JP2011198700A - Insulating member for gas insulated switch, manufacturing method therefor, and gas insulated switch - Google Patents

Insulating member for gas insulated switch, manufacturing method therefor, and gas insulated switch Download PDF

Info

Publication number
JP2011198700A
JP2011198700A JP2010066662A JP2010066662A JP2011198700A JP 2011198700 A JP2011198700 A JP 2011198700A JP 2010066662 A JP2010066662 A JP 2010066662A JP 2010066662 A JP2010066662 A JP 2010066662A JP 2011198700 A JP2011198700 A JP 2011198700A
Authority
JP
Japan
Prior art keywords
fiber
epoxy resin
insulated switch
gas insulated
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010066662A
Other languages
Japanese (ja)
Other versions
JP5306270B2 (en
Inventor
Kazuki Kubo
一樹 久保
Yuji Yoshitomo
雄治 芳友
Toru Yamashita
透 山下
Makiko Kawada
牧子 川田
Takashi Yoshida
貴志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010066662A priority Critical patent/JP5306270B2/en
Publication of JP2011198700A publication Critical patent/JP2011198700A/en
Application granted granted Critical
Publication of JP5306270B2 publication Critical patent/JP5306270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light-weighted gas insulated switch of high reliability, excellent, of course, in insulating performance, excellent also in hydrogen fluoride resistance, and having high heat resistance, a high strength and a high elastic modulus.SOLUTION: This insulating member for the gas insulated switch is constituted of an organic fiber-reinforced composite material composited by a polyarylate fiber on the surface of and in the insdie of which an epoxy resin is added, with a thermosetting resin such as an epoxy resin. The insulating member for the gas insulated switch is manufactured by immersing the polyarylate fiber into a dispersion liquid dispersed with the epoxy resin in an aqueous solvent, curing the epoxy resin, impregnating thereafter the thermosetting resin into the polyarylate fiber, and heating to be cured.

Description

本発明は、ガス絶縁開閉器用絶縁部材、その製造方法及びそれを絶縁操作ロッドとして用いたガス絶縁開閉器に関する。   The present invention relates to an insulating member for a gas-insulated switch, a manufacturing method thereof, and a gas-insulated switch using the insulating member as an insulating operation rod.

絶縁材料として、電気絶縁性及び機械的強度に優れたガラス繊維強化複合材料が一般的に知られている。しかし、高比重であることやフッ化水素ガスなどの酸性ガスで冒される等の欠点がある。一方、高強度、高弾性率及び優れた耐熱性を有する高強度有機繊維を用いた有機繊維強化複合材料は、軽量で耐酸性に優れており、ガラス繊維強化プラスチックの代替材料として期待される。   As an insulating material, a glass fiber reinforced composite material excellent in electrical insulation and mechanical strength is generally known. However, there are drawbacks such as high specific gravity and being affected by acidic gases such as hydrogen fluoride gas. On the other hand, an organic fiber reinforced composite material using high strength organic fibers having high strength, high elastic modulus and excellent heat resistance is lightweight and excellent in acid resistance, and is expected as an alternative material for glass fiber reinforced plastic.

従来、高強度、高弾性率及び優れた耐熱性を有する高強度有機繊維として、ケブラー(登録商標)に代表されるアラミド繊維が知られており、これを強化繊維とした繊維強化複合材料が種々の分野で検討されてきた。しかしながら、アラミド繊維は、その繊維表面が不活性であるために、他の実用強化繊維であるガラス繊維や炭素繊維と比較して、繊維とマトリックス樹脂との界面における接着強度が低いことが知られている。   Conventionally, aramid fibers represented by Kevlar (registered trademark) are known as high-strength organic fibers having high strength, high elastic modulus, and excellent heat resistance, and various fiber-reinforced composite materials using these as reinforcing fibers are known. Has been studied in the field. However, aramid fibers are known to have low adhesive strength at the interface between fibers and matrix resin compared to glass fibers and carbon fibers, which are other practical reinforcing fibers, because the fiber surface is inactive. ing.

例えば、ガラス繊維であればシランカップリング剤を用いた表面処理が施される。炭素繊維であればプラズマや陽極酸化を用いた表面処理が施される。一方、高強度有機繊維では、今までに種々の化学処理やプラズマ処理による化学的表面処理が試みられてきた。このような処理では過度の反応による繊維の劣化がみられるとともに、プラズマ処理では表面改質基が短時間で減少するといった問題があった。また、化学的表面処理以外に、アラミド繊維の表面をエッチングする方法として、プラズマ放電やエキシマレーザー照射が知られている。しかし、これらの不活性表面を活性にする方法はいずれも、繊維構造の結晶性や配向性を低減させ、結果的に複合材料の特性は著しく低下することになる。   For example, in the case of glass fiber, surface treatment using a silane coupling agent is performed. In the case of carbon fiber, a surface treatment using plasma or anodization is performed. On the other hand, chemical surface treatments using various chemical treatments and plasma treatments have been attempted for high-strength organic fibers. In such a treatment, there is a problem that the fiber is deteriorated due to an excessive reaction, and in the plasma treatment, the surface modifying groups are reduced in a short time. In addition to chemical surface treatment, plasma discharge and excimer laser irradiation are known as methods for etching the surface of aramid fibers. However, any method that activates these inert surfaces reduces the crystallinity and orientation of the fiber structure, resulting in significant degradation of the composite material properties.

工業的に行われているアラミド繊維の表面処理は、紡糸時に付与される油剤を抽出で取り除く手法である。この手法は、潤滑剤として界面で働く油剤を単に取り除くだけであり、アラミド繊維の結晶性や配向性を損なわない手法として有意であるが、マトリックス樹脂との接着強度を向上させるものではない。   The surface treatment of aramid fibers that is carried out industrially is a technique for removing the oil agent applied during spinning by extraction. This technique merely removes the oil agent that acts at the interface as a lubricant and is significant as a technique that does not impair the crystallinity and orientation of the aramid fibers, but does not improve the adhesive strength with the matrix resin.

繊維表面を直接化学的、物理的あるいは形態的に変化させない方法として、繊維に接着剤を含浸させる方法が知られている(例えば、特許文献1を参照)。特許文献1に記載の方法では、接着剤と繊維とは物理的な吸着によって主に結合されている。そのため、その方法を吸湿性の高い繊維に適用しても界面における十分な接着強度が得られず、電気特性や機械的特性を向上させることができないという問題があった。   A method of impregnating a fiber with an adhesive is known as a method of not directly changing the fiber surface chemically, physically or morphologically (see, for example, Patent Document 1). In the method described in Patent Document 1, the adhesive and the fiber are mainly bonded by physical adsorption. Therefore, even if this method is applied to highly hygroscopic fibers, there is a problem that sufficient adhesive strength at the interface cannot be obtained, and electrical characteristics and mechanical characteristics cannot be improved.

繊維強化複合材料において繊維とマトリックス樹脂との接着強度が低い場合には、単に繊維強化複合材料の機械的特性が劣るだけでなく、繊維とマトリックス樹脂との間の界面への水などの媒体の侵入を許すこととなる。特に、吸湿性が高いアラミド繊維では、水の侵入が繊維強化複合材料の絶縁性を著しく低下させ、また、マトリックス樹脂の微視的な破壊を引き起こす可能性がある。また、アラミド繊維はマトリックス樹脂との濡れ性が悪いため、繊維強化複合材料の内部にボイドが生成しやすく、その生成したボイド部で部分放電が発生し、一瞬にして破壊される可能性があった。   If the bond strength between the fiber and the matrix resin is low in the fiber reinforced composite material, not only the mechanical properties of the fiber reinforced composite material are inferior but also the medium such as water at the interface between the fiber and the matrix resin. It will allow intrusion. In particular, in an aramid fiber having high hygroscopicity, water intrusion may significantly reduce the insulating property of the fiber-reinforced composite material, and may cause microscopic destruction of the matrix resin. In addition, since the aramid fiber has poor wettability with the matrix resin, voids are likely to be generated inside the fiber reinforced composite material, and partial discharge may occur in the generated voids, which may be destroyed in an instant. It was.

ガス絶縁開閉器等に用いられる絶縁操作ロッドは、六フッ化硫黄を封入した金属容器内に配置される通電用の高電圧導体を、その金属容器から電気的に絶縁し、かつ支持するために用いられる。六フッ化硫黄は、絶縁性能及び消弧性能に優れたガス媒体であるが、電流遮断時等に発生する放電により分解し、金属容器内の吸着水等と反応してフッ化水素ガスを生成する。絶縁操作ロッドに用いられる材料としては、電気絶縁性及び機械的強度に優れたガラス繊維強化複合材料が一般的であるが、ガラス繊維は、電流遮断時等に生成したフッ化水素ガスによって侵食され、その機械強度や表面抵抗の低下を招く恐れがある。従って、ガラス繊維強化複合材料から構成された絶縁操作ロッドと放電発生部を持つ遮断器等とを六フッ化硫黄が封入された金属容器内に一緒に収納する場合、絶縁操作ロッドのフッ化水素ガスに対する耐性を改善することが望まれる。   Insulating operation rods used in gas insulated switches and the like are used to electrically insulate and support a high-voltage conductor for energization disposed in a metal container filled with sulfur hexafluoride from the metal container. Used. Sulfur hexafluoride is a gas medium with excellent insulation performance and arc-extinguishing performance, but decomposes by discharge generated when the current is interrupted, etc., and reacts with adsorbed water in a metal container to produce hydrogen fluoride gas. To do. As a material used for an insulating operation rod, a glass fiber reinforced composite material having excellent electrical insulation and mechanical strength is generally used. However, glass fiber is eroded by hydrogen fluoride gas generated when an electric current is interrupted. The mechanical strength and surface resistance may be reduced. Therefore, when an insulating operation rod made of glass fiber reinforced composite material and a circuit breaker having a discharge generating part are housed together in a metal container filled with sulfur hexafluoride, hydrogen fluoride of the insulating operation rod is used. It would be desirable to improve resistance to gases.

絶縁操作ロッドのフッ化水素ガスに対する耐性を改善する方法としては、ガラス繊維強化複合材料の表面にエポキシ変性ポリイミド樹脂やアルミナ充填塗料等を塗布する手法が提案されている(例えば、特許文献2及び3を参照)。しかし、ガラス繊維強化複合材料の表面に、エポキシ変性ポリイミド樹脂やアルミナ充填塗料を塗布する手法では、塗布したエポキシ変性ポリイミドやアルミナ充填塗料の塗膜の接着強度が弱く、剥離等に伴う劣化が発生し、耐食性能の維持が容易でなかった。
また、駆動操作に使用される絶縁操作ロッドには軽量化が求められるが、ガラス繊維強化複合材料はガラス繊維の比重が大きいため、これで構成された絶縁操作ロッドは重いという問題があった。
As a method for improving the resistance of the insulating operation rod to hydrogen fluoride gas, a method of applying an epoxy-modified polyimide resin, an alumina-filled paint or the like to the surface of a glass fiber reinforced composite material has been proposed (for example, Patent Document 2 and 3). However, when the epoxy-modified polyimide resin or alumina-filled paint is applied to the surface of the glass fiber reinforced composite material, the coating strength of the applied epoxy-modified polyimide or alumina-filled paint is weak, and deterioration due to peeling occurs. However, it was not easy to maintain the corrosion resistance.
In addition, although the insulating operation rod used for the driving operation is required to be reduced in weight, the glass fiber reinforced composite material has a problem that the insulating operation rod constituted by this is heavy because the specific gravity of the glass fiber is large.

特開平11−181679号公報JP-A-11-181679 特開2006−333567号公報JP 2006-333567 A 特開平07−134909号公報Japanese Patent Application Laid-Open No. 07-134909

本発明は、上記した従来のガラス繊維強化複合材料から構成された絶縁操作ロッドの欠点を解消し、絶縁性に優れることは勿論のこと、軽量で、保護層の必要のない優れた耐フッ化水素ガス性、高い耐熱性、高強度及び高弾性率を有する高信頼性のガス絶縁開閉器用絶縁部材を提供することを目的とする。   The present invention eliminates the drawbacks of the above-described conventional insulating rod made of glass fiber reinforced composite material and is excellent in insulation, as well as excellent in fluorination resistance that is lightweight and does not require a protective layer. An object of the present invention is to provide a highly reliable insulating member for a gas-insulated switch having hydrogen gas properties, high heat resistance, high strength, and high elastic modulus.

そこで本発明者らは、上記の課題を解決すべく鋭意検討した結果、エポキシ樹脂を繊維のフィラメント束隙間や繊維クロスの編目に侵入・固着させた吸湿性の低いポリアリレート繊維を強化繊維として使用し、熱硬化性樹脂と複合化して得られる有機繊維強化複合材料が、軽量で、保護層の必要のない優れた耐フッ化水素ガス性、高い耐熱性、高強度及び高弾性率を有することを見出し、本発明を完成するに至った。
即ち、本発明のガス絶縁開閉器用絶縁部材は、繊維表面及び繊維内部にエポキシ樹脂が付与されたポリアリレート繊維と熱硬化性樹脂とを複合させた有機繊維強化複合材料から構成されることを特徴とする。
本発明のガス絶縁開閉器用絶縁部材に用いる熱硬化性樹脂は、エポキシ樹脂であることが好ましい。
本発明のガス絶縁開閉器は、上記したガス絶縁開閉器用絶縁部材を絶縁操作ロッドとして用いたことを特徴とする。
また、本発明のガス絶縁開閉器用絶縁部材の製造方法は、エポキシ樹脂を水系溶媒中に分散させた分散液にポリアリレート繊維を浸漬し、そのエポキシ樹脂を硬化した後、得られたポリアリレート繊維に熱硬化性樹脂を含浸させ、加熱硬化することを特徴とする。
Therefore, as a result of intensive studies to solve the above-mentioned problems, the present inventors use low hygroscopic polyarylate fibers in which epoxy resin is infiltrated / fixed into the fiber bundle gaps or fiber cloth stitches as reinforcing fibers. The organic fiber reinforced composite material obtained by combining with a thermosetting resin is lightweight and has excellent hydrogen fluoride gas resistance, high heat resistance, high strength, and high elastic modulus that do not require a protective layer. As a result, the present invention has been completed.
That is, the insulating member for a gas-insulated switch according to the present invention is composed of an organic fiber reinforced composite material in which a polyarylate fiber having an epoxy resin applied to the fiber surface and inside the fiber and a thermosetting resin are combined. And
The thermosetting resin used for the insulating member for gas insulated switch of the present invention is preferably an epoxy resin.
The gas insulated switch according to the present invention is characterized in that the above-described insulating member for a gas insulated switch is used as an insulating operation rod.
Further, the method for producing an insulating member for a gas insulated switch according to the present invention is obtained by immersing a polyarylate fiber in a dispersion liquid in which an epoxy resin is dispersed in an aqueous solvent, curing the epoxy resin, and then obtaining the polyarylate fiber obtained. It is characterized by impregnating with thermosetting resin and heat-curing.

本発明によれば、絶縁性に優れることは勿論のこと、軽量で、保護層の必要のない優れた耐フッ化水素ガス性、高い耐熱性、高強度及び高弾性率を有する高信頼性のガス絶縁開閉器用絶縁部材を提供することができる。   According to the present invention, it is not only excellent in insulation, but also light weight, excellent hydrogen fluoride gas resistance without the need for a protective layer, high heat resistance, high strength, and high reliability having high elastic modulus. An insulating member for a gas insulated switch can be provided.

本発明のガス絶縁開閉器用絶縁部材を絶縁操作ロッドとして用いたガス絶縁開閉器の一例を示す概略図である。It is the schematic which shows an example of the gas insulated switch which used the insulating member for gas insulated switches of this invention as an insulation operation rod. 本発明のガス絶縁開閉器用絶縁部材で構成された絶縁操作ロッドを示す図であり、(a)は斜視図、(b)は側方断面図、(c)は正面断面図である。It is a figure which shows the insulation operating rod comprised with the insulating member for gas insulated switches of this invention, (a) is a perspective view, (b) is a side sectional view, (c) is a front sectional view.

実施の形態1.
本発明の実施の形態1に係るガス絶縁開閉器用絶縁部材は、繊維表面及び繊維内部にエポキシ樹脂が付与されたポリアリレート繊維と熱硬化性樹脂とを複合化させた有機繊維強化複合材料から構成される。この有機繊維強化複合材料では、ポリアリレート繊維に付与されたエポキシ樹脂がアンカーとなり、マトリックス樹脂である熱硬化性樹脂と繊維との間の接着強度が高められ、複合材料全体としての強度も高められている。また、吸湿性が低い芳香族ポリエステル繊維であるポリアリレート繊維(好ましくは、20℃、65%Rhの条件で測定した時に、0.1%未満の平均水分率であるポリアリレート繊維)を強化繊維として使用していることから、ガラス繊維と比較して軽量であるだけでなく、複合材料作製時及び複合材料使用時における吸水・吸湿による電気的・機械的劣化が小さく、また、フッ化水素などの強酸に対する耐性が高い。そのため、本実施の形態に係るガス絶縁開閉器用絶縁部材は、軽量で、優れた耐フッ化水素ガス性、高い耐熱性、高強度及び高弾性率を有し、優れた絶縁性能を長期にわたって維持することができる。
Embodiment 1 FIG.
An insulating member for a gas insulated switch according to Embodiment 1 of the present invention is composed of an organic fiber reinforced composite material in which a polyarylate fiber having an epoxy resin applied to the fiber surface and inside the fiber and a thermosetting resin are combined. Is done. In this organic fiber reinforced composite material, the epoxy resin applied to the polyarylate fiber serves as an anchor, and the adhesive strength between the thermosetting resin as the matrix resin and the fiber is increased, and the strength of the composite material as a whole is also increased. ing. Further, a polyarylate fiber (preferably a polyarylate fiber having an average moisture content of less than 0.1% when measured at 20 ° C. and 65% Rh), which is an aromatic polyester fiber having low hygroscopicity, is a reinforcing fiber. It is not only lighter than glass fiber, but also has little electrical and mechanical deterioration due to water absorption and moisture absorption when making composite materials and using composite materials. High resistance to strong acids. Therefore, the insulating member for a gas-insulated switch according to the present embodiment is lightweight, has excellent hydrogen fluoride gas resistance, high heat resistance, high strength, and high elastic modulus, and maintains excellent insulating performance over a long period of time. can do.

本実施の形態に係るガス絶縁開閉器用絶縁部材は、水系エポキシ樹脂もしくは水分散エポキシ樹脂と呼ばれるエポキシ樹脂を水系溶媒中に分散させた分散液に、ポリアリレート繊維を浸漬し、そのエポキシ樹脂を室温もしくは加熱により硬化させ、ポリアリレート繊維上に固着させた後、そのポリアリレート繊維に熱硬化性樹脂を含浸させ、加熱硬化することにより製造することができる。
ポリアリレート繊維にエポキシ樹脂を付与する方法として、水系分散液を用いることにより、その粘度の低さによる浸透性の高さから、繊維の隅々まで処理を施すことができ、溶剤が水系なので、残有機溶媒の影響による性能低下がない。このエポキシ樹脂をポリアリレート繊維に付与する工程は、クロスを編む前のポリアリレート繊維フィラメントに施してもよいし、フィラメントワインディング法(FW法)においてマンドレルに巻き付ける前のポリアリレート繊維フィラメントに施してもよいが、紡糸時・製織時に付与された油剤・糊を取り除いた後のポリアリレート繊維クロスに施すことが好ましい。
The insulating member for a gas insulated switch according to the present embodiment is obtained by immersing polyarylate fibers in a dispersion obtained by dispersing an epoxy resin called water-based epoxy resin or water-dispersed epoxy resin in an aqueous solvent, Or after making it harden | cure by heating and making it fix on a polyarylate fiber, the thermosetting resin can be impregnated to the polyarylate fiber, and it can manufacture by heat-hardening.
As a method of applying an epoxy resin to the polyarylate fiber, by using an aqueous dispersion, it can be processed from the high permeability due to its low viscosity to every corner of the fiber, and the solvent is aqueous, There is no performance degradation due to the effect of residual organic solvent. The step of applying the epoxy resin to the polyarylate fiber may be applied to the polyarylate fiber filament before knitting the cloth, or may be applied to the polyarylate fiber filament before being wound around the mandrel in the filament winding method (FW method). Although it is good, it is preferable to apply to the polyarylate fiber cloth after removing the oil agent and paste applied at the time of spinning and weaving.

このエポキシ樹脂をポリアリレート繊維に付与する処理による効果の一つは、エポキシ樹脂がポリアリレート繊維のフィラメント束隙間やポリアリレート繊維クロスの編目に部分的に侵入・固着し、繊維の表面改質及びアンカー効果に加えて、繊維クロスの繊維フィラメントの交差接触点を固定しその部分のエポキシ樹脂が強いアンカーとなって、マトリックス樹脂との接着強度が高められるという点である。また、プラズマ処理等の従来のような化学的表面処理を施さないので、ポリアリレート繊維の高い耐熱性、高強度及び高弾性率は保持される。
さらに、ポリアリレート繊維の構造補強効果が挙げられる。一般に、有機繊維フィラメントの構造は、ガラス繊維のように均質な塊ではなく、表面のスキン層の下に、細かい繊維状構造(フィブリル)が更に存在するため、表面のスキン層をめくると、細かい繊維状構造が更に現れる繊維のフィブリル化現象が顕著になる。そのため、ポリアリレート繊維のような有機繊維を繊維強化複合材料に用いる場合、繊維表面だけを改質して界面の接着強度を向上させてもフィブリル化による繊維破損を招きやすく、フィブリル化による繊維脆化が繊維強化複合材料の特性の低下につながる。ポリアリレート繊維にエポキシ樹脂を付与する処理は、フィブリル化による繊維脆化の抑制にも寄与していると考えられる。
One of the effects of the treatment of applying the epoxy resin to the polyarylate fiber is that the epoxy resin partially penetrates and adheres to the filament bundle gap of the polyarylate fiber or the knitting of the polyarylate fiber cloth, thereby improving the surface of the fiber. In addition to the anchor effect, the cross contact point of the fiber filaments of the fiber cloth is fixed, and the epoxy resin in that portion becomes a strong anchor, and the adhesive strength with the matrix resin is increased. Further, since conventional chemical surface treatment such as plasma treatment is not performed, the high heat resistance, high strength and high elastic modulus of the polyarylate fiber are maintained.
Furthermore, the structural reinforcement effect of polyarylate fiber is mentioned. In general, the structure of the organic fiber filament is not a homogeneous lump like glass fiber, and a fine fibrous structure (fibril) is further present under the surface skin layer. The fiber fibrillation phenomenon in which a fibrous structure further appears becomes remarkable. For this reason, when organic fibers such as polyarylate fibers are used in fiber reinforced composite materials, even if only the fiber surface is modified to improve the adhesive strength at the interface, fiber damage due to fibrillation is likely to occur, and fiber brittleness due to fibrillation is likely to occur. This leads to a decrease in the properties of the fiber reinforced composite material. It is thought that the process which provides an epoxy resin to a polyarylate fiber has also contributed to suppression of the fiber embrittlement by fibrillation.

そのため、エポキシ樹脂が繊維表面及び繊維内部に付与されたポリアリレート繊維を強化繊維として用いた有機繊維強化複合材料は、汎用の有機繊維を用いた有機繊維強化複合材料では達成できなかった高い耐衝撃性、曲げ応力、引張応力などの補強性能を発揮することができる。   Therefore, the organic fiber reinforced composite material using polyarylate fiber with epoxy resin applied to the fiber surface and inside the fiber as the reinforcing fiber has high impact resistance that could not be achieved with organic fiber reinforced composite material using general-purpose organic fiber. Reinforcing performance such as property, bending stress and tensile stress can be exhibited.

ポリアリレート繊維の原料樹脂は、溶融液晶ポリマーであり、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸等から誘導される繰返し構成単位を有するものである。例えば、下記(1)〜(11)で表される繰返し構成単位からなるポリマーが挙げられる。   The raw resin of polyarylate fiber is a molten liquid crystal polymer, and has a repeating structural unit derived from aromatic diol, aromatic dicarboxylic acid, aromatic hydroxycarboxylic acid and the like. For example, the polymer which consists of a repeating structural unit represented by following (1)-(11) is mentioned.

Figure 2011198700
Figure 2011198700

上記溶融液晶ポリマーの中でも、(5)、(8)及び(9)で表される繰返し構成単位の組合せからなるポリマーが好ましく、(5)で表される繰返し構成単位からなるポリマーがより好ましく、下記(B)の成分を4モル%以上45モル%以下含む芳香族ポリエステルが最も好ましい。   Among the above-mentioned molten liquid crystal polymers, a polymer comprising a combination of repeating structural units represented by (5), (8) and (9) is preferred, and a polymer comprising a repeating structural unit represented by (5) is more preferred, Aromatic polyesters containing 4 mol% or more and 45 mol% or less of the following component (B) are most preferable.

Figure 2011198700
Figure 2011198700

本実施の形態で用いられる溶融液晶ポリマーは、好ましくは250℃以上350℃以下、より好ましくは260℃以上320℃以下の融点を有するポリマーである。ここでいう融点とは、JIS K7121に準拠した試験方法により測定されるものであり、示差走査熱量計(DSC)で観察される主吸熱ピークのピーク温度である。なお、紡糸後のベクトラン(登録商標)は溶融紡糸繊維であるにも拘らず、紡糸後の固相重合によって、メルトドリップをおこさず、DSC測定によっても明瞭な融点を示さず、400℃以上で分解炭化する。   The molten liquid crystal polymer used in the present embodiment is a polymer having a melting point of preferably 250 ° C. or higher and 350 ° C. or lower, more preferably 260 ° C. or higher and 320 ° C. or lower. The melting point here is measured by a test method based on JIS K7121, and is the peak temperature of the main endothermic peak observed with a differential scanning calorimeter (DSC). Although Vectran (registered trademark) after spinning is a melt-spun fiber, it does not cause melt drip by solid phase polymerization after spinning, does not show a clear melting point by DSC measurement, and is not less than 400 ° C. It decomposes and carbonizes.

本発明の効果を損なわない範囲内で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエステルエーテルケトン、フッ素樹脂等の熱可塑性ポリマーを上記溶融液晶ポリマーと併用してもよい。また、酸化チタン、カオリン、シリカ、酸化バリウム等の無機充填剤、カーボンブラック、染料、顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤などの各種添加剤を上記溶融液晶ポリマーに添加してもよい。   As long as the effects of the present invention are not impaired, a thermoplastic polymer such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyester ether ketone, fluororesin is used in combination with the molten liquid crystal polymer. Also good. Various additives such as inorganic fillers such as titanium oxide, kaolin, silica, and barium oxide, colorants such as carbon black, dyes, and pigments, antioxidants, ultraviolet absorbers, and light stabilizers are added to the molten liquid crystal polymer. It may be added.

本実施の形態で用いられる溶融液晶ポリマーからなるポリアリレート繊維フィラメントは、形態的には連続繊維であれば、フィラメント糸を多数に集束して形成された繊維束であってもよいし、撚りを加えたヤーンであってもよい。繊維束を構成する強化繊維の繊維径やフィラメント本数は、特に限定されるものではないが、繊維径は3μm以上200μm以下であることが好ましく、5μm以上50μm以下であることがより好ましく、また、フィラメント本数は50本以上100,000本以下であることが好ましく、100本以上4,000本以下であることがより好ましい。   The polyarylate fiber filament made of the molten liquid crystal polymer used in the present embodiment may be a fiber bundle formed by converging a large number of filament yarns as long as it is a continuous fiber. It may be added yarn. The fiber diameter and the number of filaments of the reinforcing fiber constituting the fiber bundle are not particularly limited, but the fiber diameter is preferably 3 μm or more and 200 μm or less, more preferably 5 μm or more and 50 μm or less, The number of filaments is preferably 50 or more and 100,000 or less, and more preferably 100 or more and 4,000 or less.

ポリアリレート繊維の表面及び内部に付与されるエポキシ樹脂には、公知の水系エポキシ樹脂もしくは水分散エポキシ樹脂を使用することができる。エポキシ樹脂は、水系溶媒で希釈した分散液の形態で使用される。特に、製造工程の環境管理の点から、溶媒の50重量%以上が水である水系溶媒中にエポキシ樹脂を分散させたエマルジョンタイプの処理液を用いることが好ましい。処理液には、エポキシ樹脂を含むエマルジョンの他に、アミン等の公知の硬化剤が添加される。   A publicly known water-based epoxy resin or water-dispersed epoxy resin can be used as the epoxy resin applied to the surface and inside of the polyarylate fiber. The epoxy resin is used in the form of a dispersion diluted with an aqueous solvent. In particular, from the viewpoint of environmental management in the production process, it is preferable to use an emulsion type treatment liquid in which an epoxy resin is dispersed in an aqueous solvent in which 50% by weight or more of the solvent is water. In addition to the emulsion containing an epoxy resin, a known curing agent such as an amine is added to the treatment liquid.

ポリアリレート繊維クロスの処理に用いられる処理液の固形分濃度は、1重量%以上50重量%以下が好ましく、1重量%以上10重量%以下がより好ましい。固形分濃度が、1重量%未満では接着強度の向上効果が乏しい場合があり、また、50重量%を超えるとポリアリレート繊維の靱性が失われる場合があり、この場合、絶縁操作ロッドの製造に支障をきたす恐れがある。   The solid concentration of the treatment liquid used for the treatment of the polyarylate fiber cloth is preferably 1% by weight to 50% by weight, and more preferably 1% by weight to 10% by weight. If the solid content concentration is less than 1% by weight, the effect of improving the adhesive strength may be poor, and if it exceeds 50% by weight, the toughness of the polyarylate fibers may be lost. There is a risk of hindrance.

本実施の形態で用いられる熱硬化性樹脂としては、例えば、エポキシ樹脂、ポリイミド樹脂、アクリル樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ウレタン樹脂、ポリイミドシリコーン樹脂、熱硬化型ポリフェニレンエーテル、変性ポリフェニレンエーテル(変性PPE)樹脂等が挙げられる。これらの熱硬化性樹脂の中でも、耐熱性などの温度特性や電気絶縁性の観点から、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、アクリル樹脂、ウレタン樹脂、ポリイミド樹脂及びシリコーン樹脂からなる群から選択される少なくとも1種を用いることが好ましく、特に、エポキシ樹脂が付与されたポリアリレート繊維との相性が良好であるという点からエポキシ樹脂が最も好ましい。マトリックス樹脂としてエポキシ樹脂を使用することによって、絶縁性が高まるだけでなく界面における接着強度がより向上し、強度及び絶縁性能に優れた有機繊維強化複合材料とすることができる。
また、これらの熱硬化性樹脂は、一種を単独で用いても、二種以上を組み合わせて用いてもよく、さらに、これらの高分子材料から選択される複数の高分子材料からなるポリマーアロイを使用することができる。
Examples of the thermosetting resin used in the present embodiment include an epoxy resin, a polyimide resin, an acrylic resin, a bismaleimide resin, a benzocyclobutene resin, a phenol resin, an unsaturated polyester resin, a diallyl phthalate resin, a silicone resin, and a urethane. Examples thereof include resins, polyimide silicone resins, thermosetting polyphenylene ethers, and modified polyphenylene ether (modified PPE) resins. Among these thermosetting resins, selected from the group consisting of epoxy resin, unsaturated polyester resin, phenol resin, acrylic resin, urethane resin, polyimide resin and silicone resin from the viewpoint of temperature characteristics such as heat resistance and electrical insulation It is preferable to use at least one selected from the above, and an epoxy resin is most preferable from the viewpoint of good compatibility with the polyarylate fiber to which the epoxy resin is applied. By using an epoxy resin as the matrix resin, not only the insulating property is increased, but also the adhesive strength at the interface is further improved, and an organic fiber reinforced composite material excellent in strength and insulating performance can be obtained.
These thermosetting resins may be used singly or in combination of two or more, and a polymer alloy composed of a plurality of polymer materials selected from these polymer materials is used. Can be used.

ガス絶縁開閉器用絶縁部材の形態は、特に限定されるものではなく、積層板、積層体等も含まれる。ガス絶縁開閉器用絶縁部材の形状については、特に限定されるものではなく、公知の形状を採用することができ、例えば、立方体状、球状、円柱状、板状、フィルム状、棒状、チューブ状等が挙げられる。なお、ガス絶縁開閉器用絶縁部材は、ある成形体の一部分に組み込まれたものであってもよい。   The form of the insulating member for a gas insulated switch is not particularly limited, and includes a laminated plate, a laminated body, and the like. The shape of the insulating member for the gas insulated switch is not particularly limited, and a known shape can be adopted, for example, a cubic shape, a spherical shape, a cylindrical shape, a plate shape, a film shape, a rod shape, a tube shape, etc. Is mentioned. In addition, the insulating member for gas insulated switches may be incorporated in a part of a certain molded body.

ガス絶縁開閉器用絶縁部材の成形方法は、特に限定されるものではなく、押出成形法、射出成形法、圧縮成形法、トランスファー成形法、ブロー成形法、真空成形法、回転成形法等が適用可能である。   The method of molding the insulating member for the gas insulated switch is not particularly limited, and an extrusion molding method, an injection molding method, a compression molding method, a transfer molding method, a blow molding method, a vacuum molding method, a rotational molding method, etc. can be applied. It is.

上述したように、本実施の形態に係るガス絶縁開閉器用絶縁部材は、高い耐熱性、高強度及び高弾性率を有し、電気絶縁性及び耐フッ化水素ガス性に優れることから、ガス絶縁開閉器用の絶縁操作ロッドに好適に用いることができる。また、本実施の形態に係るガス絶縁開閉器用絶縁部材を絶縁操作ロッドとして用いた場合には、従来のガラス繊維強化複合材料のようなフッ化水素ガスの侵食から保護するためのコーティングが不要である。更に、従来のガラス繊維強化複合材料と比較して軽量であることから、駆動部に位置する絶縁操作ロッドは、その恩恵を受け、駆動に必要なトルクを抑えることができ、省電力となり、また、各部品の寿命を向上させることができる。特に、本実施の形態に係るガス絶縁開閉器用絶縁部材は、発電所又は変電所に設置される大型のガス絶縁開閉器の絶縁操作ロッドに好適に用いることができる。   As described above, the insulating member for a gas-insulated switch according to the present embodiment has high heat resistance, high strength, and high elastic modulus, and is excellent in electrical insulation and hydrogen fluoride gas resistance. It can be suitably used for an insulating operation rod for a switch. In addition, when the insulating member for a gas insulated switch according to the present embodiment is used as an insulating operation rod, a coating for protecting from erosion of hydrogen fluoride gas as in a conventional glass fiber reinforced composite material is unnecessary. is there. In addition, because it is lighter than conventional glass fiber reinforced composite materials, the insulation operating rod located in the drive unit can benefit from it, and can reduce the torque required for driving, saving power, The life of each part can be improved. In particular, the insulating member for a gas-insulated switch according to the present embodiment can be suitably used for an insulating operation rod of a large-sized gas-insulated switch installed in a power plant or a substation.

図1は、本実施の形態に係るガス絶縁開閉器用絶縁部材を絶縁操作ロッドとして用いたガス絶縁開閉器の一例を示す概略図である。図1において、1はガス絶縁開閉器、2は絶縁操作ロッド、3はピストンロッド、4は支持絶縁体、5は主回路端子、6は内部導体、7は架台、8は接地端子、9はフィンガーコンタクト、10はピストン、11は絶縁支持筒、12は油圧操作シリンダ、13はパッファシリンダ、14はコンデンサー、15はシールド、16は主タンクである。主タンク16は、密閉容器となっており、その内部には内部導体6を絶縁するための六フッ化硫黄で満たされている。絶縁操作ロッド2に本実施の形態に係るガス絶縁開閉器用絶縁部材を採用したこと以外は、公知のガス絶縁開閉器と同様の構成である。図2は、図1に示される絶縁操作ロッドの要部拡大図であり、(a)は斜視図、(b)は側方断面図、(c)は正面断面図である。   FIG. 1 is a schematic view showing an example of a gas insulated switch using an insulating member for a gas insulated switch according to the present embodiment as an insulating operation rod. In FIG. 1, 1 is a gas-insulated switch, 2 is an insulating operation rod, 3 is a piston rod, 4 is a support insulator, 5 is a main circuit terminal, 6 is an internal conductor, 7 is a mount, 8 is a ground terminal, 9 is Finger contacts, 10 a piston, 11 an insulating support cylinder, 12 a hydraulic operation cylinder, 13 a puffer cylinder, 14 a condenser, 15 a shield, and 16 a main tank. The main tank 16 is a sealed container, and the inside thereof is filled with sulfur hexafluoride for insulating the inner conductor 6. The structure is the same as that of a known gas insulated switch except that the insulating member for gas insulated switch according to the present embodiment is adopted for the insulating operation rod 2. FIG. 2 is an enlarged view of a main part of the insulating operation rod shown in FIG. 1, wherein (a) is a perspective view, (b) is a side sectional view, and (c) is a front sectional view.

上記した絶縁操作ロッドの製造方法としては、繊維クロスをマンドレルに巻き付けて円筒状の基材を作製した後、真空含浸成形法等で成形する方法、フィラメントワインディング法(FW法)で成形する方法、基材を作製した後、真空含浸成形法等で成形する方法等が挙げられる。   As a manufacturing method of the above-described insulating operation rod, after a fiber cloth is wound around a mandrel to form a cylindrical base material, a method of forming by a vacuum impregnation forming method or the like, a method of forming by a filament winding method (FW method), Examples thereof include a method of forming a substrate and then forming it by a vacuum impregnation forming method or the like.

絶縁操作ロッド2の内側は、その成形に用いる芯金の表面形状に反映される。予め芯金の表面にねじ山を設けることで、成形される有機繊維強化複合材料からなる絶縁操作ロッド2に他の部品と接続させるための取付け部を設けることは可能である。また、電動ドリル等を用いて、成形された有機繊維強化複合材料からなる絶縁操作ロッド2に孔を空け、この孔を用いて他の部材とねじ止めすることも可能である。従って、本実施の形態に係る有機繊維強化複合材料は、六フッ化硫黄を充填したガス遮断器やガス絶縁開閉器等のガス絶縁装置に用いられる絶縁ロッド等の部品の形に容易に成形したり、加工したりでき、また、それらを他の部品に取付け可能な形状にすることもできる。要するに、特にフッ化水素ガスの生成の恐れのある密閉空間を有する装置や、フッ化水素ガスを密閉する空間を有する装置に対して、本実施の形態に係る有機繊維強化複合材料は機械強度や表面抵抗の低下を招かない有効な部品となり得る。   The inner side of the insulating operation rod 2 is reflected in the surface shape of the metal core used for the molding. By providing a thread on the surface of the core bar in advance, it is possible to provide a mounting portion for connecting the insulating operation rod 2 made of the organic fiber reinforced composite material to be connected to other parts. It is also possible to make a hole in the insulating operation rod 2 made of a molded organic fiber reinforced composite material using an electric drill or the like and screw it to another member using this hole. Therefore, the organic fiber reinforced composite material according to the present embodiment is easily formed into a part such as an insulating rod used in a gas insulation device such as a gas circuit breaker or a gas insulation switch filled with sulfur hexafluoride. Or can be made into a shape that can be attached to other parts. In short, the organic fiber reinforced composite material according to the present embodiment is particularly suitable for a device having a sealed space where hydrogen fluoride gas may be generated or a device having a space for sealing hydrogen fluoride gas. It can be an effective component that does not cause a decrease in surface resistance.

以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
ポリアリレート繊維クロス(株式会社クラレ製ベクトラン(登録商標)、平均水分率0.1%未満(20℃、65%Rhの条件で測定))を、ノニオン系乳化剤を使用したエマルジョンタイプの水系エポキシ樹脂(ジャパンエポキシレジン株式会社製jER)及び水系エポキシ樹脂硬化剤(ジャパンエポキシレジン製jER硬化剤)を固形分濃度2重量%に調整した処理液に浸漬し、100℃で30分間乾燥後、170℃で30分間加熱硬化することにより、繊維表面及び内部にエポキシ樹脂を付与した。このクロスをマンドレルに巻回し、内径φ20mm、外径φ40mm及び長さ約300mmのパイプ状にした後、これにエポキシ樹脂を用いて真空加圧含浸成形を行い、パイプ状の有機繊維強化複合材料を作製した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
[Example 1]
Polyarylate fiber cloth (Vectran (registered trademark) manufactured by Kuraray Co., Ltd., average moisture content of less than 0.1% (measured under the conditions of 20 ° C. and 65% Rh)), an emulsion-type aqueous epoxy resin using a nonionic emulsifier (JER made by Japan Epoxy Resin Co., Ltd.) and an aqueous epoxy resin curing agent (jER curing agent made by Japan Epoxy Resin) were immersed in a treatment solution adjusted to a solid content concentration of 2% by weight, dried at 100 ° C. for 30 minutes, and then 170 ° C. The epoxy resin was imparted to the fiber surface and inside by heating and curing for 30 minutes. This cloth is wound around a mandrel to form a pipe having an inner diameter of φ20 mm, an outer diameter of φ40 mm and a length of about 300 mm, and then subjected to vacuum pressure impregnation using an epoxy resin to obtain a pipe-like organic fiber reinforced composite material. Produced.

[比較例1]
ポリアリレート繊維クロスの繊維表面及び内部にエポキシ樹脂を付与しなかったこと以外は実施例1と同様にしてパイプ状の有機繊維強化複合材料を作製した。
[Comparative Example 1]
A pipe-like organic fiber reinforced composite material was produced in the same manner as in Example 1 except that the epoxy resin was not applied to the fiber surface and inside of the polyarylate fiber cloth.

[比較例2]
エポキシ樹脂を付与したポリアリレート繊維クロスの代わりに、シランカップリング剤(信越化学工業株式会社KBE−903)で前処理したポリアリレート繊維クロスを使用したこと以外は実施例1と同様にしてパイプ状の有機繊維強化複合材料を作製した。
[Comparative Example 2]
In the same manner as in Example 1 except that a polyarylate fiber cloth pretreated with a silane coupling agent (Shin-Etsu Chemical Co., Ltd. KBE-903) was used instead of the polyarylate fiber cloth provided with an epoxy resin, a pipe shape was used. An organic fiber reinforced composite material was prepared.

[比較例3]
ポリアリレート繊維クロス(株式会社クラレ製ベクトラン(登録商標))の代わりに、アラミド繊維(デュポン製ケブラー(登録商標)、平均水分率4%(20℃、65%Rhの条件で測定))を使用したこと以外は比較例1と同様にしてパイプ状の有機繊維強化複合材料を作製した。
[Comparative Example 3]
Instead of polyarylate fiber cloth (Kuraray Co., Ltd. Vectran (registered trademark)), aramid fiber (DuPont Kevlar (registered trademark), average moisture content 4% (measured under the conditions of 20 ° C. and 65% Rh)) A pipe-like organic fiber reinforced composite material was produced in the same manner as in Comparative Example 1 except that.

[比較例4]
ポリアリレート繊維クロス(株式会社クラレ製ベクトラン(登録商標))の代わりに、アラミド繊維(帝人テクノプロダクツ株式会社製テクノーラ(登録商標)、平均水分率2%(20℃、65%Rhの条件で測定))を使用したこと以外は実施例1と同様にしてパイプ状の有機繊維強化複合材料を作製した。
[Comparative Example 4]
Instead of polyarylate fiber cloth (Kuraray Co., Ltd. Vectran (registered trademark)), aramid fiber (Teijin Techno Products Co., Ltd. Technora (registered trademark), average moisture content of 2% (20 ° C, 65% Rh) A pipe-shaped organic fiber reinforced composite material was produced in the same manner as in Example 1 except that)) was used.

実施例1及び比較例1〜4で得られたパイプ状の有機繊維強化複合材料を、5mm厚の輪切りにし、界面剥離強度の評価、塩水煮沸後の絶縁抵抗の評価及び塩水煮沸後の界面の観察を行った。結果を表1に示す。
界面剥離強度の評価は、輪切りにしたサンプルの外側を固定し、一定の直径の鉄柱で押し出した時の強度を測定した。なお、表1中の剥離強度は、比較例1に対する相対値として示されている。
塩水煮沸後の絶縁抵抗の評価は、サンプルを0.1重量%の塩水中に18時間浸漬して行った。煮沸前後のサンプル断面間の絶縁抵抗を測定し、抵抗低下が2桁未満のものを良好とし、抵抗低下が2桁以上のものを不良とした。
塩水煮沸後の界面の観察は、サンプル断面にインクを垂らし、インクの染み込み状態を観察し、染み込み部分があるものを不良とした。
これらの試験は、界面の接着強度及びマトリックス樹脂の含浸性を確認するために行うものであり、マトリックス樹脂の含浸性が不良であると、それだけ水が浸透し、絶縁抵抗の低下が著しくなる。
The pipe-like organic fiber reinforced composite material obtained in Example 1 and Comparative Examples 1 to 4 was cut into 5 mm thick slices, evaluated for interfacial peel strength, evaluation of insulation resistance after boiling in salt water, and interface after boiling in salt water. Observations were made. The results are shown in Table 1.
The interface peel strength was evaluated by measuring the strength when the outside of a sample cut into a ring was fixed and extruded with an iron pillar having a constant diameter. The peel strength in Table 1 is shown as a relative value with respect to Comparative Example 1.
The insulation resistance after boiling in salt water was evaluated by immersing the sample in 0.1% by weight salt water for 18 hours. The insulation resistance between the sample cross-sections before and after boiling was measured, and a resistance drop of less than 2 digits was considered good, and a resistance drop of 2 digits or more was judged bad.
In the observation of the interface after boiling with salt water, ink was dropped on the cross section of the sample, the state of ink soaking was observed, and a part with a soaking part was regarded as defective.
These tests are performed in order to confirm the adhesive strength of the interface and the impregnation property of the matrix resin. If the impregnation property of the matrix resin is poor, water penetrates so much and the insulation resistance is remarkably reduced.

Figure 2011198700
Figure 2011198700

表1から分かるように、実施例1の有機繊維強化複合材料は、比較例1〜4の有機繊維強化複合材料と比較して、界面接着強度が高く、マトリックス樹脂の含浸性が優れていることが確認できた。   As can be seen from Table 1, the organic fiber reinforced composite material of Example 1 has higher interfacial adhesive strength and excellent matrix resin impregnation properties than the organic fiber reinforced composite materials of Comparative Examples 1 to 4. Was confirmed.

[実施例2]
外径60mm及び厚さ10mmの筒状のポリアリレート繊維クロス(株式会社クラレ製ベクトラン(登録商標))に実施例1と同様の方法でエポキシ樹脂を付与した後、エポキシ樹脂を用いて真空加圧含浸成形を行い、図2に示されるような有機繊維強化複合材料からなる絶縁操作ロッドを作製した。
[Example 2]
An epoxy resin was applied to a cylindrical polyarylate fiber cloth (Vectran (registered trademark) manufactured by Kuraray Co., Ltd.) having an outer diameter of 60 mm and a thickness of 10 mm in the same manner as in Example 1, and then vacuum-pressed using the epoxy resin. Impregnation molding was performed to produce an insulating operation rod made of an organic fiber reinforced composite material as shown in FIG.

[比較例5]
エポキシ樹脂を付与したポリアリレート繊維クロスの代わりに、シランカップリング剤で前処理した筒状のガラス繊維クロスを使用したこと以外は実施例2と同様にして絶縁操作ロッドを作製した。
[Comparative Example 5]
An insulating operation rod was produced in the same manner as in Example 2 except that a cylindrical glass fiber cloth pretreated with a silane coupling agent was used instead of the polyarylate fiber cloth provided with an epoxy resin.

実施例2及び比較例5で得られた絶縁操作ロッドの耐フッ化水素性を評価した。結果を表2に示す。
耐フッ化水素性の評価は、絶縁操作ロッドを0.3重量%の希フッ化水素水溶液に2時間浸漬し、浸漬後の絶縁操作ロッド表面を観察することにより行った。浸漬後の表面に変色箇所が見られたものを不良とし、浸漬後の表面に変色箇所が全く見られないものを良好とした。
The hydrogen fluoride resistance of the insulating operation rods obtained in Example 2 and Comparative Example 5 was evaluated. The results are shown in Table 2.
The hydrogen fluoride resistance was evaluated by immersing the insulating operation rod in a 0.3% by weight dilute hydrogen fluoride aqueous solution for 2 hours and observing the surface of the insulating operation rod after immersion. Those in which discolored portions were observed on the surface after immersion were regarded as defective, and those in which no discolored portions were observed on the surface after immersion were determined as good.

Figure 2011198700
Figure 2011198700

表2から分かるように、実施例2の絶縁操作ロッドは、比較例5のガラス繊維強化複合材料からなる絶縁操作ロッドと比較して、耐フッ化水素性が優れていることが確認できた。   As can be seen from Table 2, it was confirmed that the insulating operation rod of Example 2 was excellent in hydrogen fluoride resistance as compared with the insulating operation rod made of the glass fiber reinforced composite material of Comparative Example 5.

1 ガス絶縁開閉器、2 絶縁操作ロッド、3 ピストンロッド、4 支持絶縁体、5 主回路端子、6 内部導体、7 架台、8 接地端子、9 フィンガーコンタクト、10 ピストン、11 絶縁支持筒、12 油圧操作シリンダ、13 パッファシリンダ、14 コンデンサー、15 シールド、16 主タンク。   DESCRIPTION OF SYMBOLS 1 Gas insulation switch, 2 Insulation operation rod, 3 Piston rod, 4 Support insulator, 5 Main circuit terminal, 6 Internal conductor, 7 Mount, 8 Grounding terminal, 9 Finger contact, 10 Piston, 11 Insulation support cylinder, 12 Hydraulic pressure Operation cylinder, 13 Puffer cylinder, 14 Condenser, 15 Shield, 16 Main tank.

Claims (4)

繊維表面及び繊維内部にエポキシ樹脂が付与されたポリアリレート繊維と熱硬化性樹脂とを複合させた有機繊維強化複合材料から構成されることを特徴とするガス絶縁開閉器用絶縁部材。   An insulating member for a gas-insulated switch comprising an organic fiber reinforced composite material in which a polyarylate fiber having an epoxy resin applied to the fiber surface and inside the fiber and a thermosetting resin are combined. 前記熱硬化性樹脂が、エポキシ樹脂であることを特徴とする請求項1に記載のガス絶縁開閉器用絶縁部材。   The insulating member for a gas-insulated switch according to claim 1, wherein the thermosetting resin is an epoxy resin. エポキシ樹脂を水系溶媒中に分散させた分散液にポリアリレート繊維を浸漬し、該エポキシ樹脂を硬化した後、該ポリアリレート繊維に熱硬化性樹脂を含浸させ、加熱硬化することを特徴とするガス絶縁開閉器用絶縁部材の製造方法。   A gas characterized by immersing polyarylate fiber in a dispersion liquid in which an epoxy resin is dispersed in an aqueous solvent, curing the epoxy resin, impregnating the polyarylate fiber with a thermosetting resin, and curing by heating. A method for manufacturing an insulating member for an insulating switch. 請求項1又は2に記載のガス絶縁開閉器用絶縁部材を絶縁操作ロッドとして用いたことを特徴とするガス絶縁開閉器。   A gas insulated switch comprising the insulating member for a gas insulated switch according to claim 1 or 2 as an insulating operation rod.
JP2010066662A 2010-03-23 2010-03-23 Insulating member for gas insulated switch, manufacturing method thereof, and gas insulated switch using the same Active JP5306270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066662A JP5306270B2 (en) 2010-03-23 2010-03-23 Insulating member for gas insulated switch, manufacturing method thereof, and gas insulated switch using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066662A JP5306270B2 (en) 2010-03-23 2010-03-23 Insulating member for gas insulated switch, manufacturing method thereof, and gas insulated switch using the same

Publications (2)

Publication Number Publication Date
JP2011198700A true JP2011198700A (en) 2011-10-06
JP5306270B2 JP5306270B2 (en) 2013-10-02

Family

ID=44876627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066662A Active JP5306270B2 (en) 2010-03-23 2010-03-23 Insulating member for gas insulated switch, manufacturing method thereof, and gas insulated switch using the same

Country Status (1)

Country Link
JP (1) JP5306270B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956235A (en) * 2014-04-24 2014-07-30 胡和萍 Double-end high voltage insulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299039A (en) * 1999-04-14 2000-10-24 Mitsubishi Electric Corp Insulated operation rod for gas-blast circuit breaker
JP2009292180A (en) * 2008-06-02 2009-12-17 Nsk Ltd Rack-and-pinion type electric power steering device
JP2010001971A (en) * 2008-06-20 2010-01-07 Nsk Ltd Rolling bearing for high speed rotation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299039A (en) * 1999-04-14 2000-10-24 Mitsubishi Electric Corp Insulated operation rod for gas-blast circuit breaker
JP2009292180A (en) * 2008-06-02 2009-12-17 Nsk Ltd Rack-and-pinion type electric power steering device
JP2010001971A (en) * 2008-06-20 2010-01-07 Nsk Ltd Rolling bearing for high speed rotation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956235A (en) * 2014-04-24 2014-07-30 胡和萍 Double-end high voltage insulator

Also Published As

Publication number Publication date
JP5306270B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
EP2418669B1 (en) Gas insulation device
JP4349118B2 (en) Method for producing sizing-coated carbon fiber
US7498517B2 (en) MICA tape, electrical rotating machine coil, and electrical rotating machine comprising the electrical rotating machine coil
RU2013145605A (en) ELECTRICAL CABLE AND METHOD FOR ITS MANUFACTURE
EP2629305B1 (en) Composite materials for use in high voltage devices
JP7094689B2 (en) Insulation components for electrical insulation systems and electromechanical fields
JP5306270B2 (en) Insulating member for gas insulated switch, manufacturing method thereof, and gas insulated switch using the same
US6153301A (en) Mica tape and insulated coil using the same
US6777043B2 (en) Fuse tube and method of manufacture thereof
US6524710B1 (en) Method for producing insulating tapes containing mica, and the utilization thereof
KR20210022960A (en) Carbon fiber reinforced composite reinforced with aramid nanofibers and method for manufacturing the same
CN217086202U (en) Strong-breaking-force cable
JP2014125698A (en) Sizing agent-stuck carbon fiber bundle, method for producing the same, and method for producing pressure vessel using the sizing agent-stuck carbon fiber bundle
KR102449116B1 (en) Ovehead transmission system having an overrhead cable and construction method thereof
WO2021031782A1 (en) Novel insulating pull rod
Andreopoulos et al. Treated polyethylene fibres as reinforcement for epoxy resins
JP2008066105A (en) Small-diameter electric wire cord
Volk et al. Thermoplastic composite materials for high voltage insulator applications
CN1260741C (en) Compound insulator with core rod structure
JPH07161260A (en) Resistor supporting member and sf6 gas insulation breaker
CN220628999U (en) Built-in sheath, motor rotor assembly and motor
KR20230154768A (en) Dynamic cables with thermoplastic sheath reinforced by wound fibres
CN115819921B (en) Preparation method and application of interface modified aramid fiber/epoxy resin composite material
KR102449183B1 (en) Central tension member for an overhead cable and the overhead cable comprising the same
JPH0159561B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5306270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250