JP2011195584A - Transition metal complex compound, olefin polymerizing catalyst containing the compound, and method for producing olefin polymer which is carried out in the presence of the catalyst - Google Patents

Transition metal complex compound, olefin polymerizing catalyst containing the compound, and method for producing olefin polymer which is carried out in the presence of the catalyst Download PDF

Info

Publication number
JP2011195584A
JP2011195584A JP2011039826A JP2011039826A JP2011195584A JP 2011195584 A JP2011195584 A JP 2011195584A JP 2011039826 A JP2011039826 A JP 2011039826A JP 2011039826 A JP2011039826 A JP 2011039826A JP 2011195584 A JP2011195584 A JP 2011195584A
Authority
JP
Japan
Prior art keywords
compound
group
mmol
adamantyl
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011039826A
Other languages
Japanese (ja)
Other versions
JP5769444B2 (en
Inventor
Shiori Hanada
汐理 花田
Shinsuke Kinoshita
晋介 木下
Norimori Kawamura
憲守 河村
Toshihiro Muroto
敏宏 室戸
Kenichi Tanaka
健一 田中
Seiichi Ishii
聖一 石井
Hiroshi Terao
浩志 寺尾
Yasunori Saito
靖典 斉藤
Retsu Hara
烈 原
Yusuke Mizobuchi
悠介 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2011039826A priority Critical patent/JP5769444B2/en
Publication of JP2011195584A publication Critical patent/JP2011195584A/en
Application granted granted Critical
Publication of JP5769444B2 publication Critical patent/JP5769444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a transition metal complex compound, to provide an olefin polymerizing catalyst, containing the compound, and having excellent activity, and to provide a method for producing the olefin polymer which is carried out in the presence of the catalyst.SOLUTION: There is provided the transition metal complex compound of compound 3, e.g. of chemical formula; and the olefin polymerizing catalyst including following components (A) and (B): (A) the transition metal compound; and (B) at least one compound selected from the group consisting of (B-1) an organometallic compound, (B-2) an organoaluminumoxy compound, and (B-3) a compound reactive with the transition metal compound (A), and forming an ion pair.

Description

本発明は、遷移金属錯体化合物、該化合物を含むオレフィン多量化用触媒および該触媒存在下で行うオレフィン多量体の製造方法に関する。   The present invention relates to a transition metal complex compound, an olefin multimerization catalyst containing the compound, and a method for producing an olefin multimer in the presence of the catalyst.

α−オレフィンはポリオレフィンの原料など、広く工業的に用いられる重要な化合物であり、その中でも1−ヘキセンは特にポリオレフィン原料として需要が大きく、選択性の高い製造方法が望まれている。しかしながら、工業化されているα−オレフィンの製造方法の大部分は有機アルミニウムや遷移金属化合物を触媒として実施され、α−オレフィンの混合物が得られており、この要望を満たしていない。唯一工業的に用いられている1−ヘキセンの選択的な製造方法として、クロム化合物を用いるエチレン三量化反応が実施されている(例えば、特許文献1参照)が、クロム化合物以外の遷移金属化合物を用いるエチレン三量化反応によって1−ヘキセンを製造する技術は非常に少ない(例えば、特許文献2,3、非特許文献1,2参照)。   α-Olefin is an important compound widely used industrially, such as a polyolefin raw material. Among them, 1-hexene is particularly in demand as a polyolefin raw material, and a highly selective production method is desired. However, most of the industrialized production methods of α-olefins are carried out using organoaluminum or a transition metal compound as a catalyst, and a mixture of α-olefins is obtained, which does not satisfy this demand. As the only selective production method of 1-hexene used industrially, an ethylene trimerization reaction using a chromium compound has been carried out (for example, see Patent Document 1), but a transition metal compound other than a chromium compound is used. There are very few techniques which manufacture 1-hexene by the ethylene trimerization reaction to be used (for example, refer patent document 2, 3, nonpatent literature 1, 2).

近年、本発明者らは、フェノキシイミン配位子を有する遷移金属錯体化合物を利用したエチレン三量化反応によって1−ヘキセンを選択的に製造する触媒を報告している(例えば、特許文献4参照)。しかし、既存技術では、製造コスト、生産性の観点から触媒の反応活性が充分でなく、更なる触媒性能の向上が望まれていた。   In recent years, the present inventors have reported a catalyst for selectively producing 1-hexene by an ethylene trimerization reaction using a transition metal complex compound having a phenoxyimine ligand (see, for example, Patent Document 4). . However, in the existing technology, the reaction activity of the catalyst is not sufficient from the viewpoint of production cost and productivity, and further improvement of the catalyst performance has been desired.

米国特許第5856257号明細書US Pat. No. 5,856,257 特表2004−524959号公報JP-T-2004-524959 国際公開第01/68572号パンフレットInternational Publication No. 01/68572 pamphlet 国際公開第2009/5003号パンフレットInternational Publication No. 2009/5003 Pamphlet

Journal of American Chemical Society誌2001年123巻7423−7424頁Journal of American Chemical Society 2001, 123, 7423-7424 Journal of Organometallic Chemistry誌2004年689巻3641−3668頁Journal of Organometallic Chemistry 2004, 689, 3643-1668.

本発明は前記従来技術の有する課題を鑑みてされたものであり、新規な遷移金属錯体化合物、および該化合物を含有する、優れた活性を有するオレフィン多量化用触媒を提供することと、該オレフィン多量化用触媒存在下で行うオレフィン多量体の製造方法を提供することを目的とする。   The present invention has been made in view of the problems of the prior art, and provides a novel transition metal complex compound and a catalyst for olefin multimerization containing the compound and having excellent activity, and the olefin. It aims at providing the manufacturing method of the olefin multimer performed in the presence of the catalyst for multimerization.

本発明者らは上記課題を解決するために鋭意検討を重ねた結果、特定の構造を有する遷移金属錯体化合物を含むオレフィン多量化用触媒が優れた活性を有し、該触媒の存在下ではオレフィンの多量化反応が好適に行うことができ、特にオレフィンとしてエチレンを用いた場合には、エチレンの3量体である1−ヘキセンもしくは4量体である1−オクテンを高選択率で得ることができることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that an olefin multimerization catalyst containing a transition metal complex compound having a specific structure has an excellent activity, and in the presence of the catalyst, an olefin In particular, when ethylene is used as the olefin, 1-hexene which is a trimer of ethylene or 1-octene which is a tetramer can be obtained with high selectivity. The present invention has been completed by finding out what can be done.

すなわち本発明は、以下の[1]〜[9]に関する。
[1]下記一般式(1)で表される遷移金属化合物。
That is, the present invention relates to the following [1] to [9].
[1] A transition metal compound represented by the following general formula (1).

Figure 2011195584
〔一般式(1)中、Mは周期律表第4〜6族の原子を表し、
1〜R5およびR14は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ケイ素含有基、酸素含有基および窒素含有基から選ばれる原子または基であり、
6〜R13は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ケイ素含有基、酸素含有基および窒素含有基から選ばれる原子または基であって、R6〜R13の少なくとも一つがハロゲン原子であり、
1〜R14で示される基のうち隣接する2個の基が結合して、それらの結合する炭素原子と一緒に環を形成してもよい。
Figure 2011195584
[In General Formula (1), M represents an atom of Groups 4-6 of the periodic table,
R 1 to R 5 and R 14 may be the same or different from each other, and are atoms or groups selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a silicon-containing group, an oxygen-containing group, and a nitrogen-containing group,
R 6 to R 13 may be the same or different from each other, a hydrogen atom, a halogen atom, a hydrocarbon group, an atom or radical selected from a silicon-containing group, an oxygen-containing group and a nitrogen-containing group, R 6 ~ At least one of R 13 is a halogen atom;
Two adjacent groups out of the groups represented by R 1 to R 14 may be bonded to form a ring together with the carbon atoms to which they are bonded.

nはMの原子価を示す。
Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基および窒素含有基から選ばれる基を示し、Xで示される複数の原子または基は互いに同一でも異なっていてもよく、Xで示される複数の基は互いに結合していてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。〕
n represents the valence of M.
X represents a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group and a nitrogen-containing group, and a plurality of atoms or groups represented by X may be the same or different from each other, and are represented by X A plurality of groups may be bonded to each other, and a plurality of groups represented by X may be bonded to each other to form a ring. ]

[2]前記一般式(1)中、R6、R8またはR12のうち少なくとも一つがハロゲン原子であることを特徴とする[1]に記載の遷移金属化合物。 [2] The transition metal compound as described in [1], wherein at least one of R 6 , R 8 or R 12 in the general formula (1) is a halogen atom.

[3]前記一般式(1)中、R6、R8またはR12のうち少なくとも一つがフッ素原子であることを特徴とする[2]に記載の遷移金属化合物。
[4]前記一般式(1)中、R1が炭素数2〜12のアルキル基であることを特徴とする[2]または[3]に記載の遷移金属化合物。
[3] The transition metal compound as described in [2], wherein in the general formula (1), at least one of R 6 , R 8 and R 12 is a fluorine atom.
[4] The transition metal compound according to [2] or [3], wherein R 1 in the general formula (1) is an alkyl group having 2 to 12 carbon atoms.

[5]前記一般式(1)中、R3またはR11のうち少なくとも一つが炭素数3〜30の炭化水素基であることを特徴とする[2]〜[4]のいずれかに記載の遷移金属化合物。
[6]前記一般式(1)中、R2が3級アルキル基もしくは炭化水素基置換3級シリル基であることを特徴とする[1]〜[5]のいずれかに記載の遷移金属化合物。
[5] In any one of [2] to [4], in the general formula (1), at least one of R 3 and R 11 is a hydrocarbon group having 3 to 30 carbon atoms. Transition metal compounds.
[6] The transition metal compound according to any one of [1] to [5], wherein in the general formula (1), R 2 is a tertiary alkyl group or a hydrocarbon group-substituted tertiary silyl group .

[7]前記一般式(1)中、Mがチタン原子であることを特徴とする[1]〜[6]のいずれかに記載の遷移金属化合物。
[8]下記成分(A)と成分(B)とを含むことを特徴とするオレフィン多量化用触媒。
(A)[1]〜[7]のいずれかに記載の遷移金属化合物
(B)(B−1)有機金属化合物
(B−2)有機アルミニウムオキシ化合物、および
(B−3)遷移金属化合物(A)と反応してイオン対を形成する化合物
よりなる群から選ばれる少なくとも1種の化合物。
[7] The transition metal compound according to any one of [1] to [6], wherein in the general formula (1), M is a titanium atom.
[8] An olefin multimerization catalyst comprising the following component (A) and component (B):
(A) Transition metal compound according to any one of [1] to [7] (B) (B-1) Organometallic compound (B-2) Organoaluminum oxy compound, and (B-3) Transition metal compound ( At least one compound selected from the group consisting of compounds that react with A) to form ion pairs.

[9]下記成分(C)をさらに含むことを特徴とする[8]に記載のオレフィン多量化用触媒。
成分(C);前記成分(A)および成分(B)から選択される少なくとも1種の化合物を担持するための担体。
[9] The olefin multimerization catalyst according to [8], further comprising the following component (C):
Component (C); a carrier for supporting at least one compound selected from component (A) and component (B).

[10][8]または[9]に記載のオレフィン多量化用触媒を用いてオレフィンを多量化することを特徴とするオレフィン多量体の製造方法。   [10] A method for producing an olefin multimer, wherein the olefin is multimerized using the olefin multimerization catalyst according to [8] or [9].

本発明により、特定の遷移金属錯体化合物および該化合物を含む、高い活性を有するオレフィン多量化用触媒を提供することができる。さらに、該オレフィン多量化用触媒を用いた、オレフィン多量体の製造方法を提供することができる。該製造方法により、エチレンの多量化反応を行うと、高い活性および選択性で1−ヘキセンもしくは1−オクテンを製造することができ、工業的に極めて価値がある。   According to the present invention, it is possible to provide a specific transition metal complex compound and a highly active olefin multimerization catalyst containing the compound. Furthermore, the manufacturing method of an olefin multimer using this olefin multimerization catalyst can be provided. When the ethylene multimerization reaction is carried out by this production method, 1-hexene or 1-octene can be produced with high activity and selectivity, which is extremely valuable industrially.

一般式(1)のR6が水素原子、フッ素原子の場合の反応の活性化エネルギーを示す図である。It is a figure which shows the activation energy of reaction in case R < 6 > of General formula (1) is a hydrogen atom and a fluorine atom.

以下、本発明の遷移金属錯体化合物、オレフィン多量化用触媒および、該オレフィン多量化用触媒を用いたオレフィン多量体の製造方法について具体的に説明するがこれらに限定されるものではない。   Hereinafter, the transition metal complex compound of the present invention, the olefin multimerization catalyst, and the method for producing an olefin multimer using the olefin multimerization catalyst will be specifically described, but the present invention is not limited thereto.

なお、本発明において、オレフィンの多量化とは、オレフィンを2〜10量体にすることである。
本発明のオレフィン多量化用触媒は、後述する(A)遷移金属錯体化合物を含んでいる。また、オレフィン多量化用触媒は通常、(A)遷移金属錯体化合物に加えて、(B)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物および(b−3)(A)遷移金属錯体化合物と反応してイオン対を形成する化合物よりなる群から選ばれる少なくとも1種の化合物を含んでいる。なお、(b−3)(A)遷移金属錯体化合物と反応してイオン対を形成する化合物を「イオン化イオン性化合物」とも記す。
In addition, in this invention, the olefin multimerization is making an olefin into a 2-10 mer.
The olefin multimerization catalyst of the present invention contains a transition metal complex compound (A) described later. In addition to the (A) transition metal complex compound, the olefin multimerization catalyst is usually (B) (b-1) an organometallic compound, (b-2) an organoaluminum oxy compound, and (b-3) (A ) It contains at least one compound selected from the group consisting of compounds that react with transition metal complex compounds to form ion pairs. In addition, the compound which reacts with (b-3) (A) transition metal complex compound to form an ion pair is also referred to as “ionized ionic compound”.

また、本発明のオレフィン多量化用触媒は、前記成分(A)および成分(B)からなる群から選択される少なくとも1種の化合物を担持するための担体(C)を含んでいてもよい。   The olefin multimerization catalyst of the present invention may contain a support (C) for supporting at least one compound selected from the group consisting of the component (A) and the component (B).

[(A)遷移金属錯体化合物]
本発明の(A)遷移金属錯体化合物は下記一般式(1)で表わされる遷移金属錯体化合物である。
[(A) Transition metal complex compound]
The (A) transition metal complex compound of the present invention is a transition metal complex compound represented by the following general formula (1).

Figure 2011195584
上記一般式(1)中、R1〜R5およびR14は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ケイ素含有基、酸素含有基および窒素含有基から選ばれる原子または基を示す。
Figure 2011195584
In the general formula (1), R 1 to R 5 and R 14 may be the same as or different from each other, and are selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a silicon-containing group, an oxygen-containing group, and a nitrogen-containing group. Represents an atom or group.

ここで、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
炭化水素基として具体的には、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、ネオペンチル、n−ヘキシルなどの炭素原子数が1〜30、好ましくは1〜20、さらに好ましくは1〜10の直鎖状または分岐状のアルキル基; ビニル、アリル(allyl)、イソプロペニルなどの炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルケニル基; エチニル、プロパルギルなど炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルキニル基; シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、アダマンチルなどの炭素原子数が3〜30、好ましくは3〜20の環状飽和炭化水素基; シクロペンタジエニル、インデニル、フルオレニルなどの炭素原子数5〜30の環状不飽和炭化水素基; フェニル、ナフチル、ビフェニル、ターフェニル、フェナントリル、アントラセニルなどの炭素原子数が6〜30、好ましくは6〜20のアリール(aryl)基; トリル、イソプロピルフェニル、tert−ブチルフェニル、ジメチルフェニル、ジ−tert−ブチルフェニルなどのアルキル置換アリール基; ベンジリデン、メチリデン、エチリデンなどの炭素原子数が1〜30、好ましくは5〜10のアルキリデン基などが挙げられる。
Here, examples of the halogen atom include fluorine, chlorine, bromine, and iodine.
Specifically, the hydrocarbon group has 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, neopentyl, n-hexyl, preferably 1 to 20, more preferably 1 to 10 linear or branched alkyl group; vinyl, allyl, isopropenyl and the like having 2 to 30, preferably 2 to 20 carbon atoms A branched alkenyl group; a linear or branched alkynyl group having 2 to 30, preferably 2 to 20 carbon atoms such as ethynyl and propargyl; and a carbon atom number such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and adamantyl 3-30, preferably 3-20, cyclic saturated hydrocarbon groups; cyclopentadienyl, indenyl A cyclic unsaturated hydrocarbon group having 5 to 30 carbon atoms such as fluorenyl; aryl having 6 to 30, preferably 6 to 20 carbon atoms such as phenyl, naphthyl, biphenyl, terphenyl, phenanthryl, anthracenyl, etc. Groups; alkyl-substituted aryl groups such as tolyl, isopropylphenyl, tert-butylphenyl, dimethylphenyl, and di-tert-butylphenyl; alkylidene having 1 to 30, preferably 5 to 10 carbon atoms such as benzylidene, methylidene, and ethylidene Group and the like.

上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、トリフルオロメチル、ペンタフルオロフェニル、クロロフェニルなどの炭素原子数1〜30、好ましくは1〜20のハロゲン化炭化水素基が挙げられる。   In the above hydrocarbon group, a hydrogen atom may be substituted with a halogen. For example, a halogenated hydrocarbon group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms such as trifluoromethyl, pentafluorophenyl, chlorophenyl and the like. Can be mentioned.

また、上記炭化水素基は、水素原子が他の炭化水素基で置換されていてもよく、たとえばベンジル、クミル、ジフェニルエチル、トリチルなどのアリール基置換アルキル基などが挙げられる。   In the hydrocarbon group, a hydrogen atom may be substituted with another hydrocarbon group, and examples thereof include aryl group-substituted alkyl groups such as benzyl, cumyl, diphenylethyl, and trityl.

さらに、上記炭化水素基は、ピロール、ピリジン、ピリミジン、キノリン、トリアジンなどの含窒素化合物、フラン、ピランなどの含酸素化合物、チオフェンなどの含硫黄化合物などの残基、およびこれらのヘテロ環式化合物残基に炭素原子数が1〜30、好ましくは1〜20のアルキル基、アルコキシ基などの置換基がさらに置換した基などのヘテロ環式化合物残基; アルコキシ基、アリーロキシ基、エステル基、エーテル基、アシル基、カルボキシル基、カルボナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無水物基などの酸素含有基; アミノ基、イミノ基、アミド基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エステル基、アミジノ基、ジアゾ基、アミノ基がアンモニウム塩となったものなどの窒素含有基; ボランジイル基、ボラントリイル基、ジボラニル基などのホウ素含有基; メルカプト基、チオエステル基、ジチオエステル基、アルキルチオ基、アリールチオ基、チオアシル基、チオエーテル基、チオシアン酸エステル基、イソチオシアン酸エステル基、スルホンエステル基、スルホンアミド基、チオカルボキシル基、ジチオカルボキシル基、スルホ基、スルホニル基、スルフィニル基、スルフェニル基などのイオウ含有基; ホスフィド基、ホスホリル基、チオホスホリル基、ホスファト基などのリン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を有していてもよい。   Further, the hydrocarbon group includes residues such as nitrogen-containing compounds such as pyrrole, pyridine, pyrimidine, quinoline and triazine, oxygen-containing compounds such as furan and pyran, sulfur-containing compounds such as thiophene, and heterocyclic compounds thereof. A heterocyclic compound residue such as a group further substituted with a substituent such as an alkyl group or alkoxy group having 1 to 30, preferably 1 to 20 carbon atoms in the residue; alkoxy group, aryloxy group, ester group, ether Group, acyl group, carboxyl group, carbonate group, hydroxy group, peroxy group, carboxylic anhydride group and other oxygen-containing groups; amino group, imino group, amide group, imide group, hydrazino group, hydrazono group, nitro group, nitroso Group, cyano group, isocyano group, cyanate ester group, amidino group, diazo group, amino group Nitrogen-containing groups such as those formed into nium salts; Boron-containing groups such as boranediyl group, boranetriyl group, diboranyl group; mercapto group, thioester group, dithioester group, alkylthio group, arylthio group, thioacyl group, thioether group, thiocyanic acid Sulfur-containing groups such as ester groups, isothiocyanate groups, sulfone ester groups, sulfonamido groups, thiocarboxyl groups, dithiocarboxyl groups, sulfo groups, sulfonyl groups, sulfinyl groups, sulfenyl groups; phosphide groups, phosphoryl groups, thiophosphoryls And a phosphorus-containing group such as a phosphato group, a silicon-containing group, a germanium-containing group, or a tin-containing group.

これらのうち、特に、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、ネオペンチル、n−ヘキシル、アダマンチルなどの炭素原子数1〜30、好ましくは1〜20、さらに好ましくは1〜10、より好ましくは2〜10の直鎖状または分岐状のアルキル基; フェニル、ナフチル、ビフェニル、ターフェニル、フェナントリル、アントラセニルなどの炭素原子数6〜30、好ましくは6〜20のアリール基; これらのアリール基にハロゲン原子、炭素原子数1〜30、好ましくは1〜20のアルキル基またはアルコキシ基、炭素原子数6〜30、好ましくは6〜20のアリール基またはアリーロキシ基などの置換基が1〜5個置換した置換アリール基等が好ましい。   Among these, in particular, 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, neopentyl, n-hexyl, adamantyl, etc. 20, more preferably 1-10, more preferably 2-10 linear or branched alkyl groups; phenyl, naphthyl, biphenyl, terphenyl, phenanthryl, anthracenyl, etc. 6-30, preferably 6. An aryl group having ˜20; a halogen atom, an alkyl group or alkoxy group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, an aryl group or aryloxy having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms; A substituted aryl group substituted with 1 to 5 substituents such as a group is preferred.

ケイ素含有基としては、シリル基、シロキシ基、炭化水素置換シリル基、炭化水素置換シロキシ基などが挙げられる。このうち炭化水素置換シリル基として具体的には、メチルシリル、ジメチルシリル、トリメチルシリル、エチルシリル、ジエチルシリル、トリエチルシリル、ジフェニルメチルシリル、トリフェニルシリル、ジメチルフェニルシリル、ジメチル−tert−ブチルシリル、ジメチル(ペンタフルオロフェニル)シリルなどが挙げられる。これらの中では、メチルシリル、ジメチルシリル、トリメチルシリル、エチルシリル、ジエチルシリル、トリエチルシリル、ジメチルフェニルシリル、トリフェニルシリルなどが好ましい。特にトリメチルシリル、トリエチルシリル、トリフェニルシリル、ジメチルフェニルシリルが好ましい。炭化水素置換シロキシ基として具体的には、トリメチルシロキシなどが挙げられる。   Examples of the silicon-containing group include a silyl group, a siloxy group, a hydrocarbon-substituted silyl group, and a hydrocarbon-substituted siloxy group. Specific examples of the hydrocarbon-substituted silyl group include methylsilyl, dimethylsilyl, trimethylsilyl, ethylsilyl, diethylsilyl, triethylsilyl, diphenylmethylsilyl, triphenylsilyl, dimethylphenylsilyl, dimethyl-tert-butylsilyl, dimethyl (pentafluoro Phenyl) silyl and the like. Among these, methylsilyl, dimethylsilyl, trimethylsilyl, ethylsilyl, diethylsilyl, triethylsilyl, dimethylphenylsilyl, triphenylsilyl and the like are preferable. In particular, trimethylsilyl, triethylsilyl, triphenylsilyl, and dimethylphenylsilyl are preferable. Specific examples of the hydrocarbon-substituted siloxy group include trimethylsiloxy and the like.

酸素含有基、窒素含有基としては、上記炭化水素基に含まれていてもよい置換基として例示したものと同様のものが挙げられる。
1〜R5およびR14としては、オレフィン多量化用触媒として使用した場合の触媒性能及び製造上の容易性から、水素原子、ハロゲン原子、炭素原子数1〜30の炭化水素基、炭化水素置換シリル基であることが好ましい。
Examples of the oxygen-containing group and the nitrogen-containing group include the same groups as those exemplified as the substituent which may be contained in the hydrocarbon group.
R 1 to R 5 and R 14 are each a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 30 carbon atoms, a hydrocarbon from the viewpoint of catalytic performance and ease of production when used as an olefin multimerization catalyst. A substituted silyl group is preferred.

これらのうち、R1として好ましい基は上記例示の中でも、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、n−ヘキシル、シクロヘキシル、n−オクチルなどの炭素原子数1〜20の炭化水素基であり、より好ましくは炭素原子数1〜12の炭化水素基であり、触媒活性、選択性の観点からメチル、エチル、n−プロピル、n−ブチルが特に好ましい。 Among these, preferred groups as R 1 are hydrocarbon groups having 1 to 20 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n-hexyl, cyclohexyl, and n-octyl among the above examples. More preferably, it is a hydrocarbon group having 1 to 12 carbon atoms, and methyl, ethyl, n-propyl and n-butyl are particularly preferred from the viewpoint of catalytic activity and selectivity.

2として好ましい基は上記例示の中でも、tert−ブチル、アダマンチル、クミル、トリチルなどの炭素原子数4〜20の三級アルキル基;トリメチルシリル、メチルジフェニルシリル、ジメチルフェニルシリル、トリフェニルシリルなどの炭素原子数3〜20の炭化水素置換三級シリル基である。 Among the above examples, preferred groups as R 2 are tertiary alkyl groups having 4 to 20 carbon atoms such as tert-butyl, adamantyl, cumyl, and trityl; carbons such as trimethylsilyl, methyldiphenylsilyl, dimethylphenylsilyl, and triphenylsilyl. It is a hydrocarbon-substituted tertiary silyl group having 3 to 20 atoms.

3として好ましい基は上記例示の中でも、イソプロピル、シクロへキシル、tert−ブチル、アダマンチル、クミル、トリチル、フェニル、トリル、ジメチルフェニル、トリメチルフェニル、エチルフェニル、プロピルフェニル、ビフェニル、ナフチル、メチルナフチル、アントラセニル、フェナントリルなどの炭素原子数3〜20の炭化水素基;トリメチルシリル、メチルジフェニルシリル、ジメチルフェニルシリル、トリフェニルシリルなどの炭素原子数1〜20の炭化水素置換シリル基である。 Preferred examples of R 3 include isopropyl, cyclohexyl, tert-butyl, adamantyl, cumyl, trityl, phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, among the above examples. A hydrocarbon group having 3 to 20 carbon atoms such as anthracenyl and phenanthryl; a hydrocarbon-substituted silyl group having 1 to 20 carbon atoms such as trimethylsilyl, methyldiphenylsilyl, dimethylphenylsilyl, and triphenylsilyl.

前記一般式(1)中、R6〜R13は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ケイ素含有基、酸素含有基および窒素含有基から選ばれる原子または基であって、R6〜R13の少なくとも一つがハロゲン原子を示す。 In the general formula (1), R 6 to R 13 may be the same or different from each other, and an atom selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a silicon-containing group, an oxygen-containing group, and a nitrogen-containing group or And at least one of R 6 to R 13 represents a halogen atom.

なお、R6〜R13において選択される、ハロゲン原子、炭化水素基、ケイ素含有基、酸素含有基および窒素含有基は、前記一般式(1)のR1〜R5およびR14と同様のものが挙げられる。 Note that the halogen atom, hydrocarbon group, silicon-containing group, oxygen-containing group and nitrogen-containing group selected in R 6 to R 13 are the same as R 1 to R 5 and R 14 in the general formula (1). Things.

具体的には、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
炭化水素基として具体的には、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、ネオペンチル、n−ヘキシルなどの炭素原子数が1〜30、好ましくは1〜20、さらに好ましくは1〜10の直鎖状または分岐状のアルキル基; ビニル、アリル(allyl)、イソプロペニルなどの炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルケニル基; エチニル、プロパルギルなど炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルキニル基; シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、アダマンチルなどの炭素原子数が3〜30、好ましくは3〜20の環状飽和炭化水素基; シクロペンタジエニル、インデニル、フルオレニルなどの炭素原子数5〜30の環状不飽和炭化水素基; フェニル、ナフチル、ビフェニル、ターフェニル、フェナントリル、アントラセニルなどの炭素原子数が6〜30、好ましくは6〜20のアリール(aryl)基; トリル、イソプロピルフェニル、tert−ブチルフェニル、ジメチルフェニル、ジ−tert−ブチルフェニルなどのアルキル置換アリール基; ベンジリデン、メチリデン、エチリデンなどの炭素原子数が1〜30、好ましくは5〜10のアルキリデン基などが挙げられる。
Specifically, the halogen atom includes fluorine, chlorine, bromine and iodine.
Specifically, the hydrocarbon group has 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, neopentyl, n-hexyl, preferably 1 to 20, more preferably 1 to 10 linear or branched alkyl group; vinyl, allyl, isopropenyl and the like having 2 to 30, preferably 2 to 20 carbon atoms A branched alkenyl group; a linear or branched alkynyl group having 2 to 30, preferably 2 to 20 carbon atoms such as ethynyl and propargyl; and a carbon atom number such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and adamantyl 3-30, preferably 3-20, cyclic saturated hydrocarbon groups; cyclopentadienyl, indenyl A cyclic unsaturated hydrocarbon group having 5 to 30 carbon atoms such as fluorenyl; aryl having 6 to 30, preferably 6 to 20 carbon atoms such as phenyl, naphthyl, biphenyl, terphenyl, phenanthryl, anthracenyl, etc. Groups; alkyl-substituted aryl groups such as tolyl, isopropylphenyl, tert-butylphenyl, dimethylphenyl, and di-tert-butylphenyl; alkylidene having 1 to 30, preferably 5 to 10 carbon atoms such as benzylidene, methylidene, and ethylidene Group and the like.

上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、トリフルオロメチル、ペンタフルオロフェニル、クロロフェニルなどの炭素原子数1〜30、好ましくは1〜20のハロゲン化炭化水素基が挙げられる。   In the above hydrocarbon group, a hydrogen atom may be substituted with a halogen. For example, a halogenated hydrocarbon group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms such as trifluoromethyl, pentafluorophenyl, chlorophenyl and the like. Can be mentioned.

また、上記炭化水素基は、水素原子が他の炭化水素基で置換されていてもよく、たとえばベンジル、クミル、ジフェニルエチル、トリチルなどのアリール基置換アルキル基などが挙げられる。   In the hydrocarbon group, a hydrogen atom may be substituted with another hydrocarbon group, and examples thereof include aryl group-substituted alkyl groups such as benzyl, cumyl, diphenylethyl, and trityl.

さらに、上記炭化水素基は、ピロール、ピリジン、ピリミジン、キノリン、トリアジンなどの含窒素化合物、フラン、ピランなどの含酸素化合物、チオフェンなどの含硫黄化合物などの残基、およびこれらのヘテロ環式化合物残基に炭素原子数が1〜30、好ましくは1〜20のアルキル基、アルコキシ基などの置換基がさらに置換した基などのヘテロ環式化合物残基; アルコキシ基、アリーロキシ基、エステル基、エーテル基、アシル基、カルボキシル基、カルボナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無水物基などの酸素含有基; アミノ基、イミノ基、アミド基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エステル基、アミジノ基、ジアゾ基、アミノ基がアンモニウム塩となったものなどの窒素含有基; ボランジイル基、ボラントリイル基、ジボラニル基などのホウ素含有基; メルカプト基、チオエステル基、ジチオエステル基、アルキルチオ基、アリールチオ基、チオアシル基、チオエーテル基、チオシアン酸エステル基、イソチオシアン酸エステル基、スルホンエステル基、スルホンアミド基、チオカルボキシル基、ジチオカルボキシル基、スルホ基、スルホニル基、スルフィニル基、スルフェニル基などのイオウ含有基; ホスフィド基、ホスホリル基、チオホスホリル基、ホスファト基などのリン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を有していてもよい。   Further, the hydrocarbon group includes residues such as nitrogen-containing compounds such as pyrrole, pyridine, pyrimidine, quinoline and triazine, oxygen-containing compounds such as furan and pyran, sulfur-containing compounds such as thiophene, and heterocyclic compounds thereof. A heterocyclic compound residue such as a group further substituted with a substituent such as an alkyl group or alkoxy group having 1 to 30, preferably 1 to 20 carbon atoms in the residue; alkoxy group, aryloxy group, ester group, ether Group, acyl group, carboxyl group, carbonate group, hydroxy group, peroxy group, carboxylic anhydride group and other oxygen-containing groups; amino group, imino group, amide group, imide group, hydrazino group, hydrazono group, nitro group, nitroso Group, cyano group, isocyano group, cyanate ester group, amidino group, diazo group, amino group Nitrogen-containing groups such as those formed into nium salts; Boron-containing groups such as boranediyl group, boranetriyl group, diboranyl group; mercapto group, thioester group, dithioester group, alkylthio group, arylthio group, thioacyl group, thioether group, thiocyanic acid Sulfur-containing groups such as ester groups, isothiocyanate groups, sulfone ester groups, sulfonamido groups, thiocarboxyl groups, dithiocarboxyl groups, sulfo groups, sulfonyl groups, sulfinyl groups, sulfenyl groups; phosphide groups, phosphoryl groups, thiophosphoryls And a phosphorus-containing group such as a phosphato group, a silicon-containing group, a germanium-containing group, or a tin-containing group.

ケイ素含有基としては、シリル基、シロキシ基、炭化水素置換シリル基、炭化水素置換シロキシ基などが挙げられる。このうち炭化水素置換シリル基として具体的には、メチルシリル、ジメチルシリル、トリメチルシリル、エチルシリル、ジエチルシリル、トリエチルシリル、ジフェニルメチルシリル、トリフェニルシリル、ジメチルフェニルシリル、ジメチル−tert−ブチルシリル、ジメチル(ペンタフルオロフェニル)シリルなどが挙げられる。これらの中では、メチルシリル、ジメチルシリル、トリメチルシリル、エチルシリル、ジエチルシリル、トリエチルシリル、ジメチルフェニルシリル、トリフェニルシリルなどが好ましい。特にトリメチルシリル、トリエチルシリル、トリフェニルシリル、ジメチルフェニルシリルが好ましい。炭化水素置換シロキシ基として具体的には、トリメチルシロキシなどが挙げられる。   Examples of the silicon-containing group include a silyl group, a siloxy group, a hydrocarbon-substituted silyl group, and a hydrocarbon-substituted siloxy group. Specific examples of the hydrocarbon-substituted silyl group include methylsilyl, dimethylsilyl, trimethylsilyl, ethylsilyl, diethylsilyl, triethylsilyl, diphenylmethylsilyl, triphenylsilyl, dimethylphenylsilyl, dimethyl-tert-butylsilyl, dimethyl (pentafluoro Phenyl) silyl and the like. Among these, methylsilyl, dimethylsilyl, trimethylsilyl, ethylsilyl, diethylsilyl, triethylsilyl, dimethylphenylsilyl, triphenylsilyl and the like are preferable. In particular, trimethylsilyl, triethylsilyl, triphenylsilyl, and dimethylphenylsilyl are preferable. Specific examples of the hydrocarbon-substituted siloxy group include trimethylsiloxy and the like.

酸素含有基、窒素含有基としては、上記炭化水素基に含まれていてもよい置換基として例示したものと同様のものが挙げられる。
前記一般式(1)中、R6〜R13の少なくとも一つがハロゲン原子であることが好ましい。ハロゲン原子として具体的には、フッ素、塩素、臭素、ヨウ素である。
Examples of the oxygen-containing group and the nitrogen-containing group include the same groups as those exemplified as the substituent which may be contained in the hydrocarbon group.
In the general formula (1), at least one of R 6 to R 13 is preferably a halogen atom. Specific examples of the halogen atom include fluorine, chlorine, bromine and iodine.

オレフィン多量化用触媒として使用した場合の触媒活性の観点からR6〜R13の内、R6、R8もしくはR12の少なくともいずれかがハロゲン原子であることが好ましく、R6、R8もしくはR12の少なくとも一つがフッ素原子であることが特に好ましい。 From the viewpoint of catalytic activity when used as an olefin multimerization catalyst, it is preferred that at least one of R 6 , R 8 or R 12 among R 6 to R 13 is a halogen atom, and R 6 , R 8 or It is particularly preferred that at least one of R 12 is a fluorine atom.

6、R8もしくはR12の少なくとも一つにハロゲン原子を導入するということはフェノキシイミン配位子を通じて遷移金属化合物の金属中心の電子状態を変化させることを意味し、これによって反応中間体の安定性を変化させることにより反応性の向上が起こることが推定される。 Introducing a halogen atom into at least one of R 6 , R 8, or R 12 means changing the electronic state of the metal center of the transition metal compound through the phenoxyimine ligand. It is presumed that the reactivity is improved by changing the stability.

このようなハロゲン原子の導入による反応速度の増大は密度汎関数法(B3LYP/LANL2DZ)を用いて求められた反応の活性化エネルギーからも支持される。R6の置換基の種類の違いを例にとって、以下に説明する。図1に示すように、R6がフッ素原子である場合、触媒的三量化反応の律速段階の反応の活性化エネルギーはΔE‡=59.8kJ/molであり、R6が水素原子である場合(ΔE‡=62.6kJ/mol)より2.8kJ/mol低くなる。反応速度定数kは反応の活性化エネルギーと温度の関数としてアレニウスの式:k=A・exp(−E/RT)(A:反応の頻度因子、R:気体定数)で求められることから、頻度因子Aが同じであると仮定した場合、20℃の反応ではR6がフッ素原子である場合の反応速度定数kFとR6が水素原子である場合の速度定数kHの比はおよそ3:1、すなわち反応速度がほぼ3倍になることが期待される。このような遷移金属化合物を後述するように、オレフィン多量化用触媒として用いることで、触媒の反応性が増し、反応活性の観点から好ましい結果が得られる。 Such an increase in the reaction rate due to the introduction of the halogen atom is supported also from the activation energy of the reaction obtained using the density functional method (B3LYP / LANL2DZ). This will be described below by taking the difference in the type of substituent of R 6 as an example. As shown in FIG. 1, when R 6 is a fluorine atom, the activation energy of the rate-limiting reaction of the catalytic trimerization reaction is ΔE ‡ = 59.8 kJ / mol, and R 6 is a hydrogen atom It is 2.8 kJ / mol lower than (ΔE ‡ = 62.6 kJ / mol). Since the reaction rate constant k is determined by the Arrhenius equation: k = A · exp (−E / RT) (A: reaction frequency factor, R: gas constant) as a function of reaction activation energy and temperature, the frequency Assuming that the factors A are the same, in the reaction at 20 ° C., the ratio of the reaction rate constant k F when R 6 is a fluorine atom to the rate constant k H when R 6 is a hydrogen atom is approximately 3: 1, ie, the reaction rate is expected to be almost tripled. As will be described later, by using such a transition metal compound as an olefin multimerization catalyst, the reactivity of the catalyst increases, and favorable results are obtained from the viewpoint of reaction activity.

6、R8もしくはR12の少なくとも一つがハロゲン原子である場合の、他の置換基の好ましい態様について、R1として好ましい基はエチル、n−プロピル、イソプロピル、n−ブチル、n−ヘキシル、シクロヘキシル、n−オクチルなどの炭素原子数2〜12の炭化水素基であり、触媒活性、選択性の観点からエチル、n−プロピル、n−ブチルが特に好ましい。 Regarding preferred embodiments of other substituents when at least one of R 6 , R 8 or R 12 is a halogen atom, preferred groups as R 1 are ethyl, n-propyl, isopropyl, n-butyl, n-hexyl, It is a hydrocarbon group having 2 to 12 carbon atoms such as cyclohexyl and n-octyl, and ethyl, n-propyl and n-butyl are particularly preferred from the viewpoint of catalytic activity and selectivity.

また、R6、R8もしくはR12の少なくとも一つがハロゲン原子である場合、R3およびR11は互いに同一でも異なっていても良いが、少なくともいずれか一つが炭素原子数3〜30の炭化水素基であることが好ましい。炭素原子数3〜30の炭化水素基として具体的には、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、ネオペンチル、n−ヘキシルなどの炭素原子数が3〜30、好ましくは3〜20の直鎖状または分岐状のアルキル基; アリル(allyl)、イソプロペニルなどの炭素原子数が3〜30、好ましくは3〜20の直鎖状または分岐状のアルケニル基; プロパルギルなど炭素原子数が3〜30、好ましくは3〜20の直鎖状または分岐状のアルキニル基; シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、アダマンチルなどの炭素原子数が3〜30、好ましくは3〜20の環状飽和炭化水素基; シクロペンタジエニル、インデニル、フルオレニルなどの炭素原子数5〜30の環状不飽和炭化水素基; フェニル、ナフチル、ビフェニル、ターフェニル、フェナントリル、アントラセニルなどの炭素原子数が6〜30、好ましくは6〜20のアリール(aryl)基; トリル、イソプロピルフェニル、tert−ブチルフェニル、ジメチルフェニル、ジ−tert−ブチルフェニルなどのアルキル置換アリール基; ベンジリデン、メチリデン、エチリデンなどの炭素原子数が3〜30、好ましくは5〜20のアルキリデン基などが挙げられる。 When at least one of R 6 , R 8 or R 12 is a halogen atom, R 3 and R 11 may be the same or different from each other, but at least one of them is a hydrocarbon having 3 to 30 carbon atoms. It is preferably a group. Specific examples of the hydrocarbon group having 3 to 30 carbon atoms include n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, neopentyl, n-hexyl and the like having 3 to 30 carbon atoms. , Preferably a linear or branched alkyl group having 3 to 20; a linear or branched alkenyl group having 3 to 30 carbon atoms, preferably 3 to 20, such as allyl or isopropenyl; A linear or branched alkynyl group having 3 to 30, preferably 3 to 20 carbon atoms such as propargyl; 3 to 30 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and adamantyl, preferably 3 to 20 cyclic saturated hydrocarbon groups; 5 to 30 carbon atoms such as cyclopentadienyl, indenyl, fluorenyl, etc. Cyclic unsaturated hydrocarbon group; aryl group having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, such as phenyl, naphthyl, biphenyl, terphenyl, phenanthryl, anthracenyl; tolyl, isopropylphenyl, tert-butylphenyl Alkyl substituted aryl groups such as dimethylphenyl and di-tert-butylphenyl; alkylidene groups having 3 to 30, preferably 5 to 20 carbon atoms such as benzylidene, methylidene and ethylidene.

上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、パーフルオロブチル、ペンタフルオロフェニル、クロロフェニルなどの炭素原子数3〜30、好ましくは3〜20のハロゲン化炭化水素基が挙げられる。   In the hydrocarbon group, a hydrogen atom may be substituted with a halogen. For example, a halogenated hydrocarbon group having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms such as perfluorobutyl, pentafluorophenyl, and chlorophenyl. Can be mentioned.

また、上記炭化水素基は、水素原子が他の炭化水素基で置換されていてもよく、たとえばベンジル、クミル、ジフェニルエチル、トリチルなどのアリール基置換アルキル基などが挙げられる。   In the hydrocarbon group, a hydrogen atom may be substituted with another hydrocarbon group, and examples thereof include aryl group-substituted alkyl groups such as benzyl, cumyl, diphenylethyl, and trityl.

さらに、上記炭化水素基は、ピロール、ピリジン、ピリミジン、キノリン、トリアジンなどの含窒素化合物、フラン、ピランなどの含酸素化合物、チオフェンなどの含硫黄化合物などの残基、およびこれらのヘテロ環式化合物残基に炭素原子数が1〜30、好ましくは1〜20のアルキル基、アルコキシ基などの置換基がさらに置換した基などのヘテロ環式化合物残基; アルコキシ基、アリーロキシ基、エステル基、エーテル基、アシル基、カルボキシル基、カルボナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無水物基などの酸素含有基; アミノ基、イミノ基、アミド基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エステル基、アミジノ基、ジアゾ基、アミノ基がアンモニウム塩となったものなどの窒素含有基; ボランジイル基、ボラントリイル基、ジボラニル基などのホウ素含有基; メルカプト基、チオエステル基、ジチオエステル基、アルキルチオ基、アリールチオ基、チオアシル基、チオエーテル基、チオシアン酸エステル基、イソチオシアン酸エステル基、スルホンエステル基、スルホンアミド基、チオカルボキシル基、ジチオカルボキシル基、スルホ基、スルホニル基、スルフィニル基、スルフェニル基などのイオウ含有基; ホスフィド基、ホスホリル基、チオホスホリル基、ホスファト基などのリン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を有していてもよい。   Further, the hydrocarbon group includes residues such as nitrogen-containing compounds such as pyrrole, pyridine, pyrimidine, quinoline and triazine, oxygen-containing compounds such as furan and pyran, sulfur-containing compounds such as thiophene, and heterocyclic compounds thereof. A heterocyclic compound residue such as a group further substituted with a substituent such as an alkyl group or alkoxy group having 1 to 30, preferably 1 to 20 carbon atoms in the residue; alkoxy group, aryloxy group, ester group, ether Group, acyl group, carboxyl group, carbonate group, hydroxy group, peroxy group, carboxylic anhydride group and other oxygen-containing groups; amino group, imino group, amide group, imide group, hydrazino group, hydrazono group, nitro group, nitroso Group, cyano group, isocyano group, cyanate ester group, amidino group, diazo group, amino group Nitrogen-containing groups such as those formed into nium salts; Boron-containing groups such as boranediyl group, boranetriyl group, diboranyl group; mercapto group, thioester group, dithioester group, alkylthio group, arylthio group, thioacyl group, thioether group, thiocyanic acid Sulfur-containing groups such as ester groups, isothiocyanate groups, sulfone ester groups, sulfonamido groups, thiocarboxyl groups, dithiocarboxyl groups, sulfo groups, sulfonyl groups, sulfinyl groups, sulfenyl groups; phosphide groups, phosphoryl groups, thiophosphoryls And a phosphorus-containing group such as a phosphato group, a silicon-containing group, a germanium-containing group, or a tin-containing group.

これらのうちR6、R8もしくはR12の少なくとも一つがハロゲン原子である場合、R3およびR11として選ばれる置換基として特に好ましくは、イソプロピル、シクロへキシル、tert−ブチル、アダマンチル、クミル、トリチル、フェニル、トリル、ジメチルフェニル、トリメチルフェニル、エチルフェニル、プロピルフェニル、ビフェニル、ナフチル、メチルナフチル、アントラセニル、フェナントリルが挙げられる。 Among these, when at least one of R 6 , R 8 or R 12 is a halogen atom, the substituent selected as R 3 and R 11 is particularly preferably isopropyl, cyclohexyl, tert-butyl, adamantyl, cumyl, Examples include trityl, phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthracenyl, and phenanthryl.

また、R6、R8もしくはR12の少なくとも一つがハロゲン原子である場合、R4、R5、R9およびR10は同時に水素原子であることが好ましく、R7およびR13が炭化水素基である場合には炭素数1または2であることが好ましい。 When at least one of R 6 , R 8 or R 12 is a halogen atom, R 4 , R 5 , R 9 and R 10 are preferably hydrogen atoms at the same time, and R 7 and R 13 are hydrocarbon groups. Is preferably 1 or 2 carbon atoms.

さらに、R1〜R14で示される基はこれらのうち2個以上が互いに連結していてもよい。好ましくは隣接する基が互いに連結して脂肪環、芳香環または、酸素原子、窒素原子などの異原子を含む炭化水素環を形成していてもよく、これらの環はさらに置換基を有していてもよい。 Furthermore, two or more of the groups represented by R 1 to R 14 may be linked to each other. Preferably, adjacent groups may be linked to each other to form an alicyclic ring, an aromatic ring, or a hydrocarbon ring containing a different atom such as an oxygen atom or a nitrogen atom, and these rings further have a substituent. May be.

前記一般式(1)において、Mは周期律表第4〜6族の遷移金属原子を示し、nはMの原子価を示す。Mとしては、チタン、ジルコニウム、ハフニウム、バナジウム、タンタル、クロムが好ましく挙げられる。Mとしては、チタン、ジルコニウム、ハフニウム等の周期律表第4族の遷移金属原子であることがより好ましく、チタンが特に好ましい。nとしてはチタン、ジルコニウム、ハフニウム等の周期律表第4族の遷移金属原子に対しては4、バナジウムおよびタンタルに対しては3〜5、クロムに対しては3が特に好ましい。   In the general formula (1), M represents a transition metal atom in Groups 4 to 6 of the periodic table, and n represents the valence of M. Preferable examples of M include titanium, zirconium, hafnium, vanadium, tantalum, and chromium. M is more preferably a transition metal atom of Group 4 of the periodic table such as titanium, zirconium, hafnium, etc., and titanium is particularly preferable. n is particularly preferably 4 for Group 4 transition metal atoms such as titanium, zirconium, hafnium, 3-5 for vanadium and tantalum, and 3 for chromium.

前記一般式(1)において、Xは水素原子、ハロゲン原子、炭化水素基、酸素含有基または窒素含有基を示す。なお、Xで示される原子や基は互いに同一でも異なっていてもよく、またXで示される基は互いに結合して環を形成してもよい。   In the general formula (1), X represents a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group or a nitrogen-containing group. The atoms and groups represented by X may be the same or different from each other, and the groups represented by X may be bonded to each other to form a ring.

ここで、Xにおいて選択されるハロゲン原子、炭化水素基、酸素含有基および窒素含有基は、前記一般式(1)のR1〜R14で例示したものと同様のものが挙げられる。
具体的には、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
Here, examples of the halogen atom, hydrocarbon group, oxygen-containing group and nitrogen-containing group selected in X include the same as those exemplified for R 1 to R 14 in the general formula (1).
Specifically, the halogen atom includes fluorine, chlorine, bromine and iodine.

炭化水素基として具体的には、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、ネオペンチル、n−ヘキシルなどの炭素原子数が1〜30、好ましくは1〜20、さらに好ましくは1〜10の直鎖状または分岐状のアルキル基; ビニル、アリル(allyl)、イソプロペニルなどの炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルケニル基; エチニル、プロパルギルなど炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルキニル基; シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、アダマンチルなどの炭素原子数が3〜30、好ましくは3〜20の環状飽和炭化水素基; シクロペンタジエニル、インデニル、フルオレニルなどの炭素原子数5〜30の環状不飽和炭化水素基; フェニル、ナフチル、ビフェニル、ターフェニル、フェナントリル、アントラセニルなどの炭素原子数が6〜30、好ましくは6〜20のアリール(aryl)基; トリル、イソプロピルフェニル、tert−ブチルフェニル、ジメチルフェニル、ジ−tert−ブチルフェニルなどのアルキル置換アリール基; ベンジリデン、メチリデン、エチリデンなどの炭素原子数が1〜30、好ましくは5〜10のアルキリデン基などが挙げられる。   Specifically, the hydrocarbon group has 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, neopentyl, n-hexyl, preferably 1 to 20, more preferably 1 to 10 linear or branched alkyl group; vinyl, allyl, isopropenyl and the like having 2 to 30, preferably 2 to 20 carbon atoms A branched alkenyl group; a linear or branched alkynyl group having 2 to 30, preferably 2 to 20 carbon atoms such as ethynyl and propargyl; and a carbon atom number such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and adamantyl 3-30, preferably 3-20, cyclic saturated hydrocarbon groups; cyclopentadienyl, inde A cyclic unsaturated hydrocarbon group having 5 to 30 carbon atoms such as ru and fluorenyl; aryl having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms such as phenyl, naphthyl, biphenyl, terphenyl, phenanthryl, anthracenyl, etc. ) Groups; alkyl-substituted aryl groups such as tolyl, isopropylphenyl, tert-butylphenyl, dimethylphenyl, di-tert-butylphenyl; benzylidene, methylidene, ethylidene, etc. having 1 to 30, preferably 5 to 10 carbon atoms And an alkylidene group.

上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、トリフルオロメチル、ペンタフルオロフェニル、クロロフェニルなどの炭素原子数1〜30、好ましくは1〜20のハロゲン化炭化水素基が挙げられる。   In the above hydrocarbon group, a hydrogen atom may be substituted with a halogen. For example, a halogenated hydrocarbon group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms such as trifluoromethyl, pentafluorophenyl, chlorophenyl and the like. Can be mentioned.

また、上記炭化水素基は、水素原子が他の炭化水素基で置換されていてもよく、たとえばベンジル、クミル、ジフェニルエチル、トリチルなどのアリール基置換アルキル基などが挙げられる。   In the hydrocarbon group, a hydrogen atom may be substituted with another hydrocarbon group, and examples thereof include aryl group-substituted alkyl groups such as benzyl, cumyl, diphenylethyl, and trityl.

さらに、上記炭化水素基は、ピロール、ピリジン、ピリミジン、キノリン、トリアジンなどの含窒素化合物、フラン、ピランなどの含酸素化合物、チオフェンなどの含硫黄化合物などの残基、およびこれらのヘテロ環式化合物残基に炭素原子数が1〜30、好ましくは1〜20のアルキル基、アルコキシ基などの置換基がさらに置換した基などのヘテロ環式化合物残基; アルコキシ基、アリーロキシ基、エステル基、エーテル基、アシル基、カルボキシル基、カルボナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無水物基などの酸素含有基; アミノ基、イミノ基、アミド基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エステル基、アミジノ基、ジアゾ基、アミノ基がアンモニウム塩となったものなどの窒素含有基; ボランジイル基、ボラントリイル基、ジボラニル基などのホウ素含有基; メルカプト基、チオエステル基、ジチオエステル基、アルキルチオ基、アリールチオ基、チオアシル基、チオエーテル基、チオシアン酸エステル基、イソチオシアン酸エステル基、スルホンエステル基、スルホンアミド基、チオカルボキシル基、ジチオカルボキシル基、スルホ基、スルホニル基、スルフィニル基、スルフェニル基などのイオウ含有基; ホスフィド基、ホスホリル基、チオホスホリル基、ホスファト基などのリン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を有していてもよい。   Further, the hydrocarbon group includes residues such as nitrogen-containing compounds such as pyrrole, pyridine, pyrimidine, quinoline and triazine, oxygen-containing compounds such as furan and pyran, sulfur-containing compounds such as thiophene, and heterocyclic compounds thereof. A heterocyclic compound residue such as a group further substituted with a substituent such as an alkyl group or alkoxy group having 1 to 30, preferably 1 to 20 carbon atoms in the residue; alkoxy group, aryloxy group, ester group, ether Group, acyl group, carboxyl group, carbonate group, hydroxy group, peroxy group, carboxylic anhydride group and other oxygen-containing groups; amino group, imino group, amide group, imide group, hydrazino group, hydrazono group, nitro group, nitroso Group, cyano group, isocyano group, cyanate ester group, amidino group, diazo group, amino group Nitrogen-containing groups such as those formed into nium salts; Boron-containing groups such as boranediyl group, boranetriyl group, diboranyl group; mercapto group, thioester group, dithioester group, alkylthio group, arylthio group, thioacyl group, thioether group, thiocyanic acid Sulfur-containing groups such as ester groups, isothiocyanate groups, sulfone ester groups, sulfonamido groups, thiocarboxyl groups, dithiocarboxyl groups, sulfo groups, sulfonyl groups, sulfinyl groups, sulfenyl groups; phosphide groups, phosphoryl groups, thiophosphoryls And a phosphorus-containing group such as a phosphato group, a silicon-containing group, a germanium-containing group, or a tin-containing group.

酸素含有基、窒素含有基としては、上記炭化水素基に含まれていてもよい置換基として例示したものと同様のものが挙げられる。
これらの中では、Xはハロゲン原子、アルキル基が好ましく、さらには塩素、臭素、メチル基が好ましい。
Examples of the oxygen-containing group and the nitrogen-containing group include the same groups as those exemplified as the substituent which may be contained in the hydrocarbon group.
Among these, X is preferably a halogen atom or an alkyl group, and more preferably a chlorine, bromine or methyl group.

本発明の前記一般式(1)で表される(A)遷移金属錯体化合物の合成は、例えばJournal of Organometallic Chemistry誌2003年678巻134〜141頁に記載の方法に準拠して行うことができる。   The synthesis of the transition metal complex compound (A) represented by the general formula (1) of the present invention can be performed in accordance with, for example, the method described in Journal of Organometallic Chemistry 2003, 678, pages 134-141. .

上記文献に記載の方法で得られた反応生成物は反応後、精製操作を行うことなく混合物のままオレフィン多量化用触媒として用いることもできるが、再結晶などの精製操作により精製してから用いることが好ましい。   The reaction product obtained by the method described in the above document can be used as a catalyst for olefin multimerization without any purification operation after the reaction, but it can be used after purification by a purification operation such as recrystallization. It is preferable.

なお、本発明において、(A)遷移金属錯体化合物と記す場合には、前記一般式(I)で表される遷移金属錯体化合物を含む。   In addition, in this invention, when describing as (A) transition metal complex compound, the transition metal complex compound represented by the said general formula (I) is included.

[オレフィン多量化用触媒]
本発明のオレフィン多量化用触媒は通常、上記(A)遷移金属錯体化合物に加えて、
(B)(b−1)有機金属化合物、
(b−2)有機アルミニウムオキシ化合物、および
(b−3)(A)遷移金属錯体化合物と反応してイオン対を形成する化合物
よりなる群から選ばれる少なくとも1種の化合物を含んでいる。
[Olefin multimerization catalyst]
In addition to the above (A) transition metal complex compound, the olefin multimerization catalyst of the present invention is usually
(B) (b-1) an organometallic compound,
It contains at least one compound selected from the group consisting of (b-2) an organoaluminum oxy compound, and (b-3) (A) a compound that reacts with a transition metal complex compound to form an ion pair.

以下、(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)(A)遷移金属錯体化合物と反応してイオン対を形成する化合物について説明する。   Hereinafter, (b-1) an organometallic compound, (b-2) an organoaluminum oxy compound, and (b-3) (A) a compound that forms an ion pair by reacting with a transition metal complex compound will be described.

[(b−1)有機金属化合物]
本発明で必要に応じて用いられる(b−1)有機金属化合物として、具体的には下記のような周期律表第1、2族および第12、13族の有機金属化合物を挙げることができ、例えば以下に説明する(b−1a)、(b−1b)、(b−1c)等が挙げられる。なお、本発明においては、(b−1)有機金属化合物には後述する(b−2)有機アルミニウムオキシ化合物は含まれないものとする。
[(B-1) Organometallic compound]
Specific examples of the organometallic compound (b-1) used as necessary in the present invention include the following organometallic compounds of Groups 1, 2 and 12, 13 of the periodic table. Examples thereof include (b-1a), (b-1b), and (b-1c) described below. In the present invention, the (b-1) organometallic compound does not include the (b-2) organoaluminum oxy compound described later.

(b−1a)一般式Ra mAl(ORbnpqで表される有機アルミニウム化合物。
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である)
(b−1b)一般式M2AlRa 4で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
(式中、M2はLi、NaまたはKを示し、Raは炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示す)
(b−1c)一般式Rab3で表される周期律表第2族または12族金属のジアルキル化合物。
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、M3はMg、ZnまたはCdである)
前記の(b−1a)に属する有機アルミニウム化合物としては、次のような化合物を例示できる。
(B-1a) formula R a m Al (OR b) an organic aluminum compound represented by n H p X q.
(In the formula, R a and R b each represent a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same or different from each other, X represents a halogen atom, and m represents 0 < m ≦ 3, n is 0 ≦ n <3, p is 0 ≦ p <3, q is a number of 0 ≦ q <3, and m + n + p + q = 3)
(B-1b) Complex alkylated product of Group 1 metal of the periodic table represented by the general formula M 2 AlR a 4 and aluminum.
(Wherein M 2 represents Li, Na or K, and R a represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms)
(B-1c) A dialkyl compound of Group 2 or Group 12 metal represented by the general formula R a R b M 3 .
(In the formula, R a and R b each represent a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms, which may be the same or different from each other, and M 3 is Mg, Zn or Cd)
Examples of the organoaluminum compound belonging to (b-1a) include the following compounds.

一般式Ra mAl(ORb3-m(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、mは、好ましくは1.5≦m≦3の数である。)で表される有機アルミニウム化合物、一般式Ra mAlX3-m(式中、Raは炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは好ましくは0<m<3である。)で表される有機アルミニウム化合物、一般式Ra mAlH3-m(式中、Raは炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、mは好ましくは2≦m<3である)で表される有機アルミニウム化合物、一般式Ra mAl(ORbnq(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、qは0≦q<3の数であり、かつm+n+q=3である)で表される有機アルミニウム化合物。 General formula R a m Al (OR b ) 3-m (wherein R a and R b represent a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, which may be the same or different from each other. M is preferably a number of 1.5 ≦ m ≦ 3.), An organoaluminum compound represented by the general formula R a m AlX 3-m (wherein R a is 1 to 1 carbon atoms) 15, preferably 1 to 4 hydrocarbon groups, X represents a halogen atom, and m is preferably 0 <m <3.) An organoaluminum compound represented by the general formula R a m AlH 3− m (wherein R a represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, and m is preferably 2 ≦ m <3), a general formula during R a m Al (oR b) n X q ( wherein, R a and R b are optionally carbon atoms be the same or different from each other 1 15, preferably 1 to 4 hydrocarbon groups, X represents a halogen atom, m is 0 <m ≦ 3, n is 0 ≦ n <3, q is a number 0 ≦ q <3, and m + n + q = 3).

(b−1a)に属する有機アルミニウム化合物として、より具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリ(n−ブチル)アルミニウム、トリプロピルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどのトリ(n−アルキル)アルミニウム; トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリ(sec−ブチル)アルミニウム、トリ(tert−ブチル)アルミニウム、トリ(2−メチルブチル)アルミニウム、トリ(3−メチルブチル)アルミニウム、トリ(2−メチルペンチル)アルミニウム、トリ(3−メチルペンチル)アルミニウム、トリ(4−メチルペンチル)アルミニウム、トリ(2−メチルヘキシル)アルミニウム、トリ(3−メチルヘキシル)アルミニウム、トリ(2−エチルヘキシル)アルミニウムなどのトリ分岐鎖アルキルアルミニウム; トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム; トリフェニルアルミニウム、トリトリルアルミニウムなどのトリアリールアルミニウム; ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド; (iC49xAly(C510z(式中、x、y、zは正の数であり、z≧2xである。iC49はイソブチル基を表す。)などで表されるイソプレニルアルミニウムなどのアルケニルアルミニウム; イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシド、イソブチルアルミニウムイソプロポキシドなどのアルキルアルミニウムアルコキシド; ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド; エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド; Ra 2.5Al(ORb0.5(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示す。)などで表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム; ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6−ジ−tert−ブチル4−メチルフェノキシド)、エチルアルミニウムビス(2,6−ジ−tert−ブチル4−メチルフェノキシド)、ジイソブチルアルミニウム(2,6−ジ−tert−ブチル4−メチルフェノキシド)、イソブチルアルミニウムビス(2,6−ジ−tert−ブチル4−メチルフェノキシド)などのジアルキルアルミニウムアリーロキシド; ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド;エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;エチルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミニウムジブロミドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム; ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド; エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム; エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチル アルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどが挙げられる。 More specifically, as the organoaluminum compound belonging to (b-1a), trimethylaluminum, triethylaluminum, tri (n-butyl) aluminum, tripropylaluminum, tripentylaluminum, trihexylaluminum, trioctylaluminum, tridecyl Tri (n-alkyl) aluminum such as aluminum; triisopropylaluminum, triisobutylaluminum, tri (sec-butyl) aluminum, tri (tert-butyl) aluminum, tri (2-methylbutyl) aluminum, tri (3-methylbutyl) aluminum , Tri (2-methylpentyl) aluminum, tri (3-methylpentyl) aluminum, tri (4-methylpentyl) aluminum, tri (2-methylhexyl) Tri-branched alkylaluminums such as aluminum, tri (3-methylhexyl) aluminum, tri (2-ethylhexyl) aluminum; tricycloalkylaluminums such as tricyclohexylaluminum and tricyclooctylaluminum; triaryl aluminum diethyl hydride, dialkylaluminum hydride such as diisobutylaluminum hydride; (iC 4 H 9) x Al y (C 5 H 10) z ( wherein, x, y, z are each a positive number, z ≧ 2x .iC 4 H 9 is represents a isobutyl group) alkenyl aluminum such as isoprenyl aluminum represented by like;. triisobutylaluminum methoxide, isobutyl Arumini Muetokishido, alkylaluminum alkoxides such as isobutylaluminum isopropoxide; alkyl sesquichloride alkoxides such as ethyl aluminum sesqui ethoxide, butyl aluminum sesqui butoxide; dimethyl aluminum methoxide, diethyl aluminum ethoxide, dialkylaluminum alkoxides such as dibutyl aluminum butoxide R a 2.5 Al (OR b ) 0.5 (wherein, R a and R b represent a hydrocarbon group having 1 to 15 carbon atoms, which may be the same as or different from each other, preferably 1 to 4). Partially alkoxylated alkylaluminum having an average composition represented; diethylaluminum phenoxide, diethylaluminum (2,6-di-tert-butyl 4-methylpheno) Sid), ethylaluminum bis (2,6-di-tert-butyl 4-methylphenoxide), diisobutylaluminum (2,6-di-tert-butyl 4-methylphenoxide), isobutylaluminum bis (2,6-di-) dialkylaluminum aryloxides such as tert-butyl 4-methylphenoxide); dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, dibutylaluminum chloride, diethylaluminum bromide, diisobutylaluminum chloride; ethylaluminum sesquichloride, butylaluminum sesquichloride Alkyl aluminum sesquihalides such as ethyl aluminum sesquibromide; ethyl aluminum dichloride, propyl al Partially halogenated alkylaluminums such as alkylaluminum dihalides such as nium dichloride and butylaluminum dibromide; Dialkylaluminum hydrides such as diethylaluminum hydride and dibutylaluminum hydride; Alkyl such as ethylaluminum dihydride and propylaluminum dihydride Other partially hydrogenated alkylaluminums such as aluminum dihydride; and partially alkoxylated and halogenated alkylaluminums such as ethylaluminum ethoxy chloride, butylaluminum butoxycyclyl, ethylaluminum ethoxybromide and the like.

また(b−1a)に類似する化合物も使用することができ、たとえば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物も挙げられる。このような化合物として、具体的には、(C252AlN(C25)Al(C252などが挙げられる。 Moreover, the compound similar to (b-1a) can also be used, for example, the organoaluminum compound which two or more aluminum compounds couple | bonded through the nitrogen atom is mentioned. Specific examples of such a compound include (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 .

前記(b−1b)に属する化合物としては、LiAl(C254、LiAl(C7154などが挙げられる。
また、前記(b−1c)に属する化合物としては、ジメチルマグネシウム、ジエチルマグネシウム、ジブチルマグネシウム、ブチルエチルマグネシウム等が挙げられる。
Examples of the compound belonging to (b-1b) include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .
Examples of the compound belonging to (b-1c) include dimethylmagnesium, diethylmagnesium, dibutylmagnesium, and butylethylmagnesium.

上記(b−1a)〜(b−1c)以外の(b−1)有機金属化合物としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、メチルマグネシウムブロミド、メチルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムクロリド、プロピルマグネシウムブロミド、プロピルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウムクロリドなどを使用することもできる。   As (b-1) organometallic compounds other than the above (b-1a) to (b-1c), methyllithium, ethyllithium, propyllithium, butyllithium, methylmagnesium bromide, methylmagnesium chloride, ethylmagnesium bromide, ethyl Magnesium chloride, propylmagnesium bromide, propylmagnesium chloride, butylmagnesium bromide, butylmagnesium chloride and the like can also be used.

また多量化反応系内で上記有機アルミニウム化合物が形成されるような化合物、たとえばハロゲン化アルミニウムとアルキルリチウムとの組合せ、またはハロゲン化アルミニウムとアルキルマグネシウムとの組合せなどを使用することもできる。   A compound that can form the organoaluminum compound in the multimerization reaction system, such as a combination of an aluminum halide and an alkyl lithium, or a combination of an aluminum halide and an alkyl magnesium, can also be used.

(b−1)有機金属化合物のなかでは、有機アルミニウム化合物が好ましい。上記のような(b−1)有機金属化合物は、1種単独でまたは2種以上組み合わせて用いられる。   (B-1) Among organometallic compounds, organoaluminum compounds are preferred. The above (b-1) organometallic compounds are used singly or in combination of two or more.

[(b−2)有機アルミニウムオキシ化合物]
本発明で必要に応じて用いられる(b−2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
[(B-2) Organoaluminum oxy compound]
The (b-2) organoaluminum oxy compound used as necessary in the present invention may be a conventionally known aluminoxane, or a benzene insoluble organoaluminum as exemplified in JP-A-2-78687. It may be an oxy compound.

従来公知のアルミノキサンは、たとえば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。(1)吸着水を含有する化合物または結晶水を含有する塩類、たとえば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。   A conventionally well-known aluminoxane can be manufactured, for example with the following method, and is normally obtained as a solution of a hydrocarbon solvent. (1) Compounds containing adsorbed water or salts containing water of crystallization, such as magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate, first cerium chloride hydrate, etc. A method of reacting adsorbed water or crystal water with an organoaluminum compound by adding an organoaluminum compound such as trialkylaluminum to the suspension of the hydrocarbon. (2) A method of allowing water, ice or water vapor to act directly on an organoaluminum compound such as trialkylaluminum in a medium such as benzene, toluene, ethyl ether or tetrahydrofuran. (3) A method in which an organotin oxide such as dimethyltin oxide or dibutyltin oxide is reacted with an organoaluminum compound such as trialkylaluminum in a medium such as decane, benzene, or toluene.

なお該アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。   The aluminoxane may contain a small amount of an organometallic component. Further, after removing the solvent or the unreacted organoaluminum compound from the recovered aluminoxane solution by distillation, it may be redissolved in a solvent or suspended in a poor aluminoxane solvent.

アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記(b−1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物が挙げられる。   Specific examples of the organoaluminum compound used when preparing the aluminoxane include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to (b-1a).

これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。
上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合わせて用いられる。
Of these, trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum is particularly preferable.
The organoaluminum compounds as described above are used singly or in combination of two or more.

アルミノキサンの調製に用いられる溶媒としては、ベンゼン、トルエン、キシレン、クメン、シメンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ヘキサデカン、オクタデカンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、シクロオクタン、メチルシクロペンタンなどの脂環族炭化水素、ガソリン、灯油、軽油などの石油留分または上記芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素のハロゲン化物とりわけ、塩素化物、臭素化物などの炭化水素溶媒が挙げられる。さらに、エチルエーテル、テトラヒドロフランなどのエーテル類を用いることもできる。これらの溶媒のうち特に芳香族炭化水素または脂肪族炭化水素が好ましい。   Solvents used for the preparation of aluminoxane include aromatic hydrocarbons such as benzene, toluene, xylene, cumene, and cymene, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, hexadecane, and octadecane, and cyclopentane. , Cycloaliphatic hydrocarbons such as cyclohexane, cyclooctane and methylcyclopentane, petroleum fractions such as gasoline, kerosene and light oil, or halides of the above aromatic hydrocarbons, aliphatic hydrocarbons and alicyclic hydrocarbons, especially chlorine And hydrocarbon solvents such as bromide and bromide. Furthermore, ethers such as ethyl ether and tetrahydrofuran can also be used. Of these solvents, aromatic hydrocarbons or aliphatic hydrocarbons are particularly preferable.

また本発明で用いられるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であるもの、すなわちベンゼンに対して不溶性または難溶性であるものが好ましい。   The benzene-insoluble organoaluminum oxy compound used in the present invention has an Al component dissolved in benzene at 60 ° C. of usually 10% or less, preferably 5% or less, particularly preferably 2% or less in terms of Al atom, That is, those which are insoluble or hardly soluble in benzene are preferred.

本発明で用いられる有機アルミニウムオキシ化合物の例としては、下記一般式(i)で表されるボロンを含んだ有機アルミニウムオキシ化合物も挙げられる。   Examples of the organoaluminum oxy compound used in the present invention also include an organoaluminum oxy compound containing boron represented by the following general formula (i).

Figure 2011195584
式中、R15は炭素原子数が1〜10の炭化水素基を示す。R16は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭素原子数が1〜10の炭化水素基を示す。
Figure 2011195584
In the formula, R 15 represents a hydrocarbon group having 1 to 10 carbon atoms. R 16 represents a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 10 carbon atoms, which may be the same as or different from each other.

前記一般式(i)で表されるボロンを含んだ有機アルミニウムオキシ化合物は、下記一般式(ii)で表されるアルキルボロン酸と、有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、−80℃〜室温の温度で1分〜24時間反応させることにより製造できる。
15−B(OH)2 ・・・(ii)
(式中、R15は上記と同じ基を示す)
The organoaluminum oxy compound containing boron represented by the general formula (i) includes an alkyl boronic acid represented by the following general formula (ii) and an organoaluminum compound in an inert solvent under an inert gas atmosphere. It can be produced by reacting at a temperature of -80 ° C to room temperature for 1 minute to 24 hours.
R 15 -B (OH) 2 (ii)
(Wherein R 15 represents the same group as described above)

前記一般式(ii)で表されるアルキルボロン酸の具体的なものとしては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n−プロピルボロン酸、n−ブチルボロン酸、イソブチルボロン酸、n−ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5−ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸、3,5−ビス(トリフルオロメチル)フェニルボロン酸等が挙げられる。これらの中では、メチルボロン酸、n−ブチルボロン酸、イソブチルボロン酸、3,5−ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。   Specific examples of the alkyl boronic acid represented by the general formula (ii) include methyl boronic acid, ethyl boronic acid, isopropyl boronic acid, n-propyl boronic acid, n-butyl boronic acid, isobutyl boronic acid, and n-hexyl boron. Examples include acid, cyclohexyl boronic acid, phenyl boronic acid, 3,5-difluorophenyl boronic acid, pentafluorophenyl boronic acid, 3,5-bis (trifluoromethyl) phenyl boronic acid, and the like. Among these, methyl boronic acid, n-butyl boronic acid, isobutyl boronic acid, 3,5-difluorophenyl boronic acid, and pentafluorophenyl boronic acid are preferable.

これらは1種単独でまたは2種以上組み合わせて用いられる。
このようなアルキルボロン酸と反応させる有機アルミニウム化合物として具体的には、前記(b−1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物が挙げられる。これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
These may be used alone or in combination of two or more.
Specific examples of the organoaluminum compound to be reacted with the alkylboronic acid include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to (b-1a). Of these, trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum, triethylaluminum, and triisobutylaluminum are particularly preferable. These may be used alone or in combination of two or more.

上記のような(b−2)有機アルミニウムオキシ化合物は、1種単独でまたは2種以上組み合わせて用いられる。   The above (b-2) organoaluminum oxy compounds are used singly or in combination of two or more.

[(b−3)イオン化イオン性化合物]
本発明で必要に応じて用いられる、(b−3)(A)遷移金属錯体化合物と反応してイオン対を形成する化合物は、(A)遷移金属錯体化合物と反応してイオン対を形成する化合物である。従って、少なくとも(A)遷移金属錯体化合物と接触させてイオン対を形成するものは、この化合物に含まれる。
[(B-3) Ionized ionic compound]
(B-3) (A) A compound that reacts with a transition metal complex compound to form an ion pair, which is used as necessary in the present invention, reacts with (A) a transition metal complex compound to form an ion pair. A compound. Therefore, what forms an ion pair by making it contact with at least (A) transition metal complex compound is contained in this compound.

このような化合物としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、米国特許5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などが挙げられる。さらに、ヘテロポリ化合物およびイソポリ化合物もあげることができる。   Examples of such compounds include JP-A-1-501950, JP-A-1-502036, JP-A-3-179905, JP-A-3-179006, JP-A-3-207703, and JP-A-3. And Lewis acids, ionic compounds, borane compounds and carborane compounds described in US Pat. No. 207704 and US Pat. No. 5,321,106. Furthermore, heteropoly compounds and isopoly compounds can also be mentioned.

具体的には、ルイス酸としては、BR3(Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である)で示される化合物が挙げられ、たとえば、トリフルオロボロン、トリフェニルボロン、トリス(4−フルオロフェニル)ボロン、トリス(3,5−ジフルオロフェニル)ボロン、トリス(4−フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p−トリル)ボロン、トリス(o−トリル)ボロン、トリス(3,5−ジメチルフェニル)ボロンなどが挙げられる。 Specifically, as the Lewis acid, a compound represented by BR 3 (R is a phenyl group or fluorine which may have a substituent such as fluorine, methyl group or trifluoromethyl group) can be mentioned. For example, trifluoroboron, triphenylboron, tris (4-fluorophenyl) boron, tris (3,5-difluorophenyl) boron, tris (4-fluoromethylphenyl) boron, tris (pentafluorophenyl) boron, tris (P-Tolyl) boron, tris (o-tolyl) boron, tris (3,5-dimethylphenyl) boron and the like can be mentioned.

イオン性化合物としては、たとえば下記一般式(III)で表される化合物が挙げられる   Examples of the ionic compound include compounds represented by the following general formula (III).

Figure 2011195584
式中、R17+としては、H+、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。
Figure 2011195584
In the formula, examples of R 17+ include H + , carbonium cation, oxonium cation, ammonium cation, phosphonium cation, cycloheptyltrienyl cation, and ferrocenium cation having a transition metal.

18〜R21は、互いに同一でも異なっていてもよい有機基、好ましくはアリール基または置換アリール基である。
前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。
R 18 to R 21 are organic groups which may be the same as or different from each other, preferably an aryl group or a substituted aryl group.
Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation, tri (methylphenyl) carbonium cation, and tri (dimethylphenyl) carbonium cation.

前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n−プロピル)アンモニウムカチオン、トリ(n−ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン; N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N,2,4,6−ペンタメチルアニリニウムカチオンなどのN,N−ジアルキルアニリニウムカチオン; ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。   Specific examples of the ammonium cation include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tri (n-propyl) ammonium cation, and tri (n-butyl) ammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N-diphenylanilinium cation such as N, N, 2,4,6-pentamethylanilinium cation; dialkylammonium cation such as di (isopropyl) ammonium cation and dicyclohexylammonium cation Etc.

前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。   Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.

17+としては、カルボニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルボニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオンが好ましい。 R 17+ is preferably a carbonium cation, an ammonium cation or the like, and particularly preferably a triphenylcarbonium cation, an N, N-dimethylanilinium cation or an N, N-diethylanilinium cation.

またイオン性化合物として、トリアルキル置換アンモニウム塩、N,N−ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩なども挙げられる。   Examples of the ionic compound include trialkyl-substituted ammonium salts, N, N-dialkylanilinium salts, dialkylammonium salts, and triarylphosphonium salts.

トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラフェニルボレート、トリ(n−プロピル)アンモニウムテトラフェニルボレート、トリ(n−ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラ(p−トリル)ボレート、トリメチルアンモニウムテトラ(o−トリル)ボレート、トリ(n−ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリ(n−プロピル)アンモニウムテトラ(o,p−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラ(m,m−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラ(p−トリフルオロメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラ(o−トリル)ボレートなどが挙げられる。   Specific examples of the trialkyl-substituted ammonium salt include triethylammonium tetraphenylborate, tri (n-propyl) ammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetra (p-tolyl) borate, Trimethylammonium tetra (o-tolyl) borate, tri (n-butyl) ammonium tetra (pentafluorophenyl) borate, tri (n-propyl) ammonium tetra (o, p-dimethylphenyl) borate, tri (n-butyl) ammonium Tetra (m, m-dimethylphenyl) borate, tri (n-butyl) ammonium tetra (p-trifluoromethylphenyl) borate, tri (n-butyl) ammonium tetra (3,5-di Trifluoromethyl phenyl) borate, tri (n- butyl) ammonium tetra (o-tolyl) borate.

N,N−ジアルキルアニリニウム塩として具体的には、たとえばN,N−ジメチルアニリニウムテトラフェニルボレート、N,N−ジエチルアニリニウムテトラフェニルボレート、N,N,2,4,6−ペンタメチルアニリニウムテトラフェニルボレートなどが挙げられる。   Specific examples of the N, N-dialkylanilinium salt include, for example, N, N-dimethylanilinium tetraphenylborate, N, N-diethylanilinium tetraphenylborate, N, N, 2,4,6-pentamethylaniline. Examples thereof include nium tetraphenylborate.

ジアルキルアンモニウム塩として具体的には、たとえばジ(n−プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどが挙げられる。   Specific examples of the dialkylammonium salt include di (n-propyl) ammonium tetra (pentafluorophenyl) borate and dicyclohexylammonium tetraphenylborate.

さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N,N−ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式(IV)または(V)で表されるホウ素化合物なども挙げられる。   Further, as ionic compounds, triphenylcarbenium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, ferrocenium tetra (pentafluorophenyl) borate, triphenylcarbenium pentaphenyl Examples thereof include cyclopentadienyl complexes, N, N-diethylanilinium pentaphenylcyclopentadienyl complexes, and boron compounds represented by the following formula (IV) or (V).

Figure 2011195584
(式中、Etはエチル基を示す。)
Figure 2011195584
(In the formula, Et represents an ethyl group.)

Figure 2011195584
ボラン化合物として具体的には、たとえばデカボラン(14); ビス〔トリ(n−ブチル)アンモニウム〕ノナボレート、ビス〔トリ(n−ブチル)アンモニウム〕デカボレート、ビス〔トリ(n−ブチル)アンモニウム〕ウンデカボレート、ビス〔トリ(n−ブチル)アンモニウム〕ドデカボレート、ビス〔トリ(n−ブチル)アンモニウム〕デカクロロデカボレート、ビス〔トリ(n−ブチル)アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩; トリ(n−ブチル)アンモニウムビス(ドデカハイドライドドデカボレート)コバルト酸塩(III)、ビス〔トリ(n−ブチル)アンモニウム〕ビス(ドデカハイドライドドデカボレート)ニッケル酸塩(III)などの金属ボランアニオンの塩などが挙げられる。
Figure 2011195584
Specific examples of the borane compound include decaborane (14); bis [tri (n-butyl) ammonium] nonaborate, bis [tri (n-butyl) ammonium] decaborate, bis [tri (n-butyl) ammonium] undeca. Salts of anions such as borate, bis [tri (n-butyl) ammonium] dodecaborate, bis [tri (n-butyl) ammonium] decachlorodecaborate, bis [tri (n-butyl) ammonium] dodecachlorododecaborate; Of metal borane anions such as tri (n-butyl) ammonium bis (dodecahydridododecaborate) cobaltate (III), bis [tri (n-butyl) ammonium] bis (dodecahydridododecaborate) nickate (III) Examples include salt.

カルボラン化合物として具体的には、たとえば、4−カルバノナボラン(14)、1,3−ジカルバノナボラン(13)、6,9−ジカルバデカボラン(14)、ドデカハイドライド−1−フェニル−1,3−ジカルバノナボラン、ドデカハイドライド−1−メチル−1,3−ジカルバノナボラン、ウンデカハイドライド−1,3−ジメチル−1,3−ジカルバノナボラン、7,8−ジカルバウンデカボラン(13)、2,7−ジカルバウンデカボラン (13)、ウンデカハイドライド−7,8−ジメチル−7,8−ジカルバウンデカボラン、ドデカハイドライド−11−メチル−2,7−ジカルバウンデカボラン、トリ(n−ブチル)アンモニウム1カルバデカボレート、トリ(n−ブチル)アンモニウム1−カルバウンデカボレート、トリ(n−ブチル)アンモニウム1−カルバドデカボレート、トリ(n−ブチル)アンモニウム1−トリメチルシリル−1−カルバデカボレート、トリ(n−ブチル)アンモニウムブロモ−1−カルバドデカボレート、トリ(n−ブチル)アンモニウム6−カルバデカボレート(14)、トリ(n−ブチル)アンモニウム6−カルバデカボレート(12)、トリ(n−ブチル)アンモニウム7カルバウンデカボレート(13)、トリ(n−ブチル)アンモニウム7,8−ジカルバウンデカボレート(12)、トリ(n−ブチル)アンモニウム2,9−ジカルバウンデカボレート(12)、トリ(n−ブチル)アンモニウムドデカハイドライド−8−メチル−7,9−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムウンデカハイドライド−8−エチル−7,9−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムウンデカハイドライド−8−ブチル−7,9−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムウンデカハイドライド−8−アリル−7,9−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムウンデカハイドライド−9−トリメチルシリル−7,8−ジカルバウンデカボレート、トリ(n−ブチル)アンモニウムウンデカハイドライド−4,6−ジブロモ−7−カルバウンデカボレートなどのアニオンの塩; トリ(n−ブチル)アンモニウムビス(ノナハイドライド−1,3−ジカルバノナボレート)コバルト酸塩(III)、トリ(n−ブチル)アンモニウムビス(ウンデカハイドライド−7,8−ジカルバウンデカボレート)鉄酸塩(III)、トリ(n−ブチル)アンモニウムビス(ウンデカハイドライド−7,8−ジカルバウンデカボレート)コバルト酸塩(III)、トリ(n−ブチル)アンモニウムビス(ウンデカハイドライド−7,8−ジカルバウンデカボレート)ニッケル酸塩(III)、トリ(n−ブチル)アンモニウムビス(ウンデカハイドライド−7,8−ジカルバウンデカボレート)銅酸塩(III)、トリ(n−ブチル)アンモニウムビス(ウンデカハイドライド−7,8−ジカルバウンデカボレート)金酸塩(III)、トリ(n−ブチル)アンモニウムビス(ノナハイドライド−7,8−ジメチル−7,8−ジカルバウンデカボレート)鉄酸塩(III)、トリ(n−ブチル)アンモニウムビス(ノナハイドライド−7,8−ジメチル−7,8−ジカルバウンデカボレート)クロム酸塩(III)、トリ(n−ブチル)アンモニウムビス(トリブロモオクタハイドライド−7,8−ジカルバウンデカボレート)コバルト酸塩(III)、トリス〔トリ(n−ブチル)アンモニウム〕ビス(ウンデカハイドライド−7−カルバウンデカボレート)クロム酸塩(III)、ビス〔トリ(n−ブチル)アンモニウム〕ビス(ウンデカハイドライド−7−カルバウンデカボレート)マンガン酸塩(IV)、ビス〔トリ(n−ブチル)アンモニウム〕ビス(ウンデカハイドライド−7−カルバウンデカボレート)コバルト酸塩(III)、ビス〔トリ(n−ブチル)アンモニウム〕ビス(ウンデカハイドライド−7−カルバウンデカボレート)ニッケル酸塩(IV)などの金属カルボランアニオンの塩などが挙げられる。   Specific examples of the carborane compound include 4-carbanonaborane (14), 1,3-dicarbanonaborane (13), 6,9-dicarbadecarborane (14), dodecahydride-1-phenyl-1, 3-dicarbanonaborane, dodecahydride-1-methyl-1,3-dicarbanonaborane, undecahydride-1,3-dimethyl-1,3-dicarbanonaborane, 7,8-dicarbaundecaborane (13), 2,7-dicarbaound decaborane (13), undecahydride-7,8-dimethyl-7,8-dicarbaound decaborane, dodecahydride-11-methyl-2,7-dicarbound decaborane , Tri (n-butyl) ammonium 1-carbadecaborate, tri (n-butyl) ammonium 1-carbaundecaborate, Li (n-butyl) ammonium 1-carbadodecaborate, tri (n-butyl) ammonium 1-trimethylsilyl-1-carbadeborate, tri (n-butyl) ammonium bromo-1-carbadodecaborate, tri (n-butyl) ) Ammonium 6-carbadecaborate (14), tri (n-butyl) ammonium 6-carbadecaborate (12), tri (n-butyl) ammonium 7carbaundecaborate (13), tri (n-butyl) ammonium 7,8-dicarbaound decaborate (12), tri (n-butyl) ammonium 2,9-dicarbaound decaborate (12), tri (n-butyl) ammonium dodecahydride-8-methyl-7,9-dicar Bound deborate, tri (n-butyl) ammonium undecahydrate Ride-8-ethyl-7,9-dicarbaundecaborate, tri (n-butyl) ammonium undecahydride-8-butyl-7,9-dicarbaundecaborate, tri (n-butyl) ammonium undecahydride 8-allyl-7,9-dicarbaundecaborate, tri (n-butyl) ammonium undecahydride-9-trimethylsilyl-7,8-dicarbaundecaborate, tri (n-butyl) ammonium undecahydride-4, Salts of anions such as 6-dibromo-7-carbaundecaborate; tri (n-butyl) ammonium bis (nonahydride-1,3-dicarbanonaborate) cobaltate (III), tri (n-butyl) Ammonium bis (undecahydride-7,8-dicarboundeca Rate) ferrate (III), tri (n-butyl) ammonium bis (undecahydride-7,8-dicarbaundecaborate) cobaltate (III), tri (n-butyl) ammonium bis (undecahydride) -7,8-dicarbaundecaborate) nickelate (III), tri (n-butyl) ammonium bis (undecahydride-7,8-dicarbaundecaborate) cuprate (III), tri (n- (Butyl) ammonium bis (undecahydride-7,8-dicarbaundecaborate) aurate (III), tri (n-butyl) ammonium bis (nonahydride-7,8-dimethyl-7,8-dicarbaundeca) Borate) ferrate (III), tri (n-butyl) ammonium bis (nonahydride-7,8-di) Methyl-7,8-dicarbaundecaborate) chromate (III), tri (n-butyl) ammonium bis (tribromooctahydride-7,8-dicarboundeborate) cobaltate (III), tris [ Tri (n-butyl) ammonium] bis (undecahydride-7-carbaundecaborate) chromate (III), bis [tri (n-butyl) ammonium] bis (undecahydride-7-carbaundecaborate ) Manganate (IV), bis [tri (n-butyl) ammonium] bis (undecahydride-7-carbaundecaborate) cobaltate (III), bis [tri (n-butyl) ammonium] bis ( Metal carbonates such as undecahydride-7-carbaundecaborate) nickelate (IV) Such as the salt of borane anion, and the like.

ヘテロポリ化合物は、ケイ素、リン、チタン、ゲルマニウム、ヒ素もしくは錫からなる原子と、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種または2種以上の原子からなっている。具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリコノモリブデン酸、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、リンモリブドバナジン酸、リンタングストバナジンン酸、ゲルマノタングストバナジンン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、これらの酸の塩、例えば周期律表第1族または2族の金属、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、およびトリフェニルエチル塩等の有機塩、およびイソポリ化合物を使用できるが、この限りではない。   The heteropoly compound is composed of atoms composed of silicon, phosphorus, titanium, germanium, arsenic or tin and one or more atoms selected from vanadium, niobium, molybdenum and tungsten. Specifically, phosphovanadic acid, germanovanadic acid, arsenic vanadic acid, phosphoniobic acid, germanoniobic acid, siliconomolybdic acid, phosphomolybdic acid, titanium molybdic acid, germanomolybdic acid, arsenic molybdic acid, tin molybdic acid, phosphorus Tungstic acid, germanotungstic acid, tin tungstic acid, phosphomolybdovanadic acid, lintongost vanadic acid, germanotangostovanadic acid, phosphomolybdotangostobanamic acid, germanomolybdo tungstovanadate, phosphomolybdo Tungstic acid, phosphomolybniobic acid, salts of these acids, such as metals of Group 1 or 2 of the periodic table, specifically lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium , With barium etc. Salts, and organic salts such as triphenylethyl salt, and isopoly compound can be used but not limited thereto.

ヘテロポリ化合物およびイソポリ化合物としては、上記の化合物の中の1種に限らず、2種以上用いることができる。
上記のような(b−3)イオン化イオン性化合物は、1種単独でまたは2種以上組み合わせて用いられる。
The heteropoly compound and the isopoly compound are not limited to one of the above compounds, and two or more of them can be used.
The above (b-3) ionized ionic compounds are used singly or in combination of two or more.

本発明のオレフィン多量化用触媒を用いれば高い活性でオレフィン多量体が得られ、特にオレフィンとしてエチレンを用いた場合には、1−ヘキセンの選択性が高い。
例えば助触媒成分としてメチルアルミノキサンなどの有機アルミニウムオキシ化合物(b−2)を併用すると、エチレンに対して非常に高い三量化活性を示し、1−ヘキセンを製造することができる。また助触媒成分としてトリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレートなどのイオン化イオン性化合物(b−3)を用いても、良好な活性かつ非常に高い選択率でエチレンから1−ヘキセンが得られる。
When the olefin multimerization catalyst of the present invention is used, an olefin multimer can be obtained with high activity, and particularly when ethylene is used as the olefin, the selectivity of 1-hexene is high.
For example, when an organoaluminum oxy compound (b-2) such as methylaluminoxane is used in combination as a promoter component, 1-hexene can be produced by showing very high trimerization activity with respect to ethylene. Even if an ionized ionic compound (b-3) such as triphenylcarbonium tetrakis (pentafluorophenyl) borate is used as a promoter component, 1-hexene can be obtained from ethylene with good activity and very high selectivity. .

また、本発明に係るオレフィン多量化用触媒は、(A)遷移金属錯体化合物を含み、必要に応じて(B)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物を含み、さらに必要に応じて後述するような(C)担体を含んでいてもよい。   The olefin multimerization catalyst according to the present invention includes (A) a transition metal complex compound, and if necessary, (B) (b-1) an organometallic compound, (b-2) an organoaluminum oxy compound, and (B-3) It contains at least one compound selected from ionized ionic compounds, and may further contain (C) a carrier as described later, if necessary.

[(C)担体]
本発明で必要に応じて用いられる(C)担体は、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体である。なお、本発明において、(C)担体とは、前記(A)および/または(B)を担持するための担体である。このうち無機化合物としては、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
[(C) Carrier]
The carrier (C) used as necessary in the present invention is an inorganic or organic compound and is a granular or fine particle solid. In the present invention, the (C) carrier is a carrier for carrying the (A) and / or (B). Among these, as the inorganic compound, a porous oxide, an inorganic halide, clay, clay mineral, or an ion-exchange layered compound is preferable.

多孔質酸化物として、具体的にはSiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2など、またはこれらを含む複合物または混合物を使用、例えば天然または合成ゼオライト、SiO2−MgO、SiO2−Al23、SiO2−TiO2、SiO2−V25、SiO2−Cr23、SiO2−TiO2−MgOなどを使用することができる。これらのうち、SiO2および/またはAl23を主成分とするものが好ましい。 As the porous oxide, specifically, SiO 2 , Al 2 O 3 , MgO, ZrO, TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 or the like, or a composite or mixture containing these is used. For example, natural or synthetic zeolite, SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , SiO 2 —V 2 O 5 , SiO 2 —Cr 2 O 3 , SiO 2 —TiO 2 —MgO, etc. Can be used. Of these, those containing SiO 2 and / or Al 2 O 3 as main components are preferred.

なお、上記無機酸化物は、少量のNa2CO3、K2CO3、CaCO3、MgCO3、Na2SO4、Al2(SO43、BaSO4、KNO3、Mg(NO32、Al(NO33、Na2O、K2O、Li2Oなどの炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有していても差し支えない。 Note that the inorganic oxide includes a small amount of Na 2 CO 3 , K 2 CO 3 , CaCO 3 , MgCO 3 , Na 2 SO 4 , Al 2 (SO 4 ) 3 , BaSO 4 , KNO 3 , Mg (NO 3 ). 2 , Al (NO 3 ) 3 , Na 2 O, K 2 O, Li 2 O and other carbonates, sulfates, nitrates, and oxide components may be contained.

このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が0.5〜300μmであって、比表面積が50〜1000m2/gの範囲にあり、細孔容積が0.3〜3.0cm3/gの範囲にあることが望ましい。このような担体は、必要に応じて100〜1000℃で焼成して使用される。 Such porous oxides have different properties depending on the type and production method, but the carrier preferably used in the present invention has a particle size of 0.5 to 300 μm and a specific surface area of 50 to 1000 m 2 / g. It is desirable that the pore volume be in the range of 0.3 to 3.0 cm 3 / g. Such a carrier is used after being calcined at 100 to 1000 ° C. as necessary.

無機ハロゲン化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が用いられる。無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機ハロゲン化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。 As the inorganic halide, MgCl 2 , MgBr 2 , MnCl 2 , MnBr 2 or the like is used. The inorganic halide may be used as it is or after being pulverized by a ball mill or a vibration mill. Further, it is also possible to use a material in which an inorganic halide is dissolved in a solvent such as alcohol and then precipitated into fine particles with a precipitating agent.

本発明で担体として用いられる粘土は、通常粘土鉱物を主成分として構成される。また、本発明で担体として用いられるイオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。   The clay used as a carrier in the present invention is usually composed mainly of a clay mineral. Further, the ion-exchangeable layered compound used as a carrier in the present invention is a compound having a crystal structure in which the surfaces constituted by ionic bonds and the like are stacked in parallel with a weak binding force, and the ions contained can be exchanged It is. Most clay minerals are ion-exchangeable layered compounds. In addition, these clays, clay minerals, and ion-exchange layered compounds are not limited to natural products, and artificial synthetic products can also be used.

また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。 Further, as clay, clay mineral or ion-exchangeable layered compound, clay, clay mineral, ionic crystalline compound having a layered crystal structure such as hexagonal fine packing type, antimony type, CdCl 2 type, CdI 2 type, etc. It can be illustrated.

このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α−Zr(HAsO42・H2O、α−Zr(KPO42・3H2O、α−Ti(HPO42、α−Ti(HAsO42・H2O、α−Sn(HPO42・H2O、γ−Zr(HPO42、γ−Ti(HPO42、γ−Ti(NH4PO42・H2Oなどの多価金属の結晶性酸性塩などが挙げられる。 Examples of such clays and clay minerals include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, pyrophyllite, ummo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, dickite And halloysite, and the ion-exchangeable layered compounds include α-Zr (HAsO 4 ) 2 .H 2 O, α-Zr (KPO 4 ) 2 .3H 2 O, α-Ti (HPO 4 ) 2 , α-Ti (HAsO 4 ) 2 .H 2 O, α-Sn (HPO 4 ) 2 .H 2 O, γ-Zr (HPO 4 ) 2 , γ-Ti (HPO 4 ) 2 , γ-Ti (NH 4 Examples thereof include crystalline acidic salts of polyvalent metals such as PO 4 ) 2 .H 2 O.

このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20オングストローム以上の細孔容積が0.1cc/g以上のものが好ましく、0.3〜5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20〜3×104オングストロームの範囲について測定される。半径20オングストローム以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い多量化活性が得られにくい傾向がある。 Such a clay, clay mineral or ion-exchange layered compound preferably has a pore volume of not less than 0.1 cc / g and not less than 0.3 cc / g, as measured by mercury porosimetry. Is particularly preferred. Here, the pore volume is measured in a pore radius range of 20 to 3 × 10 4 angstroms by mercury porosimetry using a mercury porosimeter. When a carrier having a pore volume with a radius of 20 angstroms or more and smaller than 0.1 cc / g is used as a carrier, high multimerization activity tends to be difficult to obtain.

本発明で用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。   The clay and clay mineral used in the present invention are preferably subjected to chemical treatment. As the chemical treatment, any of a surface treatment that removes impurities adhering to the surface and a treatment that affects the crystal structure of clay can be used. Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, and organic matter treatment. In addition to removing impurities on the surface, the acid treatment increases the surface area by eluting cations such as Al, Fe, and Mg in the crystal structure. Alkali treatment destroys the crystal structure of the clay, resulting in a change in the structure of the clay. In the salt treatment and the organic matter treatment, an ion complex, a molecular complex, an organic derivative, and the like can be formed, and the surface area and interlayer distance can be changed.

本発明で用いられるイオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など)、[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+などの金属水酸化物イオンなどが挙げられる。 The ion-exchangeable layered compound used in the present invention may be a layered compound in a state where the layers are expanded by exchanging the exchangeable ions between the layers with other large and bulky ions using the ion-exchange property. . Such bulky ions play a role of supporting pillars to support the layered structure and are usually called pillars. Moreover, introducing another substance between the layers of the layered compound in this way is called intercalation. Examples of guest compounds to be intercalated include cationic inorganic compounds such as TiCl 4 and ZrCl 4 , metal alkoxides such as Ti (OR) 4 , Zr (OR) 4 , PO (OR) 3 , and B (OR) 3 ( R is a hydrocarbon group), metal hydroxide ions such as [Al 13 O 4 (OH) 24 ] 7+ , [Zr 4 (OH) 14 ] 2+ , [Fe 3 O (OCOCH 3 ) 6 ] + Etc.

これらの化合物は単独でまたは2種以上組み合わせて用いられる。
また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た二量化物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
These compounds are used alone or in combination of two or more.
Further, when these compounds were intercalated, they were obtained by hydrolyzing metal alkoxides such as Si (OR) 4 , Al (OR) 3 , Ge (OR) 4 (R is a hydrocarbon group, etc.). A dimerized product, a colloidal inorganic compound such as SiO 2, and the like can also coexist. Examples of the pillar include oxides generated by heat dehydration after intercalation of the metal hydroxide ions between layers.

本発明で用いられる粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。   The clay, clay mineral, and ion-exchangeable layered compound used in the present invention may be used as they are, or may be used after a treatment such as ball milling or sieving. Further, it may be used after newly adsorbing and adsorbing water or after heat dehydration treatment. Furthermore, you may use individually or in combination of 2 or more types.

これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母である。
有機化合物としては、粒径が10〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテンなどの炭素原子数が2〜14のα−オレフィンを主成分として生成される(共)二量化体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)二量化体、およびそれらの変成体を例示することができる。
Among these, preferred are clays or clay minerals, and particularly preferred are montmorillonite, vermiculite, hectorite, teniolite and synthetic mica.
Examples of the organic compound include granular or fine particle solids having a particle size in the range of 10 to 300 μm. Specifically, a (co) dimer or vinylcyclohexane produced mainly from an α-olefin having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene and 4-methyl-1-pentene, Examples thereof include (co) dimers produced with styrene as a main component, and modified products thereof.

本発明に係るオレフィン多量化用触媒は、前記(A)遷移金属錯体化合物を含み、必要に応じて前記(B)(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物および、(b−3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物を含み、必要に応じて担体(C)をさらに含むが、さらに必要に応じて後述するような(D)有機化合物成分を含むこともできる。   The olefin multimerization catalyst according to the present invention includes the (A) transition metal complex compound, and if necessary, the (B) (b-1) organometallic compound, (b-2) the organoaluminum oxy compound, and (B-3) includes at least one compound selected from ionized ionic compounds, and further includes a carrier (C) as necessary, and further includes (D) an organic compound component as described later as necessary. You can also.

[(D)有機化合物成分]
本発明において、(D)有機化合物成分は、必要に応じて、多量化性能を向上させる目的で使用される。このような有機化合物としては、アルコール類、フェノール性化合物、カルボン酸、リン化合物およびスルホン酸塩等が挙げられるが、これに限られるものではない。
[(D) Organic compound component]
In the present invention, the organic compound component (D) is used for the purpose of improving the multimerization performance, if necessary. Examples of such organic compounds include, but are not limited to, alcohols, phenolic compounds, carboxylic acids, phosphorus compounds, and sulfonates.

アルコール類およびフェノール性化合物としては、通常、R22−OHで表されるものが使用され(ここで、R22は炭素原子数1〜50の炭化水素基または炭素原子数1〜50の ハロゲン化炭化水素基を示す)、アルコール類としては、R22がハロゲン化炭化水素のものが好ましい。 As alcohols and phenolic compounds, those represented by R 22 —OH are usually used (where R 22 is a hydrocarbon group having 1 to 50 carbon atoms or a halogenated group having 1 to 50 carbon atoms). As the alcohol, R 22 is preferably a halogenated hydrocarbon.

また、フェノール性化合物としては、水酸基のα,α’−位が炭素原子数1〜20の炭化水素で置換されたものが好ましい。
カルボン酸としては、通常、R23−COOHで表されるものが使用される。R23は炭素原子数1〜50の炭化水素基または炭素原子数1〜50のハロゲン化炭化水素基を示し、特に炭素原子数1〜50のハロゲン化炭化水素基が好ましい。
Moreover, as a phenolic compound, what substituted the (alpha) and (alpha) '-position of the hydroxyl group with the C1-C20 hydrocarbon is preferable.
As the carboxylic acid, one represented by R 23 —COOH is usually used. R 23 represents a hydrocarbon group having 1 to 50 carbon atoms or a halogenated hydrocarbon group having 1 to 50 carbon atoms, and a halogenated hydrocarbon group having 1 to 50 carbon atoms is particularly preferable.

リン化合物としては、P−O−H結合を有するリン酸類、P−OR、P=O結合を有するホスフェート、ホスフィンオキシド化合物が好ましく使用される。
スルホン酸塩としては、下記一般式(VI)で表されるものが使用される。
As the phosphorus compound, phosphoric acid having P—O—H bond, P—OR, phosphate having P═O bond, and phosphine oxide compound are preferably used.
As the sulfonate, those represented by the following general formula (VI) are used.

Figure 2011195584
式(VI)中、M4は周期律表第1〜14族の原子である。R24は水素、炭素原子数1〜20の炭化水素基または炭素原子数1〜20のハロゲン化炭化水素基である。Xは水素原子、ハロゲン原子、炭素原子数が1〜20の炭化水素基、炭素原子数が1〜20のハロゲン化炭化水素基である。mは1〜7の整数であり、nはMの価数であり、1≦n≦7である。
Figure 2011195584
In formula (VI), M 4 is an atom of Groups 1-14 of the periodic table. R 24 is hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms. X is a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms. m is an integer of 1 to 7, n is the valence of M, and 1 ≦ n ≦ 7.

本発明のオレフィン多量化用触媒は、オレフィンの多量化に用いることができる。オレフィンとしてはエチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、ビニルシクロヘキセン、スチレン、1−オクテン、1−デセンなどのビニル化合物、2−ブテン、シクロペンテン、シクロヘキセン、ノルボルネンなどの内部オレフィンが好ましく挙げられ、特にエチレンが好ましい。上記記載の複数のオレフィンを共多量化させてもよい。   The olefin multimerization catalyst of the present invention can be used for olefin multimerization. Examples of olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, vinylcyclohexene, vinyl compounds such as styrene, 1-octene, 1-decene, 2-butene, cyclopentene, Preferred examples include internal olefins such as cyclohexene and norbornene, with ethylene being particularly preferred. A plurality of the olefins described above may be co-multiplied.

以下、前記オレフィン多量化用触媒の存在下で、オレフィンの多量化反応を行うオレフィン多量体の製造方法について説明する。   Hereinafter, a method for producing an olefin multimer in which an olefin multimerization reaction is performed in the presence of the olefin multimerization catalyst will be described.

[オレフィン多量体の製造方法]
オレフィン多量体の製造方法について説明する。
本発明に係るオレフィン多量体の製造方法は、前記オレフィン多量化用触媒の存在下でオレフィンの多量化反応、好ましくは三量化反応または四量化を行う。
好ましくはオレフィンとしてエチレンを用いたエチレンの多量化反応であり、特に好ましくはエチレンの三量化反応により1−ヘキセンを製造する方法、エチレンの四量化反応により1−オクテンを製造する方法である。
[Olefin multimer production method]
A method for producing the olefin multimer will be described.
In the method for producing an olefin multimer according to the present invention, an olefin multimerization reaction, preferably a trimerization reaction or a tetramerization is performed in the presence of the olefin multimerization catalyst.
An ethylene multimerization reaction using ethylene as an olefin is preferable, and a method of producing 1-hexene by an ethylene trimerization reaction and a method of producing 1-octene by an ethylene tetramerization reaction are particularly preferable.

多量化反応の際、上記(A)遷移金属錯体化合物(以下単に「成分(A)」という)を反応器に添加する方法、各成分の使用法、添加方法、添加順序は任意に選ばれるが、以下のような方法が例示される。   In the multimerization reaction, the method of adding the transition metal complex compound (A) (hereinafter simply referred to as “component (A)”) to the reactor, the method of using each component, the method of addition, and the order of addition are arbitrarily selected. The following method is exemplified.

(1)成分(A)と、(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物および(b−3)イオン化イオン性化合物から選ばれる少なくとも1種の成分(B)(以下単に「成分(B)」という)とを任意の順序で反応器に添加する方法。   (1) Component (A) and at least one component (B) selected from (b-1) an organometallic compound, (b-2) an organoaluminum oxy compound, and (b-3) an ionized ionic compound (below) And simply adding “component (B)” to the reactor in any order.

(2)成分(A)と成分(B)とを予め接触させた触媒を反応器に添加する方法。
(3)成分(A)と成分(B)を予め接触させた触媒成分、および成分(B)を任意の順序で反応器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
(2) A method in which a catalyst in which the component (A) and the component (B) are contacted in advance is added to the reactor.
(3) A method in which the catalyst component in which the component (A) and the component (B) are contacted in advance, and the component (B) are added to the reactor in an arbitrary order. In this case, the component (B) may be the same or different.

(4)成分(A)を担体(C)に担持した触媒成分、および成分(B)を任意の順序で反応器に添加する方法。
(5)成分(A)と成分(B)とを担体(C)に担持した触媒を反応器に添加する方法。
(4) A method in which the catalyst component having component (A) supported on carrier (C) and component (B) are added to the reactor in any order.
(5) A method in which a catalyst in which component (A) and component (B) are supported on a carrier (C) is added to a reactor.

(6)成分(A)と成分(B)とを担体(C)に担持した触媒成分、および成分(B)を任意の順序で反応器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。   (6) A method in which the catalyst component in which the component (A) and the component (B) are supported on the carrier (C), and the component (B) are added to the reactor in an arbitrary order. In this case, the component (B) may be the same or different.

(7)成分(B)を担体(C)に担持した触媒成分、および成分(A)を任意の順序で反応器に添加する方法。
(8)成分(B)を担体(C)に担持した触媒成分、成分(A)、および成分(B)を任意の順序で反応器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
(7) A method in which the catalyst component having component (B) supported on support (C) and component (A) are added to the reactor in any order.
(8) A method in which the catalyst component having component (B) supported on carrier (C), component (A), and component (B) are added to the reactor in any order. In this case, the component (B) may be the same or different.

(9)成分(A)を担体(C)に担持した成分、および成分(B)を担体(C)に担持した成分を任意の順序で反応器に添加する方法。
(10)成分(A)を担体(C)に担持した成分、成分(B)を担体(C)に担持した成分、および成分(B)を任意の順序で反応器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
(9) A method in which a component carrying component (A) on carrier (C) and a component carrying component (B) on carrier (C) are added to the reactor in any order.
(10) A method in which component (A) is supported on carrier (C), component (B) is supported on carrier (C), and component (B) is added to the reactor in any order. In this case, the component (B) may be the same or different.

(11)成分(A)、成分(B)、および成分(D)を任意の順序で反応器に添加する方法。
(12)成分(B)と成分(D)をあらかじめ接触させた成分、および成分(A)を任意の順序で反応器に添加する方法。
(11) A method in which component (A), component (B), and component (D) are added to the reactor in any order.
(12) A method in which component (B) and component (D) are contacted in advance, and component (A) are added to the reactor in any order.

(13)成分(B)と成分(D)を担体(C)に担持した成分、および成分(A)を任意の順序で反応器に添加する方法。
(14)成分(A)と成分(B)を予め接触させた触媒成分、および成分(D)を任意の順序で反応器に添加する方法。
(13) A method in which the component (B) and the component (D) supported on the carrier (C) and the component (A) are added to the reactor in any order.
(14) A method in which the catalyst component obtained by previously contacting the component (A) and the component (B), and the component (D) are added to the reactor in an arbitrary order.

(15)成分(A)と成分(B)を予め接触させた触媒成分、および成分(B)、成分(D)を任意の順序で反応器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。   (15) A method in which the catalyst component in which the component (A) and the component (B) are previously contacted, and the component (B) and the component (D) are added to the reactor in an arbitrary order. In this case, the component (B) may be the same or different.

(16)成分(A)と成分(B)を予め接触させた触媒成分、および成分(B)と成分(D)をあらかじめ接触させた成分を任意の順序で反応器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。   (16) A method in which a catalyst component in which the component (A) and the component (B) are previously contacted and a component in which the component (B) and the component (D) are previously contacted are added to the reactor in an arbitrary order. In this case, the component (B) may be the same or different.

(17)成分(A)を担体(C)に担持した成分、成分(B)および、成分(D)を任意の順序で反応器に添加する方法。
(18)成分(A)を担体(C)に担持した成分、および成分(B)と成分(D)をあらかじめ接触させた成分を任意の順序で反応器に添加する方法。
(17) A method in which the component (A) supported on the carrier (C), the component (B), and the component (D) are added to the reactor in any order.
(18) A method in which a component having component (A) supported on carrier (C) and a component in which component (B) and component (D) are contacted in advance are added to the reactor in any order.

(19)成分(A)と成分(B)と成分(D)を予め任意の順序で接触させた触媒を反応器に添加する方法。
(20)成分(A)と成分(B)と成分(D)を予め任意の順序で接触させた触媒成分および、成分(B)を任意の順序で反応器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
(19) A method in which a catalyst obtained by bringing the component (A), the component (B), and the component (D) into contact in advance in an arbitrary order is added to the reactor.
(20) A method in which the catalyst component obtained by bringing the component (A), the component (B) and the component (D) into contact in advance in an arbitrary order and the component (B) are added to the reactor in an arbitrary order. In this case, the component (B) may be the same or different.

(21)成分(A)と成分(B)と成分(D)を担体(C)に担持した触媒を反応器に添加する方法。
(22)成分(A)と成分(B)と成分(D)を担体(C)に担持した触媒成分および、成分(B)を任意の順序で反応器に添加する方法。この場合、成分(B)は、同一でも異なっていてもよい。
(21) A method in which a catalyst having components (A), (B) and (D) supported on a carrier (C) is added to a reactor.
(22) A method in which component (A), component (B) and component (D) are supported on a carrier (C) and a catalyst component and component (B) are added to the reactor in any order. In this case, the component (B) may be the same or different.

本発明に係るオレフィン多量体の製造方法では、上記のようなオレフィン多量化用触媒の存在下に、オレフィンを多量化することによりオレフィン多量体を得る。本発明では、多量化は溶解反応、懸濁反応などの液相反応法または気相反応法のいずれにおいても実施できる。   In the method for producing an olefin multimer according to the present invention, the olefin multimer is obtained by multimerizing the olefin in the presence of the olefin multimerization catalyst as described above. In the present invention, multimerization can be carried out by any of liquid phase reaction methods such as dissolution reaction and suspension reaction, or gas phase reaction methods.

液相反応法においては、不活性炭化水素媒体を用いるが、用いられる不活性炭化水素媒体として具体的には、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、へプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素; シクロペンタン、シクロへキサン、メチルシクロペンタンなどの脂環族炭化水素; ベンゼン、トルエン、キシレン、トリメチルベンゼン、テトラリンなどの芳香族炭化水素; エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素またはこれらの混合物などを挙げることができる。反応溶媒としては特にペンタン、n−ヘキサン、n−へブタンが好ましい。   In the liquid phase reaction method, an inert hydrocarbon medium is used. Specific examples of the inert hydrocarbon medium used include propane, butane, isobutane, pentane, isopentane, hexane, heptane, octane, decane, dodecane, Aliphatic hydrocarbons such as kerosene; Alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane; Aromatic hydrocarbons such as benzene, toluene, xylene, trimethylbenzene, and tetralin; Ethylene chloride, chlorobenzene, and dichloromethane And halogenated hydrocarbons or a mixture thereof. As the reaction solvent, pentane, n-hexane and n-heptane are particularly preferable.

上記のようなオレフィン多量化用触媒を用いて、オレフィンを多量化することによりオレフィン多量体を製造、好ましくはエチレンの三量化により1−ヘキセンの製造もしくはエチレンの四量化により1−オクテンの製造を行う場合には、成分(A)は、反応容積1リットル当り、通常10-12〜10-2モル、好ましくは10-10〜10-3モルとなるような量で用いられる。本発明では、成分(A)を、比較的薄い濃度で用いた場合であっても、高い多量化活性でオレフィン多量体を得ることができる。 Using the olefin multimerization catalyst as described above, olefin multimer is produced by multimerizing olefin, preferably 1-hexene is produced by trimerization of ethylene or 1-octene is produced by tetramerization of ethylene. When carried out, component (A) is usually used in an amount of 10 −12 to 10 −2 mol, preferably 10 −10 to 10 −3 mol, per liter of reaction volume. In the present invention, an olefin multimer can be obtained with high multimerization activity even when component (A) is used at a relatively low concentration.

また、成分(B)を用いる場合、成分(b−1)は、成分(b−1)と、成分(A)中の遷移金属原子(M)とのモル比〔(b−1)/M〕が、通常0.01〜100000、好ましくは0.05〜50000となるような量で用いられる。   Moreover, when using a component (B), a component (b-1) is a molar ratio [(b-1) / M of a component (b-1) and the transition metal atom (M) in a component (A). ] Is usually used in an amount of 0.01 to 100,000, preferably 0.05 to 50,000.

成分(b−2)は、成分(b−2)中のアルミニウム原子と、成分(A)中の遷移金属原子(M)とのモル比〔(b−2)/M〕が、通常10〜500000、好ましくは20〜100000となるような量で用いられる。   Component (b-2) has a molar ratio [(b-2) / M] of the aluminum atom in component (b-2) and the transition metal atom (M) in component (A) usually 10 to 10. The amount used is 500,000, preferably 20 to 100,000.

成分(b−3)は、成分(b−3)と、成分(A)中の遷移金属原子(M)とのモル比〔(b−3)/M〕が、通常1〜10、好ましくは1〜5となるような量で用いられる。
成分(C)は、成分(A)中の遷移金属原子(M)のモル当たりに対する成分(C)の質量(g)の比(g/mol)が通常100〜10000、好ましくは1000〜5000となるような量で用いられる。
Component (b-3) has a molar ratio [(b-3) / M] of component (b-3) to transition metal atom (M) in component (A) usually from 1 to 10, preferably It is used in such an amount as to be 1-5.
In the component (C), the ratio (g / mol) of the mass (g) of the component (C) to the moles of the transition metal atom (M) in the component (A) is usually 100 to 10,000, preferably 1000 to 5000. Is used in such an amount.

成分(D)は、成分(B)に対して、成分(b−1)の場合、モル比〔(D)/(b−1)〕が通常0.01〜10、好ましくは0.1〜5となるような量で、成分(b−2)の場合、成分(D)と成分(b−2)中のアルミニウム原子とのモル比〔(D)/(b−2)〕が通常0.001〜2、好ましくは0.005〜1となるような量で、成分(b−3)の場合、モル比〔(D)/(b−3)〕が通常0.01〜10、好ましくは0.1〜5となるような量で用いられる。   When component (D) is component (b-1) with respect to component (B), the molar ratio [(D) / (b-1)] is usually 0.01 to 10, preferably 0.1 to 0.1. In the case of component (b-2), the molar ratio [(D) / (b-2)] between component (D) and aluminum atom in component (b-2) is usually 0. 0.001 to 2, preferably 0.005 to 1 and in the case of component (b-3), the molar ratio [(D) / (b-3)] is usually 0.01 to 10, preferably Is used in an amount of 0.1-5.

このようなオレフィン多量化用触媒を用いたオレフィン多量化の反応温度は、通常、−50〜200℃、好ましくは0〜170℃の範囲である。反応圧力は、通常、常圧〜10MPa、好ましくは常圧〜5MPaの条件であり、多量化反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。   The reaction temperature of olefin multimerization using such an olefin multimerization catalyst is usually in the range of −50 to 200 ° C., preferably 0 to 170 ° C. The reaction pressure is usually from normal pressure to 10 MPa, preferably from normal pressure to 5 MPa, and the multimerization reaction can be carried out by any of batch, semi-continuous and continuous methods.

このようなオレフィン多量化用触媒を用いたオレフィン多量化の反応は帯電防止剤を添加して行っても良い。帯電防止剤としてはポリプロピレングリコール、ポリプロピレングリコールジステアレート、エチレンジアミン−PEG−PPG−ブロックコポリマー、ステアリルジエタノールアミン、ラウリルジエタノールアミン、アルキルジエタノールアミド、ポリオキシアルキレン(例えばポリエチレングリコール・ポリプロピレングリコール・ポリエチレングリコールブロック共重合体(PEG−PPG−PEG))などが好ましく、特にポリオキシアルキレン(PEG−PPG−PEG)が好ましい。これらの帯電防止剤は成分(A)中の遷移金属原子(M)のモル当たりに対する質量(g)の比(g/mol)が通常100〜10000、好ましくは100〜1000となるような量で用いられる。   The reaction of olefin multimerization using such an olefin multimerization catalyst may be carried out by adding an antistatic agent. Antistatic agents include polypropylene glycol, polypropylene glycol distearate, ethylenediamine-PEG-PPG-block copolymer, stearyl diethanolamine, lauryl diethanolamine, alkyl diethanolamide, polyoxyalkylene (eg, polyethylene glycol / polypropylene glycol / polyethylene glycol block copolymer) (PEG-PPG-PEG)) and the like are preferable, and polyoxyalkylene (PEG-PPG-PEG) is particularly preferable. These antistatic agents are used in such an amount that the ratio (g / mol) of mass (g) to mol of transition metal atom (M) in component (A) is usually 100 to 10,000, preferably 100 to 1,000. Used.

このようなオレフィン多量化用触媒を用いたオレフィン多量化の反応は水素を添加して行っても良い。反応の水素の圧力は0.01MPa〜5MPa、好ましくは0.01MPa〜1MPaの条件である。   The reaction of olefin multimerization using such an olefin multimerization catalyst may be performed by adding hydrogen. The hydrogen pressure in the reaction is 0.01 MPa to 5 MPa, preferably 0.01 MPa to 1 MPa.

以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
なお、反応生成物の収量および1−ヘキセン(デセン類)の選択率は、ガスクロマトグラフィー(島津GC−14A、J&W Scientific DB−5カラム)を用いて分析した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
The yield of the reaction product and the selectivity of 1-hexene (decenes) were analyzed using gas chromatography (Shimadzu GC-14A, J & W Scientific DB-5 column).

[触媒活性]
単位時間当たりに得られた反応生成物の質量を、多量化に使用した遷移金属触媒成分中の遷移金属原子量(ミリモル)で除して求めた。
[Catalytic activity]
The mass of the reaction product obtained per unit time was obtained by dividing the mass of the transition metal atom (mmol) in the transition metal catalyst component used for the multimerization.

[1−ヘキセン(デセン類)の選択率]
以下の式に従い1−ヘキセン(デセン類)の選択率を求めた。
S(%)=Wp/Wr×100
S(%):1−ヘキセンの選択率(重量分率)
Wr(重量):反応により生成した炭素原子数が4以上からなる生成物の合計重量
Wp(重量):反応により生成した1−ヘキセンの重量
なお、デセン類の選択率は上記方法に準じて求めた。
[Selectivity of 1-hexene (decenes)]
The selectivity of 1-hexene (decenes) was determined according to the following formula.
S (%) = Wp / Wr × 100
S (%): 1-hexene selectivity (weight fraction)
Wr (weight): total weight of products having 4 or more carbon atoms produced by the reaction Wp (weight): weight of 1-hexene produced by the reaction Note that the selectivity for decenes is determined according to the above method. It was.

以下に本発明の(A)遷移金属化合物の具体的な合成例を示すとともに、エチレン多量化の具体的な実施例および比較例を示す。   In the following, specific examples of synthesis of the transition metal compound (A) of the present invention are shown, and specific examples and comparative examples of ethylene multimerization are shown.

[合成例1]
(化合物3の合成)
[Synthesis Example 1]
(Synthesis of Compound 3)

Figure 2011195584
充分に乾燥した200mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2‐methoxyphenylboronic acid(和光純薬工業株式会社製)を3.19g(21mmol)、2−bromo−4,6−difluoroaniline(東京化成工業株式会社製)を4.16g(20mmol)、酢酸パラジウム(和光純薬工業株式会社製)を0.022g(0.1mmol)、2‐Dicyclohexylphosphino‐2’,6’‐dimethoxybiphenyl(シグマ アルドリッチ ジャパン 株式会社製)を0.082g(0.2mmol)、リン酸カリウム一水和物(和光純薬工業株式会社製)13.8g(60mmol)加え、トルエン(関東化学株式会社製)40mLに縣濁させ、100℃で3時間反応させた。この反応液に水100mLを加え、トルエンで抽出後、有機層をMgSO4(関東化学株式会社製)で乾燥させ、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ (溶離液;ヘキサン(関東化学株式会社製)/酢酸エチル(関東化学株式会社製)=19/1)を用いて精製することにより化合物1を2.68g(57%、薄黄色液体)を得た。
Figure 2011195584
2.19 g (21 mmol) of 2-methoxyphenylboronic acid (manufactured by Wako Pure Chemical Industries, Ltd.), 2-bromo-4,6-, in a well-dried 200 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer) difluoroline (manufactured by Tokyo Chemical Industry Co., Ltd.) 4.16 g (20 mmol), palladium acetate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.022 g (0.1 mmol), 2-Dicyclohexylphosphino-2 ′, 6′-dimethylbiphenyl ( 0.082 g (0.2 mmol) of Sigma Aldrich Japan Co., Ltd., 13.8 g (60 mmol) of potassium phosphate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.), and 40 mL of toluene (manufactured by Kanto Chemical Co., Ltd.) It was suspended, and reacted for 3 hours at 100 ° C.. 100 mL of water was added to this reaction liquid, extracted with toluene, the organic layer was dried over MgSO 4 (manufactured by Kanto Chemical Co., Inc.), and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane (Kanto Chemical Co., Ltd.) / Ethyl acetate (Kanto Chemical Co., Ltd.) = 19/1) to obtain 2.68 g (57 %, Pale yellow liquid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.42−7.36(m,1H,Ar−H),7.26−7.22(m,1H,Ar−H),7.08−7.00(m,2H,Ar−H),6.84−6.76(m,1H,Ar−H),6.72−6.70(m,1H,Ar−H),3.83(s,3H,OCH3),3.61(br,2H,NH2
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.42-7.36 (m, 1H, Ar—H), 7.26-7.22 (m, 1H, Ar—H), 7.08-7. 00 (m, 2H, Ar-H), 6.84-6.76 (m, 1H, Ar-H), 6.72-6.70 (m, 1H, Ar-H), 3.83 (s , 3H, OCH 3 ), 3.61 (br, 2H, NH 2 )

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物1を1.29g(5.5mmol)、3‐adamantyl‐2‐hydroxy‐5‐methylbenzaldehyde(Journal of American Chemical Society誌2001年123巻6847−6856頁の記載に従い合成した。)1.35g(5.0mmol)、アンバーリスト15(H)(和光純薬工業株式会社製)を加えトルエン40mL加えた後、還流下で3時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノール(関東化学株式会社製)から再結晶することにより化合物2を2.06g(収率 83%、黄色固体)得た。
Figure 2011195584
In a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 1.29 g (5.5 mmol) of compound 1 and 3-adamantyl-2-hydroxy-5-methylbenzaldehyde (Journal) of American Chemical Society 2001, volume 123, pages 6847-6856.) 1.35 g (5.0 mmol), Amberlyst 15 (H) (manufactured by Wako Pure Chemical Industries, Ltd.) was added and 40 mL of toluene was added. Then, it was made to react under reflux for 3 hours. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol (manufactured by Kanto Chemical Co., Inc.) gave 2.06 g of Compound 2 (yield 83%, yellow). Solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3): 13.1(s,1H,OH),8.46(s,1H,N=CH),7.36−7.16(m,2H,Ar−H),7.05−6.82(m,6H,Ar−H),3.71(s, 3H, OCH3),2.24(s,3H,CH3),2.08(s,9H,adamantyl),1.76(s,6H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.1 (s, 1H, OH), 8.46 (s, 1H, N═CH), 7.36-7.16 (m, 2H, Ar—H) , 7.05-6.82 (m, 6H, Ar -H), 3.71 (s, 3H, OCH 3), 2.24 (s, 3H, CH 3), 2.08 (s, 9H, adamantyl), 1.76 (s, 6H, adamantyl)

Figure 2011195584
充分に乾燥した50mLナスフラスコ(三方コック、磁気攪拌子入り)にTiCl4(thf)2(シグマ アルドリッチ ジャパン 株式会社製)0.668g(2.0mmol)、テトラヒドロフラン(関東化学株式会社製)を10mL加え−78℃に冷却する。この混合液に化合物2を0.973g(2.0mmol)をテトラヒドロフラン2.5mLに溶かし滴下した後、室温まで昇温させつつ13時間反応させた。この反応液に、ヘキサン10mLを加え析出させた。析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物3のテトラヒドロフラン錯体を1.18g(収率 83%、オレンジ色固体)得た。
Figure 2011195584
TiCl 4 (thf) 2 (Sigma Aldrich Japan Co., Ltd.) 0.668 g (2.0 mmol), tetrahydrofuran (Kanto Chemical Co., Ltd.) Add and cool to -78 ° C. 0.973 g (2.0 mmol) of Compound 2 was dissolved in 2.5 mL of tetrahydrofuran and added dropwise to this mixed solution, and then reacted for 13 hours while raising the temperature to room temperature. To this reaction solution, 10 mL of hexane was added for precipitation. The precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 1.18 g (yield 83%, orange solid) of the tetrahydrofuran complex of Compound 3.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.07(d,1H,J=2.2Hz,N=CH),7.34−7.18(m,5H,Ar−H),7.02−6.68(m,3H,Ar−H),4.26(s,3H,OCH3),3.71(t,4H,J=6.5Hz,thf),2.26(s,3H,CH3),2.12(bs,6H,adamantyl),2.07(bs,3H,adamantyl),1.85(d,3H,J=12Hz,adamantyl),1.80−1.76(m,4H,thf),1.71(d,3H,J=12Hz,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.07 (d, 1H, J = 2.2 Hz, N = CH), 7.34-7.18 (m, 5H, Ar—H), 7.02- 6.68 (m, 3H, Ar- H), 4.26 (s, 3H, OCH 3), 3.71 (t, 4H, J = 6.5Hz, thf), 2.26 (s, 3H, CH 3), 2.12 (bs, 6H, adamantyl), 2.07 (bs, 3H, adamantyl), 1.85 (d, 3H, J = 12Hz, adamantyl), 1.80-1.76 (m , 4H, thf), 1.71 (d, 3H, J = 12 Hz, adamantyl)

[合成例2]
(化合物6の合成)
[Synthesis Example 2]
(Synthesis of Compound 6)

Figure 2011195584
充分に乾燥した200mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2‐methoxyphenylboronic acidを3.19g(21mmol)、2−bromo−6−fluoroaniline(東京化成工業株式会社製)を3.80g(20mmol)、酢酸パラジウムを0.022g(0.1mmol)、2‐Dicyclohexylphosphino‐2’,6’‐dimethoxybiphenylを0.082g(0.2mmol)、リン酸カリウム一水和物13.8g(60mmol)加え、トルエン40mLに縣濁させ、100℃で3時間反応させた。この反応液に水100mLを加え、トルエンで抽出後、有機層をMgSO4で乾燥させ、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=93/7)を用いて精製することにより化合物4を2.71g(62%、薄黄色液体)を得た。
Figure 2011195584
In a well-dried 200 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer), 3.19 g (21 mmol) of 2-methoxyphenylboronic acid and 3 of 2-bromo-6-fluoroline (manufactured by Tokyo Chemical Industry Co., Ltd.) .80 g (20 mmol), 0.022 g (0.1 mmol) of palladium acetate, 0.082 g (0.2 mmol) of 2-Diccyclohexylphosphino-2 ′, 6′-dimethylbiphenyl, 13.8 g of potassium phosphate monohydrate ( 60 mmol), suspended in 40 mL of toluene, and reacted at 100 ° C. for 3 hours. 100 mL of water was added to the reaction solution, and extracted with toluene. The organic layer was dried over MgSO 4 and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 93/7) to obtain 2.71 g (62%, light yellow liquid) of Compound 4.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.40−7.37(m,1H,Ar−H),7.27−7.23(m,1H,Ar−H)7.07−6.89(m,4H,Ar−H),6.77−6.69(m,1H,Ar−H),3.82(s,3H,OCH3),3.76(br,2H,NH2
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.40-7.37 (m, 1H, Ar—H), 7.27-7.23 (m, 1H, Ar—H) 7.07-6.89 (m, 4H, Ar-H ), 6.77-6.69 (m, 1H, Ar-H), 3.82 (s, 3H, OCH 3), 3.76 (br, 2H, NH 2)

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物4を1.14g(5.5mmol)、3‐adamantyl‐2‐hydroxy‐5‐methylbenzaldehyde1.35g(5.0mmol)、アンバーリスト15(H)を135mg加えトルエン40mL加えた後、還流下で3時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物5を1.66g(収率 71%、オレンジ固体)得た。
Figure 2011195584
1.14 g (5.5 mmol), 3-adamantyl-2-hydroxy-5-methylbenzaldehyde 1.35 g in a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer) (5.0 mmol) and 135 mg of Amberlyst 15 (H) were added, and 40 mL of toluene was added, followed by reaction for 3 hours under reflux. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 1.66 g of Compound 5 (yield 71%, orange solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.2(s,1H,OH),8.48(s,1H,N=CH),7.33−6.83(m,9H,Ar−H),3.71(s,3H,OCH3),2.24(s,3H,CH3),2.10(s,9H,adamantyl),1.77(s,6H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.2 (s, 1H, OH), 8.48 (s, 1H, N═CH), 7.33-6.83 (m, 9H, Ar—H) , 3.71 (s, 3H, OCH 3 ), 2.24 (s, 3H, CH 3 ), 2.10 (s, 9H, adamantyl), 1.77 (s, 6H, adamantyl)

Figure 2011195584
充分に乾燥した50mLナスフラスコ(三方コック、磁気攪拌子入り)にTiCl4のトルエン溶液(シグマ アルドリッチ ジャパン 株式会社製)(1.0mmol/mL)を2.2mL(2.2mmol)、トルエンを15mL加え−78℃に冷却した。この混合液に化合物5を0.939g(2.0mmol)をトルエン5mLに溶かし滴下した後、室温まで昇温させつつ20時間反応させた。この反応液を減圧下で約5mLまで濃縮した後、ヘキサン10mLを加え析出させ、析出物をろ取し、ヘキサン10mLで洗浄後、乾燥させることにより、化合物6を0.640g(収率 48%、赤褐色固体)得た。
Figure 2011195584
A well-dried 50 mL eggplant flask (with three-way cock and magnetic stirrer) was charged with 2.2 mL (2.2 mmol) of toluene solution of TiCl 4 (manufactured by Sigma Aldrich Japan Co., Ltd.) (1.0 mmol / mL) and 15 mL of toluene. Added and cooled to -78 ° C. In this mixed solution, 0.939 g (2.0 mmol) of Compound 5 was dissolved in 5 mL of toluene and dropped, and then reacted for 20 hours while raising the temperature to room temperature. After concentrating the reaction solution to about 5 mL under reduced pressure, 10 mL of hexane was added for precipitation, and the precipitate was collected by filtration, washed with 10 mL of hexane, and dried to give 0.640 g of Compound 6 (yield 48%). A reddish brown solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.11(d,1H,J=2.7Hz,N=CH),7.46−7.14(m,8H,Ar−H),7.07(d,1H,J=1.4Hz,Ar−H),4.39(s,3H,OCH3),2.32(s,3H,CH3),2.21(bs,6H,adamantyl),2.16(bs,3H,adamantyl),1.93(d,3H,J=12Hz,adamantyl),1.80(d,3H,J=12Hz,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.11 (d, 1H, J = 2.7 Hz, N = CH), 7.46-7.14 (m, 8H, Ar—H), 7.07 ( d, 1H, J = 1.4Hz, Ar-H), 4.39 (s, 3H, OCH 3), 2.32 (s, 3H, CH 3), 2.21 (bs, 6H, adamantyl), 2.16 (bs, 3H, adamantyl), 1.93 (d, 3H, J = 12 Hz, adamantyl), 1.80 (d, 3H, J = 12 Hz, adamantyl)

[合成例3]
(化合物10の合成)
[Synthesis Example 3]
(Synthesis of Compound 10)

Figure 2011195584
充分に乾燥した300mL三口ナスフラスコ(滴下ロート、三方コック付、磁気攪拌子入り)に1‐methoxy‐3,5‐dimethylbenzene(東京化成工業株式会社製)を8.17g(60mmol)、ジエチルエーテル120mLを加え、氷浴にて0℃まで冷却した後、N,N,N’,N’−テトラメチルエチレンジアミン(東京化成工業株式会社製)7.67g(66mmol)を加え、ノルマルブチルリチウムのヘキサン溶液(1.6mol/L)39.8mL(66mmol)を滴下した後、5時間反応させた。500mL三口ナスフラスコ(三方コック付、磁気攪拌子入り)にジエチルエーテル60mL、ホウ酸トリメチル(シグマ アルドリッチ ジャパン 株式会社製)12.47g(120mmol)を加えた後、−78℃に冷却した後に、先ほど調整した反応液を滴下し、そのまま室温まで昇温させつつ18時間反応させた。この反応液に10wt%塩酸水(関東化学株式会社製)100mLを加えた後、酢酸エチル50mL×3で抽出後、有機層を純水50mL×2で洗浄し、MgSO4で乾燥させ、溶媒を減圧下で留去することにより、粗生成物を得た。得られた粗生成物をトルエンから再結晶することにより、化合物7を6.67g(62%、白色固体)を得た。
Figure 2011195584
8.17 g (60 mmol) of 1-methoxy-3,5-dimethylbenzene (manufactured by Tokyo Chemical Industry Co., Ltd.), 120 mL of diethyl ether in a well-dried 300 mL three-necked eggplant flask (with dropping funnel, with three-way cock, with magnetic stirrer) After cooling to 0 ° C. in an ice bath, 7.67 g (66 mmol) of N, N, N ′, N′-tetramethylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) is added, and a hexane solution of normal butyl lithium (1.6 mol / L) 39.8 mL (66 mmol) was added dropwise, followed by reaction for 5 hours. After adding 60 mL of diethyl ether and 12.47 g (120 mmol) of trimethyl borate (manufactured by Sigma Aldrich Japan Co., Ltd.) to a 500 mL three-necked eggplant flask (with a three-way cock and containing a magnetic stirrer), the mixture was cooled to −78 ° C. The prepared reaction solution was added dropwise and reacted for 18 hours while raising the temperature to room temperature. After adding 100 mL of 10 wt% hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) to this reaction solution, extraction with 50 mL × 3 ethyl acetate was performed, and then the organic layer was washed with 50 mL × 2 pure water, dried over MgSO 4 , The crude product was obtained by distilling off under reduced pressure. The obtained crude product was recrystallized from toluene to obtain 6.67 g (62%, white solid) of Compound 7.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):6.97(s,1H,Ar−H),6.58(s,1H,Ar−H),6.29(s,2H,B(OH)2),3.86(s,3H,OCH3),2.53(s,3H,CH3),2.32(s,3H,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 6.97 (s, 1H, Ar—H), 6.58 (s, 1H, Ar—H), 6.29 (s, 2H, B (OH) 2 ) , 3.86 (s, 3H, OCH 3 ), 2.53 (s, 3H, CH 3 ), 2.32 (s, 3H, CH 3 )

Figure 2011195584
充分に乾燥した100mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に化合物7を1.89g(10.5mmol)、2‐chloro‐6‐fluoroaniline(東京化成工業株式会社製)を1.46g(10mmol)、酢酸パラジウムを0.22g(0.1mmol)、2‐Dicyclohexylphosphino‐2’,6’‐dimethoxybiphenylを0.082g(0.2mmol)、リン酸カリウム一水和物6.91g(30mmol)加え、トルエン18mLに縣濁させ、100℃で1.5時間反応させた。この反応液に水20mLを加え、トルエンで抽出後、有機層をMgSO4で乾燥させ、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=95/5)を用いて精製することにより化合物8を1.953g(80%、薄黄色液体)を得た。
Figure 2011195584
In a well-dried 100 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer), 1.89 g (10.5 mmol) of compound 7 and 2-chloro-6-fluoroline (manufactured by Tokyo Chemical Industry Co., Ltd.) 1 .46 g (10 mmol), 0.22 g (0.1 mmol) of palladium acetate, 0.082 g (0.2 mmol) of 2-Diccyclohexylphosphino-2 ′, 6′-dimethylbiphenyl, 6.91 g of potassium phosphate monohydrate ( 30 mmol), suspended in 18 mL of toluene, and reacted at 100 ° C. for 1.5 hours. 20 mL of water was added to this reaction liquid, extracted with toluene, the organic layer was dried over MgSO 4 , and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 95/5) to obtain 1.953 g (80%, light yellow liquid) of Compound 8.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.04−6.90(m,1H,Ar−H),6.77−6.53(m,4H,Ar−H),3.70(s,3H,OCH3),3.51(br,2H,NH2),2.37(s,3H,CH3),2.03(s,3H,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.04-6.90 (m, 1H, Ar—H), 6.77-6.53 (m, 4H, Ar—H), 3.70 (s, 3H, OCH 3 ), 3.51 (br, 2H, NH 2 ), 2.37 (s, 3H, CH 3 ), 2.03 (s, 3H, CH 3 )

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物8を0.773g(3.15mmol)、3‐adamantyl‐2‐hydroxy‐5‐methylbenzaldehyde0.811g(3.0mmol)、アンバーリスト15(H)を50mg加えトルエン20mL加えた後、還流下で8時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物9を0.689g(収率 46%、黄色固体)得た。
Figure 2011195584
In a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 0.773 g (3.15 mmol), 3-adamantyl-2-hydroxy-5-methylbenzaldehyde 0.811 g (3.0 mmol) and 50 mg of Amberlyst 15 (H) were added, and 20 mL of toluene was added, followed by reaction for 8 hours under reflux. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 0.689 g of Compound 9 (yield 46%, yellow solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.1(s,1H,OH),8.51(s,1H,N=CH),7.23−7.00(m,3H,Ar−H),6.82(s,1H,Ar−H),6.68(s,1H,Ar−H),6.58(s,1H,Ar−H),4.28(s,3H,OCH3),2.30(s,3H,CH3),2.24(s,3H,CH3),2.21(s,3H,CH3),2.08(bs,6H,adamantyl),1.98(s,3H,adamantyl),1.77(s,6H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.1 (s, 1H, OH), 8.51 (s, 1H, N═CH), 7.23-7.00 (m, 3H, Ar—H) , 6.82 (s, 1H, Ar -H), 6.68 (s, 1H, Ar-H), 6.58 (s, 1H, Ar-H), 4.28 (s, 3H, OCH 3 ), 2.30 (s, 3H, CH 3 ), 2.24 (s, 3H, CH 3 ), 2.21 (s, 3H, CH 3 ), 2.08 (bs, 6H, adamantyl), 1 .98 (s, 3H, adamantyl), 1.77 (s, 6H, adamantyl)

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)にTiCl4のトルエン溶液(1.0mmol/mL)を1.10mL(0.55mmol)、トルエンを20mL加え−78℃に冷却した。この混合液に化合物9を0.498g(1.0mmol)をトルエン5mLに溶かし滴下した後、室温まで昇温させつつ16時間反応させた。この反応液を減圧下で約5mLまで濃縮した後、ヘキサン25mLを加え析出させ、析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物10を0.545g(収率 84%、オレンジ色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), 1.10 mL (0.55 mmol) of a toluene solution of TiCl 4 (1.0 mmol / mL) and 20 mL of toluene were added and cooled to −78 ° C. To this mixed solution, 0.498 g (1.0 mmol) of Compound 9 was dissolved in 5 mL of toluene and dropped, and then reacted for 16 hours while raising the temperature to room temperature. After concentrating the reaction solution to about 5 mL under reduced pressure, 25 mL of hexane was added for precipitation, and the precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.545 g of Compound 10 (yield 84%). Orange solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.11(d,1H,J=2.2Hz,N=CH),7.43−7.35(m,2H,Ar−H),7.28−7.21(m,2H,Ar−H),7.09−7.07(m,2H,Ar−H),6.94(s,1H,Ar−H),4.33(s,3H,OCH3),2.33(s,3H,CH3),2.26(s,3H,CH3),2.19(bs,6H,adamantyl),2.15(bs,3H,adamantyl),2.11(s,3H,CH3),1.93(d,3H,J=12Hz,adamantyl),1.79(d,3H,J=12Hz,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.11 (d, 1H, J = 2.2 Hz, N = CH), 7.43-7.35 (m, 2H, Ar—H), 7.28- 7.21 (m, 2H, Ar-H), 7.09-7.07 (m, 2H, Ar-H), 6.94 (s, 1H, Ar-H), 4.33 (s, 3H) , OCH 3 ), 2.33 (s, 3H, CH 3 ), 2.26 (s, 3H, CH 3 ), 2.19 (bs, 6H, adamantyl), 2.15 (bs, 3H, adamantyl) 2.11 (s, 3H, CH 3 ), 1.93 (d, 3H, J = 12 Hz, adamantyl), 1.79 (d, 3H, J = 12 Hz, adamantyl)

[合成例4]
(化合物13の合成)
[Synthesis Example 4]
(Synthesis of Compound 13)

Figure 2011195584
充分に乾燥した200mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2‐ethoxyphenylboronic acid(シグマ アルドリッチ ジャパン 株式会社製)を1.83g(11.0mmol)、2−chloro−6−fluoroanilineを1.46g(10mmol)、酢酸パラジウムを0.011g(0.05mmol)、2‐Dicyclohexylphosphino‐2’,6’‐dimethoxybiphenylを0.041g(0.1mmol)、リン酸カリウム一水和物6.9g(30mmol)加え、トルエン20mLに縣濁させ、100℃で3時間反応させた。この反応液に水50mLを加え、トルエンで抽出後、有機層をMgSO4で乾燥させ、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ (溶離液;ヘキサン/酢酸エチル=96/4)を用いて精製することにより化合物11を2.30g(99%、薄黄色液体)を得た。
Figure 2011195584
2.83 g (11.0 mmol) of 2-ethoxyphenylboronic acid (manufactured by Sigma Aldrich Japan Co., Ltd.), 2-chloro-6-fluoroline in a well-dried 200 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer) 1.46 g (10 mmol), 0.011 g (0.05 mmol) of palladium acetate, 0.041 g (0.1 mmol) of 2-Dicyclohexylphosphino-2 ′, 6′-dimethylbiphenyl, potassium phosphate monohydrate 9 g (30 mmol) was added, suspended in 20 mL of toluene, and reacted at 100 ° C. for 3 hours. 50 mL of water was added to this reaction liquid, extracted with toluene, the organic layer was dried over MgSO 4 , and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 96/4) to obtain 2.30 g (99%, light yellow liquid) of Compound 11.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.37−7.24(m,2H,Ar−H),7.06−6.89(m,4H,Ar−H),6.76−6.68(m,1H,Ar−H),4.05(q,2H,J=6.9Hz,OCH2),3.83(br,2H,NH2),1.30(t,3H,J=6.9Hz,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.37-7.24 (m, 2H, Ar—H), 7.06-6.89 (m, 4H, Ar—H), 6.76-6. 68 (m, 1H, Ar- H), 4.05 (q, 2H, J = 6.9Hz, OCH 2), 3.83 (br, 2H, NH 2), 1.30 (t, 3H, J = 6.9Hz, CH 3)

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物11を0.729g(3.15mmol)、3‐adamantyl‐5‐tert−Butyl‐2‐hydroxybenzaldehydeを0.937g(3.0mmol)、アンバーリスト15(H)を94mg加えトルエン40mL加えた後、還流下で6時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、ヘキサンから再結晶することにより化合物12を1.18g(収率 75%、黄色固体)得た。
Figure 2011195584
In a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 0.729 g (3.15 mmol) of compound 11 and 3-adamantyl-5-tert-Butyl-2-hydroxybenzaldehyde 0.937 g (3.0 mmol), 94 mg of Amberlyst 15 (H) and 40 mL of toluene were added, and the mixture was reacted for 6 hours under reflux. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from hexane gave 1.18 g of Compound 12 (yield 75%, yellow solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.4(s,1H,OH),8.54(s,1H,N=CH),7.31−7.24(m,2H,Ar−H),7.19−7.10(m,4H,Ar−H),7.01−6.85(m,3H,Ar−H),3.97(q,2H,J=6.9Hz,OCH2),2.17(s,6H,adamantyl),2.11(s,3H,adamantyl),1.77(s,6H,adamantyl),1.27(s,9H,C(CCH33),1.26(t,3H,J=6.9Hz,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.4 (s, 1H, OH), 8.54 (s, 1H, N═CH), 7.31-7.24 (m, 2H, Ar—H) 7.19-7.10 (m, 4H, Ar-H), 7.01-6.85 (m, 3H, Ar-H), 3.97 (q, 2H, J = 6.9 Hz, OCH) 2 ), 2.17 (s, 6H, adamantyl), 2.11 (s, 3H, adamantyl), 1.77 (s, 6H, adamantyl), 1.27 (s, 9H, C (CCH 3 ) 3 ), 1.26 (t, 3H, J = 6.9 Hz, CH 3 )

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(、磁気攪拌子入り)にTiCl4のトルエン溶液(1.0mmol/mL)を1.65mL(1.65mmol)、トルエン20mLを加え−78℃に冷却した。この混合液に化合物12を0.789g(1.5mmol)をトルエン5mLに溶かし滴下した後、室温まで昇温させつつ18時間反応させた。この反応液を減圧下で約5mLまで濃縮した後に、ヘキサン10mLを加え析出させた。析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物13を0.914g(収率 90%、赤紫色固体)得た。
Figure 2011195584
To a sufficiently dried 100 mL Schlenk flask (with a magnetic stirrer), 1.65 mL (1.65 mmol) of a toluene solution of TiCl 4 (1.0 mmol / mL) and 20 mL of toluene were added and cooled to −78 ° C. In this mixed solution, 0.789 g (1.5 mmol) of Compound 12 was dissolved in 5 mL of toluene and dropped, and then reacted for 18 hours while raising the temperature to room temperature. The reaction solution was concentrated to about 5 mL under reduced pressure, and 10 mL of hexane was added for precipitation. The precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.914 g of Compound 13 (yield 90%, red purple solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.18(d,1H,J=3.2Hz,N=CH),7.64(d,1H,J=2.2Hz,Ar−H),7.43−7.07(m,8H,Ar−H),5.48−5.41(m,1H,OCH2),4.86−4.79(m,1H,OCH2),2.28(bs,6H,adamantyl),2.22(bs,3H,adamantyl),1.94(d,3H,J=12Hz,adamantyl),1.79(d,3H,J=12Hz,adamantyl),1.28(s,9H,C(CCH33),0.99(t,3H,J=7.0Hz,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.18 (d, 1H, J = 3.2 Hz, N = CH), 7.64 (d, 1H, J = 2.2 Hz, Ar—H), 7. 43-7.07 (m, 8H, Ar- H), 5.48-5.41 (m, 1H, OCH 2), 4.86-4.79 (m, 1H, OCH 2), 2.28 (Bs, 6H, adamantyl), 2.22 (bs, 3H, adamantyl), 1.94 (d, 3H, J = 12 Hz, adamantyl), 1.79 (d, 3H, J = 12 Hz, adamantyl), 1 .28 (s, 9H, C (CCH 3 ) 3 ), 0.99 (t, 3H, J = 7.0 Hz, CH 3 )

[合成例5]
(化合物16の合成)
[Synthesis Example 5]
(Synthesis of Compound 16)

Figure 2011195584
充分に乾燥した200mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2‐methoxyphenylboronic acidを3.19g(21mmol)、2−bromo−4−fluoroaniline(東京化成工業株式会社製)を3.80g(20mmol)、酢酸パラジウムを0.022g(0.1mmol)、2‐Dicyclohexylphosphino‐2’,6’‐dimethoxybiphenylを0.082g(0.2mmol)、リン酸カリウム一水和物13.8g(60mmol)加え、トルエン40mLに縣濁させ、100℃で3時間反応させた。この反応液に水100mLを加え、トルエンで抽出後、有機層をMgSO4で乾燥させ、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=9/1)を用いて精製することにより化合物14を2.86g(66%、薄黄色液体)を得た。
Figure 2011195584
In a well-dried 200 mL three-necked eggplant flask (condenser with three-way cock, with magnetic stirrer), 3.19 g (21 mmol) of 2-methoxyphenylboronic acid and 3 of 2-bromo-4-fluoroaniline (manufactured by Tokyo Chemical Industry Co., Ltd.) .80 g (20 mmol), 0.022 g (0.1 mmol) of palladium acetate, 0.082 g (0.2 mmol) of 2-Diccyclohexylphosphino-2 ′, 6′-dimethylbiphenyl, 13.8 g of potassium phosphate monohydrate ( 60 mmol), suspended in 40 mL of toluene, and reacted at 100 ° C. for 3 hours. 100 mL of water was added to the reaction solution, and extracted with toluene. The organic layer was dried over MgSO 4 and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 9/1) to obtain 2.86 g (66%, light yellow liquid) of Compound 14.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.37(t,J=7.3Hz,1H,Ar−H),7.24(d,J=6.2Hz,1H,Ar−H),7.07−7.02(m,2H,Ar−H),6.99−6.82(m,2H,Ar−H),6.72−6.67(m,1H,Ar−H),3.79(s,3H,OCH3),3.55(br,2H,NH2
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.37 (t, J = 7.3 Hz, 1H, Ar—H), 7.24 (d, J = 6.2 Hz, 1H, Ar—H), 7. 07-7.02 (m, 2H, Ar-H), 699-6.82 (m, 2H, Ar-H), 6.72-6.67 (m, 1H, Ar-H), 3 .79 (s, 3H, OCH 3 ), 3.55 (br, 2H, NH 2 )

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物14を1.14g(5.5mmol)、3‐adamantyl‐2‐hydroxy‐5‐methylbenzaldehydeを1.35g(5.0mmol)、アンバーリスト15(H)を135mg加えトルエン40mL加えた後、還流下で3時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物15を1.28g(収率 55%、オレンジ固体)得た。
Figure 2011195584
Into a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, magnetic stirrer) 1.14 g (5.5 mmol) of compound 14 and 1-adamantyl-2-hydroxy-5-methylbenzaldehyde 1 .35 g (5.0 mmol) and 135 mg of Amberlyst 15 (H) were added, and 40 mL of toluene was added, followed by reaction under reflux for 3 hours. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 1.28 g (yield 55%, orange solid) of Compound 15.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.3(s,1H,OH),8.42(s,1H,N=CH),7.37−7.31(m,1H,Ar−H),7.21−6.92(m,8H,Ar−H),3.74(s,3H,OCH3),2.26(s,3H,CH3),2.08(s,9H,adamantyl),1.78(s,6H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.3 (s, 1H, OH), 8.42 (s, 1H, N═CH), 7.37-7.31 (m, 1H, Ar—H) , 7.21-6.92 (m, 8H, Ar -H), 3.74 (s, 3H, OCH 3), 2.26 (s, 3H, CH 3), 2.08 (s, 9H, adamantyl), 1.78 (s, 6H, adamantyl)

Figure 2011195584
充分に乾燥した50mLナスフラスコ(三方コック、磁気攪拌子入り)にTiCl4(thf)20.500g(1.5mmol)、テトラヒドロフランを7.5mL加え−78℃に冷却した。この混合液に化合物15を0.677g(1.5mmol)をテトラヒドロフラン1.3mLに溶かし滴下した後、室温まで昇温させつつ16時間反応させた。この反応液にヘキサン10mLを加え析出させた後、析出物をろ取し、ヘキサン10mLで洗浄後、乾燥させることにより、化合物16のテトラヒドロフラン錯体を0.845g(収率 81%、オレンジ色固体)得た。
Figure 2011195584
TiCl 4 (thf) 2 0.500 g (1.5 mmol) and 7.5 mL of tetrahydrofuran were added to a well-dried 50 mL eggplant flask (with a three-way cock and a magnetic stirrer), and cooled to −78 ° C. In this mixed solution, 0.677 g (1.5 mmol) of Compound 15 was dissolved in 1.3 mL of tetrahydrofuran and dropped, and then reacted for 16 hours while raising the temperature to room temperature. After 10 mL of hexane was added to the reaction solution to precipitate, the precipitate was collected by filtration, washed with 10 mL of hexane, and dried to obtain 0.845 g of Compound 16 tetrahydrofuran complex (yield 81%, orange solid). Obtained.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.10(s,1H,N=CH),7.41−7.37(m,3H,Ar−H),7.27−7.04(m,6H,Ar−H),4.41(s,3H,OCH3),3.76(t,4H,J=6.5Hz,thf),2.33(s,3H,CH3),2.19(bs,6H,adamantyl),2.15(bs,3H,adamantyl),1.92(d,3H,J=12Hz,adamantyl),1.87−1.82(m,4H,thf),1.79(d,3H,J=12Hz,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.10 (s, 1H, N═CH), 7.41-7.37 (m, 3H, Ar—H), 7.27-7.04 (m, 6H, Ar-H), 4.41 (s, 3H, OCH 3), 3.76 (t, 4H, J = 6.5Hz, thf), 2.33 (s, 3H, CH 3), 2. 19 (bs, 6H, adamantyl), 2.15 (bs, 3H, adamantyl), 1.92 (d, 3H, J = 12 Hz, adamantyl), 1.87-1.82 (m, 4H, thf), 1.79 (d, 3H, J = 12 Hz, adamantyl)

[合成例6]
(化合物19の合成)
[Synthesis Example 6]
(Synthesis of Compound 19)

Figure 2011195584
充分に乾燥した200mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2‐methoxyphenylboronic acidを1.52g(10.0mmol)、2,6−dichloroanilineを3.20g(20mmol)、酢酸パラジウムを0.011g(0.05mmol)、2‐dicyclohexylphosphino‐2’,6’‐dimethoxybiphenylを0.041g(0.1mmol)、リン酸カリウム一水和物6.9g(30mmol)加え、トルエン40mLに縣濁させ、100℃で3時間反応させた。この反応液に水50mLを加え、トルエンで抽出後、有機層をMgSO4で乾燥させ、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=98/2)を用いて精製することにより化合物17を1.65g(71%、薄黄色液体)を得た。
Figure 2011195584
In a well-dried 200 mL three-necked eggplant flask (condenser with three-way cock, with magnetic stirrer), 1.52 g (10.0 mmol) of 2-methoxyphenylboronic acid, 3.20 g (20 mmol) of 2,6-dichloroaniline, palladium acetate 0.011 g (0.05 mmol), 2-dicyclohexylphosphino-2 ', 6'-dimethylbiphenyl 0.041 g (0.1 mmol), potassium phosphate monohydrate 6.9 g (30 mmol) was added to 40 mL of toluene. It was made turbid and reacted at 100 ° C. for 3 hours. 50 mL of water was added to the reaction solution, extracted with toluene, the organic layer was dried over MgSO 4 , and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 98/2) to obtain 1.65 g (71%, light yellow liquid) of Compound 17.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.41−7.34(m,1H,Ar−H),7.28−7.22(m,2H,Ar−H),7.07−6.99(m,3H,Ar−H),6.73(d,1H,J=8.1Hz,Ar−H),4.06(br,2H,NH2),3.80(s,3H,OCH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.41-7.34 (m, 1H, Ar—H), 7.28-7.22 (m, 2H, Ar—H), 7.07-6. 99 (m, 3H, Ar—H), 6.73 (d, 1H, J = 8.1 Hz, Ar—H), 4.06 (br, 2H, NH 2 ), 3.80 (s, 3H, OCH 3 )

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物17を0.994g(4.2mmol)、3‐adamantyl‐5‐methyl‐2‐hydroxybenzaldehydeを1.08g(4.0mmol)、アンバーリスト15を108mg加えトルエン20mL加えた後、還流下で5時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=99/1)を用いて精製することにより化合物18を1.86g(96%、黄色固体)を得た。
Figure 2011195584
In a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 0.994 g (4.2 mmol) of compound 17 and 3-adamantyl-5-methyl-2-hydroxydehydride 1 0.08 g (4.0 mmol) and 108 mg of Amberlyst 15 were added, 20 mL of toluene was added, and the mixture was reacted under reflux for 5 hours. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 99/1) to obtain 1.86 g (96%, yellow solid) of Compound 18.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.2(s,1H,OH),8.09(s,1H,N=CH),7.48−7.45(m,1H,Ar−H),7.29−6.94(m,6H,Ar−H),6.79(d,1H,J=7.8Hz,Ar−H),6.66(d,1H,J=1.6Hz,Ar−H),3.69(s,3H,OCH3),2.12(s,3H,CH3),2.14(s,6H,adamantyl),2.08(s,3H,adamantyl),1.79(s,6H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.2 (s, 1H, OH), 8.09 (s, 1H, N═CH), 7.48-7.45 (m, 1H, Ar—H) 7.29-6.94 (m, 6H, Ar-H), 6.79 (d, 1H, J = 7.8 Hz, Ar-H), 6.66 (d, 1H, J = 1.6 Hz) , Ar-H), 3.69 ( s, 3H, OCH 3), 2.12 (s, 3H, CH 3), 2.14 (s, 6H, adamantyl), 2.08 (s, 3H, adamantyl ), 1.79 (s, 6H, adamantyl)

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)にTiCl4のトルエン溶液(1.0mmol/mL)を1.65mL(1.65mmol)、トルエン20mLを加え−78℃にドライアイス−メタノールバスにて冷却した。この混合液に化合物18を0.729g(1.5mmol)をトルエン5mLに溶かし滴下した後、室温まで昇温させつつ16時間反応させた。この反応液を減圧下で約5mLまで濃縮した後に、ヘキサン10mLを加え析出させた。析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物19を0.632g(収率 66%、赤褐色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), add 1.65 mL (1.65 mmol) of a TiCl 4 toluene solution (1.0 mmol / mL) and 20 mL of toluene to a dry ice-methanol bath at −78 ° C. And cooled. To this mixed solution, 0.729 g (1.5 mmol) of Compound 18 was dissolved and dropped in 5 mL of toluene, and then reacted for 16 hours while raising the temperature to room temperature. The reaction solution was concentrated to about 5 mL under reduced pressure, and 10 mL of hexane was added for precipitation. The precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.632 g of Compound 19 (yield 66%, reddish brown solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.00(s,1H,N=CH),7.60(dd,J=6.2Hz,1.6Hz,1H,Ar−H),7.43−7.12(m,7H,Ar−H),7.02(d,1H,J=1.1Hz,Ar−H),4.30(s,3H,OCH3),2.30(s,3H,CH3),2.19(m,9H,adamantyl),1.95(d,3H,J=12Hz,adamantyl),1.80(d,3H,J=12Hz,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.00 (s, 1H, N = CH), 7.60 (dd, J = 6.2 Hz, 1.6 Hz, 1H, Ar—H), 7.43− 7.12 (m, 7H, Ar- H), 7.02 (d, 1H, J = 1.1Hz, Ar-H), 4.30 (s, 3H, OCH 3), 2.30 (s, 3H, CH 3 ), 2.19 (m, 9H, adamantyl), 1.95 (d, 3H, J = 12 Hz, adamantyl), 1.80 (d, 3H, J = 12 Hz, adamantyl)

[合成例7]
(化合物23の合成)
[Synthesis Example 7]
(Synthesis of Compound 23)

Figure 2011195584
充分に乾燥した200mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に4−amino−3−fluorotolueneを5.00g(40.0mmol)、N,N−ジメチルホルムアミドを150mL加えた後、水冷しつつN−ブロモスクシンイミドを7.11g(40.0mmol)をN,N−ジメチルホルムアミド50mLに溶解させ滴下し、3時間反応させた。この反応液に水300mLを加え、ヘキサンで抽出後、有機層を純水で洗浄し、MgSO4で乾燥させ、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=97/3)を用いて精製することにより化合物20を7.09g(87%、白色固体)を得た。
Figure 2011195584
After adding 5.00 g (40.0 mmol) of 4-amino-3-fluorotoluene and 150 mL of N, N-dimethylformamide to a well-dried 200 mL three-necked eggplant flask (with a condenser, a three-way cock, and a magnetic stirrer), While cooling with water, 7.11 g (40.0 mmol) of N-bromosuccinimide was dissolved in 50 mL of N, N-dimethylformamide and added dropwise to react for 3 hours. 300 mL of water was added to the reaction solution, and extracted with hexane. The organic layer was washed with pure water, dried over MgSO 4 , and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 97/3) to obtain 7.09 g (87%, white solid) of Compound 20.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.02(s,1H,Ar−H),6.77(d,1H,J=11Hz,Ar−H),3.95(br,2H,NH2),2.22(s,3H,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.02 (s, 1H, Ar—H), 6.77 (d, 1H, J = 11 Hz, Ar—H), 3.95 (br, 2H, NH 2) ), 2.22 (s, 3H, CH 3 )

Figure 2011195584
充分に乾燥した100mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2−ethoxyphenylboronic acid(東京化成工業株式会社製)を1.74g(10.5mmol)、化合物20を2.04g(10mmol)、1,3−bis−(2,6−diisopropylphenyl)imidazolium−(allyl)−palladium(II)−chloride(シグマ アルドリッチ ジャパン 株式会社製)を0.058g(0.1mmol)、水酸化バリウム八水和物(和光純薬工業株式会社製)3.47g(11mmol)加え、イソプロピルアルコール40mLに溶解させ、80℃で6時間反応させた。反応後固体残さをろ過によって取り除き、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=95/5)を用いて精製することにより化合物21を1.57g(64%、無色液体)得た。
Figure 2011195584
2.74 g (10.5 mmol) of 2-ethoxyphenylboronic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2.04 g of Compound 20 (100 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer)) 10 mmol), 1,3-bis- (2,6-diisopropylphenyl) imidazolium- (allyl) -palladium (II) -chloride (manufactured by Sigma Aldrich Japan Co., Ltd.), 0.058 g (0.1 mmol), barium hydroxide eight 3.47 g (11 mmol) of a hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added, dissolved in 40 mL of isopropyl alcohol, and reacted at 80 ° C. for 6 hours. After the reaction, the solid residue was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 95/5) to obtain 1.57 g (64%, colorless liquid) of Compound 21.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.34−7.22(m,2H,Ar−H),7.04−6.95(m,2H,Ar−H),6.84−6.73(m,2H,Ar−H),4.04(q,2H,J=7.0Hz,OCH2),3.70(br,2H,NH2),1.30(t,3H,J=7.0Hz,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.34-7.22 (m, 2H, Ar—H), 7.04-6.95 (m, 2H, Ar—H), 6.84-6. 73 (m, 2H, Ar- H), 4.04 (q, 2H, J = 7.0Hz, OCH 2), 3.70 (br, 2H, NH 2), 1.30 (t, 3H, J = 7.0 Hz, CH 3 )

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物21を0.801g(3.15mmol)、3‐adamantyl‐5‐tert−butyl‐2‐hydroxybenzaldehydeを0.937g(3.0mmol)、アンバーリスト15を94mg加えトルエン20mL加えた後、還流下で6時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物22を0.950g(収率 59%、黄色固体)得た。
Figure 2011195584
In a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 0.801 g (3.15 mmol) of compound 21 and 3-adamantyl-5-tert-2-butyl-2-hydroxydehydride 0.937 g (3.0 mmol), 94 mg of Amberlyst 15 and 20 mL of toluene were added, and the mixture was reacted for 6 hours under reflux. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 0.950 g (yield 59%, yellow solid) of Compound 22.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.4(s,1H,OH),8.54(d,J=2.4Hz,1H,N=CH),7.28−7.16(m,4H,Ar−H),7.00−6.84(m,4H,Ar−H),3.97(q,2H,J=6.9Hz,OCH2),2.38(s,3H,CH3),2.14−2.07(s,9H,adamantyl),1.77(s,6H,adamantyl),1.27(s,9H,C(CH33),1.26(t,3H,J=6.9Hz,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.4 (s, 1H, OH), 8.54 (d, J = 2.4 Hz, 1H, N = CH), 7.28-7.16 (m, 4H, Ar-H), 7.00-6.84 (m, 4H, Ar-H), 3.97 (q, 2H, J = 6.9Hz, OCH 2), 2.38 (s, 3H, CH 3), 2.14-2.07 (s, 9H, adamantyl), 1.77 (s, 6H, adamantyl), 1.27 (s, 9H, C (CH 3) 3), 1.26 ( t, 3H, J = 6.9 Hz, CH 3 )

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)にTiCl4のトルエン溶液(1.0mmol/mL)を1.1mL(1.1mmol)、トルエン20mLを加え−78℃にドライアイス−メタノールバスにて冷却した。この混合液に化合物22を0.540g(1.0mmol)をトルエン5mLに溶かし滴下した後、室温まで昇温させつつ14時間反応させた。この反応液を減圧下で約3mLまで濃縮した後に、ヘキサン10mLを加え析出させた。析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物23を0.660g(収率 95%、オレンジ色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), add 1.1 mL (1.1 mmol) of a toluene solution of TiCl 4 (1.0 mmol / mL) and 20 mL of toluene to a dry ice-methanol bath at −78 ° C. And cooled. In this mixed solution, 0.540 g (1.0 mmol) of Compound 22 was dissolved in 5 mL of toluene and dropped, and then reacted for 14 hours while raising the temperature to room temperature. The reaction solution was concentrated to about 3 mL under reduced pressure, and 10 mL of hexane was added for precipitation. The precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.660 g of Compound 23 (yield 95%, orange solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.15(d,1H,J=3.5Hz,N=CH),7.63(d,1H,J=1.9Hz,Ar−H),7.41−7.06(m,6H,Ar−H),6.90(s,1H,Ar−H),5.47−5.40(m,1H,OCH2),4.89−4.82(m,1H,OCH2),2.43(s,3H,CH3),2.27−2.16(m,9H,adamantyl),1.93(d,3H,J=12Hz,adamantyl),1.79(d,3H,J=12Hz,adamantyl),1.28(s,9H,C(CH33),1.02(t,3H,J=7.0Hz,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.15 (d, 1H, J = 3.5 Hz, N = CH), 7.63 (d, 1H, J = 1.9 Hz, Ar—H), 7. 41-7.06 (m, 6H, Ar- H), 6.90 (s, 1H, Ar-H), 5.47-5.40 (m, 1H, OCH 2), 4.89-4. 82 (m, 1H, OCH 2 ), 2.43 (s, 3H, CH 3), 2.27-2.16 (m, 9H, adamantyl), 1.93 (d, 3H, J = 12Hz, adamantyl ), 1.79 (d, 3H, J = 12 Hz, adamantyl), 1.28 (s, 9H, C (CH 3 ) 3 ), 1.02 (t, 3H, J = 7.0 Hz, CH 3 )

[合成例8]
(化合物26の合成)
[Synthesis Example 8]
(Synthesis of Compound 26)

Figure 2011195584
充分に乾燥した200mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2‐ethoxyphenylboronic acidを1.83g(11.0mmol)、2−bromo−4,6−difluoroanilineを2.08g(10mmol)、酢酸パラジウムを0.011g(0.05mmol)、2‐Dicyclohexylphosphino‐2’,6’‐dimethoxybiphenylを0.041g(0.1mmol)、リン酸カリウム一水和物6.9g(30mmol)加え、トルエン20mLに縣濁させ、100℃で3時間反応させた。この反応液に水50mLを加え、トルエンで抽出後、有機層をMgSO4で乾燥させ、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=92/8)を用いて精製することにより化合物24を1.54g(62%、白色固体)を得た。
Figure 2011195584
In a well-dried 200 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer), 1.83 g (11.0 mmol) of 2-ethoxyphenylboronic acid and 2.08 g (10 mmol) of 2-bromo-4,6-difluoroaniline ), 0.011 g (0.05 mmol) of palladium acetate, 0.041 g (0.1 mmol) of 2-Dicyclohexylphosphino-2 ′, 6′-dimethylbiphenyl, 6.9 g (30 mmol) of potassium phosphate monohydrate, Suspended in 20 mL of toluene and reacted at 100 ° C. for 3 hours. 50 mL of water was added to the reaction solution, extracted with toluene, the organic layer was dried over MgSO 4 , and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 92/8) to obtain 1.54 g (62%, white solid) of Compound 24.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.38−7.33(m,1H,Ar−H),7.25−7.22(m,1H,Ar−H),7.06−6.98(m,2H,Ar−H),6.83−6.67(m,2H,Ar−H),4.06,(q,2H,J=6.9Hz,OCH2),3.67(br,2H,NH2),1.31(t,3H,J=6.9Hz,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.38-7.33 (m, 1H, Ar—H), 7.25-7.22 (m, 1H, Ar—H), 7.06-6. 98 (m, 2H, Ar- H), 6.83-6.67 (m, 2H, Ar-H), 4.06, (q, 2H, J = 6.9Hz, OCH 2), 3.67 (Br, 2H, NH 2 ), 1.31 (t, 3H, J = 6.9 Hz, CH 3 )

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物24を0.654g(2.63mmol)、3‐adamantyl‐5‐tert−butyl‐2‐hydroxybenzaldehydeを0.781g(2.5mmol)、アンバーリスト15を78mg加えトルエン40mL加えた後、還流下で6時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物25を0.991g(収率 73%、黄色固体)得た。
Figure 2011195584
In a well-dried 100 mL eggplant flask (three-way cock, Dean Stark tube, with Dimroth, with magnetic stirrer), compound 54 (0.654 g, 2.63 mmol), 3-adamantyl-5-tert-but-2-hydroxy-2-aldehyde 0.781 g (2.5 mmol), Amberlyst 15 78 mg and toluene 40 mL were added, followed by reaction under reflux for 6 hours. After removing insoluble matter from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 0.991 g of Compound 25 (yield 73%, yellow solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.2(s,1H,OH),8.52(d,J=2.7Hz,1H,N=CH),7.33−7.26(m,2H,Ar−H),7.18−7.14(m,1H,Ar−H),7.00−6.85(m,5H,Ar−H),3.96(q,2H,J=6.9Hz,OCH2),2.10(s,9H,adamantyl),1.78(s,6H,adamantyl),1.27(s,9H,C(CH33),1.26(t,3H,J=6.9Hz,CH3)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.2 (s, 1H, OH), 8.52 (d, J = 2.7 Hz, 1H, N = CH), 7.33-7.26 (m, 2H, Ar-H), 7.18-7.14 (m, 1H, Ar-H), 7.00-6.85 (m, 5H, Ar-H), 3.96 (q, 2H, J = 6.9 Hz, OCH 2 ), 2.10 (s, 9 H, adamantyl), 1.78 (s, 6 H, adamantyl), 1.27 (s, 9 H, C (CH 3 ) 3 ), 1.26 (T, 3H, J = 6.9 Hz, CH 3 )

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)にTiCl4のトルエン溶液(1.0mmol/mL)を1.1mL(1.1mmol)、トルエン20mLを加え−78℃にドライアイス−メタノールバスにて冷却した。この混合液に化合物25を0.544g(1.0mmol)トルエン5mLに溶かし滴下した後、室温まで昇温させつつ17時間反応させた。この反応液を減圧下で約3mLまで濃縮した後に、ヘキサン10mLを加え析出させた。析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物26を0.540g(収率 77%、赤紫色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), add 1.1 mL (1.1 mmol) of a toluene solution of TiCl 4 (1.0 mmol / mL) and 20 mL of toluene to a dry ice-methanol bath at −78 ° C. And cooled. Compound 25 was dissolved in 0.544 g (1.0 mmol) of toluene in this mixed solution and dropped, and then reacted for 17 hours while raising the temperature to room temperature. The reaction solution was concentrated to about 3 mL under reduced pressure, and 10 mL of hexane was added for precipitation. The precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.540 g (yield 77%, reddish purple solid) of Compound 26.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.15(d,1H,J=3.0Hz,N=CH),7.65(d,1H,J=2.2Hz,Ar−H),7.43−7.26(m,5H,Ar−H),7.06−6.99(m,1H,Ar−H),6.87(d,1H,J=8.4Hz,Ar−H),5.49−5.42(m,1H,OCH2),4.88−4.81(m,1H,OCH2),2.27(bs,6H,adamantyl),2.21(bs,3H,adamantyl),1.93(d,3H,J=12Hz,adamantyl),1.79(d,3H,J=12Hz,adamantyl),1.28(s,9H,C(CH33),1.04(t,3H,J=7.0Hz,CH3)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.15 (d, 1H, J = 3.0 Hz, N = CH), 7.65 (d, 1H, J = 2.2 Hz, Ar—H), 7. 43-7.26 (m, 5H, Ar-H), 7.06-6.99 (m, 1H, Ar-H), 6.87 (d, 1H, J = 8.4 Hz, Ar-H) , 5.49-5.42 (m, 1H, OCH 2), 4.88-4.81 (m, 1H, OCH 2), 2.27 (bs, 6H, adamantyl), 2.21 (bs, 3H, adamantyl), 1.93 (d, 3H, J = 12 Hz, adamantyl), 1.79 (d, 3H, J = 12 Hz, adamantyl), 1.28 (s, 9H, C (CH 3 ) 3 ) , 1.04 (t, 3H, J = 7.0 Hz, CH 3 )

[合成例9]
(化合物29の合成)
[Synthesis Example 9]
(Synthesis of Compound 29)

Figure 2011195584
充分に乾燥した50mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2−Ethoxyphenylboronic acid(東京化成工業株式会社製)を0.50g(3.0mmol)、2−Chloro−4−fluoroaniline(和光純薬工業株式会社製)を0.34mL(2.9mmol)、1,3−bis−(2,6−diisopropylphenyl)imidazolium−(allyl)−palladium(II)−chloride(シグマ アルドリッチ ジャパン 株式会社製)を0.008g(0.028mmol)、水酸化バリウム八水和物(和光純薬工業株式会社製)0.99g(3.1mmol)加え、イソプロピルアルコール(関東化学株式会社製)20mLに溶解させ、80℃で6時間反応させた。反応後固体残さをろ過によって取り除き、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=9/1)を用いて精製することにより化合物27を0.66g(100%、淡褐色液体)得た。
Figure 2011195584
To a well-dried 50 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer), 0.50 g (3.0 mmol) of 2-Ethoxyphenylboronic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 2-Chloro-4-fluorineline 0.34 mL (2.9 mmol) (manufactured by Wako Pure Chemical Industries, Ltd.), 1,3-bis- (2,6-diisopropylphenyl) imidazolium- (allyl) -palladium (II) -chloride (Sigma Aldrich Japan Co., Ltd.) 0.008 g (0.028 mmol), barium hydroxide octahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.99 g (3.1 mmol), and dissolved in 20 mL of isopropyl alcohol (manufactured by Kanto Chemical Co., Inc.) And allowed to react at 80 ° C. for 6 hours. After the reaction, the solid residue was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 9/1) to obtain 0.66 g (100%, light brown liquid) of Compound 27.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.37−7.30(m,1H,Ar−H),7.26−7.23(m,1H,Ar−H),7.06−6.98(m,2H,Ar−H),6.91−6.83(m,2H,Ar−H),6.72−6.66(m,1H,Ar−H),4.06(q,2H,J=6.9Hz,OCH2),3.62(bs,2H,NH2),1.31(t,3H,J=6.9Hz,OCH2CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.37-7.30 (m, 1H, Ar—H), 7.26-7.23 (m, 1H, Ar—H), 7.06-6. 98 (m, 2H, Ar-H), 6.91-6.83 (m, 2H, Ar-H), 6.72-6.66 (m, 1H, Ar-H), 4.06 (q , 2H, J = 6.9 Hz, OCH 2 ), 3.62 (bs, 2H, NH 2 ), 1.31 (t, 3H, J = 6.9 Hz, OCH 2 CH 3 )

Figure 2011195584
充分に乾燥した50mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物27を0.63g(2.9mmol)、3‐adamantyl‐5−tert−butyl−2‐hydroxybenzaldehydeを0.82g(2.6mmol)、アンバーリスト15(H)を200mg、トルエン20mLを加えた後、還流下で20時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、メタノールから再結晶することにより化合物28を0.94g(収率 68%、黄色固体)得た。
Figure 2011195584
In a well-dried 50 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 0.63 g (2.9 mmol) of compound 27, 3-adamantyl-5-tert-butyl-2-hydroxybenzaldehyde 0.82 g (2.6 mmol), 200 mg of Amberlyst 15 (H) and 20 mL of toluene were added, followed by reaction for 20 hours under reflux. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from methanol gave 0.94 g of Compound 28 (yield 68%, yellow solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.4(s,1H,OH),8.47(s,1H,N=CH),7.34−7.27(m,2H,Ar−H),7.19−7.05(m,5H,Ar−H),6.99−6.90(m,2H,Ar−H),4.01(q,2H,J=6.9Hz,OCH2),2.10(s,6H,adamantyl),2.06(s,3H,adamantyl),1.77(s,6H,adamantyl),1.29(s,9H,tert−Butyl),1.24(t,3H,J=6.9Hz,OCH2CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.4 (s, 1H, OH), 8.47 (s, 1H, N═CH), 7.34-7.27 (m, 2H, Ar—H) 7.19-7.05 (m, 5H, Ar-H), 699-6.90 (m, 2H, Ar-H), 4.01 (q, 2H, J = 6.9 Hz, OCH) 2 ), 2.10 (s, 6H, adamantyl), 2.06 (s, 3H, adamantyl), 1.77 (s, 6H, adamantyl), 1.29 (s, 9H, tert-Butyl), 1 .24 (t, 3H, J = 6.9 Hz, OCH 2 CH 3 )

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)に四塩化チタンの1.0Mトルエン溶液を1.0mL(1.0mmol)、トルエン5mLを加え、ドライアイス−アセトンバスで−78℃に冷却した。これに、化合物28を0.439g(0.84mmol)をトルエン10mLに溶かして滴下した後、室温まで昇温させつつ16時間反応させた。この反応液を減圧下で約0.8mLまで濃縮した後、ヘキサン10mLを加え析出させ、析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物29を0.393g(収率 68%、赤褐色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), 1.0 mL (1.0 mmol) of 1.0 M toluene solution of titanium tetrachloride and 5 mL of toluene were added, and cooled to -78 ° C with a dry ice-acetone bath. . To this, 0.439 g (0.84 mmol) of Compound 28 was dissolved in 10 mL of toluene and dropped, and then reacted for 16 hours while raising the temperature to room temperature. After concentrating the reaction solution to about 0.8 mL under reduced pressure, 10 mL of hexane was added for precipitation, and the precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.393 g (yield). 68%, reddish brown solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.15(s,1H,HC=N),7.63(d,1H,J=2.7Hz,Ar−H),7.45−7.43(m,2H,Ar−H),7.33−7.28(m,3H,Ar−H),7.19−6.98(m,3H,Ar−H),5.54−5.41(m,1H、OCH2),4.89−4.77(m,1H、OCH2),2.27−2.16(m,9H,Adamantyl),1.95−1.77(m,6H,Adamantyl),1.28(s,9H,tert−Butyl),1.00(t,3H,J=6.9Hz,OCH2CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.15 (s, 1H, HC = N), 7.63 (d, 1H, J = 2.7 Hz, Ar—H), 7.45-7.43 ( m, 2H, Ar-H), 7.33-7.28 (m, 3H, Ar-H), 7.19-6.98 (m, 3H, Ar-H), 5.54-5.41. (m, 1H, OCH 2) , 4.89-4.77 (m, 1H, OCH 2), 2.27-2.16 (m, 9H, adamantyl), 1.95-1.77 (m, 6H, Adamantyl), 1.28 (s, 9H, tert-Butyl), 1.00 (t, 3H, J = 6.9 Hz, OCH 2 CH 3 )

[合成例10]
(化合物32の合成)
[Synthesis Example 10]
(Synthesis of Compound 32)

Figure 2011195584
充分に乾燥した100mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2−(4,4,5,5−tetramethyl−1,3,2−dioxaborolan−2−yl)aniline(東京化成工業株式会社製)を2.41g(11mmol)、2−chloro−6−fluoroanisoleを1.61g(10mmol)、1,3−bis−(2,6−diisopropylphenyl)imidazolium−(allyl)−palladium(II)−chloride(シグマ アルドリッチ ジャパン 株式会社製)を0.029g(0.05mmol)、水酸化バリウム八水和物(和光純薬工業株式会社製)4.73g(15mmol)加え、イソプロピルアルコール50mLに溶解させ、80℃で6時間反応させた。反応後固体残さをろ過によって取り除き、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=9/1)を用いて精製することにより化合物30を1.37g(63%、白色固体)得た。
Figure 2011195584
2- (4,4,5,5-tetramethyl-1,3,2-dioxabolan-2-yl) aniline (Tokyo Kasei) in a well-dried 100 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer) Kogyo Co., Ltd.) 2.41 g (11 mmol), 2-chloro-6-fluoroanisole 1.61 g (10 mmol), 1,3-bis- (2,6-diisopropylphenyl) imidazolium- (allyl) -palladium (II) ) -Chloride (Sigma Aldrich Japan Co., Ltd.) 0.029 g (0.05 mmol), Barium hydroxide octahydrate (Wako Pure Chemical Industries, Ltd.) 4.73 g (15 mmol) was added and dissolved in 50 mL of isopropyl alcohol. The And reacted for 6 hours at 80 ° C.. After the reaction, the solid residue was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 9/1) to obtain 1.37 g (63%, white solid) of Compound 30.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.25−7.02(m,5H,Ar−H),6.85−6.76(m,2H,Ar−H),3.74(br,2H,NH2),3.71(d,3H,J=1.4Hz,OCH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.25-7.02 (m, 5H, Ar—H), 6.85-6.76 (m, 2H, Ar—H), 3.74 (br, 2H, NH 2 ), 3.71 (d, 3H, J = 1.4 Hz, OCH 3 )

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物30を0.912g(4.2mmol)、3‐adamantyl‐5‐methyl‐2‐hydroxybenzaldehydeを1.08g(4.0mmol)、アンバーリスト15を108mg加えトルエン40mL加えた後、還流下で6時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物31を1.52g(81%、黄色固体)を得た。
Figure 2011195584
In a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 0.912 g (4.2 mmol) of compound 30 and 3-adamantyl-5-methyl-2-hydroxybenzaldehyde 1 0.08 g (4.0 mmol) and 108 mg of Amberlyst 15 were added, and 40 mL of toluene was added, followed by 6 hours of reaction under reflux. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 1.52 g (81%, yellow solid) of Compound 31.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.2(s,1H,OH),8.53(s,1H,N=CH),7.48−7.26(m,4H,Ar−H),7.13−6.95(m,5H,Ar−H),3.69(d,3H,J=2.2Hz,OCH3),2.27(s,3H,CH3),2.07(s,9H,adamantyl),1.76(s,6H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.2 (s, 1H, OH), 8.53 (s, 1H, N═CH), 7.48-7.26 (m, 4H, Ar—H) , 7.13-6.95 (m, 5H, Ar -H), 3.69 (d, 3H, J = 2.2Hz, OCH 3), 2.27 (s, 3H, CH 3), 2. 07 (s, 9H, adamantyl), 1.76 (s, 6H, adamantyl)

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)にTiCl4のトルエン溶液(1.0mmol/mL)を1.65mL(1.65mmol)、トルエン20mLを加え−78℃にドライアイス−メタノールバスにて冷却した。この混合液に化合物31を0.690g(1.5mmol)をトルエン5mLに溶かし滴下した後、室温まで昇温させつつ19時間反応させた。この反応液を減圧下で約3mLまで濃縮した後に、ヘキサン10mLを加え析出させた。析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物32を0.766g(収率 82%、赤紫色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), add 1.65 mL (1.65 mmol) of a TiCl 4 toluene solution (1.0 mmol / mL) and 20 mL of toluene to a dry ice-methanol bath at −78 ° C. And cooled. In this mixed solution, 0.690 g (1.5 mmol) of Compound 31 was dissolved in 5 mL of toluene and dropped, and then reacted for 19 hours while raising the temperature to room temperature. The reaction solution was concentrated to about 3 mL under reduced pressure, and 10 mL of hexane was added for precipitation. The precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.766 g of Compound 32 (yield 82%, red purple solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.13(s,1H,N=CH),7.54−7.44(m,2H,Ar−H),7.39(d,1H,J=1.9Hz,Ar−H),7.34−7.28(m,2H,Ar−H),7.20−7.04(m,4H,Ar−H),4.45(s,3H,OCH3),2.33(s,3H,CH3),2.26−2.19(m,9H,adamantyl),2.14(s,6H,adamantyl),1.92(d,3H,J=12Hz,adamantyl),1.78(d,3H,J=12Hz,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.13 (s, 1H, N═CH), 7.54-7.44 (m, 2H, Ar—H), 7.39 (d, 1H, J = 1.9 Hz, Ar-H), 7.34-7.28 (m, 2H, Ar-H), 7.20-7.04 (m, 4H, Ar-H), 4.45 (s, 3H) , OCH 3 ), 2.33 (s, 3H, CH 3 ), 2.6-2.19 (m, 9H, adamantyl), 2.14 (s, 6H, adamantyl), 1.92 (d, 3H , J = 12 Hz, adamantyl), 1.78 (d, 3H, J = 12 Hz, adamantyl)

[合成例11]
(化合物36の合成)
[Synthesis Example 11]
(Synthesis of Compound 36)

Figure 2011195584
充分に乾燥した300mL三口ナスフラスコ(滴下ロート、三方コック付、磁気攪拌子入り)に4−methoxybiphenyl(東京化成工業株式会社製)を9.21g(50.0mmol)、ヘキサン60mLを加え、氷浴にて0℃まで冷却した後、N,N,N’,N’−テトラメチルエチレンジアミン(東京化成工業株式会社製)7.9mL(52.5mmol)を加え、ノルマルブチルリチウムのヘキサン溶液(1.6mol/L)32.8mL(52.5mmol)を滴下した後、16時間反応させた。500mL三口ナスフラスコ(三方コック付、磁気攪拌子入り)にヘキサン60mL、ホウ酸トリメチル(シグマ アルドリッチ ジャパン 株式会社製)16.8mL(150mmol)を加えた後、−78℃に冷却した後に、先ほど調製した反応液を滴下し、そのまま室温まで昇温させつつ3時間反応させた。この反応液に飽和塩化アンモニウム水溶液50mLを加えた後、酢酸エチル50mL×3で抽出後、有機層を純水50mL×2で洗浄し、MgSO4で乾燥させ、溶媒を減圧下で留去することにより、粗生成物を得た。得られた粗生成物をヘキサンから再沈殿することにより、化合物33を6.67g(60%、白色固体)得た。
Figure 2011195584
9.21 g (50.0 mmol) of 4-methoxybiphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.) and 60 mL of hexane are added to a well-dried 300 mL three-necked eggplant flask (with a dropping funnel, with a three-way cock, and a magnetic stirrer), and an ice bath is added. After cooling to 0 ° C., 7.9 mL (52.5 mmol) of N, N, N ′, N′-tetramethylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and a hexane solution of normal butyl lithium (1. (6 mol / L) 32.8 mL (52.5 mmol) was added dropwise, followed by reaction for 16 hours. After adding 60 mL of hexane and 16.8 mL (150 mmol) of trimethyl borate (manufactured by Sigma Aldrich Japan Co., Ltd.) to a 500 mL three-necked eggplant flask (with a three-way cock, with a magnetic stirrer), the mixture was cooled to -78 ° C. and then prepared earlier. The reaction solution was added dropwise and allowed to react for 3 hours while raising the temperature to room temperature. After adding 50 mL of saturated aqueous ammonium chloride solution to this reaction solution, and extracting with 50 mL × 3 ethyl acetate, the organic layer is washed with 50 mL × 2 pure water, dried over MgSO 4 , and the solvent is distilled off under reduced pressure. Gave a crude product. The obtained crude product was reprecipitated from hexane to obtain 6.67 g (60%, white solid) of Compound 33.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.10(d,J=2.6Hz,1H,Ar−H),7.68(dd,J=8.6Hz,2.6Hz,1H,Ar−H),7.59(m,2H,Ar−H),7.42(m,2H,Ar−H),7.31(m,1H,Ar−H),7.00(d,J=8.6Hz,1H,Ar−H),6.05(s,2H,B(OH)2),3.96(s,3H,OCH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.10 (d, J = 2.6 Hz, 1H, Ar—H), 7.68 (dd, J = 8.6 Hz, 2.6 Hz, 1H, Ar—H) ), 7.59 (m, 2H, Ar-H), 7.42 (m, 2H, Ar-H), 7.31 (m, 1H, Ar-H), 7.00 (d, J = 8) .6 Hz, 1 H, Ar—H), 6.05 (s, 2 H, B (OH) 2 ), 3.96 (s, 3 H, OCH 3 )

Figure 2011195584
充分に乾燥した100mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に化合物33を1.0g(4.4mmol)、2−bromo−4,6−difluoroaniline(東京化成工業株式会社製)を0.91g(4.4mmol)、1,3−bis−(2,6−diisopropylphenyl)imidazolium−(allyl)−palladium(II)−chloride(シグマ アルドリッチ ジャパン 株式会社製)を0.013g(0.022mmol)、水酸化バリウム八水和物(和光純薬工業株式会社製)1.5g(4.6mmol)加え、イソプロピルアルコール(関東化学株式会社製)30mLに溶解させ、80℃で3時間反応させた。反応後固体残さをろ過によって取り除き、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=10/1)を用いて精製することにより化合物34を1.16g(89%、淡褐色液体)得た。
Figure 2011195584
In a well-dried 100 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer), 1.0 g (4.4 mmol) of compound 33, 2-bromo-4,6-difluoroaniline (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.91 g (4.4 mmol), 1,3-bis- (2,6-diisopropylphenyl) imidazolium- (allyl) -paladium (II) -chloride (manufactured by Sigma Aldrich Japan Co., Ltd.) 0.013 g (0. 022 mmol), 1.5 g (4.6 mmol) of barium hydroxide octahydrate (manufactured by Wako Pure Chemical Industries, Ltd.), dissolved in 30 mL of isopropyl alcohol (manufactured by Kanto Chemical Co., Ltd.), and reacted at 80 ° C. for 3 hours. It was. After the reaction, the solid residue was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 10/1) to obtain 1.16 g (89%, light brown liquid) of Compound 34.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.64−7.28(m,7H,Ar−H),7.08(d、J=8.6Hz,1H,Ar−H),6.86−6.72(m,2H,Ar−H),3.87(s,3H,OCH3),3.66(bs,2H,NH2
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.64-7.28 (m, 7H, Ar—H), 7.08 (d, J = 8.6 Hz, 1H, Ar—H), 6.86— 6.72 (m, 2H, Ar- H), 3.87 (s, 3H, OCH 3), 3.66 (bs, 2H, NH 2)

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物34を0.70g(2.2mmol)、3‐adamantyl‐2‐hydroxy‐5‐phenylbenzaldehyde0.746g(2.2mmol)、アンバーリスト15(H)を321mg、トルエン30mLを加えた後、還流下で3時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物35を1.34g(収率 55%、黄色固体)得た。
Figure 2011195584
In a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 0.70 g (2.2 mmol) of compound 34, 3-adamantyl-2-hydroxy-5-phenylbenzaldehyde 0.746 g (2.2 mmol) and 321 mg of Amberlyst 15 (H) and 30 mL of toluene were added, and the mixture was reacted for 3 hours under reflux. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 1.34 g (yield 55%, yellow solid) of Compound 35.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.8(s,1H,OH),8.62(s,1H,N=CH),7.61−7.27(m,16H,Ar−H),7.03(d,J=8.2Hz,1H,Ar−H),3.81(s,3H,OCH3),2.15−2.05(m,9H,adamantyl),1.76(s,6H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.8 (s, 1H, OH), 8.62 (s, 1H, N═CH), 7.61-7.27 (m, 16H, Ar—H) 7.03 (d, J = 8.2 Hz, 1H, Ar—H), 3.81 (s, 3H, OCH 3 ), 2.15 to 2.05 (m, 9H, adamantyl), 1.76. (S, 6H, adamantyl)

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)に四塩化チタンの1.0Mトルエン溶液を0.4mL(0.4mmol)、ヘキサンを20mL加え、ドライアイス−アセトンバスで−78℃に冷却した。これに、化合物35を0.275g(0.44mmol)をトルエン1mL/ヘキサン15mLに溶かしたものを滴下した後、室温まで昇温させつつ2時間反応させた。析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物36を0.260g(収率 82%、赤褐色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), 0.4 mL (0.4 mmol) of a 1.0 M toluene solution of titanium tetrachloride and 20 mL of hexane were added, and cooled to −78 ° C. with a dry ice-acetone bath. . A solution prepared by dissolving 0.275 g (0.44 mmol) of Compound 35 in 1 mL of toluene / 15 mL of hexane was added dropwise thereto, and then reacted for 2 hours while raising the temperature to room temperature. The precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.260 g (yield 82%, reddish brown solid) of Compound 36.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.25(d,J=2.6Hz,1H,HC=N),7.83(d,J=2.3Hz,1H,Ar−H),7.65−6.99(m,16H,Ar−H),4.48(s,3H,OCH3),2.28(m,6H,adamantyl),2.91(m,3H,adamantyl),1.96(d,J=12.5Hz,3H,adamantyl),1.82(d,J=12.5Hz,3H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.25 (d, J = 2.6 Hz, 1H, HC = N), 7.83 (d, J = 2.3 Hz, 1H, Ar—H), 7. 65-6.99 (m, 16H, Ar-H), 4.48 (s, 3H, OCH 3 ), 2.28 (m, 6H, adamantyl), 2.91 (m, 3H, adamantyl), 1 .96 (d, J = 12.5 Hz, 3H, adamantyl), 1.82 (d, J = 12.5 Hz, 3H, adamantyl)

[合成例12]
(化合物41の合成)
[Synthesis Example 12]
(Synthesis of Compound 41)

Figure 2011195584
充分に乾燥した200mL二口ナスフラスコ(三方コック付、磁気攪拌子入り)に4−cumylphenol(和光純薬工業株式会社製)を5.0g(23.5mmol)、炭酸カリウムを4.9g(35.3mmol)加え、アセトン80mLに溶解させた。溶液を45℃に昇温した後、ヨウ化メチル(和光純薬工業株式会社製)2.19mL(35.3mmol)をゆっくり滴下したのち、45℃に保って3時間反応させた。反応終了後、反応液から不溶分をろ別し、飽和塩化アンモニウム水溶液を加えて酢酸エチルで抽出し、有機層を水で洗浄、無水硫酸ナトリウムで乾燥した。溶媒を減圧下で留去、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製することにより、化合物37を3.88g(73%、無色液体)得た。
Figure 2011195584
In a well-dried 200 mL two-necked eggplant flask (with a three-way cock, with a magnetic stirrer), 5.0 g (23.5 mmol) of 4-cumylphenol (manufactured by Wako Pure Chemical Industries, Ltd.) and 4.9 g of potassium carbonate (35 .3 mmol) and dissolved in 80 mL of acetone. After the temperature of the solution was raised to 45 ° C., 2.19 mL (35.3 mmol) of methyl iodide (manufactured by Wako Pure Chemical Industries, Ltd.) was slowly added dropwise, and the reaction was carried out for 3 hours while maintaining the temperature at 45 ° C. After completion of the reaction, insoluble matter was filtered off from the reaction solution, a saturated aqueous ammonium chloride solution was added, and the mixture was extracted with ethyl acetate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by silica gel column chromatography (developing solvent: hexane) to obtain 3.88 g (73%, colorless liquid) of Compound 37.

得られた生成物を分析した結果は以下の通りであった。
1H NMR(δ,CDCl3):7.29−7.12(m,7H,Ar−H),6.80(d,J=8.9Hz,2H,Ar−H),3.78(s,3H,OCH3),1.66(s,6H,cumyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.29-7.12 (m, 7H, Ar—H), 6.80 (d, J = 8.9 Hz, 2H, Ar—H), 3.78 ( s, 3H, OCH 3 ), 1.66 (s, 6H, cumyl)

Figure 2011195584
充分に乾燥した300mL三口ナスフラスコ(滴下ロート、三方コック付、磁気攪拌子入り)に化合物37を2.6g(11.5mmol)、ヘキサン30mLを加え、氷浴にて0℃まで冷却した後、N,N,N’,N’−テトラメチルエチレンジアミン(東京化成工業株式会社製)1.82mL(12.1mmol)を加え、ノルマルブチルリチウムのヘキサン溶液(1.6mol/L)7.55mL(12.1mmol)を滴下した後、16時間反応させた。500mL三口ナスフラスコ(三方コック付、磁気攪拌子入り)にヘキサン40mL、ホウ酸トリメチル(シグマ アルドリッチ ジャパン 株式会社製)3.85mL(34.5mmol)を加えた後、−78℃に冷却した後に、先ほど調製した反応液を滴下し、そのまま室温まで昇温させつつ3時間反応させた。この反応液に飽和塩化アンモニウム水溶液50mLを加えた後、酢酸エチル50mL×3で抽出後、有機層を純水50mL×2で洗浄し、MgSO4で乾燥させ、溶媒を減圧下で留去することにより、粗生成物を得た。得られた粗生成物をヘキサンから再沈殿することにより、化合物38を2.2g(71%、白色固体)得た。
Figure 2011195584
2.6 g (11.5 mmol) of Compound 37 and 30 mL of hexane were added to a well-dried 300 mL three-necked eggplant flask (with a dropping funnel, with a three-way cock, and a magnetic stirrer), and cooled to 0 ° C. in an ice bath. N, N, N ′, N′-tetramethylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) 1.82 mL (12.1 mmol) was added, and hexane solution of normal butyl lithium (1.6 mol / L) 7.55 mL (12 0.1 mmol) was added dropwise, followed by reaction for 16 hours. After adding 40 mL of hexane and 3.85 mL (34.5 mmol) of trimethyl borate (manufactured by Sigma Aldrich Japan Co., Ltd.) to a 500 mL three-necked eggplant flask (with a three-way cock, containing a magnetic stirrer), the mixture was cooled to −78 ° C. The reaction solution prepared earlier was added dropwise and reacted for 3 hours while raising the temperature to room temperature. After adding 50 mL of saturated aqueous ammonium chloride solution to this reaction solution, and extracting with 50 mL × 3 ethyl acetate, the organic layer is washed with 50 mL × 2 pure water, dried over MgSO 4 , and the solvent is distilled off under reduced pressure. Gave a crude product. The obtained crude product was reprecipitated from hexane to obtain 2.2 g (71%, white solid) of Compound 38.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.80(d,2.6Hz,1H,Ar−H),7.29−7.13(m,6H,Ar−H),6.81(d,J=8.6Hz,1H,Ar−H),5.95(s,2H,B(OH)2),3.88(s,3H,OCH3),1.69(s,6H,cumyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.80 (d, 2.6 Hz, 1H, Ar—H), 7.29-7.13 (m, 6H, Ar—H), 6.81 (d, J = 8.6 Hz, 1H, Ar—H), 5.95 (s, 2H, B (OH) 2 ), 3.88 (s, 3H, OCH 3 ), 1.69 (s, 6H, cumyl)

Figure 2011195584
充分に乾燥した100mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に化合物38を1.0g(3.7mmol)、2−bromo−4,6−difluoroaniline(東京化成工業株式会社製)を0.77g(3.9mmol)、1,3−bis−(2,6−diisopropylphenyl)imidazolium−(allyl)−palladium(II)−chloride(シグマ アルドリッチ ジャパン 株式会社製)を0.011g(0.019mmol)、水酸化バリウム八水和物(和光純薬工業株式会社製)1.2g(3.9mmol)加え、イソプロピルアルコール(関東化学株式会社製)30mLに溶解させ、80℃で3時間反応させた。反応後固体残さをろ過によって取り除き、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=10/1)を用いて精製することにより化合物39を0.68g(54%、淡褐色液体)得た。
Figure 2011195584
1.0 g (3.7 mmol) of compound 38, 2-bromo-4,6-difluoroaniline (manufactured by Tokyo Chemical Industry Co., Ltd.) in a well-dried 100 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer) 0.77 g (3.9 mmol), 1,3-bis- (2,6-diisopropylphenyl) imidazolium- (allyl) -palladium (II) -chloride (manufactured by Sigma Aldrich Japan Co., Ltd.) 019 mmol), 1.2 g (3.9 mmol) of barium hydroxide octahydrate (manufactured by Wako Pure Chemical Industries, Ltd.), dissolved in 30 mL of isopropyl alcohol (manufactured by Kanto Chemical Co., Ltd.), and reacted at 80 ° C. for 3 hours. It was. After the reaction, the solid residue was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 10/1) to obtain 0.68 g (54%, light brown liquid) of Compound 39.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.31−7.11(m,7H,Ar−H),6.90(d,J=8.9Hz,1H,Ar−H),6.77(m,1H,Ar−H),6.66(m,1H,Ar−H),3.80(s,3H,OCH3),3.60(bs,2H,NH2),1.68(s,6H,cumyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.31-7.11 (m, 7H, Ar—H), 6.90 (d, J = 8.9 Hz, 1H, Ar—H), 6.77 ( m, 1H, Ar-H) , 6.66 (m, 1H, Ar-H), 3.80 (s, 3H, OCH 3), 3.60 (bs, 2H, NH 2), 1.68 ( s, 6H, cumyl)

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物39を0.68g(1.9mmol)、3‐adamantyl‐2‐hydroxy‐5‐phenylbenzaldehyde0.63g(1.9mmol)、アンバーリスト15(H)を190mg、トルエン30mLを加えた後、還流下で3時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物40を0.533g(収率 44%、黄色固体)得た。
Figure 2011195584
0.68 g (1.9 mmol) of Compound 39 in a well-dried 100 mL eggplant flask (three-way cock, Dean Stark tube, with Dimroth, with magnetic stirrer), 0.63 g of 3-adamantyl-2-hydroxy-5-phenylbenzaldehyde (1.9 mmol), 190 mg of Amberlyst 15 (H) and 30 mL of toluene were added, and the mixture was reacted under reflux for 3 hours. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 0.533 g (yield 44%, yellow solid) of Compound 40.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.3(s,1H,OH),8.54(d,J=2.0Hz,1H,N=CH),7.55−7.30(m,6H),7.20−7.04(m,8H,Ar−H),6.90(d,J=8.6Hz,2H,Ar−H),6.81(d,J=8.6Hz,1H,Ar−H),3.69(s,3H,OCH3),2.17(s,6H,adamantyl),2.08(s,3H,adamantyl),1.78(s,6H,adamantyl),1.64(s,6H,cumyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.3 (s, 1H, OH), 8.54 (d, J = 2.0 Hz, 1H, N = CH), 7.55-7.30 (m, 6H), 7.20-7.04 (m, 8H, Ar-H), 6.90 (d, J = 8.6 Hz, 2H, Ar-H), 6.81 (d, J = 8.6 Hz). , 1H, Ar-H), 3.69 (s, 3H, OCH 3), 2.17 (s, 6H, adamantyl), 2.08 (s, 3H, adamantyl), 1.78 (s, 6H, adamantyl), 1.64 (s, 6H, cumyl)

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁n気攪拌子入り)に四塩化チタンの1.0Mトルエン溶液を0.35mL(0.35mmol)、ヘキサンを15mL加え、ドライアイス−アセトンバスで−78℃に冷却した。これに、化合物40を0.257g(0.39mmol)をトルエン1mL/ヘキサン15mLに溶かしたものを滴下した後、室温まで昇温させつつ2時間反応させた。析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物41を0.215g(収率 74%、赤褐色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), add 0.35 mL (0.35 mmol) of 1.0 M toluene solution of titanium tetrachloride and 15 mL of hexane, and bring it to -78 ° C with a dry ice-acetone bath. Cooled down. A solution prepared by dissolving 0.257 g (0.39 mmol) of Compound 40 in 1 mL of toluene / 15 mL of hexane was added dropwise thereto, and then reacted for 2 hours while raising the temperature to room temperature. The precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.215 g of Compound 41 (yield 74%, reddish brown solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.16(d,J=2.3Hz,1H,HC=N),7.84(d,J=2.3Hz,1H,Ar−H),7.54−6.99(m,15H,Ar−H),6.86(d,J=8.6Hz,1H,Ar−H),4.39(s,3H,OCH3),2.27−2.12(m,9H,adamantyl),1.94(d,J=10.9Hz,3H,adamantyl),1.81(d,J=10.9Hz,3H,adamantyl),1.63(s,6H,cumyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.16 (d, J = 2.3 Hz, 1H, HC = N), 7.84 (d, J = 2.3 Hz, 1H, Ar—H), 7. 54-6.99 (m, 15H, Ar- H), 6.86 (d, J = 8.6Hz, 1H, Ar-H), 4.39 (s, 3H, OCH 3), 2.27- 2.12 (m, 9H, adamantyl), 1.94 (d, J = 10.9 Hz, 3H, adamantyl), 1.81 (d, J = 10.9 Hz, 3H, adamantyl), 1.63 (s , 6H, cumyl)

[合成例13]
(化合物47の合成)
[Synthesis Example 13]
(Synthesis of Compound 47)

Figure 2011195584
充分に乾燥した200mL四口ナスフラスコ(三方コック付、磁気攪拌子入り)に3,4−Dihyro−2H−pyran(和光純薬工業株式会社製)を5.19g(61.7mmol)加え、ジクロロメタン(関東化学株式会社製)48mLに溶解させた。0℃に冷却した後、塩化水素の2.0Mジエチルエーテル溶液(シグマ アルドリッチ ジャパン 株式会社製)0.16mL(0.32mmol)を加え、その後、4−Trifluoromethylphenol(シグマ アルドリッチ ジャパン 株式会社製)の4.00g(24.7mmol)をジクロロメタン24mLに溶解させ、滴下ロート経由で13分かけて加えた。室温で終夜攪拌した後、飽和重曹水を加えてジクロロメタンで抽出し、水、ついで飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥し、固体を濾過で取り除いて、溶媒を減圧下で留去することにより、化合物42を8.14g(100%、淡黄色液体)得た。
Figure 2011195584
5.19 g (61.7 mmol) of 3,4-Dihyro-2H-pyran (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a well-dried 200 mL four-necked eggplant flask (with a three-way cock, with a magnetic stirrer), and dichloromethane. It was dissolved in 48 mL (manufactured by Kanto Chemical Co., Inc.). After cooling to 0 ° C., 0.16 mL (0.32 mmol) of 2.0 M diethyl ether solution of hydrogen chloride (Sigma Aldrich Japan Co., Ltd.) was added, and then 4 of 4-Trifluoromethylphenol (manufactured by Sigma Aldrich Japan Co., Ltd.) was added. 0.000 g (24.7 mmol) was dissolved in 24 mL of dichloromethane and added via a dropping funnel over 13 minutes. After stirring overnight at room temperature, saturated aqueous sodium hydrogen carbonate was added, and the mixture was extracted with dichloromethane, washed with water and then with saturated brine. After drying over anhydrous sodium sulfate, the solid was removed by filtration, and the solvent was distilled off under reduced pressure to obtain 8.14 g (100%, pale yellow liquid) of Compound 42.

得られた生成物を分析した結果は以下の通りであった。
1H NMR(δ,CDCl3):7.53(d,2H,J=9.2Hz,Ar−H),7.11(d,2H,J=9.2Hz,Ar−H),5.48(t,1H,J=3.0Hz,OCHO),3.86(ddd,1H,J=11.2,9.7,3.0Hz,OCH2),3.62(dtd,1H,J=11.2,4.0,1.5Hz,OCH2),2.08−1.57(m,6H,CH2CH2CH2
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.53 (d, 2H, J = 9.2 Hz, Ar—H), 7.11 (d, 2H, J = 9.2 Hz, Ar—H), 5. 48 (t, 1H, J = 3.0 Hz, OCHO), 3.86 (ddd, 1H, J = 11.2, 9.7, 3.0 Hz, OCH 2 ), 3.62 (dtd, 1H, J = 11.2, 4.0, 1.5 Hz, OCH 2 ), 2.08-1.57 (m, 6H, CH 2 CH 2 CH 2 )

Figure 2011195584
充分に乾燥した200mL四口ナスフラスコ(三方コック付、磁気攪拌子入り)にn−ブチルリチウムの1.59Mヘキサン溶液(関東化学株式会社製)20mLを加え、−78℃に冷却した。化合物42の7.08g(21.6mmol)をテトラヒドロフラン50mLに溶解させて22分かけて滴下ロートから加えた。1時間同温度で攪拌した後、1,2−Dibromo−1,1,2,2−tetrafluoroethane(東京化成工業株式会社製)をテトラヒドロフラン25mLに溶解させて13分かけて滴下ロートから加えた。室温まで昇温して終夜攪拌した後、水を加えて酢酸エチルで抽出し、水、ついで飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥し、固体を濾過で取り除いて、溶媒を減圧下で留去することにより、化合物43を9.32g(96%、淡黄色液体)得た。
Figure 2011195584
20 mL of a 1.59M hexane solution (manufactured by Kanto Chemical Co., Inc.) of n-butyllithium was added to a well-dried 200 mL four-necked eggplant flask (with a three-way cock, with a magnetic stirrer), and cooled to -78 ° C. 7.08 g (21.6 mmol) of Compound 42 was dissolved in 50 mL of tetrahydrofuran and added through a dropping funnel over 22 minutes. After stirring at the same temperature for 1 hour, 1,2-Dibromo-1,1,2,2-tetrafluoroethane (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 25 mL of tetrahydrofuran and added from a dropping funnel over 13 minutes. After warming to room temperature and stirring overnight, water was added and the mixture was extracted with ethyl acetate, washed with water and then with saturated brine. The extract was dried over anhydrous sodium sulfate, the solid was removed by filtration, and the solvent was distilled off under reduced pressure to obtain 9.32 g (96%, pale yellow liquid) of Compound 43.

得られた生成物を分析した結果は以下の通りであった。
1H NMR(δ,CDCl3):7.80(d,1H,J=2.4Hz,Ar−H),7.50(dd,1H,J=8.3,2.4Hz,Ar−H),7.22(d,1H,J=8.3Hz,Ar−H),5.60(t,1H,J=2.7Hz,OCHO),3.82(td,1H,J=11.0,3.1Hz,OCH2),3.66−3.59(m,1H,OCH2),2.18−1.59(m,6H,CH2CH2CH2
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.80 (d, 1H, J = 2.4 Hz, Ar—H), 7.50 (dd, 1H, J = 8.3, 2.4 Hz, Ar—H ), 7.22 (d, 1H, J = 8.3 Hz, Ar-H), 5.60 (t, 1H, J = 2.7 Hz, OCHO), 3.82 (td, 1H, J = 1.11. 0, 3.1 Hz, OCH 2 ), 3.66-3.59 (m, 1H, OCH 2 ), 2.18-1.59 (m, 6H, CH 2 CH 2 CH 2 )

Figure 2011195584
充分に乾燥した500mL四口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)にTetrakis(triphenylphosphine)palladium(0)(東京化成工業株式会社製)を1.21g(1.05mmol)、化合物43を8.84g(20.9mmol)加え、テトラヒドロフラン133mLに溶解させた。次いで、1−Adamantylzinc bromideの0.5Mテトロヒドロフラン溶液(シグマ アルドリッチ ジャパン 株式会社製)を67mL加え、70℃で11時間反応させた。反応溶液を室温まで冷却した後、Tetrakis(triphenylphosphine)palladium(0)を1.21g(1.05mmol)追加し、70℃で14時間40分反応させた。0℃に冷却してから濃塩酸(関東化学株式会社製)33mLと水22mLを加えて室温で終夜攪拌し、溶媒を減圧下で留去した。残渣をジクロロメタンに溶解させた後、水と食塩水で洗浄し、無水硫酸ナトリウム(東京化成工業株式会社製)を加えて乾燥させた。固体を濾過で取り除いて、溶媒を減圧下で留去することにより粗生成物を得、これをシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=24/1)で精製することで、化合物44を2.95g(48%、淡黄色液体)得た。
Figure 2011195584
1.21 g (1.05 mmol) of Tetrakis (triphenylphosphine) palladium (0) (manufactured by Tokyo Chemical Industry Co., Ltd.) in a well-dried 500 mL four-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer), Compound 43 8.84 g (20.9 mmol) was added and dissolved in 133 mL of tetrahydrofuran. Subsequently, 67 mL of 0.5M tetrohydrofuran solution (manufactured by Sigma Aldrich Japan Co., Ltd.) of 1-Adamantylzinc bromide was added and reacted at 70 ° C. for 11 hours. After cooling the reaction solution to room temperature, 1.21 g (1.05 mmol) of Tetrakis (triphenylphosphine) palladium (0) was added and reacted at 70 ° C. for 14 hours and 40 minutes. After cooling to 0 ° C., 33 mL of concentrated hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) and 22 mL of water were added and stirred overnight at room temperature, and the solvent was distilled off under reduced pressure. The residue was dissolved in dichloromethane, washed with water and brine, and dried over anhydrous sodium sulfate (manufactured by Tokyo Chemical Industry Co., Ltd.). The solid was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product, which was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 24/1) to give compound 44. 2.95 g (48%, pale yellow liquid) was obtained.

得られた生成物を分析した結果は以下の通りであった。
1H NMR(δ,CDCl3):7.46(d,1H,J=2.1Hz,Ar−H),7.32(dd,1H,J=8.1,2.1Hz,Ar−H),6.70(d,1H,J=8.1Hz,Ar−H),5.18(s,1H,OH),2.12−2.09(m,9H,Adamantyl),1.79−1.78(m,6H,Adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.46 (d, 1H, J = 2.1 Hz, Ar—H), 7.32 (dd, 1H, J = 8.1, 2.1 Hz, Ar—H) ), 6.70 (d, 1H, J = 8.1 Hz, Ar-H), 5.18 (s, 1H, OH), 2.12-2.09 (m, 9H, Adamantyl), 1.79. -1.78 (m, 6H, Adamantyl)

Figure 2011195584
充分に乾燥した100mL四口ナスフラスコ(三方コック付、磁気攪拌子入り)に3,4−Dihyro−2H−pyranを2.09g(24.8mmol)加えてジクロロメタン20mLに溶解させた。0℃に冷却した後、塩化水素の2.0Mジエチルエーテル溶液0.05mL(0.1mmol)を加え、その後、化合物44の2.95g(9.96mmol)をジクロロメタン20mLに溶解させ、滴下ロート経由で13分かけて加えた。終夜攪拌の後、3,4−Dihyro−2H−pyranの2.09g(24.8mmol)を2回に分けて追加して反応を継続した。16時間後、重曹水を加えてジクロロメタンで抽出し、その後、水と食塩水で洗浄して無水硫酸ナトリウムで乾燥した。固体を濾過で取り除いて、溶媒を減圧下で留去することにより、3.59gの淡黄色固体を得た。この固体を充分に乾燥した300mL四口ナスフラスコ(三方コック付、磁気攪拌子入り)内でテトラヒドロフラン100mLに溶解させ、−78℃に冷却した。n−ブチルリチウムの1.59Mヘキサン溶液を9.0mL(14.3mmol)加えて1時間反応させた後、N,N−ジメチルホルムアミド(関東化学株式会社製)を2mL(25.8mmol)加え、室温に昇温して63時間攪拌した。0℃に冷却した後、濃塩酸15mLと水10mLを加えて終夜攪拌し、溶媒を減圧下で留去した。残渣をジクロロメタンで抽出し、水と食塩水で洗浄して無水硫酸ナトリウムで乾燥させた。固体を濾過によって取り除き、溶媒を減圧下で留去して粗生成物を得、これをシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=49/1)を用いて精製することにより化合物45を806mg(29%、淡黄色固体)得た。
Figure 2011195584
2.09 g (24.8 mmol) of 3,4-Dihyro-2H-pyran was added to a well-dried 100 mL four-necked eggplant flask (with a three-way cock, with a magnetic stirring bar), and dissolved in 20 mL of dichloromethane. After cooling to 0 ° C., 0.05 mL (0.1 mmol) of a 2.0 M solution of hydrogen chloride in diethyl ether was added, and then 2.95 g (9.96 mmol) of Compound 44 was dissolved in 20 mL of dichloromethane and passed through a dropping funnel. Over 13 minutes. After stirring overnight, 2.09 g (24.8 mmol) of 3,4-Dihyro-2H-pyran was added in two portions and the reaction was continued. After 16 hours, aqueous sodium bicarbonate was added and extracted with dichloromethane, then washed with water and brine and dried over anhydrous sodium sulfate. The solid was removed by filtration, and the solvent was distilled off under reduced pressure to obtain 3.59 g of a pale yellow solid. This solid was dissolved in 100 mL of tetrahydrofuran in a well-dried 300 mL four-necked eggplant flask (with a three-way cock, with a magnetic stirring bar), and cooled to -78 ° C. After adding 9.0 mL (14.3 mmol) of 1.59M hexane solution of n-butyllithium and reacting for 1 hour, 2 mL (25.8 mmol) of N, N-dimethylformamide (manufactured by Kanto Chemical Co., Ltd.) The mixture was warmed to room temperature and stirred for 63 hours. After cooling to 0 ° C., 15 mL of concentrated hydrochloric acid and 10 mL of water were added and stirred overnight, and the solvent was distilled off under reduced pressure. The residue was extracted with dichloromethane, washed with water and brine, and dried over anhydrous sodium sulfate. The solid was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product, which was purified by silica gel column chromatography (eluent; hexane / ethyl acetate = 49/1) to give compound 45. Obtained 806 mg (29%, light yellow solid).

得られた生成物を分析した結果は以下の通りであった。
1H NMR(δ,CDCl3):12.14(s,1H,OH),9.92(s,1H,HC=O),7.69−7.66(m,2H,Ar−H),2.13−2.11(m,9H,Adamantyl),1.81−1.79(m,6H,Adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 12.14 (s, 1H, OH), 9.92 (s, 1H, HC═O), 7.69-7.66 (m, 2H, Ar—H) 2.13-2.11 (m, 9H, Adamantyl), 1.81-1.79 (m, 6H, Adamantyl)

Figure 2011195584
充分に乾燥した50mL四口ナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物45を0.806g(2.49mmol)、2’‐methoxybiphenyl‐2‐amine(WO2009005003の記載に従い合成した。)を0.514g(2.58mmol)、アンバーリスト15(H)を0.1g、無水硫酸ナトリウムを1.04g、トルエンを26mL加え、還流下で8時間反応させた。この反応液から不溶物を濾過にて取り除いた後、溶媒を減圧下で留去し、ヘキサンとトルエンの混合溶媒から再結晶することにより化合物46を0.823mg(65%、黄色固体)得た。
Figure 2011195584
In a well-dried 50 mL four-necked eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 0.806 g (2.49 mmol) of compound 45, 2′-methoxybiphenyl-2-amine (from WO2009005003) 0.514 g (2.58 mmol), Amberlyst 15 (H) 0.1 g, anhydrous sodium sulfate 1.04 g, and toluene 26 mL were added and reacted under reflux for 8 hours. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from a mixed solvent of hexane and toluene gave 0.823 mg (65%, yellow solid) of Compound 46. .

得られた生成物を分析した結果は以下の通りであった。
1H NMR(δ,CDCl3):14.37(s,1H,OH),8.54(s,1H,HC=N),7.48−7.32(m,7H,Ar−H),7.21(dd,1H,J=7.4,2.0Hz,Ar−H),7.02(td,1H,J=7.4,0.8Hz,Ar−H),6.94(dd,1H,J=8.5,0.8Hz,Ar−H),3.74(s,3H,OCH3),2.09(bs,9H,Adamantyl),1.78(bs,6H,Adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 14.37 (s, 1H, OH), 8.54 (s, 1H, HC = N), 7.48-7.32 (m, 7H, Ar—H) , 7.21 (dd, 1H, J = 7.4, 2.0 Hz, Ar-H), 7.02 (td, 1H, J = 7.4, 0.8 Hz, Ar-H), 6.94 (dd, 1H, J = 8.5,0.8Hz , Ar-H), 3.74 (s, 3H, OCH 3), 2.09 (bs, 9H, adamantyl), 1.78 (bs, 6H , Adamantyl)

Figure 2011195584
充分に乾燥した50mL四口ナスフラスコ(三方コック、磁気攪拌子入り)に四塩化チタンの1.0Mトルエン溶液を0.5mL(0.5mmol)加え、ドライアイス−アセトンバスで−78℃に冷却した。これに、化合物46の0.412g(0.82mmol)をトルエン10mLに溶かして滴下した後、室温まで昇温させつつ21時間反応させた。この反応液にペンタン10mLを加え析出させた後、析出物を濾取し、ペンタン(関東化学株式会社製)10mLで洗浄後、乾燥させることにより、化合物47を0.276g(収率50%、橙色固体)得た。
Figure 2011195584
Add 0.5 mL (0.5 mmol) of 1.0M toluene solution of titanium tetrachloride to a well-dried 50 mL four-necked eggplant flask (with three-way cock and magnetic stirrer), and cool to -78 ° C with a dry ice-acetone bath. did. To this, 0.412 g (0.82 mmol) of Compound 46 was dissolved and added dropwise in 10 mL of toluene, and then reacted for 21 hours while raising the temperature to room temperature. After adding 10 mL of pentane to the reaction solution to precipitate, the precipitate was collected by filtration, washed with 10 mL of pentane (manufactured by Kanto Chemical Co., Ltd.), and then dried to obtain 0.276 g of Compound 47 (yield 50%, An orange solid) was obtained.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.18(s,1H,HC=N),7.76(d,1H,J=2.2Hz,Ar−H),7.57(d,1H,J=2.2Hz,Ar−H),7.53−7.18(m,8H,Ar−H),4.41(s,3H,OCH3),2.22−2.19(m,9H,Adamantyl),1.96−1.79(m,6H,Adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.18 (s, 1H, HC = N), 7.76 (d, 1H, J = 2.2 Hz, Ar—H), 7.57 (d, 1H, J = 2.2Hz, Ar-H) , 7.53-7.18 (m, 8H, Ar-H), 4.41 (s, 3H, OCH 3), 2.22-2.19 (m, 9H, Adamantyl), 1.96-1.79 (m, 6H, Adamantyl)

[合成例14]
(化合物50の合成)
[Synthesis Example 14]
(Synthesis of Compound 50)

Figure 2011195584
充分に乾燥した100mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に化合物7を1.30g(7.2mmol)、2‐bromoaniline(東京化成工業株式会社製)を1.03g(6mmol)、酢酸パラジウムを0.07g(0.03mmol)、2‐Dicyclohexylphosphino‐2’,6’‐dimethoxybiphenylを0.025g(0.06mmol)、リン酸カリウム一水和物4.15g(18mmol)加え、トルエン18mLに縣濁させ、100℃で3時間反応させた。この反応液に水10mLを加え、トルエンで抽出後、有機層をMgSO4で乾燥させ、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=95/5)を用いて精製することにより化合物48を0.390g(29%、薄黄色液体)を得た。
Figure 2011195584
In a well-dried 100 mL three-necked eggplant flask (condenser, with three-way cock, with magnetic stirrer), 1.30 g (7.2 mmol) of compound 7 and 1.03 g (6 mmol) of 2-bromoaniline (manufactured by Tokyo Chemical Industry Co., Ltd.) ), 0.07 g (0.03 mmol) of palladium acetate, 0.025 g (0.06 mmol) of 2-Dicyclohexylphosphino-2 ′, 6′-dimethylbiphenyl, 4.15 g (18 mmol) of potassium phosphate monohydrate, The mixture was suspended in 18 mL of toluene and reacted at 100 ° C. for 3 hours. 10 mL of water was added to this reaction liquid, extracted with toluene, the organic layer was dried over MgSO 4 , and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 95/5) to obtain 0.390 g (29%, light yellow liquid) of Compound 48.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.19−7.13(m,1H,Ar−H),6.98−6.94(m,1H,Ar−H),6.84−6.76(m,3H,Ar−H),6.66(s,1H,Ar−H),3.71(s,3H,OCH3),3.45(br,2H,NH2),2.37(s,3H,CH3),2.05(s,3H,CH3).
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.19-7.13 (m, 1H, Ar—H), 6.98-6.94 (m, 1H, Ar—H), 6.84-6. 76 (m, 3H, Ar- H), 6.66 (s, 1H, Ar-H), 3.71 (s, 3H, OCH 3), 3.45 (br, 2H, NH 2), 2. 37 (s, 3H, CH 3 ), 2.05 (s, 3H, CH 3).

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物48を0.358g(1.58mmol)、3‐adamantyl‐2‐hydroxy‐5‐methylbenzaldehyde0.406g(1.5mmol)、アンバーリスト15(H)を41mg加えトルエン30mL加えた後、還流下で3時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物49を0.404g(収率 56%、黄色固体)得た。
Figure 2011195584
0.358 g (1.58 mmol) of 3-48 compound-2-hydroxy-5-methylbenzaldehyde 0.406 g in a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer) (1.5 mmol) and 41 mg of Amberlyst 15 (H) were added, 30 mL of toluene was added, and the mixture was reacted for 3 hours under reflux. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 0.404 g of Compound 49 (yield 56%, yellow solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.2(s,1H,OH),8.51(s,1H,N=CH),7.48−7.24(m,4H,Ar−H),7.04−6.91(m,4H,Ar−H),3.32(s,3H,OCH3),2.32(s,3H,CH3),2.30(s,3H,CH3),2.26(s,3H,CH3),2.10(s,6H,adamantyl),2.06(s,3H,adamantyl),1.77(s,6H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.2 (s, 1H, OH), 8.51 (s, 1H, N═CH), 7.48-7.24 (m, 4H, Ar—H) , 7.04-6.91 (m, 4H, Ar -H), 3.32 (s, 3H, OCH 3), 2.32 (s, 3H, CH 3), 2.30 (s, 3H, CH 3), 2.26 (s, 3H, CH 3), 2.10 (s, 6H, adamantyl), 2.06 (s, 3H, adamantyl), 1.77 (s, 6H, adamantyl)

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)にTiCl4のトルエン溶液(1.0mmol/mL)を0.55mL(0.55mmol)、トルエンを10mL加え−78℃に冷却した。この混合液に化合物49を0.240g(0.5mmol)をトルエン5mLに溶かし滴下した後、室温まで昇温させつつ16時間反応させた。この反応液を減圧下で約5mLまで濃縮した後、ヘキサン15mLを加え析出させ、析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物50を0.123g(収率 39%、赤褐色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), 0.55 mL (0.55 mmol) of a toluene solution of TiCl 4 (1.0 mmol / mL) and 10 mL of toluene were added and cooled to −78 ° C. In this mixed solution, 0.240 g (0.5 mmol) of compound 49 was dissolved in 5 mL of toluene and dropped, and then reacted for 16 hours while raising the temperature to room temperature. After concentrating the reaction solution to about 5 mL under reduced pressure, 15 mL of hexane was added for precipitation, and the precipitate was collected by filtration, washed with 20 mL of hexane, and dried to give 0.123 g of Compound 50 (yield 39%). A reddish brown solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.13(bs,1H,N=CH),7.46−6.91(m,8H,Ar−H),4.27(s,3H,OCH3),2.57(s,3H,CH3),2.35(s,3H,CH3),2.33(s,3H,CH3),2.19(bs,6H,adamantyl),2.15(bs,3H,adamantyl),1.92(d,3H,J=12Hz,adamantyl),1.78(d,3H,J=12Hz,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.13 (bs, 1H, N═CH), 7.46-6.91 (m, 8H, Ar—H), 4.27 (s, 3H, OCH 3) ), 2.57 (s, 3H, CH 3 ), 2.35 (s, 3H, CH 3 ), 2.33 (s, 3H, CH 3 ), 2.19 (bs, 6H, adamantyl), 2 .15 (bs, 3H, adamantyl), 1.92 (d, 3H, J = 12 Hz, adamantyl), 1.78 (d, 3H, J = 12 Hz, adamantyl)

[合成例15]
(化合物53の合成)
[Synthesis Example 15]
(Synthesis of Compound 53)

Figure 2011195584
充分に乾燥した100mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2−Ethoxyphenylboronic acid(東京化成工業株式会社製)を1.00g(6.0mmol)、2−Chloro−4−methylaniline(東京化成工業株式会社製)を0.70mL(5.7mmol)、1,3−bis−(2,6−diisopropylphenyl)imidazolium−(allyl)−palladium(II)−chloride(シグマ アルドリッチ ジャパン 株式会社製)を0.008g(0.028mmol)、水酸化バリウム八水和物(和光純薬工業株式会社製)1.97g(6.2mmol)加え、イソプロピルアルコール(関東化学株式会社製)40mLに溶解させ、80℃で6時間反応させた。反応後固体残さをろ過によって取り除き、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=9/1)を用いて精製することにより化合物51を1.12g(87%、淡褐色液体)得た。
Figure 2011195584
1.00 g (6.0 mmol) of 2-Ethoxyphenylboronic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 2-Chloro-4-methylalanine in a 100 mL three-necked eggplant flask (condenser, with a three-way cock, with a magnetic stirrer) 0.70 mL (5.7 mmol) (manufactured by Tokyo Chemical Industry Co., Ltd.), 1,3-bis- (2,6-diisopropylphenyl) imidazolium- (allyl) -palladium (II) -chloride (manufactured by Sigma Aldrich Japan Co., Ltd.) ), 0.008 g (0.028 mmol), 1.97 g (6.2 mmol) of barium hydroxide octahydrate (Wako Pure Chemical Industries, Ltd.) and 40 mL of isopropyl alcohol (Kanto Chemical Co., Ltd.) It was dissolved and reacted at 80 ° C. for 6 hours. After the reaction, the solid residue was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 9/1) to obtain 1.12 g (87%, light brown liquid) of Compound 51.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.34−7.24(m,2H,Ar−H),7.06−6.94(m,4H,Ar−H),6.69(d,1H,J=8.1Hz),4.06(q,2H,J=7.1Hz,OCH2),3.64(bs,2H,NH2),2.28(s,3H,CH3),1.31(t,3H,J=7.1Hz,OCH2CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.34-7.24 (m, 2H, Ar—H), 7.06-6.94 (m, 4H, Ar—H), 6.69 (d, 1H, J = 8.1 Hz), 4.06 (q, 2H, J = 7.1 Hz, OCH 2 ), 3.64 (bs, 2H, NH 2 ), 2.28 (s, 3H, CH 3 ) , 1.31 (t, 3H, J = 7.1 Hz, OCH 2 CH 3 )

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物51を1.12g(4.9mmol)、3‐adamantyl‐5−tert−butyl−2‐hydroxybenzaldehydeを1.40g(4.5mmol)、アンバーリスト15(H)を330mg、トルエン50mLを加えた後、還流下で23時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、メタノールから再結晶することにより化合物52を1.80g(収率 77%、黄色固体)得た。
Figure 2011195584
1.12 g (4.9 mmol) of compound 51 in a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 3-adamantyl-5-tert-butyl-2-hydroxydehydride After adding 1.40 g (4.5 mmol), Amberlyst 15 (H) 330 mg, and toluene 50 mL, the mixture was reacted under reflux for 23 hours. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from methanol gave 1.80 g (yield 77%, yellow solid) of Compound 52.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.69(s,1H,OH),8.49(s,1H,N=CH),7.32−7.09(m,7H,Ar−H),6.89−6.89(m,2H,Ar−H),4.02(q,2H,J=6.9Hz,OCH2),2.41(s,3H,CH3),2.11(s,6H,Adamantyl),2.06(s,3H,Adamantyl),1.77(s,6H,Adamantyl),1.29(s,9H,tert−Butyl),1.23(t,3H、J=6.9Hz,OCH2CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.69 (s, 1H, OH), 8.49 (s, 1H, N═CH), 7.32-7.09 (m, 7H, Ar—H) , 6.89-6.89 (m, 2H, Ar -H), 4.02 (q, 2H, J = 6.9Hz, OCH 2), 2.41 (s, 3H, CH 3), 2. 11 (s, 6H, Adamantyl), 2.06 (s, 3H, Adamantyl), 1.77 (s, 6H, Adamantyl), 1.29 (s, 9H, tert-Butyl), 1.23 (t, 3H, J = 6.9 Hz, OCH 2 CH 3 )

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)に四塩化チタンの1.0Mトルエン溶液を1.0mL(1.0mmol)、トルエン5mLを加え、ドライアイス−アセトンバスで−78℃に冷却した。これに、化合物52を0.438g(0.84mmol)をトルエン10mLに溶かして滴下した後、室温まで昇温させつつ16時間反応させた。この反応液を減圧下で約0.8mLまで濃縮した後、ヘキサン10mLを加え析出させ、析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物53を0.411g(収率 70%、赤褐色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), 1.0 mL (1.0 mmol) of 1.0 M toluene solution of titanium tetrachloride and 5 mL of toluene were added, and cooled to -78 ° C with a dry ice-acetone bath. . To this, 0.438 g (0.84 mmol) of Compound 52 was dissolved and added dropwise in 10 mL of toluene, and then reacted for 16 hours while raising the temperature to room temperature. The reaction solution was concentrated to about 0.8 mL under reduced pressure, 10 mL of hexane was added for precipitation, the precipitate was collected by filtration, washed with 20 mL of hexane, and dried to give 0.411 g (yield). 70%, reddish brown solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.14(s,1H,HC=N),7.61(d,1H,J=2.4Hz,Ar−H),7.45−7.23(m,6H,Ar−H),7.07(d,1H,J=1.4Hz,Ar−H),6.96(d,1H,J=8.1Hz,Ar−H),5.47−5.40(m,1H,OCH2),4.87−4.81(m,1H,OCH2),2.42(3H,s,CH3),2.28−2.16(m,9H,Adamantyl),1.95−1.76(m,6H,Adamantyl),1.28(s,9H,tert−Butyl),0.99(t,3H,J=7.2Hz,OCH2CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.14 (s, 1H, HC = N), 7.61 (d, 1H, J = 2.4 Hz, Ar—H), 7.45-7.23 ( m, 6H, Ar-H), 7.07 (d, 1H, J = 1.4 Hz, Ar-H), 6.96 (d, 1H, J = 8.1 Hz, Ar-H), 5.47. -5.40 (m, 1H, OCH 2 ), 4.87-4.81 (m, 1H, OCH 2), 2.42 (3H, s, CH 3), 2.28-2.16 (m , 9H, Adamantyl), 1.95-1.76 (m, 6H, Adamantyl), 1.28 (s, 9H, tert-Butyl), 0.99 (t, 3H, J = 7.2 Hz, OCH 2 CH 3)

[合成例16]
(化合物55の合成)
[Synthesis Example 16]
(Synthesis of Compound 55)

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に2'−ethoxybiphenyl−2−amineを0.448g(2.1mmol)、3‐adamantyl‐5‐tert−butyl‐2‐hydroxybenzaldehydeを0.625g(2.0mmol)、アンバーリスト15を63mg加えトルエン20mL加えた後、還流下で3時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物54を0.525g(収率 52%、黄色固体)得た。
Figure 2011195584
A well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer) contains 2'-ethoxybiphenyl-2-amine in an amount of 0.448 g (2.1 mmol), 3-adamantyl-5-tert -Butyl-2-hydroxybenzaldehyde (0.625 g, 2.0 mmol), Amberlyst 63 (63 mg) and toluene (20 mL) were added, and the mixture was reacted under reflux for 3 hours. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 0.525 g (yield 52%, yellow solid) of Compound 54.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.6(s,1H,OH),8.50(s,1H,N=CH),7.44−7.10(m,8H,Ar−H),6.99−6.89(m,2H,Ar−H),4.01(q,2H,J=6.8Hz,OCH2),2.11(s,6H,adamantyl),2.07(s,3H,adamantyl),1.77(s,6H,adamantyl),1.29(s,9H,C(CH33),1.26(t,3H,J=6.8Hz,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.6 (s, 1H, OH), 8.50 (s, 1H, N═CH), 7.44-7.10 (m, 8H, Ar—H) , 6.99-6.89 (m, 2H, Ar -H), 4.01 (q, 2H, J = 6.8Hz, OCH 2), 2.11 (s, 6H, adamantyl), 2.07 (S, 3H, adamantyl), 1.77 (s, 6H, adamantyl), 1.29 (s, 9H, C (CH 3 ) 3 ), 1.26 (t, 3H, J = 6.8 Hz, CH 3 )

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)にTiCl4のトルエン溶液(1.0mmol/mL)を1.1mL(1.1mmol)、トルエン20mLを加え−78℃にドライアイス−メタノールバスにて冷却した。この混合液に化合物54を0.508g(1.0mmol)トルエン5mLに溶かし滴下した後、室温まで昇温させつつ14時間反応させた。この反応液を減圧下で約5mLまで濃縮した後に、ヘキサン10mLを加え析出させた。析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物55を0.493g(収率 75%、赤紫色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), add 1.1 mL (1.1 mmol) of a TiCl 4 toluene solution and 20 mL of toluene, and add to a dry ice-methanol bath at −78 ° C. And cooled. Compound 54 was dissolved in 0.508 g (1.0 mmol) of toluene (5 mL) and added dropwise to this mixed solution, and then reacted for 14 hours while raising the temperature to room temperature. The reaction solution was concentrated to about 5 mL under reduced pressure, and 10 mL of hexane was added for precipitation. The precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.493 g of Compound 55 (yield 75%, red purple solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.17(s,1H,N=CH),7.61(s,1H,Ar−H),7.61−7.09(m,9H,Ar−H,5.49−5.42(m,1H,OCH2),4.85−4.78(m,1H,OCH2),2.24−2.16(m,9H,adamantyl),1.93(d,3H,J=12Hz,adamantyl),1.79(d,3H,J=12Hz,adamantyl),1.28(s,9H,C(CH33),0.95(t,3H,J=7.0Hz,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.17 (s, 1H, N═CH), 7.61 (s, 1H, Ar—H), 7.61-7.09 (m, 9H, Ar— H, 5.49-5.42 (m, 1H, OCH 2), 4.85-4.78 (m, 1H, OCH 2), 2.24-2.16 (m, 9H, adamantyl), 1 .93 (d, 3H, J = 12 Hz, adamantyl), 1.79 (d, 3H, J = 12 Hz, adamantyl), 1.28 (s, 9H, C (CH 3 ) 3 ), 0.95 (t , 3H, J = 7.0 Hz, CH 3 )

[合成例17]
(化合物58の合成)
[Synthesis Example 17]
(Synthesis of Compound 58)

Figure 2011195584
充分に乾燥した200mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に2‐methoxyphenylboronic acidを7.2g(47.1mmol)、2−chloro−6−methylanilineを5.20g(36.7mmol)、1,3−bis−(2,6−diisopropylphenyl)imidazolium−(allyl)−palladium(II)−chlorideを59.6mg(0.092mmol)、水酸化バリウム八水和物を12.8g(40.4mmol)加え、イソプロピルアルコール73mLに溶解させた後、80℃で4時間反応させた。反応溶液を室温まで冷却した後、固体残さをろ過によって取り除き、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=95/5)を用いて精製することにより化合物56を6.23g(80%、淡褐色液体)得た。
Figure 2011195584
In a well-dried 200 mL three-necked eggplant flask (condenser, with a three-way cock, with magnetic stirrer), 7.2 g (47.1 mmol) of 2-methoxyphenylboronic acid and 5.20 g (36.7 mmol) of 2-chloro-6-methylalanine ), 1,3-bis- (2,6-diisopropylphenyl) imidazolium- (allyl) -palladium (II) -chloride 59.6 mg (0.092 mmol), 12.8 g of barium hydroxide octahydrate (40 4 mmol) and dissolved in 73 mL of isopropyl alcohol, followed by reaction at 80 ° C. for 4 hours. After the reaction solution was cooled to room temperature, the solid residue was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 95/5) to obtain 6.23 g (80%, light brown liquid) of Compound 56.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.37−7.35(m,1H,Ar−H),7.26−7.24(m,1H,Ar−H),7.09−6.97(m,4H,Ar−H),6.77−6.75(m,1H,Ar−H),3.79(s,3H,OCH3),3.59(bs,2H,NH2),2.28(s,3H,CH3
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.37-7.35 (m, 1H, Ar—H), 7.26-7.24 (m, 1H, Ar—H), 7.09-6. 97 (m, 4H, Ar- H), 6.77-6.75 (m, 1H, Ar-H), 3.79 (s, 3H, OCH 3), 3.59 (bs, 2H, NH 2 ), 2.28 (s, 3H, CH 3 )

Figure 2011195584
充分に乾燥した200mL一口ナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物56を1.12g(5.25mmol)、3‐adamantyl‐2‐hydroxy‐5‐methylbenzaldehydeを1.35g(5.0mmol)、アンバーリスト15を135mg、トルエンを40mL加えた後、還流下で6時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物57を0.837g(収率 36%、黄色固体)得た。
Figure 2011195584
To a well-dried 200 mL one-necked eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer), 1.56 g (5.25 mmol) of compound 56, 3-adamantyl-2-hydroxy-5-methylbenzaldehyde 1.35 g (5.0 mmol), 135 mg of Amberlyst 15 and 40 mL of toluene were added, and the mixture was reacted for 6 hours under reflux. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 0.837 g (yield 36%, yellow solid) of Compound 57.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.6(s,1H,OH),7.90(s,1H,C=NH),7.26−7.15(m,6H,Ar−H),7.03(s,1H,Ar−H),6.94(t,1H,J=7.3Hz,Ar−H),6.74(d,1H,J=8.0Hz,Ar−H),3.67(s,3H,OCH3),2.33(s,3H,CH3),2.19(s,3H,CH3),2.15(bs,6H,adamantyl),2.08(bs,3H,adamantyl),1.79(bs,6H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.6 (s, 1H, OH), 7.90 (s, 1H, C═NH), 7.26-7.15 (m, 6H, Ar—H) 7.03 (s, 1H, Ar-H), 6.94 (t, 1H, J = 7.3 Hz, Ar-H), 6.74 (d, 1H, J = 8.0 Hz, Ar-H) ), 3.67 (s, 3H, OCH 3 ), 2.33 (s, 3H, CH 3 ), 2.19 (s, 3H, CH 3 ), 2.15 (bs, 6H, adamantyl), 2 .08 (bs, 3H, adamantyl), 1.79 (bs, 6H, adamantyl)

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)に四塩化チタンの1.0Mトルエン溶液を0.5mL(0.5mmol)、トルエンを10mL加え、ドライアイス−アセトンバスで−78℃に冷却した。これに、化合物57を0.256g(0.55mmol)をトルエン5mLに溶かしたものを滴下した後、室温まで昇温させつつ15時間反応させた。反応液を3mLまで減圧下で濃縮しヘキサン20mLを加えた後、析出物をろ取、ヘキサン20mLで洗浄後、乾燥させることにより、化合物58を0.294g(収率 95%、赤褐色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), 0.5 mL (0.5 mmol) of a 1.0 M solution of titanium tetrachloride in toluene and 10 mL of toluene were added and cooled to −78 ° C. in a dry ice-acetone bath. . A solution obtained by dissolving 0.256 g (0.55 mmol) of Compound 57 in 5 mL of toluene was added dropwise thereto, and then reacted for 15 hours while raising the temperature to room temperature. The reaction solution was concentrated to 3 mL under reduced pressure, 20 mL of hexane was added, and the precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.294 g (yield 95%, reddish brown solid) of Compound 58. It was.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.90(s,1H,HC=N),7.39-7.11(m,8H,Ar−H),6.94(s,1H,Ar−H),4.26(s,3H,OCH3),2.45(s,3H,CH3),2.28(s,3H,CH3),2.19(m,9H,adamantyl),1.96(d,J=11.5Hz,3H,adamantyl),1.81(d,J=11.5Hz,3H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.90 (s, 1H, HC = N), 7.39-7.11 (m, 8H, Ar—H), 6.94 (s, 1H, Ar— H), 4.26 (s, 3H, OCH 3 ), 2.45 (s, 3H, CH 3 ), 2.28 (s, 3H, CH 3 ), 2.19 (m, 9H, adamantyl), 1.96 (d, J = 11.5 Hz, 3H, adamantyl), 1.81 (d, J = 11.5 Hz, 3H, adamantyl)

[合成例18]
(化合物61の合成)
[Synthesis Example 18]
(Synthesis of Compound 61)

Figure 2011195584
充分に乾燥した100mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に化合物33を1.0g(4.4mmol)、2−chloroaniline(東京化成工業株式会社製)を0.46mL(4.4mmol)、1,3−bis−(2,6−diisopropylphenyl)imidazolium−(allyl)−palladium(II)−chloride(シグマ アルドリッチ ジャパン 株式会社製)を0.013g(0.022mmol)、水酸化バリウム八水和物(和光純薬工業株式会社製)1.5g(4.6mmol)加え、イソプロピルアルコール(関東化学株式会社製)30mLに溶解させ、80℃で3時間反応させた。反応後固体残さをろ過によって取り除き、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=10/1)を用いて精製することにより化合物59を1.18g(98%、淡褐色液体)得た。
Figure 2011195584
In a well-dried 100 mL three-necked eggplant flask (condenser, with a three-way cock, with a magnetic stirrer), 1.0 g (4.4 mmol) of compound 33 and 0.46 mL (4) of 2-chloroaniline (manufactured by Tokyo Chemical Industry Co., Ltd.) .4 mmol), 1,3-bis- (2,6-diisopropylphenyl) imidazolium- (allyl) -palladium (II) -chloride (manufactured by Sigma Aldrich Japan Co., Ltd.), 0.013 g (0.022 mmol), barium hydroxide 1.5 g (4.6 mmol) of octahydrate (Wako Pure Chemical Industries, Ltd.) was added, dissolved in 30 mL of isopropyl alcohol (Kanto Chemical Co., Ltd.), and reacted at 80 ° C. for 3 hours. After the reaction, the solid residue was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 10/1) to obtain 1.18 g (98%, light brown liquid) of Compound 59.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.61−7.52(m,4H,Ar−H),7.41(m,2H,Ar−H),7.33−7.14(m,3H,Ar−H),7.07(d,J=8.6Hz,1H,Ar−H),6.88−6.78(m,2H,Ar−H),
3.85(s,3H,OCH3),3.73(bs,2H,NH2
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.61-7.52 (m, 4H, Ar—H), 7.41 (m, 2H, Ar—H), 7.33-7.14 (m, 3H, Ar-H), 7.07 (d, J = 8.6 Hz, 1H, Ar-H), 6.88-6.78 (m, 2H, Ar-H),
3.85 (s, 3H, OCH 3 ), 3.73 (bs, 2H, NH 2 )

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物59を0.60g(2.2mmol)、3‐adamantyl‐2‐hydroxy‐5‐phenylbenzaldehyde0.72g(2.2mmol)、エタノール15mLを加えた後、還流下で6時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物60を1.17g(収率 96%、黄色固体)得た。
Figure 2011195584
0.60 g (2.2 mmol), 3-adamantyl-2-hydroxy-5-phenylbenzaldehyde 0.72 g in a well-dried 100 mL eggplant flask (three-way cock, Dean-Stark tube, with Dimroth, with magnetic stirrer) (2.2 mmol) and ethanol (15 mL) were added, followed by reaction under reflux for 6 hours. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 1.17 g of Compound 60 (yield 96%, yellow solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.8(s,1H,OH),8.62(s,1H,N=CH),7.61−7.27(m,18H,Ar−H),7.03(d,J=8.6Hz,1H,Ar−H),3.82(s,3H,OCH3),2.14(m,6H,adamantyl),2.06(m,3H,adamantyl),1.76(s,6H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.8 (s, 1H, OH), 8.62 (s, 1H, N═CH), 7.61-7.27 (m, 18H, Ar—H) 7.03 (d, J = 8.6 Hz, 1H, Ar—H), 3.82 (s, 3H, OCH 3 ), 2.14 (m, 6H, adamantyl), 2.06 (m, 3H) , Adamantyl), 1.76 (s, 6H, adamantyl)

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)に四塩化チタンの1.0Mトルエン溶液を0.3mL(0.3mmol)、ヘキサンを20mL加え、ドライアイス−アセトンバスで−78℃に冷却した。これに、化合物60を0.195g(0.33mmol)をトルエン1mL/ヘキサン10mLに溶かしたものを滴下した後、室温まで昇温させつつ2時間反応させた。析出物をろ取し、ヘキサン20mLで洗浄後、乾燥させることにより、化合物61を0.170g(収率 86%、赤褐色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), 0.3 mL (0.3 mmol) of 1.0 M toluene solution of titanium tetrachloride and 20 mL of hexane were added, and cooled to −78 ° C. with a dry ice-acetone bath. . A solution prepared by dissolving 0.195 g (0.33 mmol) of Compound 60 in 1 mL of toluene / 10 mL of hexane was added dropwise thereto, and then reacted for 2 hours while raising the temperature to room temperature. The precipitate was collected by filtration, washed with 20 mL of hexane, and dried to obtain 0.170 g of Compound 61 (yield 86%, reddish brown solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.28(s,1H,HC=N),7.80(d,J=2.3Hz,1H,Ar−H),7.63−7.30(m,17H,Ar−H),7.19(m,1H,Ar−H),4.47(s,3H,OCH3),2.28(m,6H,adamantyl),2.19(m,3H,adamantyl),1.95(d,J=13.2Hz,3H,adamantyl),1.81(d,J=13.2Hz,3H,adamantyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.28 (s, 1H, HC = N), 7.80 (d, J = 2.3 Hz, 1H, Ar—H), 7.63-7.30 ( m, 17H, Ar-H) , 7.19 (m, 1H, Ar-H), 4.47 (s, 3H, OCH 3), 2.28 (m, 6H, adamantyl), 2.19 (m , 3H, adamantyl), 1.95 (d, J = 13.2 Hz, 3H, adamantyl), 1.81 (d, J = 13.2 Hz, 3H, adamantyl)

[合成例19]
(化合物64の合成)
[Synthesis Example 19]
(Synthesis of Compound 64)

Figure 2011195584
充分に乾燥した100mL三口ナスフラスコ(コンデンサー、三方コック付、磁気攪拌子入り)に化合物38を1.0g(3.7mmol)、2−chloroaniline(東京化成工業株式会社製)を0.39mL(3.9mmol)、1,3−bis−(2,6−diisopropylphenyl)imidazolium−(allyl)−palladium(II)−chloride(シグマ アルドリッチ ジャパン 株式会社製)を0.011g(0.019mmol)、水酸化バリウム八水和物(和光純薬工業株式会社製)1.2g(3.9mmol)加え、イソプロピルアルコール(関東化学株式会社製)30mLに溶解させ、80℃で3時間反応させた。反応後固体残さをろ過によって取り除き、溶媒を減圧下で留去することにより粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフ(溶離液;ヘキサン/酢酸エチル=10/1)を用いて精製することにより化合物62を0.91g(77%、淡褐色液体)得た。
Figure 2011195584
In a well-dried 100 mL three-necked eggplant flask (condenser, with a three-way cock, with a magnetic stirrer), 1.0 g (3.7 mmol) of compound 38 and 0.39 mL (3) of 2-chloroanline (manufactured by Tokyo Chemical Industry Co., Ltd.) .9 mmol), 1,3-bis- (2,6-diisopropylphenyl) imidazolium- (allyl) -palladium (II) -chloride (manufactured by Sigma Aldrich Japan Co., Ltd.), 0.011 g (0.019 mmol), barium hydroxide 1.2 g (3.9 mmol) of octahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added, dissolved in 30 mL of isopropyl alcohol (manufactured by Kanto Chemical Co., Ltd.) and reacted at 80 ° C. for 3 hours. After the reaction, the solid residue was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified using silica gel column chromatography (eluent: hexane / ethyl acetate = 10/1) to obtain 0.91 g (77%, light brown liquid) of Compound 62.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):7.27−7.06(m,9H,Ar−H),6.90−6.73(m,3H,Ar−H),3.78(s,3H,OCH3),3.68(bs,2H,NH2),1.68(s,6H,cumyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 7.27-7.06 (m, 9H, Ar—H), 6.90-6.73 (m, 3H, Ar—H), 3.78 (s, 3H, OCH 3 ), 3.68 (bs, 2H, NH 2 ), 1.68 (s, 6H, cumyl)

Figure 2011195584
充分に乾燥した100mLナスフラスコ(三方コック、ディーン・スターク管、ジムロート付、磁気攪拌子入り)に化合物62を0.40g(1.28mmol)、3‐adamantyl‐2‐hydroxy‐5‐phenylbenzaldehyde0.42g(1.28mmol)、エタノール15mLを加えた後、還流下で5時間反応させた。この反応液から不溶物をろ過にて取り除いた後、溶媒を減圧下で留去し、エタノールから再結晶することにより化合物63を0.639g(収率 67%、橙色固体)得た。
Figure 2011195584
In a well-dried 100 mL eggplant flask (three-way cock, Dean Stark tube, with Dimroth, with magnetic stirrer), 0.40 g (1.28 mmol) of compound 62, 3-adamantyl-2-hydroxy-5-phenylbenzaldehyde 0.42 g (1.28 mmol) and ethanol (15 mL) were added, followed by reaction under reflux for 5 hours. After removing insolubles from the reaction solution by filtration, the solvent was distilled off under reduced pressure, and recrystallization from ethanol gave 0.639 g (yield 67%, orange solid) of Compound 63.

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):13.7(s,1H,OH),8.54(d,J=2.0Hz,1H,N=CH),7.57−7.30(m,10H),7.23−7.08(m,8H,Ar−H),6.84(d,J=9.2Hz,1H,Ar−H),3.70(s,3H,OCH3),2.18(s,6H,adamantyl),2.08(s,3H,adamantyl),1.78(s,6H,adamantyl),1.70(s,6H,cumyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 13.7 (s, 1H, OH), 8.54 (d, J = 2.0 Hz, 1H, N = CH), 7.57-7.30 (m, 10H), 7.23-7.08 (m, 8H , Ar-H), 6.84 (d, J = 9.2Hz, 1H, Ar-H), 3.70 (s, 3H, OCH 3) 2.18 (s, 6H, adamantyl), 2.08 (s, 3H, adamantyl), 1.78 (s, 6H, adamantyl), 1.70 (s, 6H, cumyl)

Figure 2011195584
充分に乾燥した100mLシュレンクフラスコ(磁気攪拌子入り)に四塩化チタンの1.0Mトルエン溶液を0.8mL(0.8mmol)、トルエンを15mL加え、ドライアイス−アセトンバスで−78℃に冷却した。これに、化合物63を0.556g(0.88mmol)をトルエン10mLに溶かしたものを滴下した後、室温まで昇温させつつ16時間反応させた。反応液を3mL程度まで濃縮した後ヘキサン20mLを加え、沈殿物をろ取、乾燥させることにより、化合物64を0.555g(収率 87%、赤褐色固体)得た。
Figure 2011195584
To a well-dried 100 mL Schlenk flask (with magnetic stirrer), 0.8 mL (0.8 mmol) of a 1.0 M toluene solution of titanium tetrachloride and 15 mL of toluene were added, and cooled to −78 ° C. in a dry ice-acetone bath. . A solution prepared by dissolving 0.556 g (0.88 mmol) of Compound 63 in 10 mL of toluene was added dropwise thereto, and then reacted for 16 hours while raising the temperature to room temperature. The reaction solution was concentrated to about 3 mL, 20 mL of hexane was added, and the precipitate was collected by filtration and dried to obtain 0.555 g of Compound 64 (yield 87%, reddish brown solid).

得られた生成物を分析した結果は以下のとおりであった。
1H NMR(δ,CDCl3):8.20(s,1H,HC=N),7.81(d,J=2.3Hz,1H,Ar−H),7.53−7.04(m,18H,Ar−H),4.39(s,3H,OCH3),2.28−2.18(m,9H,adamantyl),1.95(d,J=10.9Hz,3H,adamantyl),1.81(d,J=10.9Hz,3H,adamantyl),1.64(s,6H,cumyl)
The result of analyzing the obtained product was as follows.
1 H NMR (δ, CDCl 3 ): 8.20 (s, 1H, HC = N), 7.81 (d, J = 2.3 Hz, 1H, Ar—H), 7.53-7.04 ( m, 18H, Ar-H) , 4.39 (s, 3H, OCH 3), 2.28-2.18 (m, 9H, adamantyl), 1.95 (d, J = 10.9Hz, 3H, adamantyl), 1.81 (d, J = 10.9 Hz, 3H, adamantyl), 1.64 (s, 6H, cumyl)

[実施例1]
充分に窒素置換した内容積100mLのオートクレーブにトルエン28mLを入れ、続いて、メチルアルミノキサン(東ソー・ファインケムMMAO−3A,10wt%ヘキサン溶液)をアルミニウム原子換算で0.5mmol加えた。引き続き、上記化合物3(1mMトルエン溶液)を0.1μmol加え、エチレン(0.8MPa−G)で加圧して反応を開始した。同圧力でエチレンを供給しながら25℃で60分間反応させた後、少量のイソプロパノールを添加することにより反応を停止した。反応終了後、0.1規定塩酸水および純水で反応液を洗浄し、減圧下に液体窒素トラップを用いて低沸点成分(炭素原子数10以下)を高沸点成分およびポリエチレンから分離し、ガスクロマトグラフィーを用いて分析を行った。生成物のうち1−ヘキセンの選択率は85.3%であった。その他の生成物としてデセン類の選択率は11.0%、ポリエチレンの選択率は3.7%であり、これらの生成物量合計から算出した触媒活性は28.6kg−生成物/(mmol−Ti・h)であった。併せて、反応温度40℃でも上記と同様の反応を行った。結果を表1に記す。
[Example 1]
To an autoclave with an internal volume of 100 mL sufficiently purged with nitrogen, 28 mL of toluene was added, and then 0.5 mmol of methylaluminoxane (Tosoh Finechem MMAO-3A, 10 wt% hexane solution) was added in terms of aluminum atoms. Subsequently, 0.1 μmol of the compound 3 (1 mM toluene solution) was added, and the reaction was started by pressurizing with ethylene (0.8 MPa-G). The reaction was stopped at 25 ° C. for 60 minutes while supplying ethylene at the same pressure, and then the reaction was stopped by adding a small amount of isopropanol. After completion of the reaction, the reaction solution is washed with 0.1 N hydrochloric acid and pure water, and a low-boiling component (10 or less carbon atoms) is separated from the high-boiling component and polyethylene using a liquid nitrogen trap under reduced pressure. Analysis was performed using chromatography. The selectivity of 1-hexene among the products was 85.3%. As other products, the selectivity of decenes was 11.0%, the selectivity of polyethylene was 3.7%, and the catalytic activity calculated from the total amount of these products was 28.6 kg-product / (mmol-Ti -H). In addition, the same reaction as described above was performed even at a reaction temperature of 40 ° C. The results are shown in Table 1.

[実施例2〜5,7〜10]
化合物3に代えて化合物6,10,13,16,23,26,29,32をそれぞれ用いた以外は、実施例1と同様にして、反応温度25℃および40℃で反応を行った。結果を表1に記す。
[Examples 2-5, 7-10]
The reaction was carried out at reaction temperatures of 25 ° C. and 40 ° C. in the same manner as in Example 1 except that compounds 6, 10, 13, 16, 23, 26, 29, and 32 were used instead of compound 3. The results are shown in Table 1.

[実施例6]
化合物3に代えて化合物19を用いた以外は実施例1と同様にして反応時間60分および10分で反応を行った。結果を表1に示す。
[Example 6]
The reaction was performed in a reaction time of 60 minutes and 10 minutes in the same manner as in Example 1 except that Compound 19 was used instead of Compound 3. The results are shown in Table 1.

[実施例11,12]
化合物3に代えて化合物36,41をそれぞれ用い、反応時間10分とした以外は、実施例1と同様にして反応を行った。結果を表1に記す。
[Examples 11 and 12]
The reaction was performed in the same manner as in Example 1 except that the compounds 36 and 41 were used in place of the compound 3 and the reaction time was 10 minutes. The results are shown in Table 1.

[比較例1,2,4,5]
化合物3に代えて化合物47,50,53,55をそれぞれ用いた以外は、実施例1と同様にして、反応温度25℃および40℃で反応を行った。結果を表1に記す。
[Comparative Examples 1, 2, 4, 5]
The reaction was carried out at reaction temperatures of 25 ° C. and 40 ° C. in the same manner as in Example 1 except that compounds 47, 50, 53, and 55 were used instead of compound 3, respectively. The results are shown in Table 1.

[比較例3]
化合物3に代えて国際公開2009/005003号パンフレット[0225]に記載の化合物9(下記化合物65)(1mMトルエン溶液)を0.25μmol用いた以外は、実施例1と同様にして、反応温度25℃および40℃で反応を行った。また、同様にして反応温度25℃、反応時間10分でも併せて反応を行った。結果を表1に記す。
[Comparative Example 3]
The reaction temperature was 25 in the same manner as in Example 1 except that 0.25 μmol of Compound 9 (Compound 65 below) (1 mM toluene solution) described in WO2009 / 005003 pamphlet [0225] was used instead of Compound 3. Reactions were carried out at 0 ° C and 40 ° C. Similarly, the reaction was conducted at a reaction temperature of 25 ° C. and a reaction time of 10 minutes. The results are shown in Table 1.

[比較例6,7、8]
化合物3に代えて化合物58、61,64をそれぞれ用い、反応時間10分とした以外は、実施例1と同様にして反応を行った。結果を表1に記す。
[Comparative Examples 6, 7, 8]
The reaction was performed in the same manner as in Example 1 except that the compounds 58, 61, and 64 were used in place of the compound 3 and the reaction time was 10 minutes. The results are shown in Table 1.

Figure 2011195584
[比較例9]
充分に窒素置換した内容積500mLのオートクレーブにn−へプタン144mLを入れ、続いて、メチルアルミノキサン(東ソー・ファインケムMMAO−3A,1Mヘキサン溶液)をアルミニウム原子換算で1.0mmol加えた。引き続き、上記化合物65(1.0mMトルエン溶液)を0.5μmol加え、エチレン(3.5MPa−G)、水素(0.1MPa−G)で加圧して反応を開始した。同圧力でエチレンを供給しながら50℃で60分間反応させた後、少量のメタノールを添加することにより反応を停止した。反応終了後、0.1規定塩酸水および純水で反応液を洗浄し、減圧下に液体窒素トラップを用いて低沸点成分(炭素原子数10以下)を高沸点成分およびポリエチレンから分離し、ガスクロマトグラフィーを用いて分析を行った。生成物のうち1−ヘキセンの選択率は94.6%であった。その他の生成物としてデセン類の選択率は4.9%、ポリエチレンの選択率は0.5%であり、これらの生成物量合計から算出した触媒活性は67kg−生成物/(mmol−Ti・h)であった。
Figure 2011195584
[Comparative Example 9]
144 mL of n-heptane was put into an autoclave having an internal volume of 500 mL that was sufficiently purged with nitrogen, and then 1.0 mmol of methylaluminoxane (Tosoh Finechem MMAO-3A, 1M hexane solution) was added in terms of aluminum atom. Subsequently, 0.5 μmol of the compound 65 (1.0 mM toluene solution) was added, and the reaction was started by pressurizing with ethylene (3.5 MPa-G) and hydrogen (0.1 MPa-G). After reacting at 50 ° C. for 60 minutes while supplying ethylene at the same pressure, the reaction was stopped by adding a small amount of methanol. After completion of the reaction, the reaction solution is washed with 0.1 N hydrochloric acid and pure water, and a low-boiling component (10 or less carbon atoms) is separated from the high-boiling component and polyethylene using a liquid nitrogen trap under reduced pressure. Analysis was performed using chromatography. Among the products, the selectivity of 1-hexene was 94.6%. As other products, the selectivity of decenes was 4.9%, and the selectivity of polyethylene was 0.5%. The catalytic activity calculated from the total amount of these products was 67 kg-product / (mmol-Ti · h). )Met.

Figure 2011195584
[実施例13、比較例10]
化合物3に代えて化合物6,65をそれぞれ用いて、反応温度は25℃のみとし、反応時間を10分とした以外は実施例1と同様にして反応を行った。このときの触媒活性は化合物65が36.6kg−生成物/(mmol−Ti・h)であったのに対し、化合物6では106.2kg−生成物/(mmol−Ti・h)とおよそ3倍の反応性を示した。これは前述の計算によって得られた活性化エネルギーからの予測とよく一致している。
Figure 2011195584
[Example 13, Comparative Example 10]
The reaction was carried out in the same manner as in Example 1 except that the compounds 6 and 65 were used in place of the compound 3, the reaction temperature was only 25 ° C., and the reaction time was 10 minutes. In this case, the catalytic activity of Compound 65 was 36.6 kg-product / (mmol-Ti · h), whereas Compound 6 was 106.2 kg-product / (mmol-Ti · h), approximately 3 Double reactivity was shown. This is in good agreement with the prediction from the activation energy obtained by the above calculation.

上記実施例・比較例の結果から、本発明にかかる遷移金属化合物を用いたオレフィンの多量化反応では、従来公知の遷移金属化合物を用いた場合と比べ、高い活性を示すことが明確になった。これは、前記したとおり本発明にかかる一般式(1)で表される遷移金属化合物のフェノキシイミン配位子の特定の位置に置換基を導入したことにより、反応の活性化エネルギーが下がり、特に反応初期で反応速度が顕著に増大したことに起因すると想定できる。   From the results of the above Examples and Comparative Examples, it became clear that the olefin multimerization reaction using the transition metal compound according to the present invention shows a higher activity than the case of using a conventionally known transition metal compound. . This is because, as described above, the introduction of a substituent at a specific position of the phenoxyimine ligand of the transition metal compound represented by the general formula (1) according to the present invention reduces the activation energy of the reaction. It can be assumed that the reaction rate is significantly increased at the initial stage of the reaction.

本発明に係わる遷移金属化合物を用いてオレフィンの多量化反応を行った場合、従来より高い触媒活性でオレフィン多量化体を得ることができ、工業的に極めて価値がある。   When the olefin multimerization reaction is carried out using the transition metal compound according to the present invention, an olefin multimer can be obtained with a higher catalytic activity than before, which is extremely valuable industrially.

Claims (10)

下記一般式(1)で表される遷移金属化合物。
Figure 2011195584
〔一般式(1)中、Mは周期律表第4〜6族の原子を表し、
1〜R5およびR14は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ケイ素含有基、酸素含有基および窒素含有基から選ばれる原子または基であり、
6〜R13は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ケイ素含有基、酸素含有基および窒素含有基から選ばれる原子または基であって、R6〜R13の少なくとも一つがハロゲン原子であり、
1〜R14で示される基のうち隣接する2個の基が結合して、それらの結合する炭素原子と一緒に環を形成してもよい。
nはMの原子価を示す。
Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基および窒素含有基から選ばれる基を示し、Xで示される複数の原子または基は互いに同一でも異なっていてもよく、Xで示される複数の基は互いに結合していてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。〕
A transition metal compound represented by the following general formula (1).
Figure 2011195584
[In General Formula (1), M represents an atom of Groups 4-6 of the periodic table,
R 1 to R 5 and R 14 may be the same or different from each other, and are atoms or groups selected from a hydrogen atom, a halogen atom, a hydrocarbon group, a silicon-containing group, an oxygen-containing group, and a nitrogen-containing group,
R 6 to R 13 may be the same or different from each other, a hydrogen atom, a halogen atom, a hydrocarbon group, an atom or radical selected from a silicon-containing group, an oxygen-containing group and a nitrogen-containing group, R 6 ~ At least one of R 13 is a halogen atom;
Two adjacent groups out of the groups represented by R 1 to R 14 may be bonded to form a ring together with the carbon atoms to which they are bonded.
n represents the valence of M.
X represents a group selected from a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group and a nitrogen-containing group, and a plurality of atoms or groups represented by X may be the same or different from each other, and are represented by X A plurality of groups may be bonded to each other, and a plurality of groups represented by X may be bonded to each other to form a ring. ]
前記一般式(1)中、R6、R8またはR12のうち少なくとも一つがハロゲン原子であることを特徴とする請求項1に記載の遷移金属化合物。 In the said General formula (1), at least one is a halogen atom among R < 6 >, R < 8 > or R < 12 >, The transition metal compound of Claim 1 characterized by the above-mentioned. 前記一般式(1)中、R6、R8またはR12のうち少なくとも一つがフッ素原子であることを特徴とする請求項2に記載の遷移金属化合物。 The transition metal compound according to claim 2, wherein at least one of R 6 , R 8, and R 12 in the general formula (1) is a fluorine atom. 前記一般式(1)中、R1が炭素数2〜12のアルキル基であることを特徴とする請求項2または3に記載の遷移金属化合物。 In said general formula (1), R < 1 > is a C2-C12 alkyl group, The transition metal compound of Claim 2 or 3 characterized by the above-mentioned. 前記一般式(1)中、R3またはR11のうち少なくとも一つが炭素数3〜30の炭化水素基であることを特徴とする請求項2〜4のいずれか1項に記載の遷移金属化合物。 In the general formula (1), R 3 or at least one transition metal compound according to any one of claims 2-4, characterized in that a hydrocarbon group having 3 to 30 carbon atoms of R 11 . 前記一般式(1)中、R2が三級アルキル基もしくは炭化水素基置換三級シリル基であることを特徴とする請求項1〜3のいずれか1項に記載の遷移金属化合物。 In the general formula (1), a transition metal compound according to any one of claims 1-3, wherein R 2 is a tertiary alkyl group or a hydrocarbon group-substituted tertiary silyl group. 前記一般式(1)中、Mがチタン原子であることを特徴とする請求項1〜6のいずれか1項に記載の遷移金属化合物。   In said general formula (1), M is a titanium atom, The transition metal compound of any one of Claims 1-6 characterized by the above-mentioned. 下記成分(A)と成分(B)とを含むことを特徴とするオレフィン多量化用触媒。
(A)請求項1〜7のいずれか1項に記載の遷移金属化合物
(B)(B−1)有機金属化合物
(B−2)有機アルミニウムオキシ化合物、および
(B−3)遷移金属化合物(A)と反応してイオン対を形成する化合物
よりなる群から選ばれる少なくとも1種の化合物。
An olefin multimerization catalyst comprising the following component (A) and component (B):
(A) Transition metal compound according to any one of claims 1 to 7 (B) (B-1) Organometallic compound (B-2) Organoaluminum oxy compound, and (B-3) Transition metal compound ( At least one compound selected from the group consisting of compounds that react with A) to form ion pairs.
下記成分(C)をさらに含むことを特徴とする請求項8に記載のオレフィン多量化用触媒。
成分(C);前記成分(A)および成分(B)から選択される少なくとも1種の化合物を担持するための担体。
The olefin multimerization catalyst according to claim 8, further comprising the following component (C).
Component (C); a carrier for supporting at least one compound selected from component (A) and component (B).
請求項8または9に記載のオレフィン多量化用触媒を用いてオレフィンを多量化することを特徴とするオレフィン多量体の製造方法。   A method for producing an olefin multimer, wherein the olefin is multimerized using the olefin multimerization catalyst according to claim 8 or 9.
JP2011039826A 2010-02-26 2011-02-25 Transition metal complex compound, catalyst for olefin multimerization containing the compound, and method for producing olefin multimer in the presence of the catalyst Active JP5769444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011039826A JP5769444B2 (en) 2010-02-26 2011-02-25 Transition metal complex compound, catalyst for olefin multimerization containing the compound, and method for producing olefin multimer in the presence of the catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010042272 2010-02-26
JP2010042272 2010-02-26
JP2011039826A JP5769444B2 (en) 2010-02-26 2011-02-25 Transition metal complex compound, catalyst for olefin multimerization containing the compound, and method for producing olefin multimer in the presence of the catalyst

Publications (2)

Publication Number Publication Date
JP2011195584A true JP2011195584A (en) 2011-10-06
JP5769444B2 JP5769444B2 (en) 2015-08-26

Family

ID=44874228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039826A Active JP5769444B2 (en) 2010-02-26 2011-02-25 Transition metal complex compound, catalyst for olefin multimerization containing the compound, and method for producing olefin multimer in the presence of the catalyst

Country Status (1)

Country Link
JP (1) JP5769444B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195583A (en) * 2010-02-26 2011-10-06 Mitsui Chemicals Inc Transition metal complex compound, olefin multimerization catalyst containing the same and method for producing olefin multimer carried out in presence of the same catalyst
WO2014123212A1 (en) 2013-02-08 2014-08-14 三井化学株式会社 Solid polyaluminoxane composition, catalyst for olefin polymerization, method for producing olefin polymer, and method for producing solid polyaluminoxane composition
JP2018162230A (en) * 2017-03-27 2018-10-18 三井化学株式会社 Transition metal compound, catalyst for olefin multimerization and method for producing olefin multimer
JP2018162229A (en) * 2017-03-27 2018-10-18 三井化学株式会社 Transition metal compound, catalyst for olefin multimerization and method for producing olefin multimer
CN111450857A (en) * 2020-05-13 2020-07-28 江苏帕睿尼新材料科技有限公司 Catalyst and preparation process of tert-butyl isothiocyanate
JP7437956B2 (en) 2019-02-14 2024-02-26 三井化学株式会社 Transition metal compound, olefin polymerization catalyst, and method for producing olefin polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005003A1 (en) * 2007-07-04 2009-01-08 Mitsui Chemicals, Inc. Transition metal complex compound, olefin polymerization catalyst containing the compound, and method for producing olefin polymer performed in the presence of the catalyst
JP2011051973A (en) * 2009-08-05 2011-03-17 Sumitomo Chemical Co Ltd Method for producing 1-hexene
JP2011178682A (en) * 2010-02-26 2011-09-15 Mitsui Chemicals Inc Complex compound of transition metal, catalyst comprising the compound for multimerizing olefin, and method for producing olefin multimer, carried out in the presence of the catalyst
JP2011195583A (en) * 2010-02-26 2011-10-06 Mitsui Chemicals Inc Transition metal complex compound, olefin multimerization catalyst containing the same and method for producing olefin multimer carried out in presence of the same catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005003A1 (en) * 2007-07-04 2009-01-08 Mitsui Chemicals, Inc. Transition metal complex compound, olefin polymerization catalyst containing the compound, and method for producing olefin polymer performed in the presence of the catalyst
JP2011051973A (en) * 2009-08-05 2011-03-17 Sumitomo Chemical Co Ltd Method for producing 1-hexene
JP2011178682A (en) * 2010-02-26 2011-09-15 Mitsui Chemicals Inc Complex compound of transition metal, catalyst comprising the compound for multimerizing olefin, and method for producing olefin multimer, carried out in the presence of the catalyst
JP2011195583A (en) * 2010-02-26 2011-10-06 Mitsui Chemicals Inc Transition metal complex compound, olefin multimerization catalyst containing the same and method for producing olefin multimer carried out in presence of the same catalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195583A (en) * 2010-02-26 2011-10-06 Mitsui Chemicals Inc Transition metal complex compound, olefin multimerization catalyst containing the same and method for producing olefin multimer carried out in presence of the same catalyst
WO2014123212A1 (en) 2013-02-08 2014-08-14 三井化学株式会社 Solid polyaluminoxane composition, catalyst for olefin polymerization, method for producing olefin polymer, and method for producing solid polyaluminoxane composition
US9676879B2 (en) 2013-02-08 2017-06-13 Mitsui Chemicals, Inc. Solid polyaluminoxane composition, olefin polymerization catalyst, olefin polymer production method and solid polyaluminoxane composition production method
EP3312200A1 (en) 2013-02-08 2018-04-25 Mitsui Chemicals, Inc. Solid polyaluminoxane composition, olefin polymerization catalyst, olefin polymer production method and solid polyaluminoxane composition production method
US10150823B2 (en) 2013-02-08 2018-12-11 Mitsui Chemicals, Inc. Solid polyaluminoxane composition, olefin polymerization catalyst, olefin polymer production method and solid polyaluminoxane composition production method
US10870715B2 (en) 2013-02-08 2020-12-22 Mitsui Chemicals, Inc. Solid polyaluminoxane composition, olefin polymerization catalyst, olefin polymer production method and solid polyaluminoxane composition production method
JP2018162230A (en) * 2017-03-27 2018-10-18 三井化学株式会社 Transition metal compound, catalyst for olefin multimerization and method for producing olefin multimer
JP2018162229A (en) * 2017-03-27 2018-10-18 三井化学株式会社 Transition metal compound, catalyst for olefin multimerization and method for producing olefin multimer
JP7437956B2 (en) 2019-02-14 2024-02-26 三井化学株式会社 Transition metal compound, olefin polymerization catalyst, and method for producing olefin polymer
CN111450857A (en) * 2020-05-13 2020-07-28 江苏帕睿尼新材料科技有限公司 Catalyst and preparation process of tert-butyl isothiocyanate
CN111450857B (en) * 2020-05-13 2023-06-13 江苏帕睿尼新材料科技有限公司 Catalyst and preparation process of tert-butyl isothiocyanate

Also Published As

Publication number Publication date
JP5769444B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5126993B2 (en) Transition metal complex compound, catalyst for olefin multimerization containing the compound, and method for producing olefin multimer in the presence of the catalyst
JP4108141B2 (en) Olefin polymerization catalyst and olefin polymerization method
JP2011178682A (en) Complex compound of transition metal, catalyst comprising the compound for multimerizing olefin, and method for producing olefin multimer, carried out in the presence of the catalyst
JP5769444B2 (en) Transition metal complex compound, catalyst for olefin multimerization containing the compound, and method for producing olefin multimer in the presence of the catalyst
JP2016203173A (en) Catalyst for olefin multimerization and method for producing olefin multimer in presence of catalyst for olefin multimerization
JP5769443B2 (en) Transition metal complex compound, catalyst for olefin multimerization containing the compound, and method for producing olefin multimer in the presence of the catalyst
JP2016050175A (en) Transition metal compound, catalyst for olefin polymerization, method for producing olefin polymer, and method for producing 1-butene
JP3945559B2 (en) Olefin polymerization catalyst and olefin polymerization method
JP4676219B2 (en) Olefin polymerization catalyst and olefin polymerization method
JP6828161B2 (en) A catalyst for increasing the amount of olefins and a method for producing an olefin multimer in the presence of the catalyst.
JP5419348B2 (en) Propylene dimerization catalyst and dimerization method
JP2018162229A (en) Transition metal compound, catalyst for olefin multimerization and method for producing olefin multimer
JP5053010B2 (en) Olefin multimerization catalyst and method for producing ethylene multimer
JP2016188204A (en) Transition metal compound, compound-containing catalyst for olefin polymerization, and method for producing olefin polymer in presence of catalyst
JP2009072665A (en) Catalyst for olefin polymerization, and manufacturing method of ethylene polymer
JP6912956B2 (en) A catalyst for increasing the amount of olefins and a method for producing an olefin multimer in the presence of the catalyst.
JP2017095359A (en) Transition metal compound, catalyst for olefin polymerization containing the compound and manufacturing method of olefin polymer conducted in presence of the catalyst
JP2005239910A (en) Olefin polymerization catalyst and method for polymerizing olefin
JP2018162230A (en) Transition metal compound, catalyst for olefin multimerization and method for producing olefin multimer
JP2021151993A (en) Method for producing olefin multimer
JP2020111570A (en) Method for producing olefin polymer performed in the presence of catalyst for olefin polymerization
JP2021151994A (en) Method for producing olefin multimer
JP2021161123A (en) Olefin multimerization catalyst and method for producing olefin multimer performed in the presence of the catalyst
JP2023142208A (en) Catalyst for olefin multimerization and method for producing olefin multimer in the presence of catalyst
JP2023131158A (en) Method for producing olefin multimer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150623

R150 Certificate of patent or registration of utility model

Ref document number: 5769444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250