JP2011195300A - Method of manufacturing fiber-reinforced layer for conveyor belt and fiber-reinforced layer for conveyor belt - Google Patents

Method of manufacturing fiber-reinforced layer for conveyor belt and fiber-reinforced layer for conveyor belt Download PDF

Info

Publication number
JP2011195300A
JP2011195300A JP2010065123A JP2010065123A JP2011195300A JP 2011195300 A JP2011195300 A JP 2011195300A JP 2010065123 A JP2010065123 A JP 2010065123A JP 2010065123 A JP2010065123 A JP 2010065123A JP 2011195300 A JP2011195300 A JP 2011195300A
Authority
JP
Japan
Prior art keywords
fiber
layer
warp
weft
reinforcement layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010065123A
Other languages
Japanese (ja)
Other versions
JP5494081B2 (en
Inventor
Yuko Okuno
裕子 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2010065123A priority Critical patent/JP5494081B2/en
Publication of JP2011195300A publication Critical patent/JP2011195300A/en
Application granted granted Critical
Publication of JP5494081B2 publication Critical patent/JP5494081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Belt Conveyors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a fiber-reinforced layer for a conveyor belt, which prevents the weft from being disturbed by securing superior trough property and buckling resistance to increase the strength thereof in the warp direction, and also to provide the fiber-reinforced layer for a conveyor belt.SOLUTION: This fiber-reinforced layer 1 is formed in a ply structure using polyketone fibers for the warp 2 thereof. Where the fineness of the warp 2 is D1 (dtex) and the number of upper strands is T (turns/10 cm), an upper stand factor K=TxD1is 1,000 to 2,400. The weft 3 of the fiber-reinforced layer is disposed in a density of 5-15 pieces/5 cm. The strength of the fiber-reinforced layer 1 in the weft direction is 150-350 N/cm. In the heat treatment of the fiber-reinforced layer 1 dipped in an adhesive liquid, a tension of 0.035 cN/dtex or below is applied thereto in the warp direction, the lateral both ends thereof are held by clamps 8, and the movement thereof in the warp direction is restrained, whereby the bending of the texture thereof after the heat treatment is 0-0.5%.

Description

本発明は、コンベヤベルト用繊維補強層の製造方法およびコンベヤベルト用繊維補強層に関し、さらに詳しくは、優れたトラフ性および耐座屈性を確保し、縦糸方向の強度向上を図るとともに、横糸の乱れを防止できるコンベヤベルト用繊維補強層の製造方法およびコンベヤベルト用繊維補強層に関するものである。   The present invention relates to a method for producing a fiber reinforced layer for a conveyor belt and a fiber reinforced layer for a conveyor belt. More specifically, the present invention secures excellent troughing and buckling resistance, and improves strength in the warp direction. The present invention relates to a method for producing a fiber reinforced layer for a conveyor belt capable of preventing disturbance and a fiber reinforced layer for a conveyor belt.

コンベヤベルトの心材としては、一般に、平織構造の繊維補強層を単数または複数積層したものが使用され、その繊維補強層の仕様については、種々提案されている(例えば、特許文献1、2参照)。平織構造の繊維補強層は、例えば、パイプコンベヤベルトや空気浮上式コンベヤベルトなどのキャリアローラや外側を保持するガイドパイプに馴染むように変形する性能(トラフ性)が強く求められるコンベヤベルトにも用いられている。   As the core material of the conveyor belt, generally, a single or a plurality of laminated fiber reinforced layers having a plain weave structure are used, and various specifications of the fiber reinforced layers have been proposed (for example, see Patent Documents 1 and 2). . Plain woven structure fiber reinforced layers are also used in conveyor belts that require strong deformation (troughing) properties to adapt to carrier rollers such as pipe conveyor belts and air levitation conveyor belts and guide pipes that hold the outside. It has been.

平織構造の繊維補強層の場合、横糸の配置密度、或いは、横糸の繊度を小さくして横剛性をある程度低減させることにより、トラフ性を向上させることができる。しかしながら、このような対策を講じると、縦糸のクリンプ(上下の湾曲)が小さくなるため、耐座屈性が悪化するという問題が生じる。また、繊維補強層はスチールコード補強層に比して長手方向(縦糸方向)の強度が劣るため、その向上が望まれていた。   In the case of a fiber reinforced layer having a plain weave structure, troughability can be improved by reducing the weft disposition density or the weft fineness to reduce the lateral stiffness to some extent. However, when such measures are taken, the crimp (up and down bending) of the warp yarn becomes small, which causes a problem that the buckling resistance deteriorates. Further, since the fiber reinforcing layer is inferior in strength in the longitudinal direction (warp direction) as compared with the steel cord reinforcing layer, improvement thereof has been desired.

さらに、繊維補強層は、接着液にディッピングさせた後の熱処理の際に、一般的に、縦糸方向にテンションを負荷して横糸方向は完全にフリーな状態にするため、横糸が乱れるという問題があった。横糸が乱れると、引張特性や耐久性等が変化して品質がばらついて悪影響が生じることになる。   Furthermore, the fiber reinforcing layer generally has a problem that the weft yarn is disturbed during the heat treatment after being dipped in the adhesive liquid, because a tension is generally applied in the warp direction and the weft direction is completely free. there were. If the weft is disturbed, the tensile properties, durability, etc. will change and the quality will vary, causing adverse effects.

特開平11−246018号公報JP-A-11-246018 特開2006−282299号公報JP 2006-282299 A

本発明の目的は、優れたトラフ性および耐座屈性を確保し、縦糸方向の強度向上を図るとともに、横糸の乱れを防止できるコンベヤベルト用繊維補強層の製造方法およびコンベヤベルト用繊維補強層を提供することにある。   An object of the present invention is to provide a fiber reinforced layer for a conveyor belt and a fiber reinforced layer for a conveyor belt, which can ensure excellent trough and buckling resistance, improve strength in the warp direction, and prevent disturbance of the weft. Is to provide.

上記目的を達成するため本発明のコンベヤベルト用繊維補強層の製造方法は、平織構造の繊維補強層の縦糸を、フィラメント糸を1本または複数本ずつ同一方向に下撚りし、次いで、これら下撚りした糸を合わせて逆方向に上撚りした諸撚り構造とし、その上撚りについて、縦糸の繊度D1(dtex)、縦糸の上撚り数T(回/10cm)とした際に下記(1)式による算出される上撚り係数Kを1000〜2400にするとともに、繊維補強層の横糸を5〜15本/5cmの密度で配置し、繊維補強層の横糸方向強度を150〜350N/cmにしたコンベヤベルト用繊維補強層の製造方法であって、前記縦糸にポリケトン繊維を使用し、接着液にディッピングさせた繊維補強層の熱処理を行なう際に、繊維補強層の縦糸方向に0.035cN/dtex以下のテンションを負荷して、横糸方向は繊維補強層の動きを拘束するだけの状態にして処理を行なうことにより、熱処理後の繊維補強層の布目曲がりを0〜0.5%にすることを特徴とする。
K=T×D11/2・・・(1)
In order to achieve the above object, the method for producing a fiber reinforced layer for a conveyor belt according to the present invention is such that a warp yarn of a fiber reinforced layer having a plain weave structure is twisted in one or more filament yarns in the same direction, and then When the twisted yarns are combined and twisted in the opposite direction to form various twisted structures, the warp yarn fineness D1 (dtex) and warp yarn upper twist number T (times / 10 cm) are expressed by the following formula (1) Conveyor in which the upper twist coefficient K calculated by the above is set to 1000 to 2400, the wefts of the fiber reinforcement layer are arranged at a density of 5 to 15 pieces / 5 cm, and the strength in the weft direction of the fiber reinforcement layer is 150 to 350 N / cm A method for producing a fiber reinforced layer for a belt, wherein a polyketone fiber is used for the warp, and when heat-treating the fiber reinforced layer dipped in an adhesive solution, 0.03 in the warp direction of the fiber reinforced layer. By applying a tension of cN / dtex or less and performing the treatment in a state in which the weft direction only restrains the movement of the fiber reinforcing layer, the fabric bending of the fiber reinforcing layer after heat treatment is reduced to 0 to 0.5%. It is characterized by doing.
K = T × D1 1/2 (1)

ここで、前記横糸のカバーファクタを300〜450にするとともに、繊維補強層のカバーファクタを3300以下にし、前記横糸の繊度D2を400〜1400dtexにし、繊維補強層を接着液にディッピングさせる前に、繊維補強層の幅方向両端部で、前記横糸の先端部分を繊維補強層の内側に折り返して編み込むことによりタックイン構造にすることもできる。前記ポリケトン繊維の雰囲気温度25℃のときの弾性率は、例えば200〜1000cN/dtex、160℃×30分の乾熱収縮率は、例えば0.2〜1.0%である。   Here, the cover factor of the weft yarn is 300 to 450, the cover factor of the fiber reinforcement layer is 3300 or less, the fineness D2 of the weft yarn is 400 to 1400 dtex, and before the fiber reinforcement layer is dipped in the adhesive liquid, A tuck-in structure can also be obtained by folding and weaving the tip portion of the weft yarn inside the fiber reinforcement layer at both ends in the width direction of the fiber reinforcement layer. The elastic modulus of the polyketone fiber at an atmospheric temperature of 25 ° C. is, for example, 200 to 1000 cN / dtex, and the dry heat shrinkage rate of 160 ° C. × 30 minutes is, for example, 0.2 to 1.0%.

本発明のコンベヤベルト用繊維補強層は、コンベヤベルトに埋設される平織構造の繊維補強層の縦糸を、フィラメント糸を1本または複数本ずつ同一方向に下撚りし、次いで、これら下撚りした糸を合わせて逆方向に上撚りした諸撚り構造とし、その上撚りについて、縦糸の繊度D1(dtex)、縦糸の上撚り数T(回/10cm)とした際に下記(1)式による算出される上撚り係数Kを1000〜2400にするとともに、繊維補強層の横糸の配置密度を5〜15本/5cmとし、繊維補強層の横糸方向強度を150〜350N/cmにしたコンベヤベルト用繊維補強層であって、前記縦糸がポリケトン繊維であり、接着液にディッピングさせた繊維補強層の熱処理後の布目曲がりが0〜0.5%であることを特徴とする。
K=T×D11/2・・・(1)
The fiber reinforced layer for a conveyor belt according to the present invention is a yarn in which warp yarns of a plain woven fiber reinforced layer embedded in a conveyor belt are twisted one or more filament yarns in the same direction, and then these twisted yarns. The twisted structure is twisted in the opposite direction and the twist is calculated by the following equation (1) when the warp yarn fineness D1 (dtex) and warp yarn twist T (times / 10 cm) are used. The fiber reinforcement for conveyor belts has an upper twist coefficient K of 1000 to 2400, a weft density of the fiber reinforcement layer of 5 to 15 pieces / 5 cm, and a weft direction strength of the fiber reinforcement layer of 150 to 350 N / cm. The warp yarn is a polyketone fiber, and the fabric bending after heat treatment of the fiber reinforcing layer dipped in the adhesive liquid is 0 to 0.5%.
K = T × D1 1/2 (1)

ここで、前記横糸のカバーファクタが300〜450であるとともに、繊維補強層のカバーファクタが3300以下であり、前記横糸の繊度D2が400〜1400dtexであり、繊維補強層の幅方向両端部が、前記横糸の先端部分が繊維補強層の内側に折り返して編み込まれたタックイン構造である仕様にすることもできる。前記ポリケトン繊維の雰囲気温度25℃のときの弾性率は、例えば200〜1000cN/dtex、160℃×30分の乾熱収縮率は、例えば0.2〜1.0%である。   Here, the cover factor of the weft is 300 to 450, the cover factor of the fiber reinforcement layer is 3300 or less, the fineness D2 of the weft is 400 to 1400 dtex, and both ends in the width direction of the fiber reinforcement layer are It can also be set as the specification which is the tuck-in structure where the front-end | tip part of the said weft was folded and knitted inside the fiber reinforcement layer. The elastic modulus of the polyketone fiber at an atmospheric temperature of 25 ° C. is, for example, 200 to 1000 cN / dtex, and the dry heat shrinkage rate of 160 ° C. × 30 minutes is, for example, 0.2 to 1.0%.

本発明によれば、繊維補強層の横糸の配置密度を5〜15本/5cmとし、繊維補強層の横糸方向強度を150〜350N/cmにしたことにより、コンベヤベルトにおいては適度なトラフ性を得ることができる。   According to the present invention, the arrangement density of the weft yarn in the fiber reinforcement layer is 5 to 15/5 cm, and the strength in the weft direction of the fiber reinforcement layer is 150 to 350 N / cm. Obtainable.

また、横糸の配置密度を上記のように比較的小さくしていながら、縦糸に高弾性率および高強度の特性を有するポリケトン繊維を使用して諸撚り構造にするとともに、上記(1)式により算出される縦糸の上撚り係数Kを適正な範囲(K=1000〜2400)に設定したので、縦糸方向の強度および繊維補強層の耐座屈性を向上させることができる。   In addition, while the arrangement density of the weft yarns is relatively small as described above, a polyketone fiber having high elastic modulus and high strength characteristics is used for the warp yarns, and a twisted structure is obtained. Since the upper twist coefficient K of the warp yarn is set to an appropriate range (K = 1000 to 2400), the strength in the warp direction and the buckling resistance of the fiber reinforcement layer can be improved.

さらに、接着液にディッピングさせた繊維補強層の熱処理を行なう際に、繊維補強層の縦糸方向に0.035cN/dtex以下のテンションを負荷して、横糸方向は繊維補強層の動きを拘束するだけの状態にして処理を行なうことにより、熱処理後の繊維補強層の布目曲がりを0〜0.5%にして横糸の乱れが抑制される。   Further, when heat-treating the fiber reinforcement layer dipped in the adhesive liquid, a tension of 0.035 cN / dtex or less is applied in the warp direction of the fiber reinforcement layer, and the weft direction only restrains the movement of the fiber reinforcement layer. By performing the treatment in this state, the warp of the weft yarn is suppressed by setting the fabric bending of the fiber reinforcement layer after the heat treatment to 0 to 0.5%.

コンベヤベルトに埋設されている本発明のコンベヤベルト用繊維補強層を例示する断面図である。It is sectional drawing which illustrates the fiber reinforcement layer for conveyor belts of this invention currently embed | buried under the conveyor belt. 図1のコンベヤベルトを一部切欠いて例示する斜視図である。It is a perspective view which illustrates the conveyor belt of FIG. 本発明の繊維補強層を構成する縦糸の諸撚り構造を例示する説明図である。It is explanatory drawing which illustrates the twist structure of the warp which comprises the fiber reinforcement layer of this invention. 本発明の繊維補強層を接着液にディッピングさせた後の熱処理工程を例示する説明図である。It is explanatory drawing which illustrates the heat processing process after dipping the fiber reinforcement layer of this invention to adhesive liquid. 本発明の繊維補強層の別の実施形態を例示する平面図である。It is a top view which illustrates another embodiment of the fiber reinforcement layer of this invention. コンベヤベルトをプーリ間に架張した状態を例示する側面図である。It is a side view which illustrates the state where the conveyor belt was stretched between pulleys.

以下、本発明のコンベヤベルト用繊維補強層の製造方法およびコンベヤベルト用繊維補強層を図に示した実施形態に基づいて説明する。   Hereinafter, the manufacturing method of the fiber reinforcement layer for conveyor belts of this invention and the fiber reinforcement layer for conveyor belts are demonstrated based on embodiment shown in the figure.

図1、図2に例示するように、本発明のコンベヤベルト用繊維補強層1(1a、1b、1c、1d)は、上ゴム層4と下ゴム層5との間に心材としてコンベヤベルト6に埋設されている。繊維補強層1の積層数はコンベヤベルト6に対する要求性能(剛性、伸び等)により決定され、4層に限定されず、単層或いはその他の複数層となる。これら繊維補強層1a、1b、1c、1dは、ベルト長手方向に延びる縦糸2と、ベルト幅方向に延びる横糸3とが交互に上下に交差する平織構造であり、すべての層が同仕様になっている。   As illustrated in FIGS. 1 and 2, the fiber reinforced layer 1 (1 a, 1 b, 1 c, 1 d) for the conveyor belt of the present invention has a conveyor belt 6 as a core between the upper rubber layer 4 and the lower rubber layer 5. It is buried in. The number of laminated fiber reinforced layers 1 is determined by the required performance (rigidity, elongation, etc.) for the conveyor belt 6 and is not limited to four layers, but may be a single layer or other plural layers. These fiber reinforcement layers 1a, 1b, 1c, and 1d have a plain weave structure in which warp yarns 2 extending in the belt longitudinal direction and weft yarns 3 extending in the belt width direction alternately intersect vertically, and all the layers have the same specifications. ing.

繊維補強層1を構成する縦糸2は、ポリケトン繊維により形成されている。このポリケトン繊維の雰囲気温度25℃のときの弾性率は、例えば200〜1000cN/dtex、160℃×30分(160℃で30分加熱)の乾熱収縮率は、例えば0.2〜1.0%である。より好ましくは、上記弾性率は300〜500cN/dtex、上記乾熱収縮率は0.4〜0.7%である。乾熱収縮率は、JIS L 1013に準拠して測定した値である。ポリケトン繊維を使用することにより、繊維補強層1の縦糸方向の強度を向上させている。横糸3は例えば、ポリエステル、ポリケトン、アラミド、ビニロン、ナイロンなどの樹脂繊維で形成されている。   The warp yarn 2 constituting the fiber reinforcement layer 1 is formed of polyketone fibers. The modulus of elasticity of the polyketone fiber when the ambient temperature is 25 ° C. is, for example, 200 to 1000 cN / dtex, and the dry heat shrinkage rate of 160 ° C. × 30 minutes (heating at 160 ° C. for 30 minutes) is, for example, 0.2 to 1.0. %. More preferably, the elastic modulus is 300 to 500 cN / dtex, and the dry heat shrinkage is 0.4 to 0.7%. The dry heat shrinkage rate is a value measured according to JIS L 1013. By using the polyketone fiber, the strength of the fiber reinforcing layer 1 in the warp direction is improved. The weft 3 is formed of resin fibers such as polyester, polyketone, aramid, vinylon, nylon, and the like.

縦糸2は図3に例示するように、複数のフィラメント糸2aをそれぞれ1本ずつ同一方向に下撚りし、次いで、これら下撚りしたフィラメント糸2aを合わせて逆方向に上撚りした諸撚り構造になっている。下撚りするフィラメント糸2aは1本に限らず、複数本ずつ同一方向に下撚りするようにしてもよい。また、上撚りする糸は複数本であればよい。   As illustrated in FIG. 3, the warp yarn 2 has a twisted structure in which a plurality of filament yarns 2a are respectively twisted one by one in the same direction, and then these filament yarns 2a are combined and twisted in opposite directions. It has become. The number of filament yarns 2a to be twisted is not limited to one, and a plurality of filament yarns 2a may be twisted in the same direction. Further, it is sufficient that the number of yarns to be twisted is plural.

諸撚り構造の縦糸2は、1本または複数のフィラメント糸を引き揃え、一方向に撚っただけの片撚り構造に比べて、良好な耐座屈性を得ることができる。下撚りと上撚りは、異なる撚り数にすることもできるが、安定性を得るために同数、或いは略同数とすることが好ましい。   The warp yarn 2 having a multiple twist structure can obtain better buckling resistance as compared with a single twist structure in which one or a plurality of filament yarns are aligned and twisted in one direction. Although the lower twist and the upper twist may be different, the same number or approximately the same number is preferable in order to obtain stability.

ここで、上撚りについては、縦糸2の繊度D1(dtex)、縦糸2の上撚り数T(回/10cm)とした際に、K=T×D11/2により算出される上撚り係数Kを1000〜2400にしている。この上撚り係数Kは、大きくなる程、縦糸2の引張り強度は低下し、耐座屈性は向上する。そこで、本発明では、上撚り係数Kを1000以上2400以下の範囲に設定して繊維補強層1の強度低下を抑制しつつ、一段と耐座屈性を向上させている。 Here, regarding the upper twist, when the fineness D1 (dtex) of the warp yarn 2 and the upper twist number T (times / 10 cm) of the warp yarn 2 are set, the upper twist coefficient K calculated by K = T × D1 1/2 Is set to 1000 to 2400. As the upper twist coefficient K increases, the tensile strength of the warp 2 decreases and the buckling resistance improves. Therefore, in the present invention, the buckling resistance is further improved while setting the upper twist coefficient K in the range of 1000 or more and 2400 or less to suppress the strength reduction of the fiber reinforcement layer 1.

さらに、繊維補強層1の横糸3の配置密度を5〜15本/5cmとし、繊維補強層1の横糸方向強度を150〜350N/cmにしている。この横糸方向強度とは、繊維補強層1を横糸方向に引張った際の破断強度であり、JIS L 1096に記載されているラベルストリップ法に準拠した引張試験方法により得られる。   Furthermore, the arrangement density of the weft yarns 3 in the fiber reinforcement layer 1 is 5 to 15/5 cm, and the strength in the weft direction of the fiber reinforcement layer 1 is 150 to 350 N / cm. The strength in the weft direction is the breaking strength when the fiber reinforcement layer 1 is pulled in the weft direction, and is obtained by a tensile test method based on the label strip method described in JIS L 1096.

横糸3の配置密度および繊維補強層1の横糸方向強度を上記範囲に設定することにより、コンベヤベルト6の横剛性が適度な大きさになる。これにより、パイプコンベヤベルトの場合ではキャリアローラに馴染むように変形し易くなり、空気浮上式コンベヤベルトの場合では、ベルト外側を保持するガイドパイプに馴染むように変形し易くなり、良好なトラフ性を得ることができる。   By setting the arrangement density of the wefts 3 and the strength in the weft direction of the fiber reinforcing layer 1 within the above ranges, the lateral rigidity of the conveyor belt 6 becomes an appropriate size. As a result, in the case of a pipe conveyor belt, it becomes easy to deform so as to adapt to the carrier roller, and in the case of an air floating type conveyor belt, it becomes easy to deform so as to adapt to the guide pipe that holds the outside of the belt, and good trough property is achieved. Obtainable.

この繊維補強層1は接着液にディッピングさせた後、熱処理されている。この熱処理は、例えば、後述するドライ工程、ベーキング工程から構成されている。この熱処理後の繊維補強層1の布目曲がりが0〜0.5%になっている。布目曲がりとは、JIS L 1096に規定された方法により測定された布目曲がり(%)である。   The fiber reinforcement layer 1 is heat treated after being dipped in an adhesive solution. This heat treatment includes, for example, a dry process and a baking process described later. The fabric bending of the fiber reinforcement layer 1 after this heat treatment is 0 to 0.5%. The cloth bending is a cloth bending (%) measured by a method defined in JIS L 1096.

コンベヤベルト6は、図6に例示するように、プーリ7の間に張架されて使用される。コンベヤベルト6がプーリ7まわりを通過する際には、繊維補強層1の中で最内周側の繊維補強層1aに最大の圧縮応力が生じるため、最も座屈し易くなる。そこで、本発明の繊維補強層1を、最内周側の繊維補強層1aにのみ適用してもよい。或いは、本発明の繊維補強層1を、少なくとも最内周側の1層の繊維補強層1aに適用するようにしてもよい。   The conveyor belt 6 is stretched between pulleys 7 as illustrated in FIG. When the conveyor belt 6 passes around the pulley 7, the maximum compressive stress is generated in the innermost fiber reinforcing layer 1 a in the fiber reinforcing layer 1, so that it is most easily buckled. Therefore, the fiber reinforcing layer 1 of the present invention may be applied only to the innermost fiber reinforcing layer 1a. Alternatively, the fiber reinforcing layer 1 of the present invention may be applied to at least one innermost fiber reinforcing layer 1a.

図5に繊維補強層1の別の実施形態を示す。この実施形態と先の実施形態とは異なり、繊維補強層1の幅方向両端部が、横糸3の先端部分が繊維補強層1の内側に折り返して編み込まれている。即ち、幅方向両端部に横糸3の折り返し部Bを有するタックイン構造になっている。折り返し部Bの幅は、例えば、1cm〜3cm程度である。   FIG. 5 shows another embodiment of the fiber reinforcing layer 1. Unlike this embodiment and the previous embodiment, both ends in the width direction of the fiber reinforcement layer 1 are knitted with the tip portion of the weft 3 folded back inside the fiber reinforcement layer 1. That is, it has a tuck-in structure having folded portions B of the weft 3 at both ends in the width direction. The width of the folded portion B is, for example, about 1 cm to 3 cm.

また、この実施形態では、横糸3のカバーファクタを300〜450とするとともに、繊維補強層1のカバーファクタを3300以下とし、横糸3の繊度D2を400〜1400dtexにすることが好ましい。その他の仕様は、先の実施形態を同じである。   In this embodiment, it is preferable that the cover factor of the weft yarn 3 is 300 to 450, the cover factor of the fiber reinforcement layer 1 is 3300 or less, and the fineness D2 of the weft yarn 3 is 400 to 1400 dtex. Other specifications are the same as in the previous embodiment.

縦糸2のカバーファクタK1、横糸3のカバーファクタK2は、下記(2)、(3)式により算出される。
K1=d1×(D1/b1)1/2・・・(2)
K2=d2×(D2/b2)1/2・・・(3)
The cover factor K1 of the warp yarn 2 and the cover factor K2 of the weft yarn 3 are calculated by the following equations (2) and (3).
K1 = d1 × (D1 / b1) 1/2 (2)
K2 = d2 × (D2 / b2) 1/2 (3)

ここで、d1、d2はそれぞれ縦糸2、横糸3の糸密度(本/50mm)、D1、D2はそれぞれ縦糸2、横糸3の繊度(dtex)、b1、b2はそれぞれ縦糸2、横糸3の糸比重(g/cm3)である。縦糸2のカバーファクタと横糸3のカバーファクタの合計値が繊維補強層1のカバーファクタになる。 Here, d1 and d2 are the yarn density of the warp yarn 2 and the weft yarn 3 (lines / 50 mm), D1 and D2 are the fineness (dtex) of the warp yarn 2 and the weft yarn 3, respectively, and b1 and b2 are the yarns of the warp yarn 2 and the weft yarn 3, respectively. Specific gravity (g / cm 3 ). The total value of the cover factor of the warp 2 and the cover factor of the weft 3 becomes the cover factor of the fiber reinforcement layer 1.

本発明の繊維補強層1の熱処理は以下の手順で行われる。接着液にディッピングさせた繊維補強層1の熱処理を行なう際に、縦糸方向に0.035cN/dtex以下の非常に低いテンションが負荷される。繊維補強層1の幅方向両端部(横糸方向両端部)は、エンドレスチェーン等の搬送手段9に取り付けられたクランプ8によって、縦糸方向に所定間隔をあけて保持される。繊維補強層1は、クランプ8によって横糸方向に積極的に引張られることはなく、横糸方向は繊維補強層1の動きが拘束されるだけの状態になる。   The heat treatment of the fiber reinforcing layer 1 of the present invention is performed in the following procedure. When the heat treatment of the fiber reinforcement layer 1 dipped in the adhesive liquid is performed, a very low tension of 0.035 cN / dtex or less is applied in the warp direction. Both ends in the width direction (both ends in the weft direction) of the fiber reinforcement layer 1 are held at predetermined intervals in the warp direction by clamps 8 attached to a conveying means 9 such as an endless chain. The fiber reinforcing layer 1 is not actively pulled in the weft direction by the clamp 8, and the weft direction is in a state in which the movement of the fiber reinforcing layer 1 is only restricted.

尚、上記したクランプ8を備えた装置に限らず、繊維補強層1に対して、縦糸方向には0.035cN/dtex以下の非常に低いテンションを負荷するとともに、横糸方向は繊維補強層の動きを拘束するだけの状態にすることができる装置であれば、他の構造、様式の装置を用いることもできる。   Not only the apparatus provided with the clamp 8 described above, a very low tension of 0.035 cN / dtex or less is applied to the fiber reinforcing layer 1 in the warp direction, and the movement of the fiber reinforcing layer is determined in the weft direction. As long as the device can be in a state that only restrains the device, devices of other structures and styles can be used.

この状態で繊維補強層1は、ドライ工程10、ベーキング工程11に連続的に順次送られて処理される。ドライ工程10では、例えば100℃〜150℃程度の雰囲気下を通過させて繊維補強層1に付着した接着液中の不要な成分を蒸発させる。ベーキング工程11では、例えば200℃〜230℃程度の雰囲気下を通過させて、引き続き乾燥後の接着液を反応、硬化させる。熱処理後の繊維補強層1を、上ゴム層4と下ゴム層5の間に介在させて金型内部で所定時間加硫することにより、コンベヤベルト6が完成する。   In this state, the fiber reinforcement layer 1 is successively sent to the dry process 10 and the baking process 11 in order and processed. In the drying step 10, unnecessary components in the adhesive liquid attached to the fiber reinforcement layer 1 are evaporated by passing through an atmosphere of about 100 ° C. to 150 ° C., for example. In the baking process 11, it passes through the atmosphere of about 200 degreeC-230 degreeC, for example, and the adhesive liquid after drying is made to react and harden | cure continuously. The fiber reinforced layer 1 after heat treatment is interposed between the upper rubber layer 4 and the lower rubber layer 5 and vulcanized for a predetermined time inside the mold, whereby the conveyor belt 6 is completed.

本発明では、繊維補強層1の熱処理の際に、繊維補強層の縦糸方向に0.035cN/dtex以下の小さなテンションしか負荷しないが、縦糸2にポリケトン繊維を使用して熱収縮を小さくしているので、縦糸2および横糸3の乱れが抑制される。即ち、熱収縮が大きい縦糸2を用いると、クランプ8で保持されていない繊維補強層1の幅方向中央部周辺の縦糸2が自由に収縮し、これに伴って横糸3も湾曲するという不具合が生じるが、本発明ではこのような不具合が防止できる。   In the present invention, during the heat treatment of the fiber reinforcement layer 1, only a small tension of 0.035 cN / dtex or less is applied in the warp direction of the fiber reinforcement layer. However, the heat shrinkage is reduced by using polyketone fibers for the warp 2. Therefore, the disturbance of the warp yarn 2 and the weft yarn 3 is suppressed. That is, when the warp 2 having a large thermal shrinkage is used, the warp 2 around the central portion in the width direction of the fiber reinforcement layer 1 not held by the clamp 8 is freely contracted, and the weft 3 is also bent accordingly. Although this occurs, the present invention can prevent such a problem.

そして、横糸方向は繊維補強層1の動きが拘束されているので、横糸3の乱れ(縦糸方向への乱れ)は抑制される。そのため、熱処理後の繊維補強層1の布目曲がりは0〜0.5%になる。したがって、コンベヤベルト6の引張特性や耐久性等の品質のばらつきが小さくなり、一定水準の安定した品質を確保し易くなる。   And since the movement of the fiber reinforcement layer 1 is restrained in the weft direction, the disturbance of the weft 3 (disturbance in the warp direction) is suppressed. Therefore, the fabric bending of the fiber reinforced layer 1 after heat treatment is 0 to 0.5%. Therefore, variations in quality such as the tensile characteristics and durability of the conveyor belt 6 are reduced, and it becomes easy to ensure a certain level of stable quality.

図5に例示した幅方向両端部をタックイン構造にした実施形態では、折り返し部Bを設けることにより、繊維補強層1の幅方向両端部の横糸3の配置密度が高くなっている。そのため、熱処理の際に繊維補強層1の両端部がクランプ8によって保持されても、繊維補強層1の幅方向両端部で縦糸2がばらける不具合、いわゆる耳割れを一段と確実に防止することができる。   In the embodiment in which both end portions in the width direction illustrated in FIG. 5 have a tuck-in structure, the arrangement density of the weft yarns 3 at both end portions in the width direction of the fiber reinforcement layer 1 is increased by providing the folded portions B. Therefore, even if both ends of the fiber reinforcement layer 1 are held by the clamps 8 during the heat treatment, it is possible to more surely prevent a problem that the warp yarns 2 are scattered at the both ends in the width direction of the fiber reinforcement layer 1, so-called ear cracks. it can.

平織構造の繊維補強層の横糸をナイロン66繊維として共通にして、縦糸の仕様および接着液にディッピングさせた後の熱処理でのテンションの負荷条件を表1のように異ならせて熱処理を行なった6種類の試験サンプル(実施例1〜3、比較例1〜3)を作製し、それぞれの試験サンプルについて布目曲がりと、これら試験サンプルを4層にして上ゴム層(3mm)、下ゴム層(2mm)を有するコンベヤベルトのサンプルを作製してトラフ性、耐座屈性、エンドレス加工性を評価した。結果は表1に示すとおりである。熱処理の条件は、ドライ工程(100℃〜150℃の所定温度)、ベーキング工程(200℃〜230℃の所定温度)であった。尚、表1の弾性率は雰囲気温度25℃のときの弾性率であり、乾熱収縮率は160℃で30分加熱した際の乾熱収縮率である。   The weft yarn of the fiber reinforced layer of the plain weave structure was made common as nylon 66 fiber, and the heat treatment was carried out by changing the specifications of warp yarn and the load condition of the tension in the heat treatment after dipping in the adhesive liquid as shown in Table 1. 6 Various types of test samples (Examples 1 to 3 and Comparative Examples 1 to 3) were prepared, and each test sample was bent into four layers, and these test samples were made into four layers, an upper rubber layer (3 mm) and a lower rubber layer (2 mm). Samples of conveyor belts having) were prepared and evaluated for troughability, buckling resistance, and endless workability. The results are as shown in Table 1. The heat treatment conditions were a dry process (predetermined temperature of 100 ° C. to 150 ° C.) and a baking process (predetermined temperature of 200 ° C. to 230 ° C.). The elastic modulus in Table 1 is the elastic modulus at an ambient temperature of 25 ° C., and the dry heat shrinkage is the dry heat shrinkage when heated at 160 ° C. for 30 minutes.

[布目曲がり]
JIS L 1096に規定されている方法により測定した布目曲がり(%)である。数値が小さい程、横糸の乱れが小さいをことを示す。
[Fabric bend]
This is the fabric bend (%) measured by the method defined in JIS L 1096. The smaller the value, the smaller the weft disturbance.

[トラフ性]
JIS K 6322(布層コンベヤベルト)に準拠して行なった。ベルトのサンプル(幅800mm、長さ150mm)の幅方向両端縁を支持バーにより固定し、サンプルを水平に引張った状態で各支持バー端を懸架し、24時間放置した後にサンプルの最大たわみ量を測定した。最大たわみ量が300mm超の場合を良好として○、200mm超300mm以下の場合を並として△、200mm以下の場合を悪いとして×で示した。
[Trough]
This was performed in accordance with JIS K 6322 (cloth layer conveyor belt). Fix both ends of the belt sample (width 800mm, length 150mm) in the width direction with support bars, suspend each support bar end in a state where the sample is pulled horizontally, and leave it for 24 hours. It was measured. A case where the maximum deflection amount is more than 300 mm is shown as “Good”, a case where it is more than 200 mm and less than 300 mm is regarded as Δ, and a case where it is less than 200 mm is shown as “Poor”.

[耐座屈性]
ベルトのサンプルを直径200mmのプーリに180°巻き付けた際の最も内周側に積層した繊維補強層の状態を確認した。最内周側の繊維補強層がプーリの周面に沿って追従した場合を○、追従せずに波打って縦糸が座屈し易い状態になった場合を×として評価した。
[Buckling resistance]
The state of the fiber reinforcement layer laminated on the innermost peripheral side when the belt sample was wound 180 ° around a pulley having a diameter of 200 mm was confirmed. The case where the innermost fiber reinforcing layer followed along the peripheral surface of the pulley was evaluated as “◯”, and the case where the warp yarn was easily buckled without following and evaluated as “x”.

[エンドレス加工性]
ベルトのサンプルの長手方向端部どうしを接合する際の加工性の良否を評価したもので、縦糸のばらけ具合が小さく、加工作業が円滑に行なえる場合を良好として○、縦糸のばらけ具合を大きく、加工作業が煩雑になる場合を悪いとして×で示した。
[Endless workability]
Evaluates the workability of the belt samples when joining the longitudinal ends of the belt sample. The degree of warp yarn dispersion is small and the case where the work can be performed smoothly is good. Is shown as x when the processing operation is complicated.

Figure 2011195300
Figure 2011195300

表1の結果から本発明の製造方法で製造した実施例1〜3では、布目曲がりが小さく品質が優れていることが分かる。また、実施例1〜3では、トラフ性、耐座屈性およびエンドレス加工性も優れていることが分かる。   From the results of Table 1, it can be seen that in Examples 1 to 3 manufactured by the manufacturing method of the present invention, the fabric bending is small and the quality is excellent. Moreover, in Examples 1-3, it turns out that trough property, buckling resistance, and endless workability are also excellent.

また、平織構造の繊維補強層の縦糸を実施例1〜3、比較例1と同じポリケトン繊維、横糸をナイロン66繊維として共通にするとともに、接着液にディッピングさせた後の熱処理でのテンションの負荷条件を縦糸方向に0.035cN/dtex以下、横糸方向は繊維補強層の動きを拘束するだけの状態にして共通として、繊維補強層および横糸のカバーファクタ、横糸の繊度、繊維補強層の幅方向両端部(耳部)での横糸の折り返し構造を表2のように異ならせた6種類の試験サンプル(実施例4〜6、比較例4〜6)を作製し、それぞれの試験サンプルについて耳割れの発生と、これら試験サンプルを4層にして上ゴム層(3mm)、下ゴム層(2mm)を有するコンベヤベルトのサンプルを作製して上記したトラフ性、耐座屈性、エンドレス加工性を評価した。結果は表2に示すとおりである。熱処理の条件は、ドライ工程(130℃)、ベーキング工程(220℃)であった。   Further, the warp yarn of the fiber reinforced layer of the plain weave structure is the same as the polyketone fiber in Examples 1 to 3 and Comparative Example 1, and the weft yarn is nylon 66 fiber, and the load of tension in the heat treatment after being dipped in the adhesive liquid The condition is 0.035 cN / dtex or less in the warp direction, and the weft direction is common only to restrain the movement of the fiber reinforcement layer. The cover factor of the fiber reinforcement layer and the weft, the fineness of the weft, the width direction of the fiber reinforcement layer Six types of test samples (Examples 4 to 6 and Comparative Examples 4 to 6) having different weft yarn folding structures at both ends (ear portions) as shown in Table 2 were prepared, and the ear cracks were obtained for each test sample. And a sample of the conveyor belt having the upper rubber layer (3 mm) and the lower rubber layer (2 mm) by making these test samples into four layers and producing the trough, buckling, It was evaluated dress workability. The results are as shown in Table 2. The heat treatment conditions were a dry process (130 ° C.) and a baking process (220 ° C.).

[耳割れ]
熱処理後の試験サンプルの幅方向両端部の耳割れの有無を確認し、耳割れが発生しなかった場合を○、耳割れが発生した場合を×で示した。
[Ear cracks]
The presence or absence of ear cracks at both ends in the width direction of the test sample after the heat treatment was confirmed, and the case where ear cracks did not occur was indicated by ○, and the case where ear cracks occurred was indicated by ×.

Figure 2011195300
Figure 2011195300

表2の結果より、本発明の製造方法で製造した実施例4〜6では、耳割れを防止できるとともに、トラフ性、耐座屈性およびエンドレス加工性も優れていることが分かる。   From the results in Table 2, it can be seen that in Examples 4 to 6 produced by the production method of the present invention, the ear cracks can be prevented and the trough property, buckling resistance and endless workability are also excellent.

1、1a、1b、1c、1d 繊維補強層
2 縦糸
2a フィラメント糸
3 横糸
4 上ゴム層
5 下ゴム層
6 コンベヤベルト
7 プーリ
8 クランプ
9 搬送手段
10 ドライ工程
11 ベーキング工程
B 折り返し部
1, 1a, 1b, 1c, 1d Fiber reinforcing layer 2 Warp yarn 2a Filament yarn 3 Weft 4 Upper rubber layer 5 Lower rubber layer 6 Conveyor belt 7 Pulley 8 Clamp 9 Conveying means 10 Drying step 11 Baking step B Folding part

Claims (6)

平織構造の繊維補強層の縦糸を、フィラメント糸を1本または複数本ずつ同一方向に下撚りし、次いで、これら下撚りした糸を合わせて逆方向に上撚りした諸撚り構造とし、その上撚りについて、縦糸の繊度D1(dtex)、縦糸の上撚り数T(回/10cm)とした際に下記(1)式による算出される上撚り係数Kを1000〜2400にするとともに、繊維補強層の横糸を5〜15本/5cmの密度で配置し、繊維補強層の横糸方向強度を150〜350N/cmにしたコンベヤベルト用繊維補強層の製造方法であって、前記縦糸にポリケトン繊維を使用し、接着液にディッピングさせた繊維補強層の熱処理を行なう際に、繊維補強層の縦糸方向に0.035cN/dtex以下のテンションを負荷して、横糸方向は繊維補強層の動きを拘束するだけの状態にして処理を行なうことにより、熱処理後の繊維補強層の布目曲がりを0〜0.5%にするコンベヤベルト用繊維補強層の製造方法。
K=T×D11/2・・・(1)
The warp yarn of the fiber reinforced layer of the plain weave structure is twisted in the same direction one by one or more filament yarns, and then combined into a twisted structure in which these twisted yarns are combined and twisted in the opposite direction. About the fineness D1 (dtex) of the warp, and the upper twist coefficient K calculated by the following formula (1) when the upper twist number T (times / 10 cm) of the warp is 1000-2400, A method for producing a fiber reinforced layer for a conveyor belt in which wefts are arranged at a density of 5 to 15 yarns / 5 cm and the weft direction strength of the fiber reinforced layer is 150 to 350 N / cm, wherein polyketone fibers are used for the warp yarns. When the fiber reinforcement layer dipped in the adhesive solution is heat-treated, a tension of 0.035 cN / dtex or less is applied in the warp direction of the fiber reinforcement layer, and the weft direction is the movement of the fiber reinforcement layer. Method for producing by performing the process in a state of only restraint, conveyor belts textile reinforcement layer to the bend weft fiber reinforced layer after heat treatment 0 to 0.5%.
K = T × D1 1/2 (1)
前記横糸のカバーファクタを300〜450にするとともに、繊維補強層のカバーファクタを3300以下にし、前記横糸の繊度D2を400〜1400dtexにし、繊維補強層を接着液にディッピングさせる前に、繊維補強層の幅方向両端部で、前記横糸の先端部分を繊維補強層の内側に折り返して編み込むことによりタックイン構造にする請求項1に記載のコンベヤベルト用繊維補強層の製造方法。   Before the cover factor of the weft yarn is set to 300 to 450, the cover factor of the fiber reinforcement layer is set to 3300 or less, the fineness D2 of the weft yarn is set to 400 to 1400 dtex, and the fiber reinforcement layer is dipped in the adhesive liquid, the fiber reinforcement layer The manufacturing method of the fiber reinforcement layer for conveyor belts of Claim 1 which makes it a tuck-in structure by folding the front-end | tip part of the said weft inside a fiber reinforcement layer at the both ends of the width direction, and knitting. 前記ポリケトン繊維の雰囲気温度25℃のときの弾性率が200〜1000cN/dtex、160℃×30分の乾熱収縮率が0.2〜1.0%である請求項1または2に記載のコンベヤベルト用繊維補強層の製造方法。   The conveyor according to claim 1 or 2, wherein the polyketone fiber has an elastic modulus of 200 to 1000 cN / dtex at an atmospheric temperature of 25 ° C, and a dry heat shrinkage of 0.2 to 1.0% at 160 ° C for 30 minutes. A method for producing a fiber reinforcing layer for a belt. コンベヤベルトに埋設される平織構造の繊維補強層の縦糸を、フィラメント糸を1本または複数本ずつ同一方向に下撚りし、次いで、これら下撚りした糸を合わせて逆方向に上撚りした諸撚り構造とし、その上撚りについて、縦糸の繊度D1(dtex)、縦糸の上撚り数T(回/10cm)とした際に下記(1)式による算出される上撚り係数Kを1000〜2400にするとともに、繊維補強層の横糸の配置密度を5〜15本/5cmとし、繊維補強層の横糸方向強度を150〜350N/cmにしたコンベヤベルト用繊維補強層であって、前記縦糸がポリケトン繊維であり、接着液にディッピングさせた繊維補強層の熱処理後の布目曲がりが0〜0.5%であるコンベヤベルト用繊維補強層。
K=T×D11/2・・・(1)
Various twists of warp yarns in a plain woven structure embedded in a conveyor belt, with one or more filament yarns twisted in the same direction, and then twisted together in the opposite direction. The upper twist coefficient K calculated by the following formula (1) is set to 1000 to 2400 when the structure is used and the upper twist is the warp fineness D1 (dtex) and the warp upper twist number T (times / 10 cm). And a fiber reinforcing layer for a conveyor belt in which the weft density of the fiber reinforcing layer is 5 to 15 pieces / 5 cm and the weft direction strength of the fiber reinforcing layer is 150 to 350 N / cm, wherein the warp is a polyketone fiber A fiber reinforced layer for a conveyor belt, wherein the fabric bend after the heat treatment of the fiber reinforced layer dipped in the adhesive liquid is 0 to 0.5%.
K = T × D1 1/2 (1)
前記横糸のカバーファクタが300〜450であるとともに、繊維補強層のカバーファクタが3300以下であり、前記横糸の繊度D2が400〜1400dtexであり、繊維補強層の幅方向両端部が、前記横糸の先端部分が繊維補強層の内側に折り返して編み込まれたタックイン構造である請求項4に記載のコンベヤベルト用繊維補強層。   The cover factor of the weft yarn is 300 to 450, the cover factor of the fiber reinforcement layer is 3300 or less, the fineness D2 of the weft yarn is 400 to 1400 dtex, and both ends in the width direction of the fiber reinforcement layer are The fiber reinforcing layer for a conveyor belt according to claim 4, which has a tuck-in structure in which a tip portion is folded and knitted inside the fiber reinforcing layer. 前記ポリケトン繊維の雰囲気温度25℃のときの弾性率が200〜1000cN/dtex、160℃×30分の乾熱収縮率が0.2〜1.0%である請求項4または5に記載のコンベヤベルト用繊維補強層。   The conveyor according to claim 4 or 5, wherein the polyketone fiber has an elastic modulus of 200 to 1000 cN / dtex at an atmospheric temperature of 25 ° C and a dry heat shrinkage of 160 to 30 minutes of 0.2 to 1.0%. Fiber reinforcement layer for belts.
JP2010065123A 2010-03-19 2010-03-19 Manufacturing method of fiber reinforced layer for conveyor belt and fiber reinforced layer for conveyor belt Expired - Fee Related JP5494081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010065123A JP5494081B2 (en) 2010-03-19 2010-03-19 Manufacturing method of fiber reinforced layer for conveyor belt and fiber reinforced layer for conveyor belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065123A JP5494081B2 (en) 2010-03-19 2010-03-19 Manufacturing method of fiber reinforced layer for conveyor belt and fiber reinforced layer for conveyor belt

Publications (2)

Publication Number Publication Date
JP2011195300A true JP2011195300A (en) 2011-10-06
JP5494081B2 JP5494081B2 (en) 2014-05-14

Family

ID=44873985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065123A Expired - Fee Related JP5494081B2 (en) 2010-03-19 2010-03-19 Manufacturing method of fiber reinforced layer for conveyor belt and fiber reinforced layer for conveyor belt

Country Status (1)

Country Link
JP (1) JP5494081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693680A (en) * 2020-04-25 2020-09-22 平顶山神马帘子布发展有限公司 Method for measuring full-width warp density of gum-dipped cord fabric and method for improving warp density uniformity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232129A (en) * 2003-01-30 2004-08-19 Kanebo Ltd Reinforcing fiber fabric and reinforcing fiber sheet
JP2004243621A (en) * 2003-02-13 2004-09-02 Yokohama Rubber Co Ltd:The Method for manufacturing pneumatic radial tire
JP2006062844A (en) * 2004-08-27 2006-03-09 Yokohama Rubber Co Ltd:The Conveyer belt manufacturing method and conveyer belt
JP2008094559A (en) * 2006-10-12 2008-04-24 Yokohama Rubber Co Ltd:The Conveyor belt
JP2008101305A (en) * 2006-10-20 2008-05-01 Asahi Kasei Fibers Corp Reinforcing fiber sheet
WO2008126853A1 (en) * 2007-04-09 2008-10-23 Bridgestone Corporation Run-flat tire
JP2009061742A (en) * 2007-09-07 2009-03-26 Yokohama Rubber Co Ltd:The Method for producing conveyer belt, and conveyer belt
JP2009274797A (en) * 2008-05-13 2009-11-26 Yokohama Rubber Co Ltd:The Conveyor belt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232129A (en) * 2003-01-30 2004-08-19 Kanebo Ltd Reinforcing fiber fabric and reinforcing fiber sheet
JP2004243621A (en) * 2003-02-13 2004-09-02 Yokohama Rubber Co Ltd:The Method for manufacturing pneumatic radial tire
JP2006062844A (en) * 2004-08-27 2006-03-09 Yokohama Rubber Co Ltd:The Conveyer belt manufacturing method and conveyer belt
JP2008094559A (en) * 2006-10-12 2008-04-24 Yokohama Rubber Co Ltd:The Conveyor belt
JP2008101305A (en) * 2006-10-20 2008-05-01 Asahi Kasei Fibers Corp Reinforcing fiber sheet
WO2008126853A1 (en) * 2007-04-09 2008-10-23 Bridgestone Corporation Run-flat tire
JP2009061742A (en) * 2007-09-07 2009-03-26 Yokohama Rubber Co Ltd:The Method for producing conveyer belt, and conveyer belt
JP2009274797A (en) * 2008-05-13 2009-11-26 Yokohama Rubber Co Ltd:The Conveyor belt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693680A (en) * 2020-04-25 2020-09-22 平顶山神马帘子布发展有限公司 Method for measuring full-width warp density of gum-dipped cord fabric and method for improving warp density uniformity

Also Published As

Publication number Publication date
JP5494081B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5628999B2 (en) Conveying belt and apparatus thereof
JP5937691B2 (en) Conveying belt and driving belt made of a knitted belt, and a conveying device using the conveying belt
JP6765790B2 (en) Multi-material integrated knit thermal protection material for industrial and vehicle applications
KR20200118208A (en) Helical toothed belt and belt transmission
JP3173884B2 (en) belt
WO2014163134A1 (en) Fiber-reinforced layer for conveyor belt
JPWO2007142318A1 (en) Toothed belt canvas and toothed belt including the same
JP5169465B2 (en) Conveyor belt
JP5494081B2 (en) Manufacturing method of fiber reinforced layer for conveyor belt and fiber reinforced layer for conveyor belt
JP5486362B2 (en) Manufacturing method of fiber reinforced layer for conveyor belt and fiber reinforced layer for conveyor belt
KR102516336B1 (en) Complex fiber having improved mechanical property and method of fabricating of the same
JP5015700B2 (en) Conveyor belt manufacturing method
CN204728035U (en) A kind of high-tenacity height curled polyester canvas
US20090071587A1 (en) Tire cord fabric
JP2008115974A (en) Power transmission belt
Hu et al. Tearing properties of coated multi-axial warp knitted fabric
JPS627081B2 (en)
AU2014250467B8 (en) Fiber-reinforced layer for conveyor belt
JP2006062844A (en) Conveyer belt manufacturing method and conveyer belt
JP7429401B2 (en) Composite monofilament
JPH0565943A (en) Industrial belt
JP2509773Y2 (en) Conveyor belt
KR101070343B1 (en) Carcase Fabrics For Vehicle Driving Belt Using High Strength Yarn And Process Of Producing Thereof
CN111850771A (en) Glass fiber and carbon fiber weaving process
JP2009274798A (en) Conveyor belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees