embodiment of a wireless relay device (repeater) according to the present invention. This repeater has a two-system amplifier system, and is a MIMO radio relay apparatus using antennas 21a and 21b for base stations and antennas 22a and 22b for mobile stations. It consists of two amplification system repeaters 10a and 10b that connect two mobile station antennas as a pair.

リピータ10a,10bは、共用器11a,11b,15a,15bと、LNA(Low Noise Amp)12a,12b,16a,16bと、RF処理部13a,13b,17a,17bと、HPA(High Power Amp)14a,14b,18a,18bとから構成されている。   The repeaters 10a and 10b include duplexers 11a, 11b, 15a, and 15b, LNA (Low Noise Amp) 12a, 12b, 16a, and 16b, RF processing units 13a, 13b, 17a, and 17b, and HPA (High Power Amp). 14a, 14b, 18a, 18b.

リピータ10aにおいては、基地局から到来した信号は、対基地局用アンテナ21aから入り、共用器11aにて、下りの系統に入る。入力した信号はLNA12aで増幅された後、RF処理部13aにて、不要となる回り込み波の抑圧(除去)等の処理が行われる。その後、HPA14aにて高出力に増幅され、共用器15aを経て対移動局用アンテナ21aから放出される。このような処理によって、対基地局用アンテナ21aから入力された信号は数十dB増幅されることになる。対移動局用アンテナ22aから送出された信号は、移動局にて受信される。   In the repeater 10a, a signal arriving from the base station enters from the antenna 21a for the base station, and enters the downstream system by the duplexer 11a. The input signal is amplified by the LNA 12a, and then processing such as suppression (removal) of unnecessary sneak waves is performed in the RF processing unit 13a. Thereafter, the signal is amplified to a high output by the HPA 14a and emitted from the antenna for mobile station 21a through the duplexer 15a. By such processing, the signal input from the antenna for base station 21a is amplified by several tens of dB. The signal transmitted from the antenna for mobile station 22a is received by the mobile station.

一方、移動局から送信された信号は、対移動局用アンテナ22aから入り、共用器15aにて、上りの系統に入る。入力した信号はLNA16aで増幅された後、RF処理部17aにて、不要となる回り込み波の抑圧(除去)等の処理が行われる。その後、HPA18aにて高出力に増幅され、共用器11aを経て対基地局用アンテナ21aから放出される。この結果、対基地局用アンテナ21aから送出された信号は、基地局にて受信される。
リピータ10bにおいても同様の動作が行なわれる。
On the other hand, the signal transmitted from the mobile station enters from the antenna for mobile station 22a and enters the upstream system by the duplexer 15a. The input signal is amplified by the LNA 16a, and then processing such as suppression (removal) of unnecessary sneak waves is performed in the RF processing unit 17a. Thereafter, the signal is amplified to a high output by the HPA 18a, and is emitted from the antenna 21a for the base station through the duplexer 11a. As a result, the signal transmitted from the antenna for base station 21a is received by the base station.
A similar operation is performed in repeater 10b.

このように、対基地局用アンテナ21a,21bと、対移動局用アンテナ22a,22bは、それぞれ送信アンテナ及び受信アンテナとして機能する。   Thus, the antennas for base stations 21a and 21b and the antennas for mobile stations 22a and 22b function as a transmission antenna and a reception antenna, respectively.

(第1実施例)
第1実施例のアンテナの偏波関係を図2に示す。
この第1実施例においては、基地局30からは2つのアンテナ31a,31bから直線偏波である垂直偏波で送信された信号が送られてくる。一方、リピータ10aにおいては、右旋円偏波のアンテナ21aで、リピータ10bにおいては左旋円偏波のアンテナ21bで受信される。その後、リピータ10aで増幅され、再び垂直偏波でアンテナ22a,22bから送信される。
(First embodiment)
FIG. 2 shows the polarization relationship of the antenna of the first embodiment.
In the first embodiment, the base station 30 sends signals transmitted with vertical polarization, which is linearly polarized, from the two antennas 31a and 31b. On the other hand, the repeater 10a receives a right-handed circularly polarized antenna 21a, and the repeater 10b receives a left-handed circularly polarized antenna 21b. Thereafter, the signal is amplified by the repeater 10a and transmitted again from the antennas 22a and 22b with vertical polarization.

図3に各偏波の電界と磁界の関係を示しており、(a)は直線偏波(垂直偏波)、(b)は右旋偏波、(c)は右旋偏波を示している。
図3(b)(c)の円偏波は、右旋偏波と左旋偏波で、磁界と電界が逆方向にずれて回転しているので直交関係となる。この第1実施例の偏波を使い方を図4(a)のtype1に示す。
FIG. 3 shows the relationship between the electric field and magnetic field of each polarization, where (a) shows linearly polarized waves (vertically polarized waves), (b) shows right-handed polarized waves, and (c) shows right-handed polarized waves. Yes.
The circularly polarized waves in FIGS. 3B and 3C are a right-handed polarized wave and a left-handed polarized wave, and are in an orthogonal relationship because the magnetic field and the electric field are rotated in the opposite directions. How to use the polarized wave of the first embodiment is shown as type 1 in FIG.

円偏波アンテナの特質としては
(1)円偏波アンテナは、直線偏波の電波を3dBダウンで受信する。
(2)左旋、右旋は直交関係であるため、受信相関は低い。(理想的にはゼロ)
Characteristics of circularly polarized antennas are as follows: (1) Circularly polarized antennas receive linearly polarized radio waves 3 dB down.
(2) Since left rotation and right rotation are orthogonal, the reception correlation is low. (Ideally zero)

図2に示すように、リピータ10a,10bは、受信感度を上げるために基地局30が見通せる場所に設置し、アンテナ21a,21bを基地局向けに設置することが行われた場合においても、実施例の構成のようにリピータ10a,10bの受信アンテナ21a,21bに円偏波を用いることで、受信利得は多少落ちる(3dB)ものの、2つのアンテナ21a,21bが直交関係であるので伝搬路は独立なものとすることが可能となり、相関が低くなる。その結果、MIMO信号をリピートしても、伝搬路の相関が低いので、良好な伝搬路を用意できる。   As shown in FIG. 2, the repeaters 10a and 10b are installed in a place where the base station 30 can be seen to increase the reception sensitivity, and the antennas 21a and 21b are installed even for the base station. By using circularly polarized waves for the reception antennas 21a and 21b of the repeaters 10a and 10b as in the configuration of the example, the reception gain is somewhat lowered (3 dB), but the propagation path is set so that the two antennas 21a and 21b are orthogonal to each other. It becomes possible to make it independent, and the correlation becomes low. As a result, even if the MIMO signal is repeated, the propagation path correlation is low, so that a good propagation path can be prepared.

一方、リピータ10a,10bの送信側のアンテナ22a,22bは、基地局30が送信している偏波を用いて送信する。移動局40側では、直線偏波を前提にアンテナ41a,41bが設計されているので、一致した偏波方式で送信することでリピータ−移動局間の伝搬ロスを最小限にすることができる。   On the other hand, the transmitting antennas 22a and 22b of the repeaters 10a and 10b transmit using the polarization transmitted by the base station 30. On the mobile station 40 side, the antennas 41a and 41b are designed on the premise of linearly polarized waves. Therefore, transmission loss between the repeater and the mobile station can be minimized by transmitting using the matched polarization method.

このように、本実施例では
(1)見通しに設置され、高い信号受信電力が期待できるリピータの前記基地局用アンテナは基地局送信偏波と異なり(円偏波)、且つ前記対基地局用アンテナは、各アンテナ間の相関を基地局のアンテナと同一の偏波方式(垂直偏波)の場合よりも低くする偏波方式を用いる。特に直交関係にある偏波方式を用いる。
(2)伝搬環境が様々であるリピータと移動局の通信は、リピータ送信アンテナとして、移動局側で最も利得のとれる偏波方式、すなわち基地局の偏波方式と同じ偏波方式を用いる。
以上により、相関が低く、安定した移動局受信電力が得られ、MIMO−SDMの伝送の特性を上げることができるようになる。
As described above, in this embodiment, (1) the antenna for the base station of the repeater that is installed in the line of sight and can expect high signal reception power is different from the base station transmission polarization (circular polarization), and for the base station The antenna uses a polarization method that lowers the correlation between the antennas as compared with the case of the same polarization method (vertical polarization) as the antenna of the base station. In particular, a polarization system having an orthogonal relationship is used.
(2) For communication between a repeater and a mobile station having various propagation environments, a polarization system that has the highest gain on the mobile station side, that is, the same polarization system as that of the base station is used as a repeater transmission antenna.
As described above, stable mobile station received power with low correlation can be obtained, and MIMO-SDM transmission characteristics can be improved.

(第2実施例)
また、第2実施例として、別の偏波の使い方を図4(a)のtype2に示す。
基地局の垂直偏波の信号を、偏波面を左右45度傾けた一対の直線偏波アンテナで受信する。すると、その性質は
(1)垂直偏波に対して偏波面を45度傾けると、受信アンテナは垂直偏波から3dBダウンで受信する。
(2)偏波面を左右45度傾けた一対の直線偏波アンテナは、直交関係となり、相関は低くなる。
(Second embodiment)
Further, as a second embodiment, another usage of polarization is shown in type 2 of FIG.
A vertically polarized signal from the base station is received by a pair of linearly polarized antennas whose polarization planes are tilted 45 degrees to the left and right. Then, the property is as follows: (1) When the polarization plane is inclined 45 degrees with respect to the vertical polarization, the receiving antenna receives the signal by 3 dB down from the vertical polarization.
(2) A pair of linearly polarized antennas whose polarization planes are tilted 45 degrees to the left and right are orthogonal to each other and have a low correlation.

したがって、リピータの受信アンテナには、第1実施例の2つの円偏波の代わりに、基地局の垂直偏波に対して右方向と左方向に45度傾けた直線偏波アンテナを用いても、第1実施例と同等の効果が得られる。尚、リピータの送信アンテナは第1実施例と同様に、垂直偏波を用いる。   Therefore, instead of the two circularly polarized waves in the first embodiment, a linearly polarized antenna inclined 45 degrees to the right and left with respect to the vertical polarization of the base station may be used as the repeater receiving antenna. The same effects as in the first embodiment can be obtained. Note that the transmission antenna of the repeater uses vertically polarized waves as in the first embodiment.

(第3実施例)
また、4×4のMIMOの場合の第3実施例を図4(b)に示す。
円偏波と45度傾けた垂直偏波を組み合わせることで4つの異なった伝搬関数を形成できる。この例では、端から[45度垂直、右旋、左旋、−45度垂直]で並べているが、この順序はこれに限ったことではなく、円偏波同士を離したり、交互に配置することもできる。
(Third embodiment)
FIG. 4B shows a third embodiment in the case of 4 × 4 MIMO.
Four different propagation functions can be formed by combining circularly polarized waves and vertically polarized waves inclined by 45 degrees. In this example, [45 degrees vertical, right-handed, left-handed, -45 degrees vertical] are arranged from the end, but this order is not limited to this, and circularly polarized waves are separated from each other or arranged alternately. You can also.

なお、円偏波どおし、垂直偏波どおしは直交関係にあるものの、円偏波と45度垂直偏波間は直交しておらず、ある程度の相関が存在するが、3本以上の場合には、このように相関を許容しながら設置することで、本発明は3本以上のMIMOに拡張することができる。尚、リピータの送信側のアンテナは同様に垂直偏波を4本設置する。   Although the circularly polarized wave and the vertically polarized wave are orthogonal to each other, the circularly polarized wave and the 45 degree vertical polarized wave are not orthogonally, and there is a certain degree of correlation. In this case, the present invention can be extended to three or more MIMOs by installing them while allowing the correlation. Similarly, four antennas on the transmission side of the repeater are installed with vertically polarized waves.

(第4実施例)
第4実施例は、さらに対基地局用アンテナの数が増えた場合であり、図5に6×6の場合を示す。この場合には、基地局と同一の垂直偏波を2本増えている(対基地局用のリピータ受信におけるアンテナ1,6)。この2本については、受信電力は最も高くなるが、他のリピータ受信アンテンナの円偏波や45度傾けた垂直偏波との相関は低くできる。尚、同一の偏波であるアンテナ1とアンテナ6は相関が高くなる懸念があるので、距離を離した構成を図示している。
(Fourth embodiment)
The fourth embodiment is a case where the number of antennas for base stations is further increased, and FIG. 5 shows a case of 6 × 6. In this case, the same vertical polarization as that of the base station is increased by two (antennas 1 and 6 in repeater reception for the base station). For these two lines, the received power is the highest, but the correlation between the circularly polarized waves of other repeater receiving antennas and the vertically polarized waves inclined by 45 degrees can be lowered. Note that the antenna 1 and the antenna 6 having the same polarization are likely to have a high correlation, and therefore, a configuration separated from each other is illustrated.

(第5実施例)
また、第5実施例として上り回線(移動局→リピータ→基地局)の偏波例を図6にしめす。図6(a)はリピータのアンテナが2×2の場合、(b)はリピータの受信アンテナが4×4野場合を示す。図6(a)において、リピータ送信のtype1は円偏波の場合であり、type2は45度傾けた垂直偏波の場合である。
(5th Example)
FIG. 6 shows an example of polarization of the uplink (mobile station → repeater → base station) as the fifth embodiment. 6A shows a case where the repeater antenna is 2 × 2, and FIG. 6B shows a case where the repeater reception antenna is 4 × 4. In FIG. 6A, type 1 of repeater transmission is a case of circular polarization, and type 2 is a case of vertical polarization inclined by 45 degrees.

上り回線も伝搬環境は以下のようになる可能性が高い。
(1)[基地局−リピータ間]は見通しで相関が高い
(2)[リピータ−移動局間]は見通し外で相関が低い
There is a high possibility that the propagation environment of the uplink is as follows.
(1) [Between base station and repeater] has high correlation in line of sight (2) [Between repeater and mobile station] has low correlation in line of sight and low

したがって、上り回線では、リピータの対移動局用受信アンテナは、移動局と同一の偏波アンテナを用い(垂直偏波)、一方リピータの対基地局用送信アンテナは基地局の受信アンテナと異なった偏波を持つアンテナを用いる。図6(a)のtype1ではアンテナ1が右旋偏波、アンテナ2が左旋偏波である。図6(a)のtype2ではアンテナ1が右方向に45度傾けた直線偏波、アンテナ2が左方向に45度傾けた直線偏波である。また、図6(b)では、アンテナ1が右方向に45度傾けた直線偏波、アンテナ2が右旋偏波、アンテナ3が左旋偏波、アンテナ4が左方向に45度傾けた直線偏波である。   Therefore, in the uplink, the repeater antenna for mobile stations uses the same polarization antenna as the mobile station (vertical polarization), whereas the repeater antenna for base stations differs from the base station receive antenna. An antenna with polarization is used. In type 1 of FIG. 6A, antenna 1 is right-handed polarized wave and antenna 2 is left-handed polarized wave. In type 2 of FIG. 6A, the antenna 1 is a linearly polarized wave inclined 45 degrees to the right, and the antenna 2 is a linearly polarized wave inclined 45 degrees to the left. Further, in FIG. 6B, the antenna 1 is linearly polarized with 45 degrees tilted to the right, the antenna 2 is clockwise polarized, the antenna 3 is counterclockwise polarized, and the antenna 4 is tilted 45 degrees to the left with linear polarization. It is a wave.

こうして上り回線においても、実施例1〜4と同様に、リピータの対移動局用受信アンテナには、移動局と同一の偏波アンテナを用いることにより、[リピータ−移動局間]は見通し外で相関が低いので、受信電力は最も高くする。リピータの対基地局用送信アンテナは基地局の受信アンテナと異なった偏波を持つアンテナを用いることにより、相関を出来る限り低く保つ。   Thus, in the uplink as well, in the same way as in the first to fourth embodiments, the same polarization antenna as that of the mobile station is used as the reception antenna for the mobile station of the repeater, so that [between the repeater and the mobile station] is out of line of sight. Since the correlation is low, the received power is the highest. The repeater antenna for the base station uses an antenna having a polarization different from that of the base station reception antenna, thereby keeping the correlation as low as possible.

(第6実施例)
第1〜第5実施例においては、図1のブロック図のリピータであったが、第6実施例においては図7のブロック図のリピータを用いる。
このブロック図では、図1と共通部分には同じ符号を付している。異なるのはリピータ50a,50bのRF処理部53a,53b,57a,57bであり、受信側と送信側のRF処理部53a,53bの間、及びRF処理部57a,57bの間に制御情報がやり取りされ、送信する出力を各増幅系統間で調整している。
(Sixth embodiment)
In the first to fifth embodiments, the repeater of the block diagram of FIG. 1 is used, but in the sixth embodiment, the repeater of the block diagram of FIG. 7 is used.
In this block diagram, the same reference numerals are given to the common parts with FIG. The difference is the RF processing units 53a, 53b, 57a, 57b of the repeaters 50a, 50b, and control information is exchanged between the RF processing units 53a, 53b on the receiving side and the transmitting side, and between the RF processing units 57a, 57b. The output to be transmitted is adjusted between the amplification systems.

円偏波では直線偏波を直交した右旋、左旋で受けるため、リピータ受信アンテナ端での受信電力が同等とは限らない。さらに前述のようにアンテナ数によっては、45度傾けた直線偏波も含む、様々な偏波特性のアンテナも追加で用いることもあり、たとえば、図5のように直線偏波がある場合には、その受信電力は大きくなり、受信電力差が大きくなる。   In circularly polarized waves, linearly polarized waves are received by right-handed rotation and left-handed rotation, and therefore the received power at the repeater receiving antenna end is not always equivalent. Furthermore, depending on the number of antennas as described above, antennas with various polarization characteristics including linearly polarized waves inclined by 45 degrees may be additionally used. For example, when there is linearly polarized waves as shown in FIG. The received power increases, and the received power difference increases.

しかしながら、リピータ50a,50bの送信アンテナ端ではすべて同じ直線偏波で送信するので、このリピータ50a,50bから送信される送信電力は同等が望ましい。そこで、お互いのリピータ50a,50b間で制御情報をやり取りし、この受信アンテナの受信特性差を吸収し、同等の電力で送信するようにする。   However, since the transmission antenna ends of the repeaters 50a and 50b all transmit with the same linear polarization, the transmission power transmitted from the repeaters 50a and 50b is preferably equal. Therefore, control information is exchanged between the repeaters 50a and 50b, so that the reception characteristic difference between the reception antennas is absorbed and transmitted with the same power.

従来のように基地局アンテナとリピータの複数の受信アンテナが同一の偏波である場合には、瞬時的に受信電力差があっても、複数のアンテナ間での受信電力は統計平均的にはほぼ一定の電力となる。
しかし、今回の発明では、故意に偏波方式をずらすことで相関を下げることが発明の趣旨であるため、結果としてリピータの受信アンテナ間で受信電力がばらついてしまう。つまり、受信電力のばらつきは受信系のアンテナ特性に起因するため、受信系として補正してやることがよい。
If the base station antenna and the multiple receive antennas of the repeater have the same polarization as in the past, the received power between the multiple antennas is statistically averaged even if there is an instantaneous difference in received power. It becomes almost constant power.
However, in the present invention, the purpose of the invention is to lower the correlation by intentionally shifting the polarization method, and as a result, the received power varies between the receiving antennas of the repeater. In other words, since variations in received power are caused by the antenna characteristics of the receiving system, it is preferable to correct them as the receiving system.

また、図には示していないが、反対にリピータから送信する場合には、基地局の受信アンテナ特性を鑑み、送信出力を調整すればよい。
たとえば、基地局の受信アンテナが垂直偏波で、リピータの送信アンテナが円偏波と垂直偏波が混在している場合、円偏波のアンテナの送信出力は3dB上げる必要があるので、そのように調整する。
Although not shown in the figure, when transmitting from the repeater, the transmission output may be adjusted in view of the receiving antenna characteristics of the base station.
For example, if the receiving antenna of the base station is vertically polarized and the transmitting antenna of the repeater is a mixture of circular and vertically polarized waves, the transmission output of the circularly polarized antenna needs to be increased by 3 dB. Adjust to.

尚、更に具体的には、アンテナには指向性利得があるので、それを鑑みてお互いのRF処理部の利得調整等を行う。この場合は、制御情報に、アンテナの指向性利得に関する情報が含まれている。尚、図ではお互いの制御信号はRF処理部にしかいっていないが、出力にかかわるHPAも当然制御の対象となることもある。   More specifically, since the antenna has a directivity gain, the gain adjustment of each RF processing unit is performed in view of this. In this case, the control information includes information regarding the directivity gain of the antenna. In the figure, the mutual control signals are sent only to the RF processing unit, but the HPA related to the output may naturally be the control target.

また、指向性利得自体を上げることも考えられる。垂直偏波の放射利得を×dBiとすると、円偏波の放射利得を(×+3)dBiとするように指向性をとることも考えられる。   It is also conceivable to increase the directivity gain itself. If the radiation gain of the vertically polarized wave is x dBi, the directivity may be taken so that the radiation gain of the circularly polarized wave is (× + 3) dBi.

(第7実施例)
第7実施例を図8、図9に示す。これは、図1、図7のリピータのいずれであってもよい。
(Seventh embodiment)
A seventh embodiment is shown in FIGS. This may be either the repeater of FIG. 1 or FIG.

今までの例は、
(1)[基地局−リピータ間]偏波方法を異にする、
(2)[リピータ−移動局間]偏波方式を同一にする、
としてきた。
The examples so far are
(1) [Between base station and repeater] The polarization method is different.
(2) [Between repeater and mobile station] The polarization method is the same.
As

しかしながら、屋内に置くようなリピータの場合、リピータが天井につけられることもあり、[リピータ−移動局間]もほとんど見通しで使用される場合がある。この場合は、移動局の受信電力は大きいがアンテナ相関が高いということも起こり得る場合がある。   However, in the case of a repeater that is placed indoors, the repeater may be attached to the ceiling, and [between the repeater and the mobile station] may also be used almost in line of sight. In this case, it may happen that the received power of the mobile station is large but the antenna correlation is high.

そこで、本実施例では[リピータ−移動局間]においても、偏波方式を変えることを特徴とする。その結果、[リピータ−移動局間]においても、相関を低くすることができるようになる。すなわち、図7の対移動局用送信アンテナ22a,22bにおいても、円偏波(右旋偏波、左旋偏波)を用いる。当然、上り回線においても、リピータのアンテナ21a,21b,22a,22bにおいて、円偏波を用いる。また、円偏波の代わりに、45度傾けた直線偏波を用いてよい。この偏波の使い方を表わしたのが、図9である。   Therefore, the present embodiment is characterized in that the polarization system is changed also in [between repeater and mobile station]. As a result, the correlation can be lowered also in [between repeater and mobile station]. That is, circularly polarized waves (right-handed polarization and left-handed polarization) are also used in the mobile station transmission antennas 22a and 22b in FIG. Of course, circularly polarized waves are used in the repeater antennas 21a, 21b, 22a, and 22b even in the uplink. Further, instead of circularly polarized waves, linearly polarized waves inclined by 45 degrees may be used. FIG. 9 shows how to use this polarization.

こうして、移動局が見通しの状態に置かれた場合であっても、リピータのアンテナの相関を低くして、リピータと移動局の間でも良好な空間多重が実現できる。   In this way, even when the mobile station is in a line-of-sight state, the spatial correlation between the repeater antenna and the mobile station can be realized by reducing the correlation between the repeater antennas.

本発明のように、見通しになるが受信電力に余裕ができそうなシステムでは、間に入れるリピータの偏波方式やアンテナ利得と増幅器利得制御を最適に行うことで、相関が低く、安定した受信電力が得られるシステムを提供できるようになり、空間多重できる移動局を増やすことが可能になる。   In a system where the reception power is likely to be enough, such as the present invention, the polarization system of the repeater and the antenna gain and amplifier gain control are optimally performed to achieve low reception and stable reception. A system capable of obtaining power can be provided, and the number of mobile stations capable of spatial multiplexing can be increased.

以上の説明では、基地局、移動局の複数のアンテナはすべて同一の偏波で示してきたが、これは同一である必要はない。つまり、基地局や移動局の複数のアンテナで異なる偏波方式を用いていても、リピータの対向アンテナの少なくとも一対は、同一の偏波方式の場合よりも受信電力を低くする異なる偏波方式を用いることで、本発明は効果を発揮できる。例えば、基地局が水平偏波用2本と垂直偏波用2本で送信し、リピータが2対の右旋偏波、左旋偏波で受けるような場合が、それに相当する。   In the above description, the plurality of antennas of the base station and the mobile station have all been shown with the same polarization, but this need not be the same. In other words, even if different polarization schemes are used for multiple antennas at the base station and mobile station, at least a pair of the opposing antennas of the repeater have different polarization schemes that lower the received power compared to the case of the same polarization scheme. By using it, the present invention can exert an effect. For example, this is the case when the base station transmits two horizontally polarized waves and two vertically polarized waves, and the repeater receives two pairs of right-handed and left-handed polarized waves.

10a,10b リピータ
11a,11b,15a,15b 共用器
13a,13b,17a,17b RF処理部
21a,21b 対基地局用アンテナ
22a,22b 対移動局用アンテナ
30 基地局
31a,31b アンテナ
40 移動局
41a,41b アンテナ
50a,50b リピータ
53a,53b,57a,57b RF処理部
10a, 10b Repeaters 11a, 11b, 15a, 15b Duplexers 13a, 13b, 17a, 17b RF processor 21a, 21b Antenna for base station 22a, 22b Antenna for mobile station 30 Base station 31a, 31b Antenna 40 Mobile station 41a , 41b Antennas 50a, 50b Repeaters 53a, 53b, 57a, 57b RF processing unit

Claims (9)

複数のアンテナを持つ無線基地局との間で送受信するための複数の対基地局用アンテナと、複数のアンテナを持つ無線移動局との間で送受信するための複数の対移動局用送信アンテナとを備え、対をなす対基地局用アンテナと対移動局用送信アンテナとの間で、無線基地局と無線移動局間の通信信号を増幅する多アンテナ入力多アンテナ出力方式の無線中継装置において、
前記対基地局用アンテナの少なくとも一対は無線基地局のアンテナと異なる偏波特性を有し、且つ前記一対の対基地局用アンテナは、各アンテナ間の相関を基地局のアンテナと同一の偏波方式の場合よりも低くする偏波方式を用いることを特徴とする無線中継装置。
A plurality of antennas for base stations for transmitting / receiving to / from a radio base station having a plurality of antennas, and a plurality of transmitting antennas for mobile stations to transmit / receive to / from a radio mobile station having a plurality of antennas A multi-antenna input multi-antenna output radio relay apparatus that amplifies a communication signal between a radio base station and a radio mobile station between a pair of base station antennas and a mobile station transmission antenna.
At least one pair of the antennas for the base station has a polarization characteristic different from that of the antenna for the radio base station, and the pair of antennas for the base station has the same bias as the antenna of the base station. A radio repeater using a polarization method that is lower than that of a wave method.
すべての前記対移動局用アンテナは、無線移動局のアンテナと同じ偏波特性を有することを特徴とする請求項1に記載の無線中継装置。   The radio relay apparatus according to claim 1, wherein all the antennas for mobile stations have the same polarization characteristics as the antennas of the radio mobile stations. 前記対移動局用アンテナの少なくとも一対は、無線移動局のアンテナと異なる偏波特性を有し、且つ前記一対の対移動局用アンテナは、各アンテナ間の相関を移動局のアンテナと同一の偏波方式の場合よりも低くする偏波方式を用いることを特徴とする請求項1に記載の無線中継装置。   At least a pair of the mobile station antennas have polarization characteristics different from those of the radio mobile station antenna, and the pair of mobile station antennas has the same correlation between the antennas as the mobile station antennas. The radio relay apparatus according to claim 1, wherein a polarization system that is lower than a polarization system is used. 前記対基地局用アンテナあるいは前記移動局用アンテナの相関を低くする偏波方式とは、一対の直交関係の偏波であることを特徴とする請求項1から3のいずれかに記載の無線中継装置。   The radio relay according to any one of claims 1 to 3, wherein the polarization system that lowers the correlation between the antenna for the base station or the antenna for the mobile station is a pair of orthogonally polarized waves. apparatus. 前記一対の直交関係の偏波とは、無線基地局及び無線移動局のアンテナが直線偏波である場合に、右旋円偏波あるいは左旋円偏波であることを特徴とする請求項4に記載の無線中継装置。   5. The pair of orthogonally polarized waves is a right-handed circularly polarized wave or a left-handed circularly polarized wave when antennas of a radio base station and a radio mobile station are linearly polarized waves. The wireless relay device described. 前記一対の直交関係の偏波とは、無線基地局及び無線移動局のアンテナが直線偏波である場合に、該直線偏波に対して、各々偏波面を傾けるとともに直交している直線偏波であることを特徴とする請求項4に記載の無線中継装置。   The pair of orthogonally polarized waves is a linearly polarized wave whose plane of polarization is inclined and orthogonal to the linearly polarized wave when the antennas of the radio base station and the radio mobile station are linearly polarized waves. The wireless relay device according to claim 4, wherein: 対基地局用アンテナと対移動局用アンテナ間の各々の増幅系統には、アンテナの偏波の利得特性に関する制御情報をやり取りする手段を有し、
前記制御情報に基づいて、一定の送信電力あるいは受信電力が得られるように、増幅系統間の増幅度を制御することを特徴とする請求項1から6のいずれかに記載の無線中継装置。
Each amplification system between the antenna for the base station and the antenna for the mobile station has means for exchanging control information regarding the gain characteristics of the polarization of the antenna,
The radio relay apparatus according to any one of claims 1 to 6, wherein an amplification degree between the amplification systems is controlled based on the control information so that constant transmission power or reception power can be obtained.
アンテナが送信アンテナの場合、さらに送信出力を制御することを特徴とする請求項7に記載の無線中継装置。   The radio relay apparatus according to claim 7, wherein when the antenna is a transmission antenna, the transmission output is further controlled. 前記制御情報は、アンテナが有している偏波を考慮した指向性利得に関する情報を含み、
前記指向性利得に基づいて、増幅系統間の増幅度を制御し、送信出力を制御することを特徴とする請求項8に記載の無線中継装置。
The control information includes information on directivity gain in consideration of the polarization of the antenna,
9. The radio relay apparatus according to claim 8, wherein an amplification degree between amplification systems is controlled based on the directivity gain to control a transmission output.
JP2010062938A 2010-03-18 2010-03-18 Wireless relay device Active JP5302253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010062938A JP5302253B2 (en) 2010-03-18 2010-03-18 Wireless relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062938A JP5302253B2 (en) 2010-03-18 2010-03-18 Wireless relay device

Publications (2)

Publication Number Publication Date
JP2011199506A true JP2011199506A (en) 2011-10-06
JP5302253B2 JP5302253B2 (en) 2013-10-02

Family

ID=44877170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062938A Active JP5302253B2 (en) 2010-03-18 2010-03-18 Wireless relay device

Country Status (1)

Country Link
JP (1) JP5302253B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340964B1 (en) 2011-10-14 2013-12-13 한국과학기술원 Cooperation mobile communication system, apparatus and method based on electromagnetic field polarization antenna
KR101371997B1 (en) * 2012-01-19 2014-03-19 한국과학기술원 Method and apparatus for polarization antenna transmission using distributed nodes
JP7465462B2 (en) 2019-11-06 2024-04-11 PicoCELA株式会社 Wireless communication system and wireless node

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509950A (en) * 1997-03-03 2000-08-02 セレトラ・リミテッド Method and system for improving communication
JP2005192185A (en) * 2003-12-05 2005-07-14 Ntt Docomo Inc Radio repeater and radio relay transmission method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509950A (en) * 1997-03-03 2000-08-02 セレトラ・リミテッド Method and system for improving communication
JP2005192185A (en) * 2003-12-05 2005-07-14 Ntt Docomo Inc Radio repeater and radio relay transmission method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340964B1 (en) 2011-10-14 2013-12-13 한국과학기술원 Cooperation mobile communication system, apparatus and method based on electromagnetic field polarization antenna
KR101371997B1 (en) * 2012-01-19 2014-03-19 한국과학기술원 Method and apparatus for polarization antenna transmission using distributed nodes
JP7465462B2 (en) 2019-11-06 2024-04-11 PicoCELA株式会社 Wireless communication system and wireless node

Also Published As

Publication number Publication date
JP5302253B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US8228878B2 (en) Method and system of communications
US9264110B2 (en) Enhanced rank for outdoor to indoor coverage
US6049315A (en) Repeater isolation through antenna polarization diversity
AU2011384240B2 (en) Mimo coverage over bi-directional leaky cables
US20120106405A1 (en) Self-Interference Suppression in Full-Duplex MIMO Relays
KR20050098028A (en) Method and system for improving communication
US8417295B2 (en) Antenna system
TW201735446A (en) Autonomous antenna aligning system and method
JP2003520545A (en) Systems and methods for wireless communication utilizing polarization diversity
JP5302253B2 (en) Wireless relay device
US7593753B1 (en) Base station antenna system employing circular polarization and angular notch filtering
US8618982B2 (en) Communication device and method for controlling an antenna arrangement
CN104380719A (en) Mimo signal transmission and reception device and system comprising at least one such device
JP5218221B2 (en) Antenna installation method, communication apparatus and communication system in MIMO communication system
JP5394994B2 (en) Wireless communication system and wireless base station
JP5135399B2 (en) Relay device and relay method
EP1914903B1 (en) Method and system for indoor communications with radio frequency distribution
WO2008048788A2 (en) Wireless communication system with transmit diversity designs
WO2007004928A1 (en) A repeater device for increasing coverage in a mimo-system
KR101427644B1 (en) An Indoor Antenna System
EP2740287B1 (en) Enhanced rank for outdoor to indoor coverage
KR101079156B1 (en) intelligent transport system
JP2006352328A (en) Mobile communication relaying system
JP5952731B2 (en) Wireless communication system
KR100693745B1 (en) Repeater for radio mobile service with diversity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5302253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150