JP2011198501A - Solid polymer fuel cell, membrane-electrode assembly, electrode catalyst layer, and method for manufacturing the same - Google Patents

Solid polymer fuel cell, membrane-electrode assembly, electrode catalyst layer, and method for manufacturing the same Download PDF

Info

Publication number
JP2011198501A
JP2011198501A JP2010061004A JP2010061004A JP2011198501A JP 2011198501 A JP2011198501 A JP 2011198501A JP 2010061004 A JP2010061004 A JP 2010061004A JP 2010061004 A JP2010061004 A JP 2010061004A JP 2011198501 A JP2011198501 A JP 2011198501A
Authority
JP
Japan
Prior art keywords
membrane
catalyst
catalyst layer
electrode
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010061004A
Other languages
Japanese (ja)
Other versions
JP5515902B2 (en
Inventor
Madoka Ozawa
まどか 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010061004A priority Critical patent/JP5515902B2/en
Publication of JP2011198501A publication Critical patent/JP2011198501A/en
Application granted granted Critical
Publication of JP5515902B2 publication Critical patent/JP5515902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane electrode assembly for solid polymer fuel cell capable of enhancing power generation efficiency by increasing all of gas channel, proton conduction path, and three-phase interface without increasing a catalyst layer resistance and utilizing effectively the catalyst in the catalyst layer at the time of obtaining a solid polymer fuel cell, and a manufacturing method of the membrane electrode assembly for solid polymer fuel cell.SOLUTION: In the membrane electrode assembly, at least the electrode catalyst layer on the cathode side is composed of a porous film in which a proton conductive polymer obtained by freezing and drying is formed continuously and a catalyst carrying carbon, and the higher the catalyst density in the electrode catalyst layer is, the nearer it is to the polymer electrolyte membrane, while the lower the density is, the farther it is separated from the polymer electrolyte membrane.

Description

本発明は、固体高分子形燃料電池用の膜・電極接合体および膜・電極接合体の製造方法とそれを用いた固体高分子形燃料電池の技術に関する。   The present invention relates to a membrane / electrode assembly for a polymer electrolyte fuel cell, a method for producing the membrane / electrode assembly, and a technology for a polymer electrolyte fuel cell using the same.

燃料電池は、水素、酸素を燃料として、水の電気分解の逆反応を起こさせることにより電気を生み出す、一種の発電装置である。燃料電池による発電は、従来の発電方式と比較して高効率、低環境負荷、低騒音といった特徴を持ち、将来のクリーンなエネルギー源として注目されている。中でも室温付近で使用可能な固体高分子形燃料電池は、車載用電源や家庭用定置電源などへの使用が有望視されており、近年、様々な研究開発が行われている。   A fuel cell is a kind of power generation device that generates electricity by causing reverse reaction of electrolysis of water using hydrogen and oxygen as fuel. Fuel cell power generation has features such as high efficiency, low environmental load, and low noise compared to conventional power generation methods, and is attracting attention as a clean energy source in the future. In particular, polymer electrolyte fuel cells that can be used near room temperature are expected to be used for in-vehicle power sources and household stationary power sources, and in recent years, various research and development have been conducted.

ここで、燃料電池の実用化に向けての課題は、出力密度、ガス利用率、耐久性の向上、コスト削減などが挙げられる。
出力密度、ガス利用率を向上させるためには、燃料ガス、プロトンの供給が十分であり、かつ触媒電極中での酸化還元反応サイトの表面積をより大きくする必要がある。コスト削減のために最も要求されているのは、電極に触媒として使用されている白金の使用量の低減である。
Here, examples of the challenges for the practical application of fuel cells include power density, gas utilization rate, improved durability, and cost reduction.
In order to improve the power density and the gas utilization rate, it is necessary to supply fuel gas and proton sufficiently and to increase the surface area of the oxidation-reduction reaction site in the catalyst electrode. The most demanded for cost reduction is a reduction in the amount of platinum used as a catalyst for the electrode.

固体高分子形燃料電池は、一般的に、多数の単セルが積層されて構成されている。単セルは、膜・電極接合体をガス流路を有するセパレータで挟んだ構造となっている。また、上記膜・電極接合体は、酸化極と還元極の2つの電極で固体高分子電解質膜を挟んで接合した構造となっている。そして、酸化極では水素ガスの酸化が、還元極では水素イオンの還元がそれぞれ起こる。この酸化還元反応は、電極内部において、電子伝導体であるカーボン粒子と、プロトン伝導体との両方に接し、かつ導入ガスが吸着しうる触媒の表面でのみ起こる。酸化還元反応が起こるこの部分は、三相界面と呼ばれている。この三相界面の面積が大きく、かつ三相界面へのプロトン、燃料ガスの供給パスを満足させることが、単セルの出力密度、ガス利用率の向上へとつながる。   In general, a polymer electrolyte fuel cell is configured by stacking a large number of single cells. The single cell has a structure in which a membrane / electrode assembly is sandwiched between separators having gas flow paths. The membrane / electrode assembly has a structure in which a solid polymer electrolyte membrane is sandwiched between two electrodes, an oxidation electrode and a reduction electrode. Then, oxidation of hydrogen gas occurs at the oxidation electrode, and reduction of hydrogen ions occurs at the reduction electrode. This oxidation-reduction reaction occurs inside the electrode only on the surface of the catalyst that is in contact with both the carbon particles as the electron conductor and the proton conductor and can adsorb the introduced gas. This part where the redox reaction takes place is called the three-phase interface. The large area of the three-phase interface and satisfying the proton and fuel gas supply path to the three-phase interface lead to an improvement in the output density and gas utilization rate of the single cell.

このためには触媒層中のガスの拡散性や発生した水の排水性、プロトン伝導性高分子の含水率およびプロトン伝導性などを向上させる必要がある。また、三相界面ではないところに存在する白金触媒粒子は、電極の酸化還元反応に寄与しないため、全く機能しないことになる。白金使用量を低減させるためには、この機能しない白金の量をできるだけ減らして、使用する白金の有効利用率を高める必要がある。   For this purpose, it is necessary to improve the diffusibility of the gas in the catalyst layer, the drainage of the generated water, the water content of the proton conductive polymer, the proton conductivity, and the like. In addition, platinum catalyst particles that are not located at the three-phase interface do not contribute to the oxidation-reduction reaction of the electrode, and thus do not function at all. In order to reduce the amount of platinum used, it is necessary to reduce the amount of platinum that does not function as much as possible to increase the effective utilization rate of the platinum used.

従来、上記触媒層は、触媒担持カーボンとプロトン伝導性高分子と溶媒とを混同した触媒インクを使用して、各種塗布法やスクリーン印刷法などによって基材上に形成することが多かった。この場合、塗工された触媒インクを乾燥させる際に触媒担持カーボンの凝集が起こりやすく、その結果、触媒とプロトン伝導性高分子との界面が減ったり、触媒層における空隙率が低下して燃料ガスの経路が遮断されたりして、セルの出力密度が低下するなどの傾向が見られた。   Conventionally, the catalyst layer is often formed on a substrate by various coating methods, screen printing methods, and the like using a catalyst ink in which catalyst-supported carbon, a proton conductive polymer, and a solvent are confused. In this case, agglomeration of the catalyst-supported carbon is likely to occur when the coated catalyst ink is dried. As a result, the interface between the catalyst and the proton-conductive polymer is reduced, or the porosity in the catalyst layer is reduced to reduce the fuel. There was a tendency for the power density of the cell to decrease due to the gas path being cut off.

そこで、触媒担持カーボンの凝集を防ぎ三相界面を増やすために凍結乾燥を用いる試みがなされている(たとえば、特許文献1〜3参照)。この凍結乾燥は、水を含んだ材料を凍結し真空下で氷を昇華させることにより乾燥を行うもので、凍結乾燥後の材料は凍結した際の形状を保つことができる。この凍結乾燥は、従来、食品工業における保存食品製造や医学・薬学分野において利用されている乾燥方法である。   Thus, attempts have been made to use freeze-drying in order to prevent aggregation of the catalyst-supporting carbon and increase the three-phase interface (see, for example, Patent Documents 1 to 3). This freeze-drying is performed by freezing a material containing water and sublimating ice under vacuum, and the material after freeze-drying can maintain its shape when frozen. This freeze-drying is a drying method conventionally used in the food industry in the food industry and in the medical / pharmaceutical fields.

ここで、特許文献1には、触媒担持カーボンとプロトン伝導性高分子と溶媒とを混合した触媒インクを凍結乾燥した後に熱処理を行い粉砕して触媒層構成粉末を得、その粉末をシート化することで触媒層を得ることが記載されている。
また、特許文献2には、触媒担持カーボンとプロトン伝導性高分子と溶媒とを混合した触媒インクを凍結乾燥したものに溶媒を添加して再インク化し塗布することで触媒層を得ることが記載されている。
Here, in Patent Document 1, a catalyst ink in which catalyst-supported carbon, a proton conductive polymer, and a solvent are mixed is freeze-dried and then heat-treated and pulverized to obtain a catalyst layer-constituting powder, and the powder is formed into a sheet. It is described that a catalyst layer is obtained.
Patent Document 2 describes that a catalyst layer is obtained by adding a solvent to a freeze-dried catalyst ink obtained by mixing a catalyst-supporting carbon, a proton-conductive polymer, and a solvent, and applying the ink again. Has been.

また、特許文献3には、触媒担持カーボンと水を混合攪拌した第1中間物を凍結乾燥し多孔質とした後、減圧下でナフィオン溶液を添加して、電極用ペーストとし、これを基材に塗布することにより電極触媒層を得ることが記載されている。   Patent Document 3 discloses that a first intermediate obtained by mixing and stirring catalyst-carrying carbon and water is freeze-dried to be porous, and then a Nafion solution is added under reduced pressure to form an electrode paste. It is described that an electrode catalyst layer is obtained by applying to the surface.

特開平8−185865号公報JP-A-8-185865 特開2003−86190号公報JP 2003-86190 A 特開2009−117069号公報JP 2009-1117069 A

しかしながら、特許文献1による方法では、反応点は増大しても粉砕工程を経るためにプロトン伝導性高分子によるプロトン伝導パスの形成が不十分であり、プロトン伝導性の低下により触媒層抵抗が大きくなるために発電性能がそれほど伸びない。
また、特許文献2による方法では、再インク化の際の分散混合によりプロトン伝導性高分子の吸着が剥がれて触媒担持カーボンの凝集が起こったり、ガスチャネルとなる空孔が潰れたりして発電特性はやはりそれほど向上しない。
However, in the method according to Patent Document 1, since the pulverization process is performed even if the reaction point increases, formation of a proton conduction path by the proton conductive polymer is insufficient, and the catalyst layer resistance increases due to the decrease in proton conductivity. Therefore, the power generation performance does not increase so much.
Further, in the method according to Patent Document 2, the adsorption of the proton conductive polymer is peeled off due to the dispersion mixing at the time of reinking, and the catalyst-carrying carbon is aggregated or the pores serving as gas channels are crushed, thereby generating power characteristics. Still does not improve much.

また、特許文献3による方法では、触媒層の全領域で同様の頻度で触媒が存在するため、結果として使用されない触媒がでてくる。また、ペーストを基材に塗布して触媒層を形成する方法では、発生した水の排出性が十分ではなく、フラッディングによる電圧低下が懸念される。
本発明は、上記問題を解決するためになされたものであり、固体高分子形燃料電池を得るに際して、触媒層抵抗を増大させることなく、ガスチャネル、プロトン伝導パス、三相界面の全てを増大させ、触媒層中の触媒を有効に利用することにより発電効率を高めることが可能な電極触媒層、膜・電極接合体、及び固体高分子形燃料電池を提供することを目的としている。
Moreover, in the method according to Patent Document 3, since the catalyst is present at the same frequency in the entire region of the catalyst layer, a catalyst that is not used appears as a result. Moreover, in the method of forming a catalyst layer by applying a paste to a base material, the generated water is not sufficiently discharged, and there is a concern about voltage drop due to flooding.
The present invention has been made to solve the above problems, and in obtaining a polymer electrolyte fuel cell, the gas channel, proton conduction path, and three-phase interface are all increased without increasing the catalyst layer resistance. It is an object of the present invention to provide an electrode catalyst layer, a membrane / electrode assembly, and a polymer electrolyte fuel cell that can increase power generation efficiency by effectively using a catalyst in the catalyst layer.

上記課題を解決するために、本発明のうち請求項1に記載した発明は、高分子電解質膜と、上記高分子電解質膜を狭持する一対の電極触媒層とを備えた膜・電極接合体に使用される、上記電極触媒層の製造方法であって、
プロトン伝導性高分子を含む分散液を基材表面に塗布し、溶媒が乾燥する前に凍結させ且つ真空下で乾燥させて基材上にプロトン伝導性高分子の多孔膜を形成する多孔膜形成工程と、
上記形成したプロトン伝導性高分子の多孔膜に、触媒担持カーボンの分散液を含浸させ且つ乾燥させることで、上記プロトン伝導性高分子の多孔膜の細孔に対し触媒担持カーボンを含浸させた第1の中間体を得る第1の中間体形成工程と、
上記第1の中間体の表面に対し触媒担時カーボンの分散液を塗布して乾燥させることで、プロトン伝導性高分子の多孔膜の細孔に吸着した触媒担持カーボンの密度が、基板に近い位置に比べ、基材から離れた位置で高くなるように設定する第2の中間体を得る第2の中間体形成工程と、
上記第2の中間体にプロトン伝導性高分子の分散液を含浸させ乾燥させる含浸乾燥工程と、
を、有することを特徴とするものである。
In order to solve the above problems, the invention described in claim 1 of the present invention is a membrane / electrode assembly including a polymer electrolyte membrane and a pair of electrode catalyst layers sandwiching the polymer electrolyte membrane. A method for producing the electrode catalyst layer used in
Forming a porous membrane by applying a dispersion containing a proton-conducting polymer to the substrate surface, freezing before the solvent dries and drying under vacuum to form a porous membrane of the proton-conducting polymer on the substrate Process,
The proton-conductive polymer porous membrane formed above was impregnated with the catalyst-supported carbon dispersion and dried to impregnate the pores of the proton-conductive polymer porous membrane with the catalyst-supported carbon. A first intermediate forming step for obtaining one intermediate;
By applying the catalyst-supported carbon dispersion to the surface of the first intermediate and drying, the density of the catalyst-supported carbon adsorbed on the pores of the porous membrane of the proton conductive polymer is close to that of the substrate. A second intermediate forming step for obtaining a second intermediate that is set to be higher at a position away from the substrate than at the position;
An impregnation drying step of impregnating the second intermediate with a dispersion of a proton conductive polymer and drying;
It is characterized by having.

次に、請求項2に記載した発明は、請求項1に記載の製造方法で製造した電極触媒層を、少なくとも上記高分子電解質膜のカソード側に配置し、上記高分子電解質膜のガラス転移点以下の温度雰囲気で加圧することにより当該高分子電解質膜に密着させることを特徴とする膜・電極接合体の製造方法を提供するものである。   Next, in the invention described in claim 2, the electrode catalyst layer manufactured by the manufacturing method described in claim 1 is disposed at least on the cathode side of the polymer electrolyte membrane, and the glass transition point of the polymer electrolyte membrane is determined. The present invention provides a method for producing a membrane / electrode assembly, wherein the membrane / electrode assembly is brought into close contact with the polymer electrolyte membrane by applying pressure in the following temperature atmosphere.

次に、請求項3に記載した発明は、高分子電解質膜と、上記高分子電解質膜を狭持した一対の電極触媒層と、を備える膜・電極接合体であって、
一対の電極触媒層のうちの少なくともカソード側の電極触媒層は、プロトン伝導性高分子が連続して成る多孔膜と触媒担持カーボンとを有し、且つ、当該電極触媒層中の触媒密度が、上記高分子電解質膜から離れた位置に比べ、上記高分子電解質膜に近い位置で高く設定されていることを特徴とするものである。
Next, the invention described in claim 3 is a membrane / electrode assembly comprising a polymer electrolyte membrane and a pair of electrode catalyst layers sandwiching the polymer electrolyte membrane,
At least the cathode-side electrode catalyst layer of the pair of electrode catalyst layers has a porous membrane composed of a continuous proton-conductive polymer and catalyst-supporting carbon, and the catalyst density in the electrode catalyst layer is: It is characterized by being set higher at a position closer to the polymer electrolyte membrane than at a position away from the polymer electrolyte membrane.

次に、請求項4に記載した発明は、請求項3に記載の膜・電極接合体を有することを特徴とする固体高分子形燃料電池を提供するものである。   Next, an invention described in claim 4 provides a polymer electrolyte fuel cell comprising the membrane-electrode assembly according to claim 3.

本発明の膜・電極接合体によれば、凍結乾燥により得られるプロトン伝導性高分子が連続して成る多孔膜と触媒担持カーボンから成ることにより、触媒層抵抗を増大させることなく、ガスチャネル、プロトン伝導パス、三相界面の全てを増大させることができる。
また、電極触媒層中の触媒密度を上記高分子電解質膜に近いほど高く設定することで、プロトンが届きやすい高分子電解質膜近傍に触媒が高担持密度で存在して効率よく発電し、ガス拡散層側ではガス拡散や排水を促すことができるため、触媒層中の触媒を有効に利用することができる。
According to the membrane / electrode assembly of the present invention, the gas channel can be formed without increasing the catalyst layer resistance by comprising a porous membrane comprising a continuous proton conductive polymer obtained by freeze-drying and catalyst-supporting carbon. The proton conduction path and all three-phase interfaces can be increased.
In addition, by setting the catalyst density in the electrode catalyst layer higher as it is closer to the polymer electrolyte membrane, the catalyst is present in the vicinity of the polymer electrolyte membrane where protons are likely to reach at a high supported density, generating power efficiently, and gas diffusion. Since gas diffusion and drainage can be promoted on the layer side, the catalyst in the catalyst layer can be used effectively.

すなわち、請求項1及び請求項3に係る発明によれば、触媒層抵抗を増大させることなく、ガスチャネル、プロトン伝導パス、三相界面の全てを増大させた、電極触媒層を製造することができる。さらに、複雑な工程なく触媒の担持密度を厚さ方向に変化させた電極触媒層を提供可能となる。   That is, according to the inventions according to claims 1 and 3, it is possible to produce an electrode catalyst layer in which all of the gas channel, proton conduction path, and three-phase interface are increased without increasing the catalyst layer resistance. it can. Furthermore, it is possible to provide an electrode catalyst layer in which the catalyst loading density is changed in the thickness direction without complicated steps.

請求項2に係る発明によれば、ガスチャネル、プロトン伝導パス、三相界面の全てが増大し、触媒層中の触媒を有効に利用することができる膜・電極接合体を製造することができる。
請求項4に係る発明によれば、発電効率の良好な燃料電池を得ることができる。
According to the invention of claim 2, the gas channel, proton conduction path, and three-phase interface all increase, and a membrane / electrode assembly that can effectively use the catalyst in the catalyst layer can be manufactured. .
According to the invention of claim 4, a fuel cell with good power generation efficiency can be obtained.

本発明に係る電極触媒層を用いた膜・電極接合体の模式断面図である。1 is a schematic cross-sectional view of a membrane / electrode assembly using an electrode catalyst layer according to the present invention. 本発明に係る電極触媒層の三相界面の模式図である。It is a schematic diagram of the three-phase interface of the electrode catalyst layer which concerns on this invention. 本発明の製造方法による電極触媒層の各工程での様態変化の模式断面図である。It is a schematic cross section of a mode change in each process of an electrode catalyst layer by a manufacturing method of the present invention.

以下に本発明の実施形態を図面を参照しつつ説明する。なお、本実施の形態は本発明の一例であり、本発明を限定するものではない。
(固体高分子形燃料電池)
Embodiments of the present invention will be described below with reference to the drawings. Note that this embodiment is an example of the present invention and does not limit the present invention.
(Solid polymer fuel cell)

固体高分子形燃料電池は、多数の単セルが積層されて構成されている。単セルは、膜・電極接合体をガス流路を有するセパレータで挟んだ構造となっている。
(膜・電極接合体)
A polymer electrolyte fuel cell is configured by stacking a large number of single cells. The single cell has a structure in which a membrane / electrode assembly is sandwiched between separators having gas flow paths.
(Membrane / electrode assembly)

上記膜・電極接合体は、図1に示すように、高分子電解質膜を一対の電極触媒層で狭持した構造となっている。
本実施形態の膜・電極接合体にあっては、一対の電極触媒層のうちの少なくともカソード側(図1中上側)の電極触媒層1は、プロトン伝導性高分子が連続して成る多孔膜と触媒担持カーボンとから構成される。上記電極触媒層1中の触媒密度は、上記高分子電解質膜に近いほど高く、高分子電解質膜から離れるほど低くなるように設定されて いる。
上記高分子電解質膜18と電極触媒層1との接合は、例えば次のように行う。
As shown in FIG. 1, the membrane / electrode assembly has a structure in which a polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers.
In the membrane-electrode assembly of the present embodiment, at least the cathode catalyst layer 1 (upper side in FIG. 1) of the pair of electrode catalyst layers is a porous membrane in which proton conductive polymers are continuously formed. And catalyst-supporting carbon. The catalyst density in the electrode catalyst layer 1 is set to be higher as it is closer to the polymer electrolyte membrane and lower as it is farther from the polymer electrolyte membrane.
The polymer electrolyte membrane 18 and the electrode catalyst layer 1 are joined as follows, for example.

すなわち、後述のように基材12の表面に形成された電極触媒層1を、高分子電解質膜18の少なくともカソード側に配置して、ホットプレスすることにより電極触媒層1を高分子電解質膜18に密着させる。上記ホットプレスは、上記高分子電解質膜18のガラス転移点以下の温度雰囲気で加圧することで実施する。
密着後に、基材12を電極触媒層1から剥離することで膜・電極接合体19を得る。上述のように、膜・電極接合体19は電解質膜18の近傍で触媒4の担持密度が高く、高分子電解質膜18から遠くなるほど触媒4の担持密度が低くなる。
(電極触媒層の製造方法)
That is, as will be described later, the electrode catalyst layer 1 formed on the surface of the substrate 12 is disposed on at least the cathode side of the polymer electrolyte membrane 18 and hot-pressed to thereby make the electrode catalyst layer 1 the polymer electrolyte membrane 18. Adhere to. The hot pressing is performed by applying pressure in a temperature atmosphere below the glass transition point of the polymer electrolyte membrane 18.
After adhesion, the substrate 12 is peeled from the electrode catalyst layer 1 to obtain a membrane / electrode assembly 19. As described above, the membrane / electrode assembly 19 has a high support density of the catalyst 4 in the vicinity of the electrolyte membrane 18, and the support density of the catalyst 4 decreases as the distance from the polymer electrolyte membrane 18 increases.
(Method for producing electrode catalyst layer)

上記触媒担持カーボン、プロトン伝導性高分子を含む電極触媒層1は、例えば次のようにして製造する。   The electrode catalyst layer 1 containing the catalyst-supporting carbon and the proton conductive polymer is manufactured, for example, as follows.

すなわち、プロトン伝導性高分子を含む分散液を基材12の表面に塗布し溶媒が乾燥する前に凍結させ真空下で乾燥することによりプロトン伝導性高分子の多孔体10(多孔膜)を得る(多孔膜形成工程)。次に、上記プロトン伝導性高分子多孔体10に触媒担持カーボンの分散液を含浸させ乾燥させる(第1の中間体形成工程)。次に、表面に触媒担時カーボンの分散液を塗布して乾燥させることで、プロトン伝導性高分子の多孔膜10の細孔に吸着した触媒担持カーボンの密度が基材12に近いほど低く、基材12から離れるほど高い第2の中間体3を得る(第2の中間体形成工程)。さらに上記第2の中間体3にプロトン伝導性高分子の分散液を含浸させ乾燥させる(含浸乾燥工程)ことで、上記電極触媒層1となる。   That is, a proton conductive polymer porous body 10 (porous membrane) is obtained by applying a dispersion containing a proton conductive polymer to the surface of the substrate 12, freezing the solvent before drying, and drying under vacuum. (Porous membrane formation process). Next, the proton-conducting polymer porous body 10 is impregnated with a dispersion of catalyst-supporting carbon and dried (first intermediate formation step). Next, by applying a catalyst-supported carbon dispersion on the surface and drying, the density of the catalyst-supported carbon adsorbed on the pores of the porous membrane 10 of the proton conductive polymer is lower as the base material 12 is closer, The higher the intermediate body 3 is, the higher the distance from the substrate 12 is (second intermediate forming step). Further, the electrode catalyst layer 1 is obtained by impregnating the second intermediate 3 with a dispersion of a proton conductive polymer and drying (impregnation drying step).

この電極触媒層1は、触媒層抵抗を増大させることなく、ガスチャネル、プロトン伝導パス、三相界面の全てを増大させ、プロトンが届きやすい高分子電解質膜近傍に触媒が高担持密度で存在して効率よく発電し、ガス拡散層側ではガス拡散や排水を促して、触媒層中の触媒を有効に利用するものである。
ここで、上記第1の中間体形成工程で、触媒担持カーボンを分散している溶媒がプロトン伝導性高分子多孔体10の表面を適度に溶かすため、触媒粒子15を担持したカーボン粒子16はプロトン伝導性高分子多孔体10に一部埋まって固定される。
The electrode catalyst layer 1 increases all of the gas channel, proton conduction path, and three-phase interface without increasing the catalyst layer resistance, and the catalyst is present at a high supported density in the vicinity of the polymer electrolyte membrane where protons can easily reach. The gas diffusion layer side promotes gas diffusion and drainage to effectively use the catalyst in the catalyst layer.
Here, in the first intermediate forming step, since the solvent in which the catalyst-supporting carbon is dispersed dissolves the surface of the proton conductive polymer porous body 10 appropriately, the carbon particles 16 supporting the catalyst particles 15 are protons. The conductive polymer porous body 10 is partially embedded and fixed.

さらにこれを含浸乾燥工程でプロトン伝導性高分子17により包埋することで、三相界面とプロトンパスが形成される。
図2に、本実施形態における電極触媒層1の三相界面の模式図を示す。この図2は、図3(c)に示す三相界面を有する部分14を詳細に示したものである。
Further, by embedding it with the proton conductive polymer 17 in the impregnation drying step, a three-phase interface and a proton path are formed.
In FIG. 2, the schematic diagram of the three-phase interface of the electrode catalyst layer 1 in this embodiment is shown. FIG. 2 shows in detail the portion 14 having the three-phase interface shown in FIG.

次に、電極触媒層製造の各工程での状態変化について、図3を参照しつつ説明する。
図3は、本実施形態の製造方法による電極触媒層の工程ごとの様態変化の模式断面図である。
プロトン伝導性高分子の多孔膜である多孔体10は、プロトン伝導性高分子を含む分散液を基材12の表面に塗布し溶媒が乾燥する前に凍結し真空乾燥する(多孔膜形成工程)ことにより得られる。
Next, the state change in each step of electrode catalyst layer production will be described with reference to FIG.
FIG. 3 is a schematic cross-sectional view of a state change for each step of the electrode catalyst layer according to the manufacturing method of the present embodiment.
The porous body 10 which is a porous membrane of a proton conductive polymer is coated with a dispersion containing the proton conductive polymer on the surface of the substrate 12 and then frozen and vacuum dried before the solvent is dried (porous membrane forming step). Can be obtained.

図3(a)は、プロトン伝導性高分子を含む分散液を基材12の表面に塗布し溶媒が乾燥する前に凍結させた状態を示す。凍結した溶媒11は、実際にはプロトン伝導性高分子を分散していた状態のまま三次元的に連続して存在している。
図3(b)は、図3(a)に示される状態からさらに真空下で乾燥した状態を示し、凍結した溶媒11のあった部分から溶媒が昇華して空孔13となった。
FIG. 3A shows a state in which a dispersion containing a proton conductive polymer is applied to the surface of the substrate 12 and frozen before the solvent is dried. The frozen solvent 11 actually exists three-dimensionally continuously in a state where the proton conductive polymer is dispersed.
FIG. 3 (b) shows a state of further drying under vacuum from the state shown in FIG. 3 (a), and the solvent sublimated from the portion where the frozen solvent 11 was present to become pores 13.

図3(c)は、プロトン伝導性高分子多孔体10に、触媒担持カーボンの分散液を含浸させ乾燥させる第1の中間体形成工程を経た状態を示す。この第1の中間体形成工程により、プロトン伝導性高分子多孔体10の細孔表面に均一に触媒担持カーボンが吸着した第1の中間体2が得られる。
図3(d)は、第1の中間体2の上面に、触媒担持カーボンの分散液を塗布し乾燥させる第2の中間体形成工程を経た状態を示す。この第2の中間体形成工程により、上面に近い部分は細孔表面に吸着した触媒担持カーボンの密度が高く、基材12に近いほど細孔表面に吸着した触媒担持カーボンの密度が低い第2の中間体3が得られる。
FIG. 3C shows a state after the first intermediate formation step in which the proton-conductive polymer porous body 10 is impregnated with a catalyst-supported carbon dispersion and dried. By the first intermediate formation step, the first intermediate 2 in which the catalyst-supporting carbon is uniformly adsorbed on the pore surfaces of the proton conductive polymer porous body 10 is obtained.
FIG. 3D shows a state after a second intermediate formation step in which a catalyst-supported carbon dispersion is applied to the upper surface of the first intermediate 2 and dried. By this second intermediate formation step, the density of the catalyst-carrying carbon adsorbed on the pore surface is higher in the portion close to the upper surface, and the density of the catalyst-carrying carbon adsorbed on the pore surface is lower as it is closer to the substrate 12. Intermediate 3 is obtained.

この第2の中間体3にプロトン伝導性高分子の分散液を含浸させ乾燥させる(含浸乾燥工程)ことにより、プロトン伝導性高分子多孔体10の細孔表面に三相界面が形成される。実際にはプロトン伝導性高分子多孔体10および空孔13は三次元的に連続して存在しているため、三相界面を有する部分14も同様に三次元的に連続して存在している。
なお、本実施形態の電極触媒層1は高分子電解質膜18のアノード側、カソード側両方に配置することができるが、カソード側に配置することがより好ましい。カソード側に配置することで、発電効率を高め、更に、生成水が詰まって細孔が塞がることによる電圧低下を抑制することができる。
The second intermediate 3 is impregnated with a proton conductive polymer dispersion and dried (impregnation drying step), whereby a three-phase interface is formed on the pore surface of the proton conductive polymer porous body 10. Actually, since the proton conductive polymer porous body 10 and the pores 13 exist three-dimensionally continuously, the portion 14 having a three-phase interface also exists three-dimensionally in the same manner. .
In addition, although the electrode catalyst layer 1 of this embodiment can be arrange | positioned at both the anode side of the polymer electrolyte membrane 18, and the cathode side, it is more preferable to arrange | position at the cathode side. By disposing on the cathode side, the power generation efficiency can be improved, and furthermore, a voltage drop due to clogging of generated water and blocking of the pores can be suppressed.

ここで、上記触媒としては、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属またはこれらの合金、または酸化物、複酸化物、炭化物などが使用できる。   Here, examples of the catalyst include platinum, palladium, ruthenium, iridium, rhodium, osmium, platinum group elements, and metals such as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum. Alternatively, alloys thereof, oxides, double oxides, carbides, or the like can be used.

またこれらの触媒の粒径は、大きすぎる場合、触媒の質量あたりの比表面積が低下し、その結果、触媒の単位質量当たりの得られる電流値が小さくなる。逆に小さすぎる場合は、触媒の安定性が低下するため、0.5nm以上50nm以下が、好ましく、更に好ましくは1nm以上5nm以下である。   Moreover, when the particle size of these catalysts is too large, the specific surface area per mass of the catalyst decreases, and as a result, the current value obtained per unit mass of the catalyst becomes small. On the other hand, if it is too small, the stability of the catalyst is lowered, so that it is preferably from 0.5 nm to 50 nm, more preferably from 1 nm to 5 nm.

本実施形態で用いるこれらの触媒を担持するカーボンは、微粉末状で導電性を有し、触媒に侵されないものであればどのようなものでも構わない。例えば、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、フラーレンが好ましく使用できる。
カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると触媒層のガス拡散性が低下したり触媒の利用率が低下したりする。このため、10nm〜1000nm程度が好ましく、更に好ましくは10nm以上100nm以下が良い。
Any carbon may be used as long as it supports the catalyst used in the present embodiment as long as it is finely powdered and has conductivity and is not affected by the catalyst. For example, carbon black, graphite, graphite, activated carbon, carbon nanotube, and fullerene can be preferably used.
If the particle size of the carbon is too small, it is difficult to form an electron conduction path, and if it is too large, the gas diffusibility of the catalyst layer is lowered or the utilization factor of the catalyst is lowered. For this reason, about 10 nm-1000 nm are preferable, More preferably, 10 nm or more and 100 nm or less are good.

プロトン伝導性高分子には様々なものが用いられるが、高分子電解質膜と電極の界面抵抗や、湿度変化時の電極と電解質膜における寸法変化率の点から考慮すると、使用する電解質膜と、触媒層中のプロトン伝導性高分子とは同じ成分であるのが良い。   Various proton conductive polymers are used, but considering the interface resistance between the polymer electrolyte membrane and the electrode, and the dimensional change rate of the electrode and the electrolyte membrane when the humidity changes, the electrolyte membrane to be used, The proton conductive polymer in the catalyst layer may be the same component.

本実施形態の膜・電極接合体に用いられるプロトン電導性高分子としては、プロトン伝導性を有するものであればよく、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えば、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)などを用いることができる。炭化水素系高分子電解質としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等を用いることができる。中でも、高分子電解質膜としてデュポン社製Nafion(登録商標)系材料を好適に用いることができる。炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等の電解質膜を用いることができる。   The proton conducting polymer used in the membrane / electrode assembly of the present embodiment may be any proton-conducting polymer as long as it has proton conductivity, and a fluorine-based polymer electrolyte and a hydrocarbon-based polymer electrolyte can be used. Examples of the fluoropolymer electrolyte include Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Kasei Co., Ltd., and Gore Select (registered trademark) manufactured by Gore. Etc. can be used. As the hydrocarbon polymer electrolyte, sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, sulfonated polyphenylene and the like can be used. Among these, a Nafion (registered trademark) material manufactured by DuPont can be suitably used as the polymer electrolyte membrane. As the hydrocarbon polymer electrolyte membrane, electrolyte membranes such as sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.

本実施形態で分散媒として使用される溶媒は、触媒粒子やプロトン伝導性高分子を浸食することがなく、流動性の高い状態でプロトン伝導性高分子を溶解または微細ゲルとして分散できるものあれば特に制限はない。溶媒にはプロトン伝導性高分子となじみがよい水が含まれていてもよい。水の添加量は、プロトン伝導性ポリマーが分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限はない。   The solvent used as the dispersion medium in the present embodiment is any solvent that does not erode the catalyst particles and the proton conductive polymer and can dissolve or disperse the proton conductive polymer in a highly fluid state as a fine gel. There is no particular limitation. The solvent may contain water that is compatible with the proton conductive polymer. The amount of water added is not particularly limited as long as the proton conductive polymer is not separated to cause white turbidity or gelation.

第1の中間体形成工程及び第2の中間体形成工程で触媒担持カーボンを分散する溶媒、および含浸乾燥工程でプロトン伝導性高分子を分散する溶媒については、揮発性の液体有機溶媒が少なくとも含まれることが望ましい、但し、溶剤として低級アルコールを用いたものは発火の危険性が高く、このような溶媒を用いる際は水との混合溶媒にするのが好ましい。   The solvent for dispersing the catalyst-supporting carbon in the first intermediate formation step and the second intermediate formation step and the solvent for dispersing the proton conductive polymer in the impregnation drying step include at least a volatile liquid organic solvent. However, those using a lower alcohol as a solvent have a high risk of ignition, and when using such a solvent, it is preferable to use a mixed solvent with water.

揮発性の液体有機溶媒は特に限定されるものではないが、具体的には、例えばメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2‐ブタノール、イソブチルアルコール、tert−ブチルアルコール、ペンタノールなどのアルコール類、アセトン、メチルエチルケトン、ペンタノン、メチルイソブチルケトン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジイソブチルケトンなどのケトン系溶剤、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジブチルエーテルなどのエーテル系溶剤、その他ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレングリコール、ジエチレングリコール、ジアセトンアルコール、1−メトキシ−2−プロパノールなどの極性溶剤などを挙げることができる。   The volatile liquid organic solvent is not particularly limited. Specifically, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, Alcohols such as pentanol, acetone, methyl ethyl ketone, pentanone, methyl isobutyl ketone, heptanone, cyclohexanone, methyl cyclohexanone, acetonyl acetone, diisobutyl ketone and other ketone solvents, tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, di Ether solvents such as butyl ether, other dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol Lumpur, diacetone alcohol, 1 such as a polar solvent such as methoxy-2-propanol can be exemplified.

これらは単独で使用することもできるが、これらの溶剤のうち二種以上を混合させたものも使用できる。
分散処理は、様々な装置を用いて行うことができる。例えば、ボールミル、ロールミル、せん断ミル、湿式ミル、超音波分散処理などが挙げられる。また、遠心力で攪拌を行うホモジナイザーなどを用いてもよい。
Although these can also be used independently, what mixed 2 or more types of these solvents can also be used.
Distributed processing can be performed using various apparatuses. Examples thereof include a ball mill, a roll mill, a shear mill, a wet mill, and an ultrasonic dispersion treatment. Moreover, you may use the homogenizer etc. which stir with centrifugal force.

本実施形態で使用される基材12は、例えばエチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などの転写性に優れたフッ素系樹脂を用いることができる。また、ポリイミド、ポリエチレンテレフタラート、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレートなどの高分子フィルムも用いることができる。   The substrate 12 used in the present embodiment is, for example, an ethylene tetrafluoroethylene copolymer (ETFE), a tetrafluoroethylene-hexafluoropropylene copolymer (FEP), a tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA). Fluorine resin excellent in transferability such as polytetrafluoroethylene (PTFE) can be used. Polymer films such as polyimide, polyethylene terephthalate, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, and polyethylene naphthalate can also be used.

基材12がガス拡散電極の場合、ホットプレス後に基材であるガス拡散層を剥離する必要は無い。ガス拡散層としては、通常の燃料電池に用いられているものを用いることができる。具体的にはガス拡散層としてはカーボンクロス、カーボンペーパー、不織布などのポーラスカーボン材を用いることができる。ガス拡散層と電極触媒層の間に目止め層を形成させたものでもよい。目止め層は、触媒インクがガス拡散層の中に染み込むことを防止する層であり、その塗布量が少ない場合でも目止め層上に堆積して三相界面を形成する。このような目止め層は、例えばカーボン粒子とフッ素系樹脂を混練してフッ素系樹脂の融点以上の温度で焼結させることにより形成することができる。フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE)等が利用できる。   When the substrate 12 is a gas diffusion electrode, it is not necessary to peel off the gas diffusion layer that is the substrate after hot pressing. As a gas diffusion layer, what is used for the normal fuel cell can be used. Specifically, porous carbon materials such as carbon cloth, carbon paper, and non-woven fabric can be used as the gas diffusion layer. A sealing layer may be formed between the gas diffusion layer and the electrode catalyst layer. The sealing layer is a layer that prevents the catalyst ink from permeating into the gas diffusion layer, and deposits on the sealing layer to form a three-phase interface even when the coating amount is small. Such a sealing layer can be formed, for example, by kneading carbon particles and a fluorine resin and sintering them at a temperature equal to or higher than the melting point of the fluorine resin. As the fluororesin, polytetrafluoroethylene (PTFE) or the like can be used.

ホットプレス工程で電極触媒層にかかる圧力は、膜・電極接合体19の電池性能に影響する。電池性能の良い膜・電極接合体を得るには、基材12およびプロトン伝導性高分子多孔体10にかかる圧力Aは、0.5 MPa≦A≦20 MPaであることが望ましく、より望ましくは2 MPa≦A≦15 MPaである。これ以上の圧力では電極触媒層が圧縮されすぎ、またこれ以下の圧力では電極触媒層1と高分子電解質膜18との接合性が低下して、電池性能が低下する。   The pressure applied to the electrode catalyst layer in the hot pressing step affects the battery performance of the membrane / electrode assembly 19. In order to obtain a membrane / electrode assembly having good battery performance, the pressure A applied to the base material 12 and the proton conductive polymer porous body 10 is preferably 0.5 MPa ≦ A ≦ 20 MPa, and more preferably 2 MPa ≦ A ≦ 15 MPa. When the pressure is higher than this, the electrode catalyst layer is excessively compressed, and when the pressure is lower than this, the bondability between the electrode catalyst layer 1 and the polymer electrolyte membrane 18 is lowered, and the battery performance is lowered.

膜・電極接合体19へのしわ発生には、ホットプレス工程での高分子電解質膜18の部分にかかる圧力Bが影響する。Bが小さくAとの差が大きくなると、高分子電解質膜18の部分にしわが発生しやすくなる。Bは、Bに対するAの割合A/Bで規定でき、1<A/B≦3であることが望ましい。より望ましくは1<A/B≦2である。
上記の圧力条件は、適切な圧縮率を持つ緩衝材を用いることで再現できる。緩衝材はホットプレスにかける積層体のすべてを覆う大きさであるとよい。また厚み方向に加圧されると加圧方向と平行な向きに圧縮されるものがよい。
The generation of wrinkles in the membrane / electrode assembly 19 is affected by the pressure B applied to the portion of the polymer electrolyte membrane 18 in the hot press process. When B is small and the difference from A is large, wrinkles are likely to occur in the portion of the polymer electrolyte membrane 18. B can be defined by the ratio A / B of A to B, and preferably 1 <A / B ≦ 3. More preferably, 1 <A / B ≦ 2.
The above pressure condition can be reproduced by using a buffer material having an appropriate compression rate. The cushioning material may be of a size that covers all of the laminate to be hot pressed. Moreover, what is compressed in the direction parallel to a pressurization direction when pressurized in the thickness direction is good.

ホットプレスの温度は、高分子電解質膜18および電極触媒層1のプロトン電導性高分子のガラス転移点付近に設定するのが高分子電解質膜18と電極触媒層1との界面の接合性が向上し、界面抵抗を抑えられる点で効果的であり、100℃以上であることが望ましい。   The hot press temperature is set in the vicinity of the glass transition point of the proton conducting polymer of the polymer electrolyte membrane 18 and the electrode catalyst layer 1 to improve the bondability at the interface between the polymer electrolyte membrane 18 and the electrode catalyst layer 1. However, it is effective in that the interface resistance can be suppressed, and is preferably 100 ° C. or higher.

〈転写シートの作製〉
市販のプロトン伝導性高分子(ナフィオン:Nafion, デュポン社の登録商標)溶液をETFEシートに塗布し、溶媒が乾燥する前に液体窒素に浸して凍結させた。これを融解しないうちに凍結乾燥機(東京理化器械株式会社製FD−81−TA)で乾燥して、プロトン伝導性高分子多孔体シートを得た。一方で、白金担持カーボン触媒(商品名:TEC10E50E、田中貴金属工業製)と水、エタノールの混合溶媒を混合し、遊星型ボールミルで分散処理を行い、触媒担時カーボンの分散液を調製した。上記のプロトン伝導性高分子多孔体シートを触媒担時カーボンの分散液に浸漬した後、減圧乾燥にて溶媒を除去し、第1の中間体を得た。続いてこの中間体の表面に、前工程よりも固形分比率を高めた触媒担時カーボンの分散液を塗布し、減圧乾燥にて溶媒を除去し、第2の中間体を得た。
<Preparation of transfer sheet>
A commercially available proton conductive polymer (Nafion: registered trademark of DuPont) solution was applied to an ETFE sheet and immersed in liquid nitrogen and frozen before the solvent dried. Before this was melted, it was dried with a freeze dryer (FD-81-TA manufactured by Tokyo Rika Kikai Co., Ltd.) to obtain a proton conductive polymer porous sheet. On the other hand, a platinum-supported carbon catalyst (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), a mixed solvent of water and ethanol was mixed, and dispersion treatment was performed using a planetary ball mill to prepare a carbon-supported dispersion liquid. After immersing the proton conductive polymer porous sheet in a carbon dispersion during catalyst loading, the solvent was removed by drying under reduced pressure to obtain a first intermediate. Subsequently, a catalyst-supported carbon dispersion having a higher solid content ratio than the previous step was applied to the surface of this intermediate, and the solvent was removed by drying under reduced pressure to obtain a second intermediate.

第2の中間体を市販のプロトン伝導性高分子(ナフィオン:Nafion, デュポン社の登録商標)溶液に浸漬し、80℃のオーブンで乾燥させ、電極触媒層の転写シートを得た。   The second intermediate was immersed in a commercially available proton conductive polymer (Nafion: registered trademark of DuPont) solution and dried in an oven at 80 ° C. to obtain a transfer sheet of the electrode catalyst layer.

〈ホットプレス〉
電極触媒層の転写シートを正方形に打ち抜き、高分子電解質膜(ナフィオン212:登録商標、Dupont社製)の両面に対面するように転写シートを配置し積層体とし、120℃、60kgf/cm2 、30分の条件でホットプレスを行い、接合・積層して、図1に示す膜電極結合体を得た。
〈評価1〉
<hot press>
The transfer sheet of the electrode catalyst layer is punched into a square shape, and the transfer sheet is arranged so as to face both surfaces of the polymer electrolyte membrane (Nafion 212: registered trademark, manufactured by Dupont) to form a laminate, which is 120 ° C., 60 kgf / cm 2, 30 The film electrode assembly shown in FIG. 1 was obtained by performing hot pressing under the conditions of minutes, joining and laminating.
<Evaluation 1>

作製した膜・電極接合体の発電性能測定を行った。
反応ガス流通用のガス流路を備え、相対する主面に冷却水流通用の冷却水流路を備えた導電性でかつガス不透過性の材料よりなる一組のセパレータにより、作製した膜・電極接合体を挟持して、ボルトで両極を締め付けたものを測定セルとして用いた。
The power generation performance of the produced membrane / electrode assembly was measured.
Membrane / electrode joint made of a pair of separators made of a conductive and gas-impermeable material with a gas flow channel for reaction gas flow and a cooling water flow channel for cooling water flow on the opposite main surface A measurement cell that sandwiched the body and clamped both poles with bolts was used.

評価条件はセル温度80℃、反応ガスは酸化極が水素、還元極は空気とした。また反応ガスの相対湿度は30%および100%とした。電圧が0.7Vと0.3Vのときの電流密度により性能の評価を行った。
〈評価2〉
The evaluation conditions were a cell temperature of 80 ° C., the reaction gas was hydrogen at the oxidation electrode and air at the reduction electrode. The relative humidity of the reaction gas was 30% and 100%. The performance was evaluated by the current density when the voltage was 0.7V and 0.3V.
<Evaluation 2>

評価1で用いた測定セルを用いてサイクリックボルタンメトリー測定を行った。
評価条件はセル温度80℃、酸化極に水素ガス、還元極に窒素ガスを流し、反応ガスの相対湿度は30%および100%とした。性能の評価は、水素の酸化脱離のピーク電荷量Q値により行った。
(比較例)
Cyclic voltammetry measurement was performed using the measurement cell used in Evaluation 1.
The evaluation conditions were a cell temperature of 80 ° C., hydrogen gas was passed through the oxidation electrode, and nitrogen gas was passed through the reduction electrode, and the relative humidity of the reaction gas was 30% and 100%. The performance was evaluated by the peak charge amount Q value of hydrogen oxidative desorption.
(Comparative example)

〈転写シートの作製〉
白金担持カーボン触媒(商品名:TEC10E50E、田中貴金属工業製)と、20質量%高分子電解質溶液(ナフィオン:登録商標、Dupont社製)を、水、エタノールの混合溶媒で混合し、遊星型ボールミルで分散処理を行い、触媒インクを調製した。ETFEシートを基材として触媒インクを塗布し、80℃のオーブンで乾燥させ、転写シートを作製した。
〈ホットプレス〉
<Preparation of transfer sheet>
A platinum-supported carbon catalyst (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and a 20% by mass polymer electrolyte solution (Nafion: registered trademark, manufactured by Dupont) are mixed with a mixed solvent of water and ethanol. Dispersion treatment was performed to prepare a catalyst ink. A catalyst ink was applied using an ETFE sheet as a base material and dried in an oven at 80 ° C. to prepare a transfer sheet.
<hot press>

実施例と同様にして膜電極結合体を得た。
〈評価1〉
実施例と同様にして発電性能測定および性能の評価を行い、比較を行った。
〈評価2〉
実施例と同様にして発電性能測定および性能の評価を行い、比較を行った。
A membrane electrode assembly was obtained in the same manner as in Example.
<Evaluation 1>
The power generation performance was measured and the performance was evaluated and compared in the same manner as in the examples.
<Evaluation 2>
The power generation performance was measured and the performance was evaluated and compared in the same manner as in the examples.

実施例においては、触媒が電解質膜側とガス拡散層側でそれぞれに適した担持密度であるため、触媒層全体では同じ触媒量でも、比較例よりも高い電流密度が得られた。また、凍結乾燥して得たプロトン伝導性高分子多孔体を用いていることによりプロトン伝導パスが良好に形成されているため、相対湿度が低い場合にも高い電流密度が得られ、発電性能が優れていた。また、凍結乾燥して得たプロトン伝導性高分子多孔体を用いていることによりガスチャネルおよび生成水の抜け道が良好に形成されているため、相対湿度が高い場合にも水詰まりによる発電性能低下を生じない。さらに、実施例においてはQ値が高く、三相界面が良好に形成されていることが示唆されている。   In the examples, since the catalyst has a loading density suitable for each of the electrolyte membrane side and the gas diffusion layer side, a higher current density than that of the comparative example was obtained even with the same amount of catalyst in the entire catalyst layer. In addition, since the proton conducting path is well formed by using the proton conducting polymer porous material obtained by lyophilization, a high current density is obtained even when the relative humidity is low, and the power generation performance is improved. It was excellent. In addition, the use of a proton-conductive polymer porous material obtained by freeze-drying provides a good channel for gas channels and produced water, so that even when relative humidity is high, power generation performance is reduced due to water clogging. Does not occur. Further, in the examples, the Q value is high, suggesting that the three-phase interface is well formed.

本発明の膜・電極接合体および電極触媒層は、触媒層抵抗を増大させることなく、ガスチャネル、プロトン伝導パス、三相界面の全てを増大させ、かつ触媒層中の触媒を有効に利用するものであり、本発明の電極触媒層を用いた固体高分子燃料電池は発電性能が良好である。したがって、本発明は高分子電解質膜を用いた燃料電池、特に定置型コジェネレーションシステムや電気自動車などに好適に用いることができる。さらに、触媒層中の触媒を有効に利用するため、白金使用量を低減させることが可能となりコスト削減が可能であるため、産業上の利用価値が大きい。   The membrane / electrode assembly and the electrode catalyst layer of the present invention increase all of the gas channel, proton conduction path, and three-phase interface without effectively increasing the catalyst layer resistance, and effectively use the catalyst in the catalyst layer. Therefore, the polymer electrolyte fuel cell using the electrode catalyst layer of the present invention has good power generation performance. Therefore, the present invention can be suitably used for a fuel cell using a polymer electrolyte membrane, particularly a stationary cogeneration system and an electric vehicle. Furthermore, since the catalyst in the catalyst layer is effectively used, the amount of platinum used can be reduced and the cost can be reduced, so that the industrial utility value is great.

1…本発明に基づく電極触媒層
2…第1の中間体
3…第2の中間体
4…模式的に示した触媒
5…電極触媒層
10…プロトン伝導性高分子多孔体
11…凍結した溶媒
12…基材
13…空孔
14…三相界面を有する部分
15…触媒粒子
16…カーボン粒子
17…プロトン伝導性高分子
18…高分子電解質膜
19…膜・電極接合体
DESCRIPTION OF SYMBOLS 1 ... Electrode catalyst layer based on this invention 2 ... 1st intermediate body 3 ... 2nd intermediate body 4 ... Catalyst 5 shown typically ... Electrode catalyst layer 10 ... Proton-conductive polymer porous body 11 ... Frozen solvent DESCRIPTION OF SYMBOLS 12 ... Base material 13 ... Hole 14 ... Part 15 which has a three-phase interface ... Catalyst particle 16 ... Carbon particle 17 ... Proton conductive polymer 18 ... Polymer electrolyte membrane 19 ... Membrane / electrode assembly

Claims (4)

高分子電解質膜と、上記高分子電解質膜を狭持する一対の電極触媒層とを備えた膜・電極接合体に使用される、上記電極触媒層の製造方法であって、
プロトン伝導性高分子を含む分散液を基材表面に塗布し、溶媒が乾燥する前に凍結させ且つ真空下で乾燥させて基材上にプロトン伝導性高分子の多孔膜を形成する多孔膜形成工程と、
上記形成したプロトン伝導性高分子の多孔膜に、触媒担持カーボンの分散液を含浸させ且つ乾燥させることで、上記プロトン伝導性高分子の多孔膜の細孔に対し触媒担持カーボンを含浸させた第1の中間体を得る第1の中間体形成工程と、
上記第1の中間体の表面に対し触媒担時カーボンの分散液を塗布して乾燥させることで、プロトン伝導性高分子の多孔膜の細孔に吸着した触媒担持カーボンの密度が、基板に近い位置に比べ、基材から離れた位置が高くなるように設定する第2の中間体を得る第2の中間体形成工程と、
上記第2の中間体にプロトン伝導性高分子の分散液を含浸させ乾燥させる含浸乾燥工程と、
を、有することを特徴とする電極触媒層の製造方法。
A method for producing the electrode catalyst layer used in a membrane / electrode assembly comprising a polymer electrolyte membrane and a pair of electrode catalyst layers sandwiching the polymer electrolyte membrane,
Forming a porous membrane by applying a dispersion containing a proton-conducting polymer to the substrate surface, freezing before the solvent dries and drying under vacuum to form a porous membrane of the proton-conducting polymer on the substrate Process,
The proton-conductive polymer porous membrane formed above was impregnated with the catalyst-supported carbon dispersion and dried to impregnate the pores of the proton-conductive polymer porous membrane with the catalyst-supported carbon. A first intermediate forming step for obtaining one intermediate;
By applying the catalyst-supported carbon dispersion to the surface of the first intermediate and drying, the density of the catalyst-supported carbon adsorbed on the pores of the porous membrane of the proton conductive polymer is close to that of the substrate. A second intermediate forming step for obtaining a second intermediate that is set so that the position away from the substrate is higher than the position;
An impregnation drying step of impregnating the second intermediate with a dispersion of a proton conductive polymer and drying;
A process for producing an electrode catalyst layer, comprising:
請求項1に記載の製造方法で製造した電極触媒層を、少なくとも上記高分子電解質膜のカソード側に配置し、上記高分子電解質膜のガラス転移点以下の温度雰囲気で加圧することにより当該高分子電解質膜に密着させることを特徴とする膜・電極接合体の製造方法。   The electrode catalyst layer produced by the production method according to claim 1 is arranged at least on the cathode side of the polymer electrolyte membrane, and the polymer electrolyte membrane is pressurized in a temperature atmosphere below the glass transition point of the polymer electrolyte membrane. A method for producing a membrane / electrode assembly, wherein the membrane / electrode assembly is adhered to an electrolyte membrane. 高分子電解質膜と、上記高分子電解質膜を狭持した一対の電極触媒層と、を備える膜・電極接合体であって、
一対の電極触媒層のうちの少なくともカソード側の電極触媒層は、プロトン伝導性高分子が連続して成る多孔膜と触媒担持カーボンとを有し、且つ、当該電極触媒層中の触媒密度が、上記高分子電解質膜から離れた位置に比べ、上記高分子電解質膜に近い位置で高く設定されていることを特徴とする膜・電極接合体。
A membrane / electrode assembly comprising a polymer electrolyte membrane and a pair of electrode catalyst layers sandwiching the polymer electrolyte membrane,
At least the cathode-side electrode catalyst layer of the pair of electrode catalyst layers has a porous membrane composed of a continuous proton-conductive polymer and catalyst-supporting carbon, and the catalyst density in the electrode catalyst layer is: A membrane / electrode assembly characterized in that it is set higher at a position closer to the polymer electrolyte membrane than at a position away from the polymer electrolyte membrane.
請求項3に記載の膜・電極接合体を有することを特徴とする固体高分子形燃料電池。   A polymer electrolyte fuel cell comprising the membrane-electrode assembly according to claim 3.
JP2010061004A 2010-03-17 2010-03-17 Polymer electrolyte fuel cell, membrane / electrode assembly, electrode catalyst layer, and production method thereof Active JP5515902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010061004A JP5515902B2 (en) 2010-03-17 2010-03-17 Polymer electrolyte fuel cell, membrane / electrode assembly, electrode catalyst layer, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010061004A JP5515902B2 (en) 2010-03-17 2010-03-17 Polymer electrolyte fuel cell, membrane / electrode assembly, electrode catalyst layer, and production method thereof

Publications (2)

Publication Number Publication Date
JP2011198501A true JP2011198501A (en) 2011-10-06
JP5515902B2 JP5515902B2 (en) 2014-06-11

Family

ID=44876469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061004A Active JP5515902B2 (en) 2010-03-17 2010-03-17 Polymer electrolyte fuel cell, membrane / electrode assembly, electrode catalyst layer, and production method thereof

Country Status (1)

Country Link
JP (1) JP5515902B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160051978A (en) * 2014-10-30 2016-05-12 현대자동차주식회사 A process for separating an electrode in membrane-electrode assembly for fuel cells and apparatus using it
CN111063896A (en) * 2018-10-17 2020-04-24 松下知识产权经营株式会社 Electrode catalyst for electrochemical device, membrane electrode assembly, methods for producing them, and electrode catalyst layer for electrochemical device
JP2020145044A (en) * 2019-03-05 2020-09-10 パナソニックIpマネジメント株式会社 Cathode catalyst layer of fuel cell and fuel cell
WO2024108822A1 (en) * 2022-11-23 2024-05-30 广东邦普循环科技有限公司 Modified lithium nickel cobalt manganese oxide positive electrode material and preparation method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298867A (en) * 2001-03-30 2002-10-11 Honda Motor Co Ltd Solid polymer fuel cell
JP2003086190A (en) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell and method of manufacture
JP2004006306A (en) * 2002-04-17 2004-01-08 Nec Corp Fuel cell, electrode for fuel cell and manufacturing method of these
JP2006179410A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Mea for fuel cell and fuel cell using the same
JP2007066597A (en) * 2005-08-30 2007-03-15 Dainippon Printing Co Ltd Transfer sheet, catalyst layer-electrolyte membrane stack, electrode-electrolyte membrane assembly, and manufacturing methods of them
WO2008023632A1 (en) * 2006-08-22 2008-02-28 Kabushiki Kaisha Toshiba Membrane electrode assembly, method for producing the same, and fuel cell
JP2008177136A (en) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd Catalyst electrode for fuel cell and its manufacturing method
WO2009004958A1 (en) * 2007-06-29 2009-01-08 Toppan Printing Co., Ltd. Membrane electrode assembly, process for producing membrane electrode assembly, solid polymer fuel cell
JP2010007016A (en) * 2008-06-30 2010-01-14 Toyota Motor Corp Method for producing polymer electrolyte membrane

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298867A (en) * 2001-03-30 2002-10-11 Honda Motor Co Ltd Solid polymer fuel cell
JP2003086190A (en) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell and method of manufacture
JP2004006306A (en) * 2002-04-17 2004-01-08 Nec Corp Fuel cell, electrode for fuel cell and manufacturing method of these
JP2006179410A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Mea for fuel cell and fuel cell using the same
JP2007066597A (en) * 2005-08-30 2007-03-15 Dainippon Printing Co Ltd Transfer sheet, catalyst layer-electrolyte membrane stack, electrode-electrolyte membrane assembly, and manufacturing methods of them
WO2008023632A1 (en) * 2006-08-22 2008-02-28 Kabushiki Kaisha Toshiba Membrane electrode assembly, method for producing the same, and fuel cell
JP2008177136A (en) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd Catalyst electrode for fuel cell and its manufacturing method
WO2009004958A1 (en) * 2007-06-29 2009-01-08 Toppan Printing Co., Ltd. Membrane electrode assembly, process for producing membrane electrode assembly, solid polymer fuel cell
JP2010007016A (en) * 2008-06-30 2010-01-14 Toyota Motor Corp Method for producing polymer electrolyte membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160051978A (en) * 2014-10-30 2016-05-12 현대자동차주식회사 A process for separating an electrode in membrane-electrode assembly for fuel cells and apparatus using it
KR101637711B1 (en) 2014-10-30 2016-07-07 현대자동차주식회사 A process for separating an electrode in membrane-electrode assembly for fuel cells and apparatus using it
CN111063896A (en) * 2018-10-17 2020-04-24 松下知识产权经营株式会社 Electrode catalyst for electrochemical device, membrane electrode assembly, methods for producing them, and electrode catalyst layer for electrochemical device
JP2020145044A (en) * 2019-03-05 2020-09-10 パナソニックIpマネジメント株式会社 Cathode catalyst layer of fuel cell and fuel cell
WO2020179583A1 (en) * 2019-03-05 2020-09-10 パナソニックIpマネジメント株式会社 Cathode catalyst layer for fuel cell and fuel cell
JP7304524B2 (en) 2019-03-05 2023-07-07 パナソニックIpマネジメント株式会社 Fuel cell cathode catalyst layer and fuel cell
WO2024108822A1 (en) * 2022-11-23 2024-05-30 广东邦普循环科技有限公司 Modified lithium nickel cobalt manganese oxide positive electrode material and preparation method therefor

Also Published As

Publication number Publication date
JP5515902B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP4655168B1 (en) Method for producing electrode catalyst layer for fuel cell
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5463833B2 (en) Method for producing electrode catalyst layer for polymer electrolyte fuel cell, method for producing membrane electrode assembly, and membrane electrode assembly
JP7314785B2 (en) Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP7363956B2 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP2007095582A (en) Manufacturing method of membrane electrode assembly
JP2008077974A (en) Electrode
JP4798306B2 (en) Electrocatalyst layer production method, electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP5515902B2 (en) Polymer electrolyte fuel cell, membrane / electrode assembly, electrode catalyst layer, and production method thereof
JP6364821B2 (en) Catalyst ink production method, polymer electrolyte fuel cell production method, and platinum-supported carbon particles
JP5396730B2 (en) Membrane electrode assembly
JP5515959B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same
JP2008140703A (en) Composition material for battery, and film containing the same
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP6074978B2 (en) Manufacturing method of membrane electrode assembly for fuel cell and manufacturing method of polymer electrolyte fuel cell
JP5439946B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5369580B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2020071995A (en) Catalyst layer and membrane electrode assembly for solid polymer fuel cell
JP2010257669A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP2011258452A (en) Electrode catalyst, membrane electrode assembly and polymer electrolyte fuel cell
WO2021141136A1 (en) Catalyst layer
JP2010062062A (en) Method of manufacturing membrane electrode assembly, membrane electrode assembly, and polymer electrolyte fuel cell
JP2004063409A (en) Manufacturing method of solid high molecular fuel cell
Ishikawa et al. Self-Standing MPL and Its In-Situ Liquid Water Measurement in PEFC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5515902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150