JP2011194344A - Method for separating and refining inorganic-type hollow fine-particle powder raw material, high-purity fine particle powder and separation refining apparatus - Google Patents

Method for separating and refining inorganic-type hollow fine-particle powder raw material, high-purity fine particle powder and separation refining apparatus Download PDF

Info

Publication number
JP2011194344A
JP2011194344A JP2010065299A JP2010065299A JP2011194344A JP 2011194344 A JP2011194344 A JP 2011194344A JP 2010065299 A JP2010065299 A JP 2010065299A JP 2010065299 A JP2010065299 A JP 2010065299A JP 2011194344 A JP2011194344 A JP 2011194344A
Authority
JP
Japan
Prior art keywords
fine particle
particle powder
raw material
powder raw
hollow fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010065299A
Other languages
Japanese (ja)
Inventor
Shigeru Fukumoto
茂 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUMOTO GIKEN KK
Original Assignee
FUKUMOTO GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUMOTO GIKEN KK filed Critical FUKUMOTO GIKEN KK
Priority to JP2010065299A priority Critical patent/JP2011194344A/en
Publication of JP2011194344A publication Critical patent/JP2011194344A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separation and refining method which separates, and refines, an inorganic-type hollow fine-particle powder raw material into a fine particle powder with high contents of hollow fine particles with defects such as small holes and chips, and damaged fine particles, and a fine particle powder with high contents of undamaged and flawless hollow fine particles of a perfect sphere, to provide a method for efficient separation and refining by simple operation, and to provide those separated and refined fine particle powders.SOLUTION: The method includes a process of heating the inorganic-type hollow fine-particle powder raw material 1 at a temperature of 100°C or higher, a process of separating the heated hollow particle powder raw material 1 quenched in the water 107 at or below a room temperature, into a sedimented component 2 in the water 107 and a floating component 3 on the surface of the water 107, a process of recovering the floating component 3 and the sedimented component 2 respectively after separation, and a process of drying the floating component 3 and the sedimented component 2 respectively after recovery.

Description

本発明は、無機系の中空微粒子粉末原料の分離精製技術に関し、その分離精製方法と同方法により得られる高純度微粒子粉末、および分離精製装置に関するものである。   The present invention relates to a separation and purification technique for inorganic hollow fine particle powder raw materials, and relates to a high-purity fine particle powder obtained by the same method as the separation and purification method, and a separation and purification apparatus.

火山噴出物である火山灰や、石油発電所から発生する燃え滓であるフライアッシュ等から得られる無機系の中空微粒子は、軽量で断熱性に優れるため、従来より、プラスチック成形品の充填フィラーや建築材料、断熱塗料などの用途に広く使われている(特許文献1、特許文献2参照)。   Inorganic hollow microparticles obtained from volcanic ash, which is a volcanic eruption product, and fly ash, which is a burnt generated from an oil power plant, are lightweight and have excellent heat insulation properties. Widely used in applications such as materials and heat insulating paints (see Patent Document 1 and Patent Document 2).

また、同じく火山噴出物の堆積物であるシラスを原料として加熱処理し、微粉末化してこれを化粧品添加剤の用途に用いることも行われている(特許文献3参照)。   In addition, shirasu, which is also a deposit of volcanic ejecta, is heat-treated as a raw material, and is finely powdered and used for cosmetic additives (see Patent Document 3).

特開平7−32392号公報JP-A-7-32392 特開2007−146605号公報JP 2007-146605 A 特開2007−186468号公報JP 2007-186468 A

上記中空微粒子は、天然原料として得られる他、ガラス素材等を加熱発泡させて中空成形し、分級して人工的に製造して得られる。しかしながら、このようにして得られた中空微粒子粉末原料は、小孔や欠け等の欠陥のある微粒子や殻厚が薄く壊れやすい微粒子を多く含み、中空微粒子本来の性能を低下させることから、これらの欠陥のある微粒子や破壊されやすい微粒子と完全球体で破壊されにくい中空微粒子とをいかに分離し精製するかが大きな課題とされてきた。   In addition to being obtained as a natural raw material, the hollow fine particles are obtained by heat-foaming a glass material or the like, hollow-molding, classifying, and artificially manufacturing the glass. However, the hollow fine particle powder raw material obtained in this way contains many fine particles having defects such as small holes and chips and fine particles having thin shell thickness and easily broken, and lowers the original performance of the hollow fine particles. A major issue has been how to separate and purify defective microparticles or microparticles that are easily destroyed and hollow microparticles that are difficult to destroy with perfect spheres.

本発明者は、上記従来技術の課題等について鋭意検討を重ねた結果、破壊されたり、不純物が混ざった中空セラミック微粒子粉末原料を焙煎した後、冷水に投入して急冷することにより、完全な形状の中空セラミック微粒子の中で殻厚の薄い部分があり破壊されやすくなっている微粒子は急冷による急激な収縮で破壊されて、沈降性成分として沈降し、完全な中空セラミック微粒子だけが浮上性成分として分離されることを見出した。かくして上記の課題はすべて解決されることを見出し、本発明を完成するに至った。   As a result of intensive studies on the above-mentioned problems of the prior art, the present inventors have roasted the hollow ceramic fine particle powder raw material that has been destroyed or mixed with impurities, and then put it into cold water for rapid cooling to complete the Of the hollow ceramic fine particles, the fine particles that have a thin shell part and are easily broken are broken by rapid contraction due to rapid cooling and settle as sedimentary components, and only complete hollow ceramic fine particles are floating components Found to be separated as. Thus, it has been found that all the above problems can be solved, and the present invention has been completed.

本発明は上記課題に鑑みてなされたもので、無機系の中空微粒子粉末原料から、小孔や欠け等の欠陥のある微粒子や殻厚が薄く破壊されやすい微粒子を高純度に含む微粒子粉末と、欠陥や破壊のない完全球体の微粒子を高純度に含む微粒子粉末とに分離し精製する分離精製方法を提供することを目的とする。また、簡単な操作により効率よく分離精製する方法と装置を提供すること、高純度に分離精製された微粒子粉末を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems.From an inorganic hollow fine particle powder raw material, a fine particle powder containing high-purity fine particles having defects such as small holes and chips and fine particles whose shell thickness is thin and easily broken; It is an object of the present invention to provide a separation and purification method for separating and purifying perfect spherical fine particles free from defects and destruction into fine powder containing high purity. It is another object of the present invention to provide a method and apparatus for efficiently separating and purifying by a simple operation, and to provide a fine particle powder separated and purified with high purity.

上記課題を解決するために、本発明に係る無機系の中空微粒子粉末原料の分離精製方法は、
無機系の中空微粒子粉末原料を加熱する加熱工程と、該加熱された中空微粒子粉末原料を液体に投入して急冷し、該液体中で沈降する沈降性成分と該液体中で浮上する浮上性成分に分離する分離工程と、分離された浮上性成分を回収する回収工程を有することを主要な特徴とする。
In order to solve the above problems, the method for separating and purifying inorganic hollow fine particle powder raw material according to the present invention comprises:
A heating step for heating the inorganic hollow fine particle powder raw material, a settling component that is rapidly cooled by introducing the heated hollow fine particle powder raw material into a liquid, and a levitating component that floats in the liquid The main features include a separation step of separating the buoyant component and a recovery step of collecting the separated levitation component.

無機系の中空微粒子原料のうち、小孔や欠け等の欠陥のある中空微粒子を液体に浸した場合、液体と空気の境界のミクロな界面張力により、小孔や欠け等があっても、当該中空微粒子の内部からの空気の排出と液体の流入が阻止されて、当該中空微粒子の嵩比重が依然と小さいままに留まることから、これらの欠陥のある中空微粒子も、小孔や欠け等の欠陥のない完全球体の中空微粒子と同様に、液体表面に浮上してしまう。   Among inorganic hollow microparticle raw materials, when hollow microparticles with defects such as small pores and chips are immersed in a liquid, even if there are small pores or chips due to the micro interfacial tension at the boundary between the liquid and air, Since the air discharge from the inside of the hollow fine particles and the inflow of the liquid are prevented, the bulk specific gravity of the hollow fine particles still remains small, so these hollow fine particles are also defective such as small holes and chips. It floats on the surface of the liquid in the same manner as the hollow spheres of perfect spheres without any spheres.

これに対し、本発明に係る分離精製方法によれば、加熱した中空微粒子粉末原料を液体に投入して急冷することにより、急冷による急激な空気収縮を中空微粒子内部に生ぜしめ、小孔や欠け等のある中空微粒子にあっては液体を内部に吸引するから、その嵩比重が大きくなり、沈降性成分として液体中を沈降する。また、完全球体であっても、殻厚の薄い部分(例えば0.1μm未満)のある中空微粒子にあっては、急冷による急激な空気収縮により当該部分が破壊されて、沈降性成分となって液体中を沈降する。   In contrast, according to the separation and purification method according to the present invention, the heated hollow fine particle powder raw material is put into a liquid and rapidly cooled, thereby causing abrupt air shrinkage due to the rapid cooling inside the hollow fine particles, resulting in small pores and chips. In the case of hollow fine particles such as those, since the liquid is sucked into the inside, the bulk specific gravity becomes large and settles in the liquid as a sedimentary component. Moreover, even in the case of a perfect sphere, in the case of hollow fine particles having a thin shell portion (for example, less than 0.1 μm), the portion is destroyed by rapid air contraction due to rapid cooling, and becomes a sedimenting component. Settling in the liquid.

これに対し、小孔や欠け等のない完全球体であって、急冷によっても破壊されない比較的厚い(0.75〜10μm)殻厚をもつ中空微粒子にあっては、浮上性成分として液体中を浮上する。これにより、欠陥のある中空微粒子や破壊された微粒子を多く含む沈降性成分と、欠陥のない完全球体の中空微粒子を多く含む浮上性成分に分離される。沈降性成分には破壊された後の破壊片も含まれる。   On the other hand, in the case of hollow fine particles having a relatively thick (0.75 to 10 μm) shell thickness that is a perfect sphere with no small holes or chips and is not destroyed by rapid cooling, Surface. This separates the sedimentary component containing a lot of defective hollow fine particles and broken fine particles into the floating component containing many perfect spherical hollow fine particles without defects. Sedimentable components include broken pieces after being broken.

本発明に係る分離精製方法は、中空微粒子粉末原料が中空セラミック微粒子原料又は中空ガラス微粒子原料であることを第2の特徴とする。   The separation and purification method according to the present invention is characterized in that the hollow fine particle powder raw material is a hollow ceramic fine particle raw material or a hollow glass fine particle raw material.

本発明に係る分離精製方法は、液体が水であることを第3の特徴とする。   The separation and purification method according to the present invention has a third feature that the liquid is water.

本発明に係る分離精製方法は、加熱工程における加熱温度が100℃以上であり、加熱された中空微粒子粉末原料を急冷する液体の温度が室温以下に保持されていることを第4の特徴とする。   The separation and purification method according to the present invention is characterized in that the heating temperature in the heating step is 100 ° C. or higher, and the temperature of the liquid for rapidly cooling the heated hollow fine particle powder raw material is kept at room temperature or lower. .

本発明に係る分離精製方法は、回収された浮上性成分を乾燥する乾燥工程を有することを第5の特徴とする。   The separation and purification method according to the present invention is characterized by having a drying step of drying the recovered floating component.

本発明に係る分離精製方法は、分離された沈降性成分を回収することを第6の特徴とする。   The separation and purification method according to the present invention is characterized in that the separated sedimentation component is recovered.

本発明に係る分離精製方法は、回収された沈降性成分を乾燥することを第7の特徴とする。   The separation and purification method according to the present invention has a seventh feature of drying the recovered sedimentary component.

本発明に係る分離精製方法は、回収された浮上性成分を、再び中空微粒子粉末原料として加熱工程に戻すことを第8の特徴とする。欠陥のない中空微粒子の分離精度をさらに向上させ、欠陥のない中空微粒子をより高純度に含む中空微粒子粉末を得ることができる。   The separation and purification method according to the present invention is characterized in that the recovered floating component is returned to the heating step again as a hollow fine particle powder raw material. It is possible to further improve the separation accuracy of defect-free hollow fine particles, and obtain a hollow fine particle powder containing defect-free hollow fine particles with higher purity.

本発明に係る分離精製方法は、中空微粒子粉末原料を液体に混合し、当該中空微粒子粉末原料と液体の混合物を攪拌しながら予熱する予熱工程をさらに有し、該液体が蒸発された後の予熱状態の中空微粒子粉末原料を加熱工程に供することを第9の特徴とする。粉末のままでは加熱を均一に効率よく行うことが困難な場合の、中空微粒子粉末原料の加熱を効率的に行える。   The separation and purification method according to the present invention further includes a preheating step of mixing the hollow fine particle powder raw material with the liquid and preheating the mixture of the hollow fine particle powder raw material and the liquid while stirring, and preheating after the liquid is evaporated The ninth feature is that the hollow fine particle powder raw material in a state is subjected to a heating step. When it is difficult to uniformly and efficiently heat the powder as it is, it is possible to efficiently heat the hollow fine particle powder raw material.

本発明に係る微粒子粉末は、無機系の中空微粒子粉末原料を加熱し、該加熱した中空微粒子粉末原料を液体に投入して急冷して、該液体中で沈降する沈降性成分と浮上する浮上性成分に分離し、分離した浮上性成分を回収して、回収した浮上性成分を乾燥させることにより得られることを特徴とする。   The fine particle powder according to the present invention heats an inorganic hollow fine particle powder raw material, puts the heated hollow fine particle powder raw material into a liquid, rapidly cools, and floats with a sedimentation component that settles in the liquid. It is characterized by being obtained by separating into components, collecting the separated floating component, and drying the collected floating component.

本発明に係る微粒子粉末は、無機系の中空微粒子粉末原料を加熱し、該加熱した中空微粒子粉末原料を液体に投入して急冷して、該液体中で沈降する沈降性成分と浮上する浮上性成分に分離し、分離された沈降性成分を回収し、回収した沈降性成分を乾燥させることにより得られることを特徴とする。   The fine particle powder according to the present invention heats an inorganic hollow fine particle powder raw material, puts the heated hollow fine particle powder raw material into a liquid, rapidly cools, and floats with a sedimentation component that settles in the liquid. It is characterized by being obtained by separating into components, recovering the separated sedimentation component, and drying the collected sedimentation component.

以上の方法で分離精製された沈降性成分、すなわち小孔や欠け等の欠陥のある中空微粒子や破壊された微粒子、破壊片を多く含む高純度沈降性微粒子粉末は、研磨力に優れた研磨剤として利用される。また、浮上性成分、すなわち完全球体で殻厚の厚い(0.75〜10μm)中空微粒子を多く含む高純度浮上性微粒子粉末は、研磨力がソフトで化粧品等の素材として優れている他、従来の断熱材料、成形品の充填フィラー等として利用される。   Precipitating components separated and purified by the above method, that is, hollow fine particles having defects such as small holes and chips, high-precipitation precipitating fine particle powders containing many broken particles, and debris are abrasives with excellent polishing power. Used as In addition, the high-purity levitation fine particle powder containing a large amount of flocculating components, that is, perfect spheres and thick (0.75 to 10 μm) hollow fine particles, has a soft polishing power and is excellent as a material for cosmetics, etc. It is used as a heat insulating material, and as a filler for moldings.

本発明に係る無機系中空微粒子粉末原料の分離精製装置は、無機物系の中空微粒子粉末原料を加熱する加熱手段と、該加熱された中空微粒子粉末原料を液体に投入して急冷し、該液体中で沈降する沈降性成分と該液体中で浮上する浮上性成分に分離する急冷・分離手段を有することを特徴とする。   An apparatus for separating and purifying an inorganic hollow fine particle powder raw material according to the present invention comprises a heating means for heating an inorganic hollow fine particle powder raw material, and the heated hollow fine particle powder raw material is put into a liquid and rapidly cooled. And a quenching / separating means for separating the sedimentary component that settles in the liquid and the floatable component that floats in the liquid.

以上説明したように、本発明によると、無機系の中空微粒子粉末原料から、極めて簡単な操作で、完全球体の割れ難い中空微粒子を高く含む浮上性成分と、小孔や欠け等の欠陥のある中空微粒子や破壊された微粒子、破壊片を多く含む沈降性成分に分離することができて、それぞれの微粒子粉末を効率よく得ることができるという優れた効果を奏する。   As described above, according to the present invention, from the inorganic hollow fine particle powder raw material, there is a levitating component that contains highly hollow microparticles that are hard to break, and defects such as small holes and chips from an extremely simple operation. It is possible to separate the hollow fine particles, the broken fine particles, and the sedimentation component containing a large amount of debris, and the excellent effect that each fine particle powder can be obtained efficiently is obtained.

また、上記の分離操作によって得られた完全球体の中空微粒子を多く含む高純度浮上性微粒子粉末は、研磨力がソフトであるため、ネイルケア用品やパック、日焼け止め等の化粧品その他の優れた素材として提供する一方、小孔や欠け等の欠陥のある中空微粒子や破壊された微粒子、破壊片を多く含む高純度沈降性微粒子粉末は、研磨力に優れるため、研磨剤として提供することができるという優れた効果を奏する。   In addition, the high-purity levitation fine particle powder containing a lot of perfect spherical hollow fine particles obtained by the above-described separation operation has a soft polishing power, so that it is suitable for cosmetics such as nail care products, packs, sunscreens, and other excellent materials. On the other hand, hollow fine particles having defects such as small holes and chips, broken fine particles, and high-purity sedimentary fine particle powders containing a large number of debris are excellent in polishing power and can be provided as abrasives. Has an effect.

また、本発明に係る分離精製装置によると、極めて簡素な構造でもって、無機系の中空微粒子粉末原料の分離および精製の性能に優れた装置が得られるという優れた効果を奏する。   In addition, the separation and purification apparatus according to the present invention has an excellent effect that an apparatus excellent in the separation and purification performance of the inorganic hollow fine particle powder material can be obtained with an extremely simple structure.

本発明装置の全体構成図、Overall configuration diagram of the device of the present invention, 本発明方法による分離精製手順を示すフロー図、Flow diagram showing the separation and purification procedure according to the method of the present invention, 本発明方法により中空セラミック微粒子が破壊される様子を示す図、The figure which shows a mode that hollow ceramic microparticles | fine-particles are destroyed by the method of this invention, 本発明方法により中空セラミック微粒子粉末原料が分離される様子を示す図、The figure which shows a mode that a hollow ceramic fine particle powder raw material is isolate | separated by this invention method, 本発明方法により分離精製される前の中空セラミック微粒子粉末原料の走査電子顕微鏡写真、Scanning electron micrograph of the hollow ceramic fine particle powder raw material before being separated and purified by the method of the present invention, 本発明方法により浮上性成分として分離された高純度中空セラミック微粒子粉末の走査電子顕微鏡写真である。It is a scanning electron micrograph of the high purity hollow ceramic fine particle powder separated as a floating component by the method of the present invention.

本発明を実施するための最良の実施形態を図面を参照して説明する。図1ないし図6は本発明の一実施形態を示すもので、図1において、符号100は本発明に係る分離精製装置である。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described with reference to the drawings. 1 to 6 show an embodiment of the present invention. In FIG. 1, reference numeral 100 denotes a separation and purification apparatus according to the present invention.

まず、分離精製装置100について説明すると、本分離精製装置100は、図1に示すように、加熱装置101と、急冷・分離装置102と、乾燥装置103と、回収手段104とを備えている。ここで、加熱装置101は、無機系の中空微粒子粉末原料、ここでは中空セラミック微粒子粉末原料1を100℃以上の温度(表面温度)に加熱する加熱用鍋105と、加熱用鍋105を加熱するヒーター106とを備えている。また、急冷・分離装置102は、室温以下に水温が保持された水107が貯留された有底筒形の攪拌容器108を備え、加熱された中空セラミック微粒子粉末原料1を攪拌容器108内に投入して急冷し、攪拌容器108内部の水107中で沈降する沈降性成分2と水107中で浮上する浮上性成分3に分離するようになっている。   First, the separation and purification device 100 will be described. The separation and purification device 100 includes a heating device 101, a rapid cooling / separation device 102, a drying device 103, and a recovery means 104 as shown in FIG. Here, the heating device 101 heats the heating pot 105 for heating the inorganic hollow fine particle powder raw material, here the hollow ceramic fine particle powder raw material 1 to a temperature (surface temperature) of 100 ° C. or higher, and the heating pot 105. And a heater 106. The rapid cooling / separation apparatus 102 includes a bottomed cylindrical stirring vessel 108 in which water 107 whose water temperature is kept below room temperature is stored, and the heated hollow ceramic fine particle powder raw material 1 is charged into the stirring vessel 108. Then, it is rapidly cooled and separated into a sedimentary component 2 that settles in the water 107 inside the stirring vessel 108 and a floating component 3 that floats in the water 107.

乾燥装置103は、回収手段104によって回収された沈降性成分2および浮上性成分3をそれぞれ乾燥させる乾燥用鍋109と、乾燥用鍋109を加熱するヒーター110とを備えている。なお、乾燥用鍋109およびヒーター110は、加熱装置101における加熱用鍋105およびヒーター106と兼用することもできる。また、回収手段104としては柄杓等を用いることができる。   The drying apparatus 103 includes a drying pan 109 for drying the sedimentary component 2 and the floating component 3 collected by the collecting unit 104, and a heater 110 for heating the drying pan 109. The drying pan 109 and the heater 110 can also be used as the heating pan 105 and the heater 106 in the heating apparatus 101. Moreover, a handle or the like can be used as the collecting means 104.

次に、上記分離精製装置100を用いて、中空セラミック微粒子粉末原料1を分離精製する手順について、図2以降を参照して、説明する。   Next, a procedure for separating and purifying the hollow ceramic fine particle powder raw material 1 using the separation and purification apparatus 100 will be described with reference to FIG.

(加熱工程)
まず、図2に示す加熱工程S1において、ヒーター106により加熱された加熱用鍋105中に中空セラミック微粒子粉末原料1を投入し、加熱用鍋105中で中空セラミック微粒子粉末原料1を攪拌しながらその表面温度が100℃以上になるように加熱する。ここで中空セラミック微粒子粉末原料1の各中空セラミック微粒子は、平均粒径が20〜800μmである。
(Heating process)
First, in the heating step S1 shown in FIG. 2, the hollow ceramic fine particle powder raw material 1 is put into the heating pan 105 heated by the heater 106, and the hollow ceramic fine particle powder raw material 1 is stirred in the heating pan 105. Heat so that surface temperature becomes 100 degreeC or more. Here, each hollow ceramic fine particle of the hollow ceramic fine particle powder raw material 1 has an average particle diameter of 20 to 800 μm.

(急冷・分離工程)
次に、図2に示す急冷・分離工程S2において、前記加熱された中空セラミック微粒子粉末原料1を、攪拌容器108内部に投入してその内部の水107中で急冷し、そして攪拌棒で攪拌しながら水107中の中空セラミック微粒子粉末原料1を均一に分散させ、その後静置する。すると、急冷による急激な空気収縮が中空セラミック微粒子4内部に生し、小孔や欠け等の欠陥のある中空セラミック微粒子4Aにあっては水107を内部に吸引してその嵩比重が大きくなり、沈降性成分2として水107中を沈降する。また、図3に示すように、完全球体であっても、殻厚の薄い部分(0.1μm未満)のある中空セラミック微粒子4A’にあっては、急冷による急激な空気収縮により当該肉薄部分が破壊されて、沈降性成分2として水107中を沈降する。
(Rapid cooling / separation process)
Next, in the rapid cooling / separation step S2 shown in FIG. 2, the heated hollow ceramic fine particle powder raw material 1 is put into the stirring vessel 108, rapidly cooled in the water 107 therein, and stirred with a stirring rod. Then, the hollow ceramic fine particle powder raw material 1 in the water 107 is uniformly dispersed and then left to stand. Then, rapid air shrinkage due to rapid cooling occurs inside the hollow ceramic fine particles 4, and in the hollow ceramic fine particles 4A having defects such as small holes and chips, the water 107 is sucked into the inside to increase its bulk specific gravity, It settles in the water 107 as the sedimentation component 2. Further, as shown in FIG. 3, even in a perfect sphere, in the hollow ceramic fine particle 4A ′ having a thin shell portion (less than 0.1 μm), the thin portion is caused by rapid air contraction due to rapid cooling. It is destroyed and settles in the water 107 as the sedimentary component 2.

これに対し、小孔や欠け等のない完全球体であって、急冷によっても破壊されなかった殻厚の比較的厚い(0.75〜10μm)中空セラミック微粒子4Bにあっては、浮上性成分3として液体中を浮上する。これにより、図4に示すように、欠陥や破壊のある中空セラミック微粒子4Aを多く含む沈降性成分2と、欠陥のない完全球体の中空セラミック微粒子4Bを多く含む浮上性成分3に分離される。沈降性成分2には破壊片も含まれる。   On the other hand, in the case of a perfect sphere having no small holes or chips and having a relatively thick (0.75 to 10 μm) hollow ceramic fine particle 4B that was not destroyed by rapid cooling, the floating component 3 As it floats in the liquid. As a result, as shown in FIG. 4, it is separated into a sedimentation component 2 containing a lot of hollow ceramic fine particles 4A having defects and breakage, and a levitation component 3 containing a large amount of hollow ceramic fine particles 4B having no defects. The sedimentation component 2 includes broken pieces.

(回収工程)
次に、図2に示す回収工程S3において、攪拌容器108中で上下に分離された浮上性成分3と沈降性成分2をそれぞれ回収手段104によって回収する。沈降性成分2は浮上性成分3を回収した後、攪拌容器108を傾けて水107を排水し、底に残る沈降性成分2を回収する。
(Recovery process)
Next, in the recovery step S3 shown in FIG. 2, the floating component 3 and the sedimentary component 2 separated in the vertical direction in the stirring vessel 108 are recovered by the recovery means 104, respectively. The sedimentation component 2 collects the floating component 3 and then tilts the stirring vessel 108 to drain the water 107 and collects the sedimentation component 2 remaining at the bottom.

(乾燥工程)
次に、図2に示す乾燥工程S4において、回収された沈降性成分2と浮上性成分3をそれぞれ独立して乾燥用鍋109に投入し、前者の沈降性成分2にあっては、乾燥により小孔や欠け等の欠陥のある中空セラミック微粒子や破壊されたセラミック微粒子、破壊片を多く含むセラミック微粒子粉末、すなわち高純度沈降性セラミック微粒子粉末5が得られる。また、後者の浮上性成分3にあっては、完全球体の肉厚な中空セラミック微粒子を多く含むセラミック微粒子粉末、すなわち高純度浮上性セラミック微粒子粉末6が得られる。
(Drying process)
Next, in the drying step S4 shown in FIG. 2, the recovered sedimentary component 2 and the levitation component 3 are independently put into the drying pan 109, and the former sedimentary component 2 is dried by As a result, hollow ceramic fine particles having defects such as small holes and chips, broken ceramic fine particles, ceramic fine particle powder containing a large amount of broken pieces, that is, high purity sedimentary ceramic fine particle powder 5 can be obtained. Further, in the latter levitation component 3, a ceramic fine particle powder containing a large number of full sphere-like thick hollow ceramic fine particles, that is, a high purity levitating ceramic fine particle powder 6 is obtained.

かくして、乾燥により小孔や欠け等の欠陥のある中空セラミック微粒子や破壊されたセラミック微粒子、破壊片を多く含む高純度沈降性セラミック微粒子粉末5にあっては、研磨力に優れた研磨剤として利用され、完全球体の肉厚な中空セラミック微粒子を多く含む高純度浮上性セラミック微粒子粉末6にあっては、研磨力がソフトで化粧品等の素材として利用される。   Thus, in the high-purity sedimentary ceramic fine particle powder 5 containing many hollow ceramic fine particles having defects such as small pores and chips, broken ceramic fine particles, and broken pieces by drying, it is used as an abrasive having excellent polishing power. In the high-purity levitating ceramic fine particle powder 6 containing a large number of perfect spherical spherical ceramic fine particles, the polishing power is soft and used as a material for cosmetics.

本発明における無機物系の中空微粒子粉末原料は特に限定されるものではないが、好ましくは、中空セラミック微粒子原料又は中空ガラス微粒子原料のように見かけ比重が比較的小さく、その殻破壊により見かけ比重が大きくなるような原料が好適である。   The inorganic-based hollow fine particle powder raw material in the present invention is not particularly limited, but preferably the apparent specific gravity is relatively small like the hollow ceramic fine particle raw material or the hollow glass fine particle raw material, and the apparent specific gravity is large due to the shell fracture. Such raw materials are preferred.

本発明において、加熱された中空微粒子粉末原料を急冷し、見かけ比重の差により分離精製する媒体として用いられる液体の種類は特に限定されるものではない。単なる水や液体状態にある有機物を使用することができる。また、比重や粘度調整のために砂糖や多糖類その他の水溶性物質を溶解させた水溶液などを使用することができる。   In the present invention, the kind of liquid used as a medium for rapidly cooling the heated hollow fine particle powder raw material and separating and purifying it by the difference in apparent specific gravity is not particularly limited. Organic substances that are simply water or liquid can be used. Further, an aqueous solution in which sugar, polysaccharides or other water-soluble substances are dissolved can be used for adjusting the specific gravity and viscosity.

さらに、単純な沈降と浮上による2成分への分離精製法を改良して、微粒子の浮力と液体の比重との平衡を利用して多成分に分離する分離原理を利用して、より精密な分離精製を実現する目的で、溶質の濃度勾配を施した溶液を使用することもできる。   Furthermore, the separation and purification method into two components by simple sedimentation and levitation is improved, and more precise separation is performed using the separation principle that separates into multiple components using the balance between the buoyancy of fine particles and the specific gravity of the liquid. For the purpose of realizing purification, a solution having a solute concentration gradient can also be used.

上記の分離精製方法において、回収された浮上性成分3を、加熱工程S1において、再び中空微粒子粉末原料として戻す工程を1回以上繰り返すことにより、無機物系の微粒子粉末の精製純度をさらに向上させることが可能である。   In the separation and purification method described above, the purification purity of the inorganic fine particle powder is further improved by repeating the step of returning the recovered buoyant component 3 as the hollow fine particle powder raw material once or more in the heating step S1. Is possible.

また、中空微粒子粉末原料1を加熱する前に予備加熱用容器内の水(液体)に投入して懸濁し、該懸濁物を攪拌しながらヒーターで加熱して水を蒸発させ、該水が完全に蒸発した後も加熱を継続して100℃以上の温度に加熱することにより、粉末のままでは加熱を均一に効率よく行うことが困難である中空微粒子粉末原料1の加熱を効率的に行えるようになる。   Further, before heating the hollow fine particle powder raw material 1, it is put in and suspended in water (liquid) in a preheating container, and the suspension is heated with a heater while stirring to evaporate the water. Even after complete evaporation, the heating is continued and heated to a temperature of 100 ° C. or higher, so that it is possible to efficiently heat the hollow fine particle powder raw material 1 that is difficult to heat uniformly and efficiently with the powder as it is. It becomes like this.

本発明に係る無機物系中空微粒子粉末の分離精製方法および該方法により得られる沈降性微粒子粉末、浮上性微粒子粉末は、上述のように構成されるものであるが、上記実施形態に限定されるものでなく、本発明の技術思想の範囲内で、種々変更等して実施することができる。   The method for separating and purifying inorganic hollow fine particle powder according to the present invention and the sedimentable fine particle powder and the floating fine particle powder obtained by the method are configured as described above, but are limited to the above embodiment. Instead, various modifications can be made within the scope of the technical idea of the present invention.

本発明者は、乾燥・加熱用鍋に、市販の中空セラミック微粒子粉末原料(太平洋セメント株式会社製、商品名:E−SPHERES、平均粒径20〜800μm)1kgを投入し、木製の攪拌棒で同粉末原料を随時かき混ぜながら、鍋に蓋を施して電熱器で加熱した。粉末原料が十分に乾燥しその表面温度が120〜180℃になったら、粉末原料を金属製バケツに張った水の中に投入して急冷し、直ちに金属製攪拌棒で粉末原料の懸濁液を攪拌して懸濁液中の粉末原料を均一に分散させ、その後静置して沈降性成分と浮上性成分が分離するのを待った。両成分が上下に分離してバケツの底と水面に集積された時点で、水面の浮上性成分を金属製柄杓で掬い取って前述の乾燥・加熱用鍋に移し、バケツの底の沈降性成分は、バケツを傾けて極力排水した後、別の乾燥・加熱用鍋に移した。   The inventor put 1 kg of a commercially available hollow ceramic fine particle powder material (trade name: E-SPHERES, average particle size 20 to 800 μm, manufactured by Taiheiyo Cement Co., Ltd.) into a drying / heating pan, and a wooden stirring rod. While stirring the powder raw material as needed, the pan was covered and heated with an electric heater. When the powder raw material is sufficiently dried and the surface temperature reaches 120 to 180 ° C., the powder raw material is poured into water stretched in a metal bucket and rapidly cooled. Was stirred to uniformly disperse the powder raw material in the suspension, and then left to stand until the sedimentation component and the floating component were separated. When both components are separated vertically and accumulated on the bottom and water surface of the bucket, the floating components on the water surface are scooped with a metal handle and transferred to the drying / heating pan described above, and the sedimenting components on the bottom of the bucket. After draining as much as possible by tilting the bucket, it was transferred to another drying and heating pan.

これら各成分の入った鍋はそれぞれ電熱器にかけて加熱して内容物を攪拌棒で随時かき混ぜながら乾燥した。以上の結果、高純度の沈降性セラミック微粒子粉末179gと高純度の浮上性セラミック微粒子粉末802gが得られた。図5に分離精製前の中空セラミック微粒子粉末原料、図6に分離精製後の浮上性セラミック微粒子粉末の走査電子顕微鏡写真をそれぞれ示す。本実施例によると、図5に示す分離精製前の微粒子粉末原料にあっては欠け等のある微粒子や破壊片が多数確認できるのに対し、図6に示す分離精製後の微粒子粉末にあっては完全球体の中空微粒子を高純度に含む微粒子粉末に分離精製されていることが確認できた。   The pans containing these components were each heated with an electric heater, and the contents were dried with stirring with a stirring bar as needed. As a result, 179 g of high purity sedimentary ceramic fine particle powder and 802 g of high purity levitating ceramic fine particle powder were obtained. FIG. 5 shows a scanning electron micrograph of the hollow ceramic fine particle powder material before separation and purification, and FIG. 6 shows the floating ceramic fine particle powder after separation and purification. According to this example, in the fine particle powder raw material before separation and purification shown in FIG. 5, a large number of fine particles and broken pieces such as chips can be confirmed, whereas in the fine particle powder after separation and purification shown in FIG. Was confirmed to be separated and refined into a fine particle powder containing perfectly spherical hollow fine particles with high purity.

本発明に係る分離精製方法は、無機系の中空微粒子微粒子粉末原料を、小孔や欠け等の欠陥のある中空微粒子や破壊された微粒子を多く含む微粒子粉末と、欠陥のない完全球体の中空微粒子を多く含む微粒子粉末に分離して精製する方法として利用可能である。また、欠陥や破壊のある微粒子粉末を多く含む微粒子粉末は、研磨力の優れた研磨剤として提供され、クレンザーの素材としてあるいは工業用研磨剤として利用可能である。また、完全球体の中空微粒子を多く含む微粒子粉末は研磨力がソフトであるため、ネイルケア用品やパック、日焼け止め等の化粧品その他の素材として利用可能である。   Separation and purification method according to the present invention comprises inorganic hollow fine particle powder raw material, hollow fine particles having defects such as small pores and chips, fine particle powder containing a lot of broken fine particles, and perfect spherical hollow fine particles without defects. It can be used as a method for separating and refining into a fine particle powder containing a large amount of. In addition, fine particle powder containing a large amount of fine particles having defects and breakage is provided as an abrasive having excellent polishing power, and can be used as a cleanser material or as an industrial abrasive. In addition, fine particle powders containing a large amount of perfect spherical hollow particles have a soft polishing power, and can be used as cosmetics and other materials such as nail care products, packs, sunscreens and the like.

1 中空セラミック微粒子粉末原料(無機系中空微粒子粉末原料)
2 沈降性成分
3 浮上性成分
4 中空セラミック微粒子
4A 小孔や欠け等の欠陥のある中空セラミック微粒子
4A’完全球体だが肉薄の中空セラミック微粒子
4B 欠陥のない完全球体の肉厚の中空セラミック微粒子
100 分離精製装置
101 加熱装置
102 急冷・分離装置
103 乾燥装置
104 回収手段
105 加熱用鍋
106,110 ヒーター
107 水
108 攪拌容器
109 乾燥用鍋
1 Hollow ceramic fine particle powder raw material (Inorganic hollow fine particle powder raw material)
2 Sedimentable component 3 Floating component 4 Hollow ceramic fine particle 4A Hollow ceramic fine particle with defects such as small holes and chips 4A 'Completely spherical but thin hollow ceramic fine particle
4B Thick hollow hollow ceramic fine particles without defects 100 Separation and purification device 101 Heating device 102 Rapid cooling / separation device 103 Drying device 104 Recovery means 105 Heating pan 106, 110 Heater 107 Water 108 Stirring vessel 109 Drying pan

Claims (12)

無機系の中空微粒子粉末原料を加熱する加熱工程と、該加熱された中空微粒子粉末原料を液体に投入して急冷し、該液体中で沈降する沈降性成分と該液体中で浮上する浮上性成分に分離する分離工程と、分離された浮上性成分を回収する回収工程を有する、無機系中空微粒子粉末原料の分離精製方法。   A heating step for heating the inorganic hollow fine particle powder raw material, a settling component that is rapidly cooled by introducing the heated hollow fine particle powder raw material into a liquid, and a levitating component that floats in the liquid A method for separating and purifying an inorganic hollow fine particle powder raw material, comprising a separation step for separating the raw material, and a recovery step for collecting the separated floating component. 中空微粒子粉末原料が中空セラミック微粒子原料又は中空ガラス微粒子原料であることを特徴とする、請求項1記載の無機系中空微粒子粉末原料の分離精製方法。   2. The method for separating and purifying inorganic hollow fine particle powder material according to claim 1, wherein the hollow fine particle powder material is a hollow ceramic fine particle material or a hollow glass fine particle material. 液体が水である、請求項1または請求項2記載の無機系中空微粒子粉末原料の分離精製方法。   The method for separating and purifying an inorganic hollow fine particle powder raw material according to claim 1 or 2, wherein the liquid is water. 加熱工程における加熱温度が100℃以上であり、加熱された中空微粒子粉末原料を急冷する液体の温度が室温以下である、請求項1ないし請求項3のいずれか一項に記載の無機系中空微粒子粉末原料の分離精製方法。   The inorganic hollow fine particles according to any one of claims 1 to 3, wherein the heating temperature in the heating step is 100 ° C or higher, and the temperature of the liquid for rapidly cooling the heated hollow fine particle powder raw material is room temperature or lower. A method for separating and purifying powder raw materials. 回収された浮上性成分を乾燥する乾燥工程を有する、請求項1ないし請求項4のいずれか一項に記載の無機系中空微粒子粉末原料の分離精製方法。   The method for separating and purifying an inorganic hollow fine particle powder raw material according to any one of claims 1 to 4, further comprising a drying step of drying the recovered floating component. 回収工程において、分離された沈降性成分を回収する、請求項1ないし請求項5のいずれか一項に記載の無機系中空微粒子粉末原料の分離精製方法。   The method for separating and purifying an inorganic hollow fine particle powder raw material according to any one of claims 1 to 5, wherein in the collecting step, the separated sedimentary component is collected. 乾燥工程において、回収された沈降性成分を乾燥する、請求項1ないし請求項6のいずれか一項に記載の無機系中空微粒子粉末原料の分離精製方法。   The method for separating and purifying the inorganic hollow fine particle powder raw material according to any one of claims 1 to 6, wherein the recovered sedimentary component is dried in the drying step. 回収された浮上性成分を、再び中空微粒子粉末原料として加熱工程に戻す、請求項1ないし請求項7のいずれか一項に記載の無機系中空微粒子粉末原料の分離精製法。   The method for separating and purifying an inorganic hollow fine particle raw material according to any one of claims 1 to 7, wherein the recovered floating component is returned again to the heating step as a hollow fine particle powder raw material. 中空微粒子粉末原料を液体に混合し、当該中空微粒子粉末原料と液体の混合物を攪拌しながら予熱する予熱工程をさらに有し、該液体が蒸発された後の予熱状態の中空微粒子粉末原料を加熱工程に供する、請求項1ないし請求項8のいずれか一項に記載の無機系中空微粒子粉末原料の分離精製方法。   The method further comprises a preheating step of mixing the hollow fine particle powder raw material with the liquid and preheating the mixture of the hollow fine particle powder raw material and the liquid while stirring, and heating the preheated hollow fine particle powder raw material after the liquid is evaporated The method for separating and purifying the inorganic hollow fine particle powder raw material according to any one of claims 1 to 8, wherein 無機物系の中空微粒子粉末原料を加熱し、該加熱された中空微粒子粉末原料を液体に投入して急冷して、該液体中で沈降する沈降性成分と浮上する浮上性成分に分離し、分離された浮上性成分を回収し、回収された浮上性成分を乾燥させることにより得られる、高純度無機系微粒子粉末。   The inorganic hollow fine particle powder raw material is heated, the heated hollow fine particle powder raw material is put into a liquid and rapidly cooled, and separated into a sedimentary component that settles in the liquid and a floating component that floats. A high-purity inorganic fine particle powder obtained by collecting a floating component and drying the collected floating component. 無機物系の中空微粒子粉末原料を加熱し、該加熱された中空微粒子粉末原料を液体に投入して急冷して、該液体中で沈降する沈降性成分と浮上する浮上性成分に分離し、分離された沈降性成分を回収し、回収された沈降性成分を乾燥させることにより得られる、高純度無機系微粒子粉末。   The inorganic hollow fine particle powder raw material is heated, the heated hollow fine particle powder raw material is put into a liquid and rapidly cooled, and separated into a sedimentary component that settles in the liquid and a floating component that floats. A high-purity inorganic fine particle powder obtained by collecting the settled component and drying the collected settled component. 無機物系の中空微粒子粉末原料を加熱する加熱手段と、該加熱された中空微粒子粉末原料を液体に投入して急冷し、該液体中で沈降する沈降性成分と該液体中で浮上する浮上性成分に分離する急冷・分離手段を有する、無機系中空微粒子粉末原料の分離精製装置。   Heating means for heating inorganic-based hollow fine particle powder raw material, settling component that is rapidly cooled by introducing the heated hollow fine particle powder raw material into liquid, and floating component that floats in the liquid An apparatus for separating and purifying an inorganic hollow fine particle powder material, comprising a rapid cooling / separation means for separating the raw material.
JP2010065299A 2010-03-20 2010-03-20 Method for separating and refining inorganic-type hollow fine-particle powder raw material, high-purity fine particle powder and separation refining apparatus Pending JP2011194344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010065299A JP2011194344A (en) 2010-03-20 2010-03-20 Method for separating and refining inorganic-type hollow fine-particle powder raw material, high-purity fine particle powder and separation refining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065299A JP2011194344A (en) 2010-03-20 2010-03-20 Method for separating and refining inorganic-type hollow fine-particle powder raw material, high-purity fine particle powder and separation refining apparatus

Publications (1)

Publication Number Publication Date
JP2011194344A true JP2011194344A (en) 2011-10-06

Family

ID=44873219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065299A Pending JP2011194344A (en) 2010-03-20 2010-03-20 Method for separating and refining inorganic-type hollow fine-particle powder raw material, high-purity fine particle powder and separation refining apparatus

Country Status (1)

Country Link
JP (1) JP2011194344A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159196A (en) * 2014-02-24 2015-09-03 竹田 眞司 Efficient photovoltaic power generation device and manufacturing method of the same
JP2016151439A (en) * 2015-02-16 2016-08-22 国立研究開発法人産業技術総合研究所 Quantification method of acting energy in powder operation apparatus
CN114522794A (en) * 2022-03-29 2022-05-24 北京理工大学 Screening method for reducing content of crushed powder in plasma spheroidized powder
CN114669390A (en) * 2022-03-29 2022-06-28 北京理工大学 Method for screening plasma spheroidized powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159196A (en) * 2014-02-24 2015-09-03 竹田 眞司 Efficient photovoltaic power generation device and manufacturing method of the same
JP2016151439A (en) * 2015-02-16 2016-08-22 国立研究開発法人産業技術総合研究所 Quantification method of acting energy in powder operation apparatus
CN114522794A (en) * 2022-03-29 2022-05-24 北京理工大学 Screening method for reducing content of crushed powder in plasma spheroidized powder
CN114669390A (en) * 2022-03-29 2022-06-28 北京理工大学 Method for screening plasma spheroidized powder

Similar Documents

Publication Publication Date Title
TWI449665B (en) Methods to recover and purify silicon particles from saw kerf
JP6828036B2 (en) Aluminum melting and black dross recycling systems and methods
NO170166B (en) PARTICULAR TREATMENT MATERIAL AND PROCEDURE CONTROLLED INTRODUCTION THEREOF TO A ENVIRONMENT CONDENSING CONDENSED WATER
TWI392647B (en) Recovery of silicon and silicon carbide powder from kerf loss slurry using particle phase-transfer method
JP2011194344A (en) Method for separating and refining inorganic-type hollow fine-particle powder raw material, high-purity fine particle powder and separation refining apparatus
Liu et al. Recovery of silicon powder from silicon wiresawing slurries by tuning the particle surface potential combined with centrifugation
Hecini et al. Recovery of cutting fluids used in polycrystalline silicon ingot slicing
CN108840703A (en) A method of desalination hydrophobic porous cordierite ceramic film is prepared by raw material low cost of high silicon industrial solid castoff
US20130319461A1 (en) Recycling Method for Waste Ceramic Filters
JP2648116B2 (en) Method for producing fine hollow glass sphere
JP5244500B2 (en) Silicon purification method and silicon purification apparatus
TWI488807B (en) Addition of alkali magnesium halide to a solvent metal
TWI299754B (en) An apparatus for and a method of processing particles contaminated with oil
KR101047383B1 (en) Waste Slurry Recycling Method and Device
TW200804181A (en) Method of recovering silicon-containing material
TWI490173B (en) Method for recovering waste silicon waste from cutting oil
Matsuyama et al. Formation of porous glass via core/shell-structured poly (methyl methacrylate)/powder glass prepared by ultrasonic irradiation in liquid CO2
FI3218078T3 (en) Process for the preparation of particles
TW201144221A (en) A method for the silicon carbide recycling
JP3741245B2 (en) Polishing equipment for producing glass beads
TW201408602A (en) Full resource recycling treatment technique for waste cutting oil
Panigrahi et al. Impact of milling time and method on particle size and surface morphology during nano particle synthesis from α-Al2O3
TWI291893B (en)
JP4641763B2 (en) Particle separation and recovery method
KR20160044178A (en) Method for recovering high purity silicone from waste silicone sludge