JP2011195367A - Method for producing iron arsenate compound - Google Patents

Method for producing iron arsenate compound Download PDF

Info

Publication number
JP2011195367A
JP2011195367A JP2010063060A JP2010063060A JP2011195367A JP 2011195367 A JP2011195367 A JP 2011195367A JP 2010063060 A JP2010063060 A JP 2010063060A JP 2010063060 A JP2010063060 A JP 2010063060A JP 2011195367 A JP2011195367 A JP 2011195367A
Authority
JP
Japan
Prior art keywords
copper
arsenic
iron arsenate
iron
arsenate compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010063060A
Other languages
Japanese (ja)
Inventor
Shingo Kato
真吾 加藤
Tetsuo Fujita
哲雄 藤田
Tsutomu Sugawara
勉 菅原
Ryoichi Taguchi
良一 田口
Hiromitsu Yatsuhashi
広光 八ッ橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2010063060A priority Critical patent/JP2011195367A/en
Publication of JP2011195367A publication Critical patent/JP2011195367A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an iron arsenate compound, by which the reaction of depositing an iron arsenate compound having high crystallinity and low elution concentration of arsenic from an arsenic solution can be finished in a short time and an adhesion amount of copper on the iron arsenate compound can be reduced.SOLUTION: The method includes a step of adding a ferrous ion into an arsenic solution and adding an oxidizing agent so as to oxidize the ferrous ion to react during stirring, wherein the step includes a step of adding a copper-containing material after a crystalline iron arsenate is produced.

Description

本発明は、ヒ酸鉄化合物の製造方法に関し、特に、ヒ素溶液を適切に処理することによって、ヒ素が溶出し難いヒ酸鉄化合物を得る方法に関する。   The present invention relates to a method for producing an iron arsenate compound, and particularly to a method for obtaining an iron arsenate compound in which arsenic is hardly eluted by appropriately treating an arsenic solution.

非鉄製錬においては、製錬原料や製錬中間物に貴金属、銅など主な有価金属が含まれる他、ヒ素などの随伴元素も含まれている。ヒ素は、主に固定化され、安全に処理される。   In non-ferrous smelting, smelting raw materials and smelting intermediates contain precious metals, main valuable metals such as copper, and accompanying elements such as arsenic. Arsenic is mainly immobilized and processed safely.

従来、非鉄製錬の製錬中間物に含まれるヒ素の固定化として、pH2以下、大気圧下で鉄ヒ素モル比を設定した5価のヒ素を含む溶液に2価の鉄イオンを加えて、酸化剤を加えて攪拌しながら昇温させて反応させた後、固液分離して得られる固形分を乾燥するという方法が提案されている(例えば、特許文献1参照)。この方法では、高濃度のヒ素溶液を処理して、ヒ素の溶出濃度が非常に小さい、スコロダイトを回収することができる。   Conventionally, as immobilization of arsenic contained in non-ferrous smelting intermediates, divalent iron ions were added to a solution containing pentavalent arsenic with a molar ratio of iron arsenic set at a pH of 2 or lower and atmospheric pressure, There has been proposed a method in which an oxidant is added, the temperature is raised while stirring and the reaction is performed, and then the solid content obtained by solid-liquid separation is dried (see, for example, Patent Document 1). In this method, scorodite having a very small arsenic elution concentration can be recovered by treating a high concentration arsenic solution.

またヒ素溶液を処理する際、液中に銅イオンを共存させることで、酸化剤として安価な空気を用いて析出反応を行なうという方法が提案されている(例えば、特許文献2、非特許文献1参照)。   Moreover, when processing an arsenic solution, the method of performing precipitation reaction using cheap air as an oxidizing agent by coexisting copper ion in a liquid is proposed (for example, patent document 2, nonpatent literature 1). reference).

特開2008−119690号公報JP 2008-119690 A 特開2008−143741号公報JP 2008-143741 A

T. Fujita 他、「Effects of zinc, copper and sodium ions on ferric arsenate precipitation in a novel atmospheric scorodite process.」、Hydrometallurgy、2008年7月、第93巻、第1〜2号、p.30-38T. Fujita et al., "Effects of zinc, copper and sodium ions on ferric arsenate precipitation in a novel atmospheric scorodite process.", Hydrometallurgy, July 2008, Vol. 93, No. 1-2, p.30-38

しかしながら、特許文献1および2に記載の方法よりヒ酸鉄化合物の析出反応を行う場合、結晶性が良くヒ素の溶出濃度が低いヒ酸鉄化合物を合成するためには、空気や酸素などの比較的弱い酸化剤により酸化することが望ましいため、反応速度が遅くなるという問題点があった。また、特許文献2は、酸化剤を添加する前の反応前処理溶液に銅イオンを共存させる例を開示するのみで、本発明者が試験をおこなったところ、反応前処理溶液に銅イオンを共存させた場合、析出したヒ酸鉄化合物には銅が多く随伴されるように付着し、有価金属としての銅の回収率が低下するという問題点があった。更に非特許文献1によると、銅の共存下ではスコロダイトは紡錘形状となることが記載されている。一般的に考えてヒ素の溶出が抑制されているスコロダイト結晶は、溶出し難い結晶面が表面に形成されていると考える事が通常である。しかしながら、結晶中に銅が付着してあると、結晶格子の欠陥により結晶性の低下の招来する可能性や、また、結晶形状が本来の斜方晶形から球形や紡錘形状などに変化し、若干不安定で溶出しやすい結晶面が表面に形成される恐れがある。   However, when performing the precipitation reaction of an iron arsenate compound than the methods described in Patent Documents 1 and 2, in order to synthesize an iron arsenate compound with good crystallinity and low arsenic elution concentration, comparison of air, oxygen, etc. Since it is desirable to oxidize with a weak oxidant, there is a problem that the reaction rate becomes slow. Patent Document 2 only discloses an example in which copper ions are allowed to coexist in the pre-reaction solution before the addition of the oxidizing agent, and when the present inventor conducted a test, copper ions were allowed to coexist in the pre-reaction solution. In such a case, the deposited iron arsenate compound adheres so as to accompany a large amount of copper, and there is a problem that the recovery rate of copper as a valuable metal decreases. Further, Non-Patent Document 1 describes that scorodite has a spindle shape in the presence of copper. In general, a scorodite crystal in which elution of arsenic is suppressed is generally considered to have a crystal plane that is difficult to elute on the surface. However, if copper is attached to the crystal, the crystal lattice may be deteriorated due to defects in the crystal lattice, and the crystal shape may change from an orthorhombic shape to a spherical shape or a spindle shape. There is a risk that an unstable and easily eluted crystal plane is formed on the surface.

したがって、本発明は、このような従来の問題点に鑑み、ヒ素溶液から、結晶性が良くヒ素の溶出濃度が低いヒ酸鉄化合物を析出させる反応を短時間で終了させることが可能であり、且つヒ酸鉄化合物への銅の付着量を少なくすることが可能であるヒ酸鉄化合物の製造方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention can complete a reaction for precipitating an iron arsenate compound having a high crystallinity and a low elution concentration of arsenic from an arsenic solution in a short time, And it aims at providing the manufacturing method of the iron arsenate compound which can reduce the adhesion amount of the copper to an iron arsenate compound.

本発明者らは、上記課題を解決するために鋭意研究した結果、5価のヒ素を含む溶液に2価の鉄イオンを加えて、酸化剤を加えて撹拌しながら反応させる際、銅含有物質を結晶性のヒ酸鉄化合物が生成した後に添加することで、結晶性が良く、ヒ素の溶出濃度が低いヒ酸鉄化合物を短時間でヒ素の沈殿率を損なうことなく合成することができ、また、ヒ酸鉄化合物に付着する銅量を低減できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors added a divalent iron ion to a solution containing pentavalent arsenic, added an oxidizing agent, and allowed to react with stirring. Is added after the crystalline iron arsenate compound is formed, so that an iron arsenate compound having good crystallinity and a low elution concentration of arsenic can be synthesized in a short time without impairing the precipitation rate of arsenic, Moreover, it discovered that the amount of copper adhering to an iron arsenate compound could be reduced, and came to complete this invention.

本発明のヒ酸鉄化合物の製造方法は、ヒ素溶液と2価鉄とを用いて、常圧下で酸化剤と反応させてヒ酸鉄化合物を析出させる工程を含むヒ酸鉄化合物の製造方法において、ヒ酸鉄化合物を析出させる工程は、結晶性のヒ酸鉄化合物が生成した後に銅含有物質を添加する。   The method for producing an iron arsenate compound of the present invention is a method for producing an iron arsenate compound comprising a step of causing an iron arsenate compound to react with an oxidizing agent under normal pressure using an arsenic solution and divalent iron. In the step of depositing the iron arsenate compound, the copper-containing material is added after the crystalline iron arsenate compound is formed.

このヒ酸鉄化合物の製造方法において、銅含有物質は、反応の開始時の1時間以降、かつ反応の終了時の1時間以前に添加するのが好ましい。また、銅含有物質は、処理液に対して、銅濃度にして0.5〜4.0g/Lとなるよう添加されるのが好ましい。さらに、銅含有物質の添加前の処理液中の銅濃度が0.5g/L未満であるのが好ましい。また、銅含有物質は、金属銅、酸化銅または硫酸銅のいずれか1種以上であるのが好ましい。   In this method for producing an iron arsenate compound, the copper-containing substance is preferably added after 1 hour at the start of the reaction and 1 hour before the end of the reaction. Moreover, it is preferable that a copper containing material is added with respect to a process liquid so that it may become 0.5-4.0 g / L in copper concentration. Furthermore, it is preferable that the copper concentration in the treatment liquid before the addition of the copper-containing material is less than 0.5 g / L. The copper-containing material is preferably one or more of metallic copper, copper oxide, and copper sulfate.

本発明によれば、ヒ素溶液と2価鉄とを用いて、常圧下で酸化剤と反応させてヒ酸鉄化合物を析出させる工程において、結晶性のヒ酸鉄化合物が生成した後に銅含有物質を添加することで、ヒ素溶液から結晶性が良くヒ素の溶出濃度が低いヒ酸鉄化合物を、ヒ素の沈殿率を損なうことなく短時間で合成することができ、且つヒ酸鉄化合物への銅の付着量を少なくすることができる。   According to the present invention, the copper-containing substance is formed after the crystalline iron arsenate compound is formed in the step of using an arsenic solution and divalent iron to react with an oxidizing agent under normal pressure to precipitate the iron arsenate compound. Can be synthesized in a short time without impairing the precipitation rate of arsenic, and it is possible to synthesize copper arsenate compound with good crystallinity and low elution concentration of arsenic from arsenic solution. The amount of adhesion can be reduced.

本発明のヒ酸鉄化合物の製造方法は、ヒ素溶液と2価鉄とを用いて、常圧下で酸化剤と反応させてヒ酸鉄化合物を析出させる工程を含むヒ酸鉄化合物の製造方法において、ヒ酸鉄化合物を析出させる工程は、結晶性のヒ酸鉄化合物が生成した後に銅含有物質を添加することを特徴とし、かかる構成を有することにより、ヒ素溶液から結晶性が良くヒ素の溶出濃度が低いヒ酸鉄化合物を、ヒ素の沈殿率を損なうことなく短時間で合成することができ、且つヒ酸鉄化合物への銅の付着量を少なくすることができるという効果を奏するものである。   The method for producing an iron arsenate compound of the present invention is a method for producing an iron arsenate compound comprising a step of causing an iron arsenate compound to react with an oxidizing agent under normal pressure using an arsenic solution and divalent iron. The step of precipitating the iron arsenate compound is characterized by adding a copper-containing substance after the crystalline iron arsenate compound is formed. By having such a structure, the arsenic solution has good crystallinity and elution of arsenic. An iron arsenate compound having a low concentration can be synthesized in a short time without impairing the precipitation rate of arsenic, and the amount of copper adhering to the iron arsenate compound can be reduced. .

処理対象となるヒ素溶液としては、非鉄製錬等で発生する種々の製錬中間物が使用できる。ヒ素溶液中のヒ素濃度が低い場合には、鉄とヒ素の化合物の析出から成長過程で粒子が粗大化し難くなる傾向があるので、10g/L以上であるのが好ましい。また、ヒ素濃度を20g/L以上とすると、一度に処理出来るヒ素の量が増大して生産性が向上するため、より好ましい。また、非晶質のヒ酸鉄化合物が生成するのを避けるため、ヒ素溶液のpHが2以下であるのが好ましい。なお、ヒ素イオンは、溶液中において5価であることが望ましい。すなわち、反応中に5価のヒ素イオンが存在すればよいのであって、どのように存在させるかは酸化還元反応を利用するなど、適宜選択すればよい。   As the arsenic solution to be treated, various smelting intermediates generated by non-ferrous smelting or the like can be used. When the arsenic concentration in the arsenic solution is low, the particles tend not to coarsen during the growth process from the precipitation of the iron and arsenic compound, and therefore it is preferably 10 g / L or more. Further, it is more preferable that the arsenic concentration is 20 g / L or more, because the amount of arsenic that can be processed at one time is increased and productivity is improved. Moreover, in order to avoid formation of an amorphous iron arsenate compound, the pH of the arsenic solution is preferably 2 or less. Arsenic ions are preferably pentavalent in the solution. That is, it is sufficient that pentavalent arsenic ions are present during the reaction, and how they are present may be appropriately selected by utilizing an oxidation-reduction reaction.

このヒ素溶液に、2価の鉄イオンを加えて反応前処理液を作製する。2価の鉄イオン供給源となる塩類としては、例えば可溶性の硫酸鉄(II)七水和物(FeSO・7HO)が使用できる。反応前処理液中のヒ素に対する鉄のモル比(Fe/As)は、スコロダイト(FeAsO・2HO)のモル比に概ね等しいか、あるいは鉄を若干過剰にしておく。具体的には1以上とし、1.0〜1.5であるのが好ましい。鉄とヒ素はほぼ等当量で反応するため、ヒ素を全て反応させるためにモル比は1以上あることが必要であり、また溶液中のヒ素に対する鉄のモル比を1.5より大きくしても、過剰の鉄源添加は鉄ロスにつながるためである。ただし、ここのモル比は適宜設定すればよい。 A divalent iron ion is added to this arsenic solution to prepare a pretreatment solution. As a salt which becomes a divalent iron ion supply source, for example, soluble iron (II) sulfate heptahydrate (FeSO 4 · 7H 2 O) can be used. The molar ratio of iron to arsenic (Fe / As) in the pretreatment liquid for the reaction is approximately equal to the molar ratio of scorodite (FeAsO 4 .2H 2 O), or iron is kept slightly excessive. Specifically, it is 1 or more, and preferably 1.0 to 1.5. Since iron and arsenic react at approximately equal equivalents, the molar ratio must be 1 or more to react all arsenic, and even if the molar ratio of iron to arsenic in the solution is greater than 1.5. This is because excessive iron source addition leads to iron loss. However, the molar ratio here may be set as appropriate.

次いで反応前処理液に酸化剤を加えて2価の鉄イオンと反応させてヒ酸鉄化合物を析出させる。酸化剤としては、2価の鉄イオンを酸化することが出来る酸化剤であれば使用することが出来るが、酸化速度を制御することが出来る酸化剤が好ましく、例えば酸素を含むガスが挙げられる。   Next, an oxidizing agent is added to the pretreatment liquid for reaction to react with divalent iron ions to precipitate an iron arsenate compound. Any oxidizing agent capable of oxidizing divalent iron ions can be used as the oxidizing agent, but an oxidizing agent capable of controlling the oxidation rate is preferable, and examples thereof include a gas containing oxygen.

本発明では、酸化剤の添加開始後、結晶性のヒ酸鉄化合物が生成した後に銅含有物質を添加し始める。銅含有物質を酸化剤添加前や添加と同時ならびに結晶性のヒ酸鉄化合物が生成する前に加え始めることはヒ酸鉄化合物の析出成長速度の増加に対しては有利である。しかしながら、急激な酸化反応の進行は、核発生優位となり微粒子の結晶や非晶質が生成する恐れがある。これを回避するためにある程度の結晶性のヒ酸鉄化合物の生成が確認されるまで銅含有化合物の添加を待機するのがよい。結晶性のヒ酸鉄化合物の生成が確認できる程度に反応開始後から時間が経過した後に銅含有物質を添加することにより、結晶性を損なうことなく反応速度を向上させることが可能となる。目視によっても液中には微細な数μm程度の微粒子が発生すると液色等の状態が変化するためヒ酸鉄化合物の生成状況は大まかには把握できる。実際のタイミングとしては、反応開始からの時間等を測れば管理と操作が簡易である。例えば、反応開始時期を酸化剤添加開始時とした場合は、銅含有物質の添加は酸化剤添加開始時から1時間後以降からヒ酸鉄化合物の合成工程を終了させる1時間前の期間とすることが望ましい。反応時間の短縮を図るためには、終了時期にあまりに近いと、本発明の効果が相対的に薄まるからである。なお、時期の管理レベルは、分単位で十分である。   In the present invention, after the addition of the oxidizing agent is started, the addition of the copper-containing material is started after the crystalline iron arsenate compound is formed. It is advantageous for increasing the precipitation growth rate of the iron arsenate compound to start adding the copper-containing material before or simultaneously with the addition of the oxidizing agent and before the crystalline iron arsenate compound is formed. However, the rapid progress of the oxidation reaction dominates the generation of nuclei, and there is a risk of forming fine crystal or amorphous. In order to avoid this, it is preferable to wait for the addition of the copper-containing compound until the formation of a certain amount of crystalline iron arsenate compound is confirmed. By adding the copper-containing substance after a lapse of time from the start of the reaction to the extent that the formation of the crystalline iron arsenate compound can be confirmed, the reaction rate can be improved without impairing the crystallinity. The state of formation of the iron arsenate compound can be roughly grasped by visual observation because the liquid color and the like change when fine particles of about several μm are generated in the liquid. As the actual timing, management and operation are simple if the time from the start of the reaction is measured. For example, when the reaction start time is set at the start of addition of the oxidant, the addition of the copper-containing substance is performed for a period of 1 hour before the end of the iron arsenate compound synthesis process after 1 hour from the start of the addition of the oxidant. It is desirable. This is because, in order to shorten the reaction time, the effect of the present invention is relatively diminished if it is too close to the end time. The time management level is sufficient in minutes.

銅含有物質としては、硫酸銅であるタンパン(CuSO・5HO)、酸化銅(CuO)、金属銅(例えば銅粉)などを使用することができる。酸化銅や金属銅を添加する場合は、反応によって生じた遊離酸を中和により消費する効果があり、若干ながらヒ素、鉄の沈殿率が向上する。 As the copper-containing material, tampan (CuSO 4 .5H 2 O), copper oxide (CuO), metal copper (for example, copper powder), which is copper sulfate, or the like can be used. In the case of adding copper oxide or metallic copper, there is an effect of consuming the free acid generated by the reaction by neutralization, and the precipitation rate of arsenic and iron is slightly improved.

銅含有物質は、反応時間短縮の効果を十分に得るためには、反応前処理液に酸化剤を加えた後の溶液に対して、銅濃度にして0.5g/L以上であることが好ましい。一方、過剰の銅添加は、ヒ酸鉄化合物への銅の付着量が多くなるため、銅含有物質の添加量は、銅濃度にして4.0g/L以下に制限するのが好ましい。なお、ヒ酸鉄化合物への銅ロスを少なくするためには、添加前の処理液中の銅濃度を0.5g/L未満とするのが好ましい。添加は、所定量を単数、分割にて適宜にすればよい。添加を複数回にて分割してする場合は、各回において添加量を増減変化させてもよい。漸減、漸増などがある。   In order to sufficiently obtain the effect of shortening the reaction time, the copper-containing substance is preferably 0.5 g / L or more in terms of copper concentration with respect to the solution after adding the oxidizing agent to the pre-reaction treatment solution. . On the other hand, excessive copper addition increases the amount of copper adhering to the iron arsenate compound. Therefore, the amount of copper-containing material added is preferably limited to 4.0 g / L or less in terms of copper concentration. In addition, in order to reduce the copper loss to an iron arsenate compound, it is preferable to make the copper concentration in the process liquid before addition into less than 0.5 g / L. The addition may be made appropriately by dividing the predetermined amount by a single number. When the addition is divided into a plurality of times, the addition amount may be increased or decreased at each time. There are gradual decrease and gradual increase.

反応の温度は、生成したヒ酸鉄化合物のヒ素の溶出値を悪化させるような、球状、紡錘形といった形状の変化や、粒子の微細化などが起こらないような温度を適宜選択してやればよい。   The reaction temperature may be appropriately selected so as not to cause a change in shape such as a spherical shape or a spindle shape, or to make the particles finer, which deteriorates the arsenic elution value of the produced iron arsenate compound.

ヒ酸鉄化合物を析出させる工程において、所定の機器を用いて溶液を攪拌することにより、鉄とヒ素の沈殿析出反応をより進行させることができる。   In the step of precipitating the iron arsenate compound, the precipitation reaction of iron and arsenic can be further advanced by stirring the solution using a predetermined device.

このようにして得られたヒ酸鉄化合物は、ヒ素の溶出濃度が日本の環境庁告示13号法の基準値の0.3mg/Lに対して非常に低く、廃棄、堆積または保管することができる。また、銅を添加してスコロダイト反応させた後の反応后液には若干のヒ素と添加した銅が残存する。これらは硫化反応又は亜鉛末などの置換反応によって容易に回収することが可能であり、沈殿析出した銅ヒ素化合物は製錬中間原料と同じく処理することが可能である。すなわち最終的には製錬中間原料中に含まれる全てのヒ素はこれらのプロセスでヒ酸鉄化合物として固定化することが可能となる。   The iron arsenate compound thus obtained has a very low arsenic elution concentration with respect to the standard value of 0.3 mg / L of the Japanese Environmental Agency Notification No. 13 method, and can be discarded, deposited or stored. it can. In addition, some arsenic and added copper remain in the post-reaction solution after adding scorodite by adding copper. These can be easily recovered by a substitution reaction such as sulfurization reaction or zinc dust, and the precipitated copper arsenic compound can be treated in the same manner as the smelting intermediate raw material. That is, finally, all arsenic contained in the smelting intermediate raw material can be immobilized as an iron arsenate compound by these processes.

〔実施例1〕
出発物質として、ヒ素は、市販の試薬(和光純薬工業社製)のヒ素溶液でAs=500g/L(5価)の溶液を純水で希釈して使用した。鉄塩は、試薬(和光純薬工業社製)の硫酸第1鉄・7水和物FeSO・7HOを用いた。
[Example 1]
As a starting material, arsenic was used by diluting a solution of As = 500 g / L (pentavalent) with pure water in an arsenic solution of a commercially available reagent (manufactured by Wako Pure Chemical Industries, Ltd.). The iron salt used was a ferrous sulfate heptahydrate FeSO 4 · 7H 2 O (reagent (manufactured by Wako Pure Chemical Industries, Ltd.)).

これらの物質と純水を混合して、ヒ素濃度50g/L、鉄濃度55.91g/Lのヒ素・鉄含有液0.7Lを調製した。この液のFe/Asモル比は1.5である。この液を容量2Lのガラス製ビーカーに移し、2段タービン攪拌羽根と邪魔板4枚をセットし、回転数1000rpmで強攪拌しながら95℃になるよう加熱した。この時点で液をごく少量サンプリングし、そのサンプル液を60℃に冷却したのち、液のpH、ORPを測定した。pHはガラス電極、ORPはAg/AgCl電極を用いて測定した。そのpHは1.25であった。測定後の液は反応容器へ戻した。   These substances and pure water were mixed to prepare 0.7 L of an arsenic / iron-containing liquid having an arsenic concentration of 50 g / L and an iron concentration of 55.91 g / L. The Fe / As molar ratio of this liquid is 1.5. This liquid was transferred to a 2 L glass beaker, a two-stage turbine stirring blade and four baffle plates were set, and heated to 95 ° C. with strong stirring at a rotational speed of 1000 rpm. At this time, a very small amount of the liquid was sampled, and after cooling the sample liquid to 60 ° C., the pH and ORP of the liquid were measured. The pH was measured using a glass electrode, and the ORP was measured using an Ag / AgCl electrode. Its pH was 1.25. The liquid after the measurement was returned to the reaction vessel.

この反応前液を95℃に保持したまま、攪拌しながら純度99%の酸素ガスを容器内に吹き込んだ。酸素ガス流量は0.35L/minとした。酸素ガス吹き込み開始から1時間後(銅含有物質添加タイミング:1.0時間)に銅粉(純正化学社製)を溶液に対して1.0g/L添加した。酸素ガス吹き込み開始から4時間、攪拌状態、温度、ガス流量を保持した。途中、1時間毎に液をサンプリングしpH、ORPを測定した。測定後の液は容器へ戻した。
なお、銅粉の添加をし始める時には、液中にスコロダイト結晶核と思われるヒ酸鉄化合物の沈殿が目視により確認できた。他の実施例においても同様に確認できた。
While maintaining this pre-reaction solution at 95 ° C., 99% purity oxygen gas was blown into the container while stirring. The oxygen gas flow rate was 0.35 L / min. One hour after the start of blowing oxygen gas (copper-containing substance addition timing: 1.0 hour), copper powder (manufactured by Junsei Chemical Co., Ltd.) was added at 1.0 g / L to the solution. The stirring state, temperature, and gas flow rate were maintained for 4 hours from the start of oxygen gas blowing. On the way, the liquid was sampled every hour to measure pH and ORP. The liquid after the measurement was returned to the container.
In addition, when the addition of copper powder was started, precipitation of the iron arsenate compound which seems to be a scorodite crystal nucleus could be visually confirmed in the liquid. It was confirmed in the same manner in other examples.

酸素ガス吹込みから4時間をもって反応終了とし、反応が終わった液(溶液・析出物の混合スラリー)の温度が70℃に低下したのち、ろ過面積0.01mのアドバンテック製加圧ろ過器(型番:KST−142)を用いてろ過した。ろ過に当たって加圧ガスとして空気を使用し、加圧力(ゲージ圧)は0.4MPaとした。ろ過後の液は組成分析に供した。その際ろ過後の液に残留したヒ素濃度と反応前液のヒ素濃度の割合からヒ素の沈殿率を算出した。ろ過した固形分はウェットケーキであり、これをパルプ濃度100g/Lで純水で1時間リパルプ洗浄したのち再びろ過した。 After 4 hours from the injection of oxygen gas, the reaction was completed, and after the temperature of the liquid (mixed slurry of solution and precipitate) was lowered to 70 ° C., a pressure filter made by Advantech with a filtration area of 0.01 m 2 ( It filtered using model number: KST-142). In the filtration, air was used as a pressurized gas, and the applied pressure (gauge pressure) was 0.4 MPa. The liquid after filtration was subjected to composition analysis. At that time, the precipitation rate of arsenic was calculated from the ratio between the arsenic concentration remaining in the liquid after filtration and the arsenic concentration in the pre-reaction liquid. The filtered solid content was a wet cake, which was repulped with pure water at a pulp concentration of 100 g / L for 1 hour and then filtered again.

洗浄・ろ過の終わった固形分を60℃で18時間乾燥した。乾燥した固形分は組成分析、溶出試験、粒度分布計による粒度測定、電子顕微鏡による結晶粒子の形状観察を実施した。
溶出試験は環境庁告示13号に則った方法で行った。すなわち、固形分とpH=5の水を1対10の割合で混合し、しんとう機で6時間しんとうさせた後、固液分離して、ろ過した液を組成分析した。
The solid content after washing and filtration was dried at 60 ° C. for 18 hours. The dried solid content was subjected to composition analysis, dissolution test, particle size measurement with a particle size distribution meter, and crystal particle shape observation with an electron microscope.
The dissolution test was carried out by a method according to Notification 13 of the Environment Agency. That is, the solid content and water of pH = 5 were mixed at a ratio of 1:10, and the mixture was stirred for 6 hours with a centrifugal machine, followed by solid-liquid separation and composition analysis of the filtered liquid.

得られた固形分の銅品位は1000ppmであった。反応前の初期ヒ素濃度とろ過後の液のヒ素濃度とから算出されたヒ素沈殿率は95.74%であり、反応時間4時間で高い沈殿率が達成された。溶出試験の結果、ヒ素の溶出量は0.05mg/Lであり、溶出基準の0.3mg/Lを十分にクリアした。SEM(電子顕微鏡)で観察したところ、斜方晶形であり、結晶性スコロダイトが生成していることが確認できた。   The obtained copper content of the solid content was 1000 ppm. The arsenic precipitation rate calculated from the initial arsenic concentration before the reaction and the arsenic concentration in the liquid after the filtration was 95.74%, and a high precipitation rate was achieved in the reaction time of 4 hours. As a result of the dissolution test, the dissolution amount of arsenic was 0.05 mg / L, which sufficiently cleared the dissolution standard of 0.3 mg / L. When observed by SEM (electron microscope), it was orthorhombic and it was confirmed that crystalline scorodite was generated.

〔実施例2〕
銅含有物質添加タイミングを1.5時間としたこと以外は、実施例1と同様の方法によって反応させた。
[Example 2]
The reaction was conducted in the same manner as in Example 1 except that the copper-containing substance addition timing was 1.5 hours.

得られた固形分の銅品位は662ppmであった。ろ過後の液のヒ素濃度から算出されたヒ素沈殿率は94.78%であり、反応時間4時間で高い沈殿率が達成された。溶出試験の結果、ヒ素の溶出量は0.12mg/Lであり、溶出基準の0.3mg/Lを十分にクリアした。SEM(電子顕微鏡)で観察したところ、斜方晶形であり、結晶性スコロダイトが生成していることが確認できた。   The obtained copper content of the solid content was 662 ppm. The arsenic precipitation rate calculated from the arsenic concentration of the liquid after filtration was 94.78%, and a high precipitation rate was achieved with a reaction time of 4 hours. As a result of the dissolution test, the dissolution amount of arsenic was 0.12 mg / L, which sufficiently cleared the dissolution standard of 0.3 mg / L. When observed by SEM (electron microscope), it was orthorhombic and it was confirmed that crystalline scorodite was generated.

〔実施例3〕
銅含有物質添加タイミングを2.0時間としたこと以外は、実施例1と同様の方法によって反応させた。
Example 3
The reaction was carried out in the same manner as in Example 1 except that the copper-containing substance addition timing was set to 2.0 hours.

得られた固形分の銅品位は577ppmであった。ろ過後の液のヒ素濃度から算出されたヒ素沈殿率は95.08%であり、反応時間4時間で高い沈殿率が達成された。溶出試験の結果、ヒ素の溶出量は0.06mg/Lであり、溶出基準の0.3mg/Lを十分にクリアした。SEM(電子顕微鏡)で観察したところ、斜方晶形であり、結晶性スコロダイトが生成していることが確認できた。   The copper content of the obtained solid content was 577 ppm. The arsenic precipitation rate calculated from the arsenic concentration of the liquid after filtration was 95.08%, and a high precipitation rate was achieved in a reaction time of 4 hours. As a result of the dissolution test, the dissolution amount of arsenic was 0.06 mg / L, which sufficiently cleared the dissolution standard of 0.3 mg / L. When observed by SEM (electron microscope), it was orthorhombic and it was confirmed that crystalline scorodite was generated.

〔実施例4〕
銅粉を溶液に対して0.5g/L添加したこと以外は、実施例1と同様の方法によって反応させた。
Example 4
The reaction was carried out in the same manner as in Example 1 except that 0.5 g / L of copper powder was added to the solution.

ろ過後の液のヒ素濃度から算出されたヒ素沈殿率は95.26%であり、反応時間4時間で高い沈殿率が達成された。溶出試験の結果、ヒ素の溶出量は0.07mg/Lであり、溶出基準の0.3mg/Lを十分にクリアした。SEM(電子顕微鏡)で観察したところ、斜方晶形であり、結晶性スコロダイトが生成していることが確認できた。   The arsenic precipitation rate calculated from the arsenic concentration of the liquid after filtration was 95.26%, and a high precipitation rate was achieved with a reaction time of 4 hours. As a result of the dissolution test, the dissolution amount of arsenic was 0.07 mg / L, which sufficiently cleared the dissolution standard of 0.3 mg / L. When observed by SEM (electron microscope), it was orthorhombic and it was confirmed that crystalline scorodite was generated.

〔実施例5〕
銅含有物質添加タイミングを2.0時間とし、銅粉を溶液に対して2.0g/L添加したこと以外は、実施例1と同様の方法によって反応させた。
Example 5
The reaction was carried out in the same manner as in Example 1 except that the addition timing of the copper-containing substance was 2.0 hours, and 2.0 g / L of copper powder was added to the solution.

得られた固形分の銅品位は1090ppmであった。ろ過後の液のヒ素濃度から算出されたヒ素沈殿率は95.28%であり、反応時間4時間で高い沈殿率が達成された。溶出試験の結果、ヒ素の溶出量は0.07mg/Lであり、溶出基準の0.3mg/Lを十分にクリアした。SEM(電子顕微鏡)で観察したところ、斜方晶形であり、結晶性スコロダイトが生成していることが確認できた。   The obtained copper content of the solid content was 1090 ppm. The arsenic precipitation rate calculated from the arsenic concentration of the liquid after filtration was 95.28%, and a high precipitation rate was achieved with a reaction time of 4 hours. As a result of the dissolution test, the dissolution amount of arsenic was 0.07 mg / L, which sufficiently cleared the dissolution standard of 0.3 mg / L. When observed by SEM (electron microscope), it was orthorhombic and it was confirmed that crystalline scorodite was generated.

〔実施例6〕
銅含有物質添加タイミングを2.0時間とし、銅粉を溶液に対して4.0g/L添加したこと以外は、実施例1と同様の方法によって反応させた。
Example 6
The reaction was performed in the same manner as in Example 1 except that the addition timing of the copper-containing substance was 2.0 hours and that 4.0 g / L of copper powder was added to the solution.

得られた固形分の銅品位は2130ppmであった。ろ過後の液のヒ素濃度から算出されたヒ素沈殿率は96.56%であり、反応時間4時間で高い沈殿率が達成された。溶出試験の結果、ヒ素の溶出量は0.09mg/Lであり、溶出基準の0.3mg/Lを十分にクリアした。SEM(電子顕微鏡)で観察したところ、斜方晶形であり、結晶性スコロダイトが生成していることが確認できた。   The obtained copper content of the solid content was 2130 ppm. The arsenic precipitation rate calculated from the arsenic concentration of the liquid after filtration was 96.56%, and a high precipitation rate was achieved with a reaction time of 4 hours. As a result of the dissolution test, the dissolution amount of arsenic was 0.09 mg / L, which sufficiently cleared the dissolution standard of 0.3 mg / L. When observed by SEM (electron microscope), it was orthorhombic and it was confirmed that crystalline scorodite was generated.

〔実施例7〕
銅粉の代わりに、硫酸銅(II)五水和物の粒(和光純薬工業社製)を添加後の溶液中の銅濃度が1.0g/Lとなるように固体で添加したこと以外は、実施例1と同様の方法によって反応させた。
Example 7
Other than adding copper (II) sulfate pentahydrate grains (manufactured by Wako Pure Chemical Industries, Ltd.) in place of copper powder, so that the copper concentration in the solution is 1.0 g / L. Was reacted in the same manner as in Example 1.

得られた固形分の銅品位は613ppmであった。ろ過後の液のヒ素濃度から算出されたヒ素沈殿率は95.12%であり、反応時間4時間で高い沈殿率が達成された。溶出試験の結果、ヒ素の溶出量は0.22mg/Lであり、溶出基準の0.3mg/Lをクリアした。SEM(電子顕微鏡)で観察したところ、斜方晶形であり、結晶性スコロダイトが生成していることが確認できた。   The obtained copper content of the solid content was 613 ppm. The arsenic precipitation rate calculated from the arsenic concentration of the liquid after filtration was 95.12%, and a high precipitation rate was achieved in a reaction time of 4 hours. As a result of the dissolution test, the dissolution amount of arsenic was 0.22 mg / L, which cleared the dissolution standard of 0.3 mg / L. When observed by SEM (electron microscope), it was orthorhombic and it was confirmed that crystalline scorodite was generated.

〔比較例1〕
銅粉の添加を行わなかったこと以外は、実施例1と同様の方法によって反応させた。
[Comparative Example 1]
It was made to react by the method similar to Example 1 except not having added copper powder.

反応ろ過後の液のヒ素濃度を反応前液のヒ素濃度で除算したヒ素の沈殿率は85.26%となった。溶出試験の結果、ヒ素の溶出量は0.33mg/Lであった。SEM(電子顕微鏡)で観察した所、斜方晶形であり、結晶性スコロダイトが生成していることが確認できた。   The precipitation rate of arsenic obtained by dividing the arsenic concentration of the solution after the reaction filtration by the arsenic concentration of the pre-reaction solution was 85.26%. As a result of the dissolution test, the dissolution amount of arsenic was 0.33 mg / L. When observed with an SEM (electron microscope), it was orthorhombic and it was confirmed that crystalline scorodite was produced.

〔比較例2〕
銅含有物質添加タイミングを酸化剤添加前としたこと以外は、実施例1と同様の方法によって反応させた。
[Comparative Example 2]
The reaction was carried out in the same manner as in Example 1 except that the addition timing of the copper-containing material was set before the addition of the oxidizing agent.

得られた固形分の銅品位は2400ppmであった。ろ過後の液のヒ素濃度から算出されたヒ素沈殿率は95.28%であり、反応時間4時間で高い沈殿率が達成された。溶出試験の結果、ヒ素の溶出量は0.23mg/Lであり、溶出基準の0.3mg/Lをクリアした。SEM(電子顕微鏡)で観察した所、斜方晶形であり、結晶性スコロダイトが生成していることが確認できた。   The obtained copper content of the solid content was 2400 ppm. The arsenic precipitation rate calculated from the arsenic concentration of the liquid after filtration was 95.28%, and a high precipitation rate was achieved with a reaction time of 4 hours. As a result of the dissolution test, the dissolution amount of arsenic was 0.23 mg / L, which cleared the dissolution standard of 0.3 mg / L. When observed with an SEM (electron microscope), it was orthorhombic and it was confirmed that crystalline scorodite was produced.

Figure 2011195367
Figure 2011195367

表1に示すように、本発明に従う実施例1〜7の方法によれば、反応時間4時間の時点でのヒ素沈殿率が比較例と比べて同等であり、かつヒ素溶出量も小さいことから、ヒ素溶液からヒ素の溶出濃度が低いヒ酸鉄化合物を短時間で合成することができ、且つヒ酸鉄化合物への銅の付着量を少なくできていることがわかる
また、前述のようにヒ酸鉄化合物の形状の悪化は、ヒ素の溶出量の増加という形で現れる。比較例のヒ素溶出量は実施例のものより高い値を示しているが、そもそも溶出値が0.数mg/L程度の極めて低い値である。このような低い値では、結晶性は良好と言え、その中で実施例は溶出値が極めて低いことから、結晶性がさらに良いと言える。しかし、このような低い値での比較は、結晶性だけの単純な説明では言い難く、むしろ、本発明によって結晶性の良化に加えてヒ素の溶出を抑制する作用があると言える。
As shown in Table 1, according to the methods of Examples 1 to 7 according to the present invention, the arsenic precipitation rate at the reaction time of 4 hours is equivalent to that of the comparative example, and the arsenic elution amount is small. It can be seen that an iron arsenate compound having a low elution concentration of arsenic can be synthesized from an arsenic solution in a short time and that the amount of copper adhering to the iron arsenate compound can be reduced. The deterioration of the shape of the iron oxide compound appears in the form of an increase in the amount of arsenic eluted. Although the arsenic elution amount of the comparative example shows a higher value than that of the example, the elution value is 0. It is an extremely low value of about several mg / L. At such a low value, it can be said that the crystallinity is good, and in the examples, the elution value is extremely low, so that the crystallinity is even better. However, such a comparison at a low value is difficult to say with a simple explanation of crystallinity alone. Rather, it can be said that the present invention has an effect of suppressing arsenic elution in addition to improving crystallinity.

本発明によれば、反応前処理溶液に酸化剤を加えて2価の鉄イオンと反応させる工程において、酸化剤の添加開始後、結晶性のヒ酸鉄化合物が生成した後に銅含有物質を添加し始めることで、ヒ素溶液から結晶性が良くヒ素の溶出濃度が低いヒ酸鉄化合物を短時間で合成することができ、且つヒ酸鉄化合物への銅の付着量を少なくすることができる。
上述の発明は、製錬中間物などの、ヒ素以外の各種の元素を含むヒ素含有物質を処理して得られるヒ素溶液から、ヒ素の溶出濃度が非常に小さい、鉄とヒ素の化合物を回収する方法として利用可能である。
According to the present invention, in the step of adding an oxidizing agent to the reaction pretreatment solution to react with divalent iron ions, after adding the oxidizing agent, after adding the copper-containing substance after the crystalline iron arsenate compound is formed As a result, an iron arsenate compound having good crystallinity and a low elution concentration of arsenic can be synthesized from the arsenic solution in a short time, and the amount of copper adhering to the iron arsenate compound can be reduced.
The above-described invention recovers an iron and arsenic compound having a very low arsenic elution concentration from an arsenic solution obtained by treating an arsenic-containing substance containing various elements other than arsenic, such as a smelting intermediate It can be used as a method.

Claims (5)

ヒ素溶液と2価鉄とを、常圧下で酸化剤と反応させてヒ酸鉄化合物を析出させる工程を含むヒ酸鉄化合物の製造方法において、
前記ヒ酸鉄化合物を析出させる工程は、結晶性のヒ酸鉄化合物が生成した後に銅含有物質を添加することを特徴とするヒ酸鉄化合物の製造方法。
In the method for producing an iron arsenate compound, the method comprising reacting an arsenic solution and divalent iron with an oxidizing agent under normal pressure to precipitate an iron arsenate compound,
The step of precipitating the iron arsenate compound comprises adding a copper-containing substance after the crystalline iron arsenate compound is formed.
前記銅含有物質は、前記反応の開始時の1時間以降、かつ前記反応の終了時の1時間以前に添加する請求項1に記載のヒ酸鉄化合物の製造方法。   The method for producing an iron arsenate compound according to claim 1, wherein the copper-containing substance is added after 1 hour at the start of the reaction and 1 hour before the end of the reaction. 前記銅含有物質は、処理液に対して、銅濃度にして0.5〜4.0g/Lとなるよう添加される請求項1または2に記載のヒ酸鉄化合物の製造方法。   The said copper containing substance is a manufacturing method of the iron arsenate compound of Claim 1 or 2 added so that it may become 0.5-4.0 g / L as a copper concentration with respect to a process liquid. 前記銅含有物質を添加する前の処理液の銅濃度が0.5g/L未満である請求項1、2または3に記載のヒ酸鉄化合物の製造方法。   The method for producing an iron arsenate compound according to claim 1, wherein the copper concentration of the treatment liquid before adding the copper-containing substance is less than 0.5 g / L. 前記銅含有物質は、金属銅、酸化銅または硫酸銅のいずれか1種以上である請求項1〜4に記載のいずれかのヒ酸鉄化合物の製造方法   The method for producing an iron arsenate compound according to any one of claims 1 to 4, wherein the copper-containing substance is at least one of metallic copper, copper oxide, and copper sulfate.
JP2010063060A 2010-03-18 2010-03-18 Method for producing iron arsenate compound Pending JP2011195367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063060A JP2011195367A (en) 2010-03-18 2010-03-18 Method for producing iron arsenate compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063060A JP2011195367A (en) 2010-03-18 2010-03-18 Method for producing iron arsenate compound

Publications (1)

Publication Number Publication Date
JP2011195367A true JP2011195367A (en) 2011-10-06

Family

ID=44874041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063060A Pending JP2011195367A (en) 2010-03-18 2010-03-18 Method for producing iron arsenate compound

Country Status (1)

Country Link
JP (1) JP2011195367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240513A (en) * 2013-06-11 2014-12-25 Dowaメタルマイン株式会社 Method of treating arsenic-containing solution
JP2015003852A (en) * 2013-05-21 2015-01-08 国立大学法人東北大学 Method of producing crystalline iron arsenate from solution containing pentavalent arsenic

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126104A (en) * 2006-11-17 2008-06-05 Dowa Metals & Mining Co Ltd Method of treating arsenic-containing liquid
JP2008143741A (en) * 2006-12-11 2008-06-26 Dowa Metals & Mining Co Ltd Manufacturing method of ferric-arsenic compound
WO2009011076A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating nonferrous smelting intermediate product containing arsenic
JP2009102192A (en) * 2007-10-23 2009-05-14 Nikko Kinzoku Kk Methods of making and washing scorodite
JP2010043359A (en) * 2009-10-26 2010-02-25 Nippon Mining & Metals Co Ltd Method for producing scorodite and method for recycling after-synthesis-solution of scorodite
JP2010284581A (en) * 2009-06-10 2010-12-24 Dowa Metals & Mining Co Ltd METHOD OF REMOVING Cu ION FROM ARSENIC ACID SOLUTION

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126104A (en) * 2006-11-17 2008-06-05 Dowa Metals & Mining Co Ltd Method of treating arsenic-containing liquid
JP2008143741A (en) * 2006-12-11 2008-06-26 Dowa Metals & Mining Co Ltd Manufacturing method of ferric-arsenic compound
WO2009011076A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating nonferrous smelting intermediate product containing arsenic
JP2009102192A (en) * 2007-10-23 2009-05-14 Nikko Kinzoku Kk Methods of making and washing scorodite
JP2010284581A (en) * 2009-06-10 2010-12-24 Dowa Metals & Mining Co Ltd METHOD OF REMOVING Cu ION FROM ARSENIC ACID SOLUTION
JP2010043359A (en) * 2009-10-26 2010-02-25 Nippon Mining & Metals Co Ltd Method for producing scorodite and method for recycling after-synthesis-solution of scorodite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015003852A (en) * 2013-05-21 2015-01-08 国立大学法人東北大学 Method of producing crystalline iron arsenate from solution containing pentavalent arsenic
JP2014240513A (en) * 2013-06-11 2014-12-25 Dowaメタルマイン株式会社 Method of treating arsenic-containing solution

Similar Documents

Publication Publication Date Title
EP2067748B1 (en) Process for producing iron arsenide compound with good crystallinity
US8110162B2 (en) Method of processing copper arsenic compound
US8092765B2 (en) Method of processing non-ferrous smelting intermediates containing arsenic
EP2174913B1 (en) Method of treating nonferrous smelting intermediate products containing arsenic
JP4960686B2 (en) Arsenic-containing liquid treatment method
CA2696325C (en) Iron arsenate powder
CA2648869A1 (en) Method of treating arsenic-containing solution
JP2010285340A (en) Scorodite-type iron/arsenic compound particle, production method thereof, and arsenic-containing solid
WO2010084877A1 (en) Processes for the disposal of arsenic
WO2011132729A1 (en) Method for producing crystalline iron arsenate starting material liquid from smoke and ash
CN113195412A (en) Pure iron-containing compound
JP6286155B2 (en) Method for producing crystalline iron arsenate from a solution containing pentavalent arsenic
JP4971933B2 (en) Method for producing iron arsenic compound
JP4822445B2 (en) Arsenic treatment method with seed crystals added
JP5156224B2 (en) Manufacturing method of iron arsenic compounds
JP2014205584A (en) Method for manufacturing scorodite from flue cinder in nonferrous smelting
JP2011195367A (en) Method for producing iron arsenate compound
JP2011184266A (en) Method for treating iron arsenate particle
JP5571517B2 (en) Separation of copper and arsenic from non-ferrous smelting intermediates containing copper and arsenic
JP2009018978A (en) Method for treating arsenic
JP6446229B2 (en) Method for producing crystalline iron arsenate from a solution containing pentavalent arsenic
JP6102590B2 (en) Method for producing scorodite
EP2042472A1 (en) Iron arsenate powder
JP2010284581A (en) METHOD OF REMOVING Cu ION FROM ARSENIC ACID SOLUTION
JP5762799B2 (en) Method for separating and recovering As and Cu from non-ferrous smelting intermediate products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106