JP2011199295A - Semiconductor wafer rapid heating apparatus - Google Patents

Semiconductor wafer rapid heating apparatus Download PDF

Info

Publication number
JP2011199295A
JP2011199295A JP2011099040A JP2011099040A JP2011199295A JP 2011199295 A JP2011199295 A JP 2011199295A JP 2011099040 A JP2011099040 A JP 2011099040A JP 2011099040 A JP2011099040 A JP 2011099040A JP 2011199295 A JP2011199295 A JP 2011199295A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
recess
heating apparatus
rapid heating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011099040A
Other languages
Japanese (ja)
Inventor
Takehiko Yokomori
岳彦 横森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2011099040A priority Critical patent/JP2011199295A/en
Publication of JP2011199295A publication Critical patent/JP2011199295A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor wafer rapid heating apparatus which can rapidly heat a semiconductor wafer using flash lamps without subjecting the semiconductor wafer to breaking or hopping out.SOLUTION: The semiconductor wafer rapid heating apparatus includes a light source comprising a regularly arranged plurality of flash lamps and a reflection plate that reflects the light emitted from the flash lamps to the side of an object to be heated, and a heat treatment chamber in which a supporting pedestal that supports the semiconductor wafer is arranged. In the semiconductor wafer rapid heating apparatus that rapidly heat-treats a semiconductor wafer by the light from the flash lamps, the supporting pedestal has a recess thereon. The recess has horizontally a substantially circular shape with a slightly smaller diameter than that of the semiconductor wafer where the ratio of the diameter of the recess to that of the semiconductor wafer ranges between 40% and 90% while the vertical cross section thereof is substantially rectangular. When a semiconductor wafer is placed so as to cover the recess, a space is formed between the supporting pedestal and the semiconductor wafer.

Description

この発明は、半導体ウエハの急速加熱装置に関する。特に、フラッシュランプを用いた半導体ウエハ急速加熱装置であって、該ウエハの保持部の形状に特徴を持つ半導体ウエハ急速加熱装置に関する。   The present invention relates to a rapid heating apparatus for semiconductor wafers. In particular, the present invention relates to a semiconductor wafer rapid heating apparatus using a flash lamp, which is characterized by the shape of the holding portion of the wafer.

近年、半導体集積回路の高集積化や微細化が進められており、該半導体ウエハの厚み方向にも複数層の回路を形成する等が成されている。このような半導体集積回路を形成する場合、該半導体ウエハの表層部分に、例えば薄い不純物拡散層を形成する等の方法が知られている。この方法は、該半導体ウエハの表層部分におけるSi結晶に、例えばイオン注入等により不純物を導入し、該半導体ウエハに熱処理を施すことにより、該表層部分に不純物拡散層を形成させるものである。該不純物拡散層を形成する場合、不純物が導入された該半導体ウエハをできるだけ短時間の間に加熱処理をすることが重要となる。不純物が導入された該半導体ウエハが長時間の間高温に曝されると、該不純物が熱拡散する距離が長くなり、不純物拡散層の厚みが大きくなってしまい、薄い不純物拡散層が形成できなくなってしまうためである。   In recent years, semiconductor integrated circuits have been highly integrated and miniaturized, and a plurality of layers of circuits have been formed in the thickness direction of the semiconductor wafer. When such a semiconductor integrated circuit is formed, a method of forming a thin impurity diffusion layer on the surface layer portion of the semiconductor wafer is known. In this method, an impurity diffusion layer is formed in the surface layer portion by introducing impurities into the Si crystal in the surface layer portion of the semiconductor wafer, for example, by ion implantation, and performing heat treatment on the semiconductor wafer. When forming the impurity diffusion layer, it is important to heat the semiconductor wafer into which impurities have been introduced in as short a time as possible. If the semiconductor wafer into which the impurity is introduced is exposed to a high temperature for a long time, the distance in which the impurity is thermally diffused becomes long, the thickness of the impurity diffusion layer is increased, and a thin impurity diffusion layer cannot be formed. It is because it ends up.

該不純物拡散層を形成するためには、該半導体ウエハを例えば1000℃以上に昇温することが必要であり、且つ、該不純物拡散層の厚みを薄くするためには、極力短い時間で1000℃以上の温度の昇降温処理が必要になる。このように、短時間で急速な昇降温を実現する装置として、RTP(Rapid Thermal Process)装置が知られている。該RTP装置の加熱源としては、ハロゲンランプが広く用いられており、該ハロゲンランプから放射される光を点灯点滅することにより、該半導体ウエハの急速な昇降温を実現している。   In order to form the impurity diffusion layer, it is necessary to raise the temperature of the semiconductor wafer to, for example, 1000 ° C. or more, and in order to reduce the thickness of the impurity diffusion layer, the temperature is increased to 1000 ° C. in as short a time as possible. The above temperature raising / lowering treatment is required. As described above, an RTP (Rapid Thermal Process) device is known as a device that realizes rapid temperature increase and decrease in a short time. As a heating source of the RTP apparatus, a halogen lamp is widely used, and the temperature of the semiconductor wafer is rapidly increased and decreased by lighting and blinking light emitted from the halogen lamp.

しかし、近年の半導体集積回路の更なる高集積化や微細化、また回路駆動時の消費電力の低減や回路自身の高速化に伴って、該不純物拡散層の厚みを極めて薄く形成することが必要になってきた。例えば、20nm以下の不純物拡散層を形成する場合に、ハロゲンランプによる急速加熱では、熱的な拡散距離が長くなり、薄い層が形成できないといった問題が出てきた。そこで、RTP装置の加熱源として、フラッシュランプを用い、フラッシュ点灯することにより、非常に高いエネルギーを短時間で該半導体ウエハに投入し、瞬時に昇降温する装置が提案されている。このような技術としては、例えば特開平2004−31557号公報がある。   However, it is necessary to make the impurity diffusion layer extremely thin in accordance with further higher integration and miniaturization of semiconductor integrated circuits in recent years, reduction of power consumption during circuit driving, and speeding up of the circuit itself. It has become. For example, when an impurity diffusion layer of 20 nm or less is formed, rapid heating with a halogen lamp has a problem that a thermal diffusion distance becomes long and a thin layer cannot be formed. In view of this, an apparatus has been proposed in which a flash lamp is used as a heating source of an RTP apparatus and a flash lamp is turned on so that very high energy is input to the semiconductor wafer in a short time and the temperature is raised and lowered instantaneously. An example of such a technique is disclosed in Japanese Patent Application Laid-Open No. 2004-31557.

図5に、従来のフラッシュランプを用いた光加熱装置の概要を示す。光加熱装置41は、シリコン等からなる半導体ウエハWを被処理物とするものであって、雰囲気ガス導入口42Aと、排出口42Bとを有する石英ガラス製のチャンバー44と、このチャンバー44内に配置された半導体ウエハを支持するための支持用台45とを備えている。チャンバー44の天井面(図5において上面)には、石英の平板46が気密な透光部材として設けられる。   FIG. 5 shows an outline of a light heating apparatus using a conventional flash lamp. The light heating device 41 uses a semiconductor wafer W made of silicon or the like as an object to be processed, and includes a quartz glass chamber 44 having an atmospheric gas inlet 42A and an outlet 42B. And a support base 45 for supporting the semiconductor wafers arranged. A quartz flat plate 46 is provided on the ceiling surface (upper surface in FIG. 5) of the chamber 44 as an airtight translucent member.

該平板46の上方には、フラッシュランプ48が加熱源として設けられ、チャンバー44の下方には予備加熱手段としてのハロゲンヒータランプ49が設けられている。このハロゲンヒータランプ49は、支持用台45に埋設されて、チャンバー制御回路50により温度制御される。このチャンバー制御回路50では、支持用台45の昇降機能や雰囲気ガス導入口42A、排出口42Bの開閉制御なども行なわれる。   A flash lamp 48 is provided as a heating source above the flat plate 46, and a halogen heater lamp 49 is provided as a preheating means below the chamber 44. The halogen heater lamp 49 is embedded in the support base 45 and the temperature is controlled by the chamber control circuit 50. In the chamber control circuit 50, an elevating function of the support base 45, opening / closing control of the atmospheric gas inlet 42A and the outlet 42B are also performed.

この光加熱装置41によれば、不純物が導入されたシリコンからなる半導体ウエハWがチャンバー44内に搬入されると、ハロゲンヒータランプ49により半導体ウエハWを不純物の熱拡散が問題にならない所定温度まで予備加熱した後、フラッシュランプ48を発光させることで半導体ウエハWへの閃光放射による熱処理が行なわれる。このような熱処理により、半導体ウエハWはその表層部分が急速に高温になるよう加熱され、その後、急速に冷却されてチャンバー44から搬出される。なお、予備加熱は、ウエハの厚み方向の温度勾配を小さくすることと照射面の温度を必要な程度まで上昇させるために必要なランプに注入するエネルギーを最小に留めるという理由で行なうことが好ましく、加熱温度は、300〜500℃の範囲から選択され、例えば、350℃である。また、ハロゲンヒータランプ49とフラッシュランプ48による熱処理中における半導体ウエハWの表面温度は1000℃以上になり、具体的には1000℃〜1300℃の範囲で熱処理される。このように、半導体ウエハWにおける最大温度を1000℃以上にまで加熱することにより、ウエハ表層部分に確実に不純物拡散層を形成することができる。   According to the light heating device 41, when the semiconductor wafer W made of silicon into which impurities are introduced is carried into the chamber 44, the halogen heater lamp 49 causes the semiconductor wafer W to reach a predetermined temperature at which the thermal diffusion of impurities does not become a problem. After preheating, the flash lamp 48 is caused to emit light so that the semiconductor wafer W is heat-treated by flash radiation. By such heat treatment, the semiconductor wafer W is heated so that the surface layer portion thereof is rapidly heated to high temperature, and then rapidly cooled and carried out of the chamber 44. The preheating is preferably performed for the purpose of reducing the temperature gradient in the thickness direction of the wafer and minimizing the energy injected into the lamp necessary for raising the temperature of the irradiated surface to a necessary level. A heating temperature is selected from the range of 300-500 degreeC, for example, is 350 degreeC. Further, the surface temperature of the semiconductor wafer W during the heat treatment by the halogen heater lamp 49 and the flash lamp 48 becomes 1000 ° C. or more, and specifically, the heat treatment is performed in the range of 1000 ° C. to 1300 ° C. Thus, by heating the maximum temperature of the semiconductor wafer W to 1000 ° C. or higher, the impurity diffusion layer can be reliably formed in the wafer surface layer portion.

フラッシュランプ48は、平板46に沿って等間隔で並行に配列されており、これらフラッシュランプ48に対して共通の反射鏡51が覆い被さり、この反射鏡51をケーシング52が収納する。また、各フラッシュランプ48の点灯動作は給電装置53により制御される。
特開平2004−31557号
The flash lamps 48 are arranged in parallel at equal intervals along the flat plate 46, and a common reflecting mirror 51 covers the flash lamps 48, and the reflecting mirror 51 is accommodated in the casing 52. The lighting operation of each flash lamp 48 is controlled by the power supply device 53.
JP 2004-31557 A

しかしながら、前記のようなフラッシュランプを用いた光加熱装置で半導体ウエハを急速加熱する場合、該フラッシュランプを点灯させるパルス電流のピーク値に対する半値半幅の時間であるパルス幅を短くするにつれて、該半導体ウエハが光照射により飛び跳ねるといった問題が発生した。この飛び跳ねる理由は、次のように考えられる。該半導体ウエハの光照射される面が光照射に伴って急激な熱膨張を発生する。この時、該半導体ウエハの光照射された面と、支持用台側の面との間での温度差によって生じる熱膨張の差によって、該半導体ウエハが瞬時に該フラッシュランプ側(以下、上方と称する)に凸状に変形を起こす。この変形は、非常に短時間で発生するため、該半導体ウエハの端面で該支持用台を叩き付ける様な力が発生し、結果として該半導体ウエハ自身が飛び跳ねることになると考えられる。また、該フラッシュランプから放射される光のエネルギーが30J/cm2以上であって、パルス点灯される一回のパルス幅が0.8msで照射した場合、該半導体ウエハが光照射によって割れるといった新たな問題が生じた。   However, when the semiconductor wafer is rapidly heated by the light heating apparatus using the flash lamp as described above, the semiconductor is gradually reduced as the pulse width which is a half-value half-width time with respect to the peak value of the pulse current for lighting the flash lamp is shortened. There was a problem that the wafer jumped by light irradiation. The reason for this jump is considered as follows. The surface of the semiconductor wafer that is irradiated with light undergoes rapid thermal expansion as the light is irradiated. At this time, due to the difference in thermal expansion caused by the temperature difference between the light-irradiated surface of the semiconductor wafer and the surface on the support base, the semiconductor wafer is instantaneously moved to the flash lamp side (hereinafter referred to as the upper side and the upper side). To a convex shape. Since this deformation occurs in a very short time, it is considered that a force that strikes the support table at the end face of the semiconductor wafer is generated, and as a result, the semiconductor wafer itself jumps. In addition, when the energy of light emitted from the flash lamp is 30 J / cm 2 or more and a single pulse width of pulse lighting is irradiated at 0.8 ms, the semiconductor wafer is broken by light irradiation. There was a problem.

この発明が解決しようとする課題は、半導体ウエハをフラッシュランプを用いて急速加熱する場合に、該半導体ウエハが割れることなく、且つ、該半導体ウエハが飛び跳ねたりすることが無い該半導体ウエハの保持構造を持つ半導体ウエハ急速加熱装置を提供することにある。   The problem to be solved by the present invention is that when a semiconductor wafer is rapidly heated using a flash lamp, the semiconductor wafer is not cracked and the semiconductor wafer is prevented from jumping. It is an object of the present invention to provide a semiconductor wafer rapid heating apparatus.

この発明の半導体ウエハ急速加熱装置は、複数本配列されたフラッシュランプと該フラッシュランプから放射される光を被加熱物側に反射する反射板と、からなる光源部、半導体ウエハを支持する支持用台を配置した加熱処理チャンバー、を具備し、該フラッシュランプの光によって半導体ウエハを急速加熱処理する半導体ウエハ急速加熱装置において、前記支持用台は、該支持用台上に凹部が設けられ、該凹部の形状が、該半導体ウエハの直径よりやや小さな略円形であって、該半導体ウエハの直径に対する該凹部の直径の比が、40%乃至90%で、且つ、その断面は略長方形であって該凹部を覆うように該半導体ウエハを配置した場合に、該支持用台と該半導体ウエハとの間に空間が形成されていることを特徴とする。 A semiconductor wafer rapid heating apparatus according to the present invention comprises a light source unit comprising a plurality of arranged flash lamps and a reflector that reflects light emitted from the flash lamps toward the object to be heated, and a support for supporting the semiconductor wafer. A semiconductor wafer rapid heating apparatus comprising: a heat treatment chamber having a table; and rapid heating treatment of the semiconductor wafer by the light of the flash lamp, wherein the support table is provided with a recess on the support table, The shape of the recess is a substantially circular shape that is slightly smaller than the diameter of the semiconductor wafer, the ratio of the diameter of the recess to the diameter of the semiconductor wafer is 40% to 90%, and the cross section is substantially rectangular. When the semiconductor wafer is disposed so as to cover the recess, a space is formed between the support base and the semiconductor wafer.

本発明の半導体ウエハ加熱装置によれば、該半導体ウエハと該支持用台との間に、該支持用台に設けられた凹部と該半導体ウエハとで囲まれることで、密閉された空間が形成されており、該半導体ウエハを急速加熱しても、該空間によって該半導体ウエハが飛び跳ねたり割れるといったことがない、という効果が発生する。この効果は、以下の様な現象によるものと考えられる。該半導体ウエハにフラッシュランプからの光が照射されると、該半導体ウエハの光を照射した面が急激に昇温し、この昇温に伴う急速な熱膨張を起こす。これに対し、該半導体ウエハの支持用台側の面は光による加熱が無いので、急激な温度上昇をすることが無く、熱膨張も少ない。このような温度差にともない、該半導体ウエハの表裏面での熱膨張による伸びに差が生じる。この熱膨張による伸びの差によって、該半導体ウエハの光照射側の面には引っ張り方向の力が加わり、該支持用台側の面には圧縮方向の力が発生する。このため、該半導体ウエハは、該フラッシュランプ側(上方)に凸状に変形する。この変形は、非常に短時間で発生するため、該半導体ウエハの端面で該支持用台を叩き付ける様な力が発生し、該半導体ウエハ自身を飛び跳ねさせようとする。一方、該支持用台に設けられた凹部と該半導体ウエハとで覆われた密閉された該空間の体積は、該半導体ウエハの変形に伴って増加する。該空間には、該加熱処理チャンバー内と同じ圧力の気体が、該半導体ウエハを該支持用台に配置することで閉じ込められ気密に保たれており、該半導体ウエハの変形に伴う該空間の体積の増加により、該空間内の圧力は急激に低下する。この圧力低下によって、該半導体ウエハを下方に引っ張る力が発生する。これにより、該半導体ウエハが上方に飛び跳ねようとする力が抑制される、と考えられる。   According to the semiconductor wafer heating apparatus of the present invention, a sealed space is formed between the semiconductor wafer and the support table by being surrounded by the recess provided on the support table and the semiconductor wafer. Therefore, even if the semiconductor wafer is rapidly heated, the space does not cause the semiconductor wafer to jump or break. This effect is considered to be due to the following phenomenon. When the light from the flash lamp is irradiated onto the semiconductor wafer, the surface of the semiconductor wafer irradiated with the light is rapidly heated, and rapid thermal expansion is caused by this temperature increase. On the other hand, the surface on the support base side of the semiconductor wafer is not heated by light, so that the temperature does not increase rapidly and thermal expansion is small. With such a temperature difference, a difference occurs in elongation due to thermal expansion on the front and back surfaces of the semiconductor wafer. Due to the difference in elongation due to the thermal expansion, a tensile force is applied to the surface of the semiconductor wafer on the light irradiation side, and a compressive force is generated on the surface of the support table. For this reason, the semiconductor wafer is deformed in a convex shape toward the flash lamp side (upward). Since this deformation occurs in a very short time, a force that strikes the support table at the end face of the semiconductor wafer is generated, so that the semiconductor wafer itself jumps. On the other hand, the volume of the sealed space covered with the concave portion provided on the support table and the semiconductor wafer increases with the deformation of the semiconductor wafer. In the space, a gas having the same pressure as that in the heat treatment chamber is confined and kept airtight by placing the semiconductor wafer on the support base, and the volume of the space accompanying the deformation of the semiconductor wafer is kept. As the pressure increases, the pressure in the space rapidly decreases. This pressure drop generates a force that pulls the semiconductor wafer downward. Thereby, it is considered that the force that the semiconductor wafer tries to jump upward is suppressed.

更には、該支持用台に直接形成された該凹部の形状は、該凹部内には隙間が無く、該半導体ウエハの直径よりやや小さな略円形であり、且つ断面は略長方形であるので、該凹部の周辺と該半導体ウエハの周縁とが精度良く密着することにより、隙間無く該凹部と該半導体ウエハで取り囲まれて形成される空間の体積の設定が容易であり、該半導体ウエハが飛び跳ねたり割れたりすることが無い、といった効果がある。   Furthermore, the shape of the recess formed directly on the support base is substantially circular with a gap slightly in the recess, slightly smaller than the diameter of the semiconductor wafer, and has a substantially rectangular cross section. Since the periphery of the recess and the periphery of the semiconductor wafer are in close contact with each other with high accuracy, it is easy to set the volume of the space formed by being surrounded by the recess and the semiconductor wafer without any gap, and the semiconductor wafer jumps or cracks. There is an effect that there is no.

また、該支持用台上に配置する該半導体ウエハの直径に対する該凹部の直径の比が、40%乃至90%であるので、該半導体ウエハの直径に係らず、該半導体ウエハに割れが生じることが無い。更には、該半導体ウエハを予備加熱する場合であっても、該半導体ウエハ全体に亘って均一な熱処理が可能となる、といった効果がある。   In addition, since the ratio of the diameter of the recess to the diameter of the semiconductor wafer disposed on the support table is 40% to 90%, the semiconductor wafer is cracked regardless of the diameter of the semiconductor wafer. There is no. Furthermore, even when the semiconductor wafer is preheated, there is an effect that a uniform heat treatment can be performed over the entire semiconductor wafer.

本発明の半導体ウエハ加熱装置は、複数本のフラッシュランプを並列配置した光源部を持ち、半導体ウエハを予備加熱する予備加熱機構部とを備え、該半導体ウエハを加熱処理する際に保持する支持用台を具備した半導体ウエハ加熱装置であって、該支持用台と処理する半導体ウエハとの間に、薄いガス層を設けることで、該半導体ウエハの急速加熱時に発生する割れを抑制するものである。   The semiconductor wafer heating apparatus of the present invention has a light source unit in which a plurality of flash lamps are arranged in parallel, and includes a preheating mechanism unit for preheating the semiconductor wafer, and for supporting the semiconductor wafer when it is heat-treated. A semiconductor wafer heating apparatus provided with a table, wherein a thin gas layer is provided between the support table and a semiconductor wafer to be processed, thereby suppressing cracks that occur during rapid heating of the semiconductor wafer. .

本発明の第1の実施例として半導体ウエハ急速加熱装置1の概略断面図を図1に示す。該半導体ウエハ急速加熱装置1は、光源部2と、加熱処理チャンバー部3と、予備加熱機構部4と、から構成されている。該光源部2には、管状のフラッシュランプ5と反射ミラー6が配置され、例えば石英ガラスから成る光透過性窓部7が設けられている。該加熱チャンバー部3には、半導体ウエハ出入口8、雰囲気ガス導入口9、支持用台10が具備され、該支持用台10の上に加熱処理される半導体ウエハWが搬送される。該支持用台10には、凹部20が形成されており、該支持用台10に該半導体ウエハWを置いた場合に、該半導体ウエハWの該支持用台側に一定の体積分の空間を設けている。また、該加熱チャンバー部3には、該光源部2から放射される光を取り込む窓部11が設けられ、該光透過性窓部7と接続されている。本実施例では該光透過性窓部7に用いられる石英ガラスから成る板材等によって該光源部2と該加熱チャンバー部3の各々が仕切られているが、該加熱チャンバー部3の窓部11にも、例えば石英ガラスから成る光透過性部材を配置しても良い。また、該支持用台10と該予備加熱機構部4とは、伝熱部12によって仕切られ、該加熱チャンバー部3と該予備加熱機構部4とを分けている。本実施例においては、該伝熱部12は、例えば石英ガラス等からなる光透過性の板状部材を用いている。該予備加熱機構部4は、棒状のハロゲンランプ13が複数本設けられ、該伝熱部12側に光を反射する反射板14が設けられている。本実施例では、該予備加熱機構部4が、該ハロゲンランプ13を配置した光加熱タイプを示したが、シーズヒータ等の伝熱タイプのヒータであっても良い。該伝熱タイプの場合、該伝熱部12は、金属等の伝熱部材であれば良く、光透過性部材を用いなくても良い。   FIG. 1 shows a schematic cross-sectional view of a semiconductor wafer rapid heating apparatus 1 as a first embodiment of the present invention. The semiconductor wafer rapid heating apparatus 1 includes a light source unit 2, a heat treatment chamber unit 3, and a preheating mechanism unit 4. The light source unit 2 is provided with a tubular flash lamp 5 and a reflection mirror 6, and is provided with a light transmissive window unit 7 made of, for example, quartz glass. The heating chamber portion 3 includes a semiconductor wafer inlet / outlet 8, an atmospheric gas inlet 9, and a support table 10, and a semiconductor wafer W to be heat-treated is transferred onto the support table 10. A recess 20 is formed in the support table 10. When the semiconductor wafer W is placed on the support table 10, a space of a certain volume is provided on the support table side of the semiconductor wafer W. Provided. Further, the heating chamber portion 3 is provided with a window portion 11 for taking in light emitted from the light source portion 2, and is connected to the light transmitting window portion 7. In this embodiment, each of the light source unit 2 and the heating chamber unit 3 is partitioned by a plate material made of quartz glass or the like used for the light transmissive window unit 7. Alternatively, a light transmissive member made of, for example, quartz glass may be disposed. Further, the support base 10 and the preliminary heating mechanism unit 4 are partitioned by a heat transfer unit 12 to separate the heating chamber unit 3 and the preliminary heating mechanism unit 4. In this embodiment, the heat transfer section 12 uses a light transmissive plate member made of, for example, quartz glass. The preheating mechanism unit 4 is provided with a plurality of rod-shaped halogen lamps 13 and a reflector 14 that reflects light is provided on the heat transfer unit 12 side. In the present embodiment, the preliminary heating mechanism unit 4 is a light heating type in which the halogen lamp 13 is disposed. However, a heat transfer type heater such as a sheathed heater may be used. In the case of the heat transfer type, the heat transfer section 12 may be a heat transfer member such as metal, and a light transmissive member may not be used.

該半導体ウエハ急速加熱装置の該加熱処理チャンバー部3には、該半導体ウエハWが搬送用ロボットアーム等によって、該半導体ウエハ出入口8から搬送され、支持用台10上に配置される。その後、該加熱処理チャンバー部3内は、内部のガスを排気し、処理に必要なガス、例えばアルゴン等の不活性ガスで希釈されたシランガス等、が該雰囲気ガス導入口9より規定量だけ導入される。一方、該半導体ウエハWは、予備加熱機構部4に具備されたハロゲンランプ14によって150℃から600℃程度に予備加熱される。次に、該フラッシュランプ5を、例えば、投入電力28J/cm、点灯時間であるパルス幅は0.8ms、でパルス点灯させる。この時、該半導体ウエハWの表面温度の最高値(以下、ピーク温度と記す)は、1000℃以上、好ましくは1000℃から1300℃と成るよう熱処理される。 The semiconductor wafer W is transferred from the semiconductor wafer inlet / outlet 8 to the heat treatment chamber 3 of the semiconductor wafer rapid heating apparatus by a transfer robot arm or the like, and is placed on the support table 10. Thereafter, the gas inside the heat treatment chamber 3 is exhausted, and a gas necessary for the treatment, for example, a silane gas diluted with an inert gas such as argon, is introduced from the atmospheric gas inlet 9 by a specified amount. Is done. On the other hand, the semiconductor wafer W is preheated from about 150 ° C. to about 600 ° C. by the halogen lamp 14 provided in the preheating mechanism unit 4. Next, the flash lamp 5 is pulse-lit, for example, with an input power of 28 J / cm 2 and a pulse width as a lighting time of 0.8 ms. At this time, heat treatment is performed so that the maximum surface temperature of the semiconductor wafer W (hereinafter referred to as peak temperature) is 1000 ° C. or higher, preferably 1000 ° C. to 1300 ° C.

次に、図2として、該支持用台10に設けられた凹部20の形状について示す。図2−a)は、該支持用台10に該半導体ウエハWを置く面側から見た正面図である。該凹部20の形状が、該半導体ウエハWの直径より、やや小さい円形となっている。図2−b)は、図2−a)における該支持用台10の中心を通る一点鎖線で切断したA−A断面を示したのもである。該A−A断面における該凹部20の形状は略長方形となっている。該凹部20には、該半導体ウエハWを加熱処理する時に、周辺雰囲気と同程度の圧力のガスが該半導体ウエハWを設置することにより閉じ込められる。該半導体ウエハWは、急速加熱処理に伴って表面が裏面より高温になり表裏の熱膨張差が生じるため、瞬時に上方へ凸状に変形する。該半導体ウエハの凸状の変形に伴い、該凹部20と該半導体ウエハWによって形成された空間の体積は実質的に増加する。この時、該凹部20に閉じ込められたガスの圧力は、該半導体ウエハの凸状の変形量に伴って減少し、該凹部20のガス圧が低下することによって、該半導体ウエハWを下方に引き下げる力が働く。該凹部20の体積を適宜設計しておくことにより、瞬時に該半導体ウエハが凸状に変形することに伴うガス圧の低下による下方へ引き下げる力が一定範囲に制御され、該半導体ウエハWが該支持用台20から飛び跳ねる事が無い。また、該凹部20内の体積を適宜設計することにより、瞬時に該半導体ウエハが凸状に変形することに伴うガス圧の低下による該半導体ウエハを下方へ引き下げる力を過度に強くすることがなく、該半導体ウエハW自身を破壊してしまう事が無い。尚、本実施例では該凹部20の形状を該半導体ウエハWの直径より、やや小さい円形であって、断面方向では長方形としたが、該断面方向の形状はこれに限定されるものではなく楕円やR形状等であっても良い。   Next, FIG. 2 shows the shape of the recess 20 provided in the support base 10. FIG. 2A is a front view as seen from the surface side where the semiconductor wafer W is placed on the support base 10. The shape of the recess 20 is a circle that is slightly smaller than the diameter of the semiconductor wafer W. FIG. 2-b) shows an AA cross section cut along a one-dot chain line passing through the center of the support base 10 in FIG. 2-a). The shape of the recess 20 in the section AA is substantially rectangular. When the semiconductor wafer W is heat-treated, the recess 20 is confined with a gas having a pressure similar to that of the surrounding atmosphere by installing the semiconductor wafer W. Since the surface of the semiconductor wafer W becomes higher than the back surface due to the rapid heating process and a difference in thermal expansion occurs between the front and back surfaces, the semiconductor wafer W is deformed upward in a moment. With the convex deformation of the semiconductor wafer, the volume of the space formed by the recess 20 and the semiconductor wafer W substantially increases. At this time, the pressure of the gas confined in the recess 20 decreases with the amount of convex deformation of the semiconductor wafer, and the gas pressure in the recess 20 decreases, thereby lowering the semiconductor wafer W downward. Power works. By appropriately designing the volume of the recess 20, the downward pulling force due to the gas pressure drop accompanying the instantaneous deformation of the semiconductor wafer into a convex shape is controlled within a certain range, and the semiconductor wafer W There is no jump from the support table 20. In addition, by appropriately designing the volume in the recess 20, the force for pulling down the semiconductor wafer due to a drop in gas pressure accompanying the instantaneous deformation of the semiconductor wafer into a convex shape can be prevented from becoming excessively strong. The semiconductor wafer W itself is not destroyed. In the present embodiment, the shape of the recess 20 is a circle that is slightly smaller than the diameter of the semiconductor wafer W and is rectangular in the cross-sectional direction. However, the shape in the cross-sectional direction is not limited to this and is elliptical. Or an R shape or the like.

図3には、図1で示した本発明の第1の実施例を用いて、該支持用台10に設けられた該凹部20の深さを変えた場合に、各種条件で該半導体ウエハWが割れるか否かの比較実験の結果を示す。本比較実験は、サイズの異なる半導体ウエハWとして、3インチ、8インチ、12インチの3種類のウエハを用いた。また、フラッシュランプ5から放射する光としては、パルス幅5ms、0.8msの2種類について照射エネルギーを10〜65J/cm^2の間で照射エネルギーを変えた場合について検証した。ここで、パルス幅5msより長いパルス幅では、電流の振動が発生し、充電器を破壊してしまうため、実質的に5msが最長のパルス幅である。また、パルス幅0.8msよりも短いパルス幅で30J/cm^2以上のエネルギーを投入すると該フラッシュランプにかかる瞬間的な電流密度が高くなり、短時間でランプ管壁の白濁が発生する。このため、パルス幅0.8ms以下で該フラッシュランプを駆動することは実用的ではない。該半導体ウエハWと支持用台10との間に形成される空間の大きさを表す指標としては、該凹部20の深さ方向の距離を用い、0mm、0.05mm、0.1mm、0.2mm、0.3mm、0.4mmの各々の場合について比較した。尚、本比較実験において、予備加熱温度は400℃、該凹部20の直径は、該半導体ウエハWの直径に対して80%の大きさで行った。   FIG. 3 shows the semiconductor wafer W under various conditions when the depth of the recess 20 provided in the support table 10 is changed using the first embodiment of the present invention shown in FIG. The result of the comparative experiment of whether or not cracks are shown. In this comparative experiment, three types of wafers of 3 inches, 8 inches, and 12 inches were used as the semiconductor wafers W having different sizes. Further, the light emitted from the flash lamp 5 was verified for two types of pulse widths of 5 ms and 0.8 ms when the irradiation energy was changed between 10 to 65 J / cm 2. Here, when the pulse width is longer than 5 ms, current oscillation occurs and the charger is destroyed. Therefore, 5 ms is the longest pulse width substantially. Further, when energy of 30 J / cm 2 or more is input with a pulse width shorter than 0.8 ms, the instantaneous current density applied to the flash lamp is increased, and the lamp tube wall becomes cloudy in a short time. For this reason, it is not practical to drive the flash lamp with a pulse width of 0.8 ms or less. As an index indicating the size of the space formed between the semiconductor wafer W and the support base 10, the distance in the depth direction of the recess 20 is used, and 0 mm, 0.05 mm, 0.1 mm,. Comparison was made for each of 2 mm, 0.3 mm, and 0.4 mm. In this comparative experiment, the preheating temperature was 400 ° C., and the diameter of the recess 20 was 80% of the diameter of the semiconductor wafer W.

該凹部20の深さが、0mm、つまり平坦な面に該半導体ウエハWを配置する従来の構造においては、該半導体ウエハWの各サイズにおいて、パルス幅5msでは照射エネルギーが60J/cm^2で、パルス幅0.8msでは照射エネルギーが30J/cm^2で割れが発生した。一方、該半導体ウエハWのサイズやパルス幅や照射エネルギーといった光の照射条件に係らず、該凹部20の深さが、0.05mm〜0.3mmの間では割れは発生しなかった。しかし、該凹部20の深さが、0.4mmになると、該半導体ウエハWのサイズや、光の照射条件に係らず、光照射に伴い該半導体ウエハWが瞬時に上方へ凸状に変形し、該半導体ウエハW自身が飛び跳ねるといった現象が発生した。更に、照射エネルギーが60J/cm^2を越えると飛び跳ねる距離が増し、該加熱処理チャンバー部3内の壁等と衝突することによる割れが発生した。このように、本比較実験においては、該凹部20の深さが、0.05〜0.3であれば該半導体ウエハWの割れが発生しなかった。   In the conventional structure in which the depth of the recess 20 is 0 mm, that is, the semiconductor wafer W is arranged on a flat surface, the irradiation energy is 60 J / cm ^ 2 at a pulse width of 5 ms in each size of the semiconductor wafer W. When the pulse width was 0.8 ms, cracking occurred when the irradiation energy was 30 J / cm ^ 2. On the other hand, regardless of the light irradiation conditions such as the size, pulse width, and irradiation energy of the semiconductor wafer W, no cracks occurred when the depth of the recess 20 was 0.05 mm to 0.3 mm. However, when the depth of the recess 20 becomes 0.4 mm, the semiconductor wafer W is instantly deformed upwardly with light irradiation regardless of the size of the semiconductor wafer W and the light irradiation conditions. The phenomenon that the semiconductor wafer W itself jumped up and down occurred. Further, when the irradiation energy exceeds 60 J / cm 2, the jumping distance is increased, and a crack is generated due to collision with the wall or the like in the heat treatment chamber 3. Thus, in this comparative experiment, cracking of the semiconductor wafer W did not occur when the depth of the recess 20 was 0.05 to 0.3.

このように、前記支持用台に設けられた該凹部の深さは0.05mm乃至0.3mmの範囲であることが望ましく、該凹部の深さをこの範囲にすることで、光照射時に一定の範囲のパルス幅や照射エネルギーにおいては、該半導体ウエハが該支持用台から飛び跳ねたり、割れることが無いといった特別の効果を生じる。   As described above, the depth of the concave portion provided on the support base is desirably in the range of 0.05 mm to 0.3 mm. By setting the depth of the concave portion in this range, the depth is constant during light irradiation. When the pulse width and the irradiation energy are in the range, a special effect is produced that the semiconductor wafer does not jump or break from the support table.

次に、図4として前記比較実験についての捕捉実験の結果を示す。図4−1は、予備加熱温度を変えた場合について行った捕捉実験結果である。従来の形状では、該半導体ウエハWの割れが発生し、本発明の形態では割れが発生しなかった条件を用いて、予備加熱温度を変え加熱処理を行った。具体的には、該半導体ウエハWとして、3インチのサイズを用い、光照射条件は、パルス幅5ms、照射エネルギー60J/cm^2、該凹部20の深さとして0mm、0.1mmとした。図4−1に示すように、予備加熱温度が150℃〜550℃において、該凹部20の深さが0mmの場合は予備加熱温度350℃で割れが発生している。一方、該凹部20の深さが0.1mmの場合は、各予備加熱温度で割れは発生しなかった。この結果より、割れの発生と予備加熱温度との間には関係が無いと考えられる。   Next, FIG. 4 shows the result of the capture experiment for the comparative experiment. FIG. 4-1 is a result of the capture experiment performed for the case where the preheating temperature is changed. In the conventional shape, the semiconductor wafer W was cracked, and in the embodiment of the present invention, the heat treatment was performed by changing the preheating temperature under the condition that the crack did not occur. Specifically, a size of 3 inches was used as the semiconductor wafer W, and the light irradiation conditions were a pulse width of 5 ms, an irradiation energy of 60 J / cm ^ 2, and a depth of the recess 20 of 0 mm and 0.1 mm. As shown in FIG. 4A, when the preheating temperature is 150 ° C. to 550 ° C. and the depth of the recess 20 is 0 mm, cracking occurs at the preheating temperature of 350 ° C. On the other hand, when the depth of the recess 20 was 0.1 mm, no crack occurred at each preheating temperature. From this result, it is considered that there is no relationship between the occurrence of cracks and the preheating temperature.

また、図4−2として、該半導体ウエハWの直径に対する該凹部20の直径の占める割合を変えた場合の実験結果を示す。該半導体ウエハWのサイズは3インチ、光の照射条件はパルス幅5ms、照射エネルギー60J/cm^2、予備加熱温度400℃とし、該凹部20の深さを0mm、0.05mm、0.1mm、0.2mm、0.3mm、0.4mmの各場合について、該半導体ウエハWの直径に対する該凹部20の直径の割合を変えて実験した。該凹部20の深さが0mmと0.4mmの場合、該凹部の直径に係らず該半導体ウエハWは割れが発生した。一方、該凹部20の深さが0.05mm〜0.3mmの間においては、該凹部20の直径が占める割合が30%以下ではいずれの場合も割れが発生したが、40%以上では割れは発生しなかった。つまり、該凹部20の直径は該半導体ウエハWの直径に対して40%以上あれば割れが発生しないことになる。尚、この割合が95%以上になると、該半導体ウエハWの加熱処理が均一にできなくなる場合が発生しており、実用的にはこの割合が90%以下が望ましい。また、該半導体ウエハWのサイズを12インチにした場合についても確認実験を行ったが、該半導体ウエハWの直径に対する該凹部20の直径の占める割合が40%以上は割れの発生は無かった。尚、12インチでの実験条件は、該凹部20の深さを0.2mmとし、予備加熱温度を400℃、光の照射条件をパルス幅5ms、照射エネルギー60J/cm^2で行った。尚、3インチの場合と同様に、該半導体ウエハWの直径に対する該凹部20の直径の占める割合が95%以上では該半導体ウエハWの加熱処理が均一にできなくなる場合が発生しており、12インチの場合でも実用的にはこの割合が90%以下が望ましい。   FIG. 4B shows experimental results when the ratio of the diameter of the recess 20 to the diameter of the semiconductor wafer W is changed. The size of the semiconductor wafer W is 3 inches, the light irradiation conditions are a pulse width of 5 ms, an irradiation energy of 60 J / cm ^ 2, a preheating temperature of 400 ° C., and the depth of the recess 20 is 0 mm, 0.05 mm, 0.1 mm. , 0.2 mm, 0.3 mm, and 0.4 mm, the ratio of the diameter of the concave portion 20 to the diameter of the semiconductor wafer W was changed for experiments. When the depth of the recess 20 was 0 mm and 0.4 mm, the semiconductor wafer W was cracked regardless of the diameter of the recess. On the other hand, when the depth of the recess 20 is between 0.05 mm and 0.3 mm, cracks occurred in all cases when the proportion of the diameter of the recess 20 was 30% or less, but cracks occurred at 40% or more. Did not occur. That is, if the diameter of the recess 20 is 40% or more with respect to the diameter of the semiconductor wafer W, cracks will not occur. When this ratio is 95% or more, there is a case where the heat treatment of the semiconductor wafer W cannot be uniformly performed. In practice, this ratio is desirably 90% or less. Further, a confirmation experiment was also conducted for the case where the size of the semiconductor wafer W was 12 inches. When the ratio of the diameter of the concave portion 20 to the diameter of the semiconductor wafer W was 40% or more, no crack was generated. The experimental conditions at 12 inches were such that the depth of the recess 20 was 0.2 mm, the preheating temperature was 400 ° C., the light irradiation condition was a pulse width of 5 ms, and the irradiation energy was 60 J / cm 2. As in the case of 3 inches, when the ratio of the diameter of the concave portion 20 to the diameter of the semiconductor wafer W is 95% or more, the semiconductor wafer W may not be uniformly heat-treated. Even in the case of inches, it is practically desirable that this ratio be 90% or less.

この発明における半導体ウエハ急速加熱装置の概略断面図。The schematic sectional drawing of the semiconductor wafer rapid heating apparatus in this invention. この発明における半導体ウエハ急速加熱装置の支持用台形状を示す図。The figure which shows the trapezoid shape for support of the semiconductor wafer rapid heating apparatus in this invention. この発明の構成における実験結果を示す図The figure which shows the experimental result in the structure of this invention この発明の構成における実験結果を示す図The figure which shows the experimental result in the structure of this invention 従来の半導体ウエハ急速加熱装置の概略断面図。1 is a schematic cross-sectional view of a conventional semiconductor wafer rapid heating apparatus.

1 半導体ウエハ急速加熱装置
2 光源部
3 加熱処理チャンバー部
4 予備加熱機構部
5 フラッシュランプ
6 反射ミラー
7 光透過性窓部
8 半導体ウエハ出入口
9 雰囲気ガス導入口
10 支持用台
W 半導体ウエハ
11 窓部
12 伝熱部
13 ハロゲンランプ
14 反射板
20 凹部
41 光加熱装置
42A 雰囲気ガス導入口
42B 排出口
44 チャンバー
45 支持用台
46 平板
47 透光部材
48 フラッシュランプ
49 ハロゲンヒータランプ
50 チャンバー制御回路
51 反射鏡
52 ケーシング
53 給電装置
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer rapid heating apparatus 2 Light source part 3 Heat processing chamber part 4 Preheating mechanism part 5 Flash lamp 6 Reflection mirror 7 Light transmissive window part 8 Semiconductor wafer inlet / outlet 9 Atmospheric gas inlet 10 Support stand W Semiconductor wafer 11 Window part DESCRIPTION OF SYMBOLS 12 Heat transfer part 13 Halogen lamp 14 Reflector 20 Recessed part 41 Light heating apparatus 42A Atmospheric gas inlet 42B Outlet 44 Chamber 45 Supporting base 46 Flat plate 47 Translucent member 48 Flash lamp 49 Halogen heater lamp 50 Chamber control circuit 51 Reflector 52 Casing 53 Power feeding device

Claims (1)

複数本配列されたフラッシュランプと、該フラッシュランプから放射される光を
被加熱物側に反射する反射板と、からなる光源部、
半導体ウエハを支持する支持用台を配置した加熱処理チャンバー、
を具備し、
該フラッシュランプの光によって半導体ウエハを急速加熱処理する半導体ウエハ急速加熱装置において、
前記支持用台は、該支持用台上に凹部が設けられ、該凹部の形状が、該半導体ウエハの直径よりやや小さな略円形であって、該半導体ウエハの直径に対する該凹部の直径の比が、40%乃至90%で、且つ、その断面は略長方形であって該凹部を覆うように該半導体ウエハを配置した場合に、該支持用台と該半導体ウエハとの間に空間が形成されていることを特徴とする半導体ウエハ急速加熱装置。
A light source unit comprising a plurality of arranged flash lamps and a reflector that reflects the light emitted from the flash lamps to the object to be heated;
A heat treatment chamber in which a support table for supporting a semiconductor wafer is disposed;
Comprising
In a semiconductor wafer rapid heating apparatus for rapidly heating a semiconductor wafer by the light of the flash lamp,
The support table is provided with a recess on the support table, and the shape of the recess is a substantially circular shape slightly smaller than the diameter of the semiconductor wafer, and the ratio of the diameter of the recess to the diameter of the semiconductor wafer is When the semiconductor wafer is disposed so as to cover the recess, the space is formed between the support base and the semiconductor wafer. A semiconductor wafer rapid heating apparatus.
JP2011099040A 2011-04-27 2011-04-27 Semiconductor wafer rapid heating apparatus Pending JP2011199295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099040A JP2011199295A (en) 2011-04-27 2011-04-27 Semiconductor wafer rapid heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099040A JP2011199295A (en) 2011-04-27 2011-04-27 Semiconductor wafer rapid heating apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005145200A Division JP4862280B2 (en) 2005-05-18 2005-05-18 Semiconductor wafer rapid heating system

Publications (1)

Publication Number Publication Date
JP2011199295A true JP2011199295A (en) 2011-10-06

Family

ID=44877033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099040A Pending JP2011199295A (en) 2011-04-27 2011-04-27 Semiconductor wafer rapid heating apparatus

Country Status (1)

Country Link
JP (1) JP2011199295A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196322A (en) * 2000-01-11 2001-07-19 Nippon Steel Corp Auxiliary heating plate
JP2004247340A (en) * 2003-02-10 2004-09-02 Dainippon Screen Mfg Co Ltd Heat treatment system and method
JP2005101215A (en) * 2003-09-24 2005-04-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
WO2005059991A1 (en) * 2003-12-19 2005-06-30 Mattson Technology Canada Inc. Apparatuses and methods for suppressing thermally induced motion of a workpiece
JP2006060117A (en) * 2004-08-23 2006-03-02 Dainippon Screen Mfg Co Ltd Heat treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196322A (en) * 2000-01-11 2001-07-19 Nippon Steel Corp Auxiliary heating plate
JP2004247340A (en) * 2003-02-10 2004-09-02 Dainippon Screen Mfg Co Ltd Heat treatment system and method
JP2005101215A (en) * 2003-09-24 2005-04-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
WO2005059991A1 (en) * 2003-12-19 2005-06-30 Mattson Technology Canada Inc. Apparatuses and methods for suppressing thermally induced motion of a workpiece
JP2006060117A (en) * 2004-08-23 2006-03-02 Dainippon Screen Mfg Co Ltd Heat treatment apparatus

Similar Documents

Publication Publication Date Title
TWI660431B (en) Heat treatment method
JP5977038B2 (en) Heat treatment equipment
JP6234674B2 (en) Heat treatment equipment
JP4899482B2 (en) Semiconductor wafer rapid heating system
KR102159439B1 (en) Heat treatment method and heat treatment apparatus
KR102126119B1 (en) Heat treatment method
TWI638389B (en) Heat treatment susceptor and heat treatment apparatus
JP4862280B2 (en) Semiconductor wafer rapid heating system
KR20210010381A (en) Heat treatment method and heat treatment apparatus
JP2018148129A (en) Thermal treatment equipment
JP2009278069A (en) Heat treatment device
CN116825681A (en) Heat treatment method and heat treatment device
CN111799171B (en) Heat treatment method and heat treatment device
JP6026749B2 (en) Heat treatment apparatus and heat treatment method
CN110120336B (en) Heat treatment method
JP2010073787A (en) Heat treatment apparatus
JP6539498B2 (en) Heat treatment equipment
JP2015088635A (en) Heat treatment equipment and heat treatment method
JP6438326B2 (en) Heat treatment equipment
JP2011199295A (en) Semiconductor wafer rapid heating apparatus
JP2010045113A (en) Thermal treatment apparatus
JP2008028084A (en) Heat treatment apparatus
JP2010225646A (en) Susceptor for heat treatment and heat treatment apparatus
JP2013206897A (en) Susceptor for heat treatment and thermal treatment apparatus
JP6026124B2 (en) Heat treatment equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015