JP2011193841A - Method for cultivating genus jatropha plant - Google Patents

Method for cultivating genus jatropha plant Download PDF

Info

Publication number
JP2011193841A
JP2011193841A JP2010066359A JP2010066359A JP2011193841A JP 2011193841 A JP2011193841 A JP 2011193841A JP 2010066359 A JP2010066359 A JP 2010066359A JP 2010066359 A JP2010066359 A JP 2010066359A JP 2011193841 A JP2011193841 A JP 2011193841A
Authority
JP
Japan
Prior art keywords
plant
jatropha
stress
acid
metabolites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010066359A
Other languages
Japanese (ja)
Inventor
Nakako Shibagaki
奈佳子 柴垣
Yuji Tsugawa
裕司 津川
Eiichiro Fukuzaki
英一郎 福崎
Cartagena Joyce
カルタヘナ ジョイス
Kiichi Fukui
希一 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2010066359A priority Critical patent/JP2011193841A/en
Publication of JP2011193841A publication Critical patent/JP2011193841A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To raise the respective productions of the metabolites in a genus Jatropha plant by growing the plant while loading drying stress on the plant.SOLUTION: The respective productions of various kinds of the secondary metabolites including quinic acid, oxalic acid and γ-aminobutyric acid (GABA) in a plant belonging to the genus Jatropha such as Jatropha curcas are raised by growing the plant while loading drying stress thereon such as continuing its cultivation e.g. without giving water thereto.

Description

本発明はジャトロファ属植物の栽培方法、具体的にはジャトロファ属植物中の代謝産物を増加させる方法に関する。   The present invention relates to a method for cultivating Jatropha plants, specifically to a method for increasing metabolites in Jatropha plants.

キナ酸は植物における二次代謝産物であって、その多くはクロロゲン酸などカフェ酸やp−クマル酸、フェルラ酸、没食子酸等の誘導体としてコーヒー豆やタバコ葉等の各種植物に存在している。石油などの化石燃料資源の代替として近年着目を浴びているバイオディーゼル燃料の原料に用いられるジャトロファ属の植物にも、クロロゲン酸(5-caffeoylquinic acid)として存在する可能性がある。   Quinic acid is a secondary metabolite in plants, many of which are present in various plants such as coffee beans and tobacco leaves as derivatives of caffeic acid such as chlorogenic acid, p-coumaric acid, ferulic acid and gallic acid. . It may also exist as chlorogenic acid (5-caffeoylquinic acid) in Jatropha plants used as raw materials for biodiesel fuel, which has been attracting attention as a substitute for fossil fuel resources such as petroleum.

一方、植物に様々なストレスを負荷して二次代謝産物の産生量を増加させる方法が提案されている。例えば、特開2007−6778号公報(特許文献1)には、光量や二酸化炭素濃度など植物の生育に影響する要素を制御するとともにUV−Bを照射して、オトギリソウ科植物におけるハイペリシン産生量やカンゾウ属植物におけるグリチルリチン酸産生量を増加させる方法が開示されている。また、特開2009−213456号公報(特許文献2)には、生育中のソバのスプラウトに過酸化水素水や次亜塩素酸塩の水溶液を与えた後紫外線照射を行い、フラボン類の生産量を高める方法が開示されている。   On the other hand, a method for increasing the production amount of secondary metabolites by applying various stresses to plants has been proposed. For example, in JP 2007-6778 A (Patent Document 1), the amount of hypericin produced in hypericum plants is controlled by controlling elements that affect plant growth such as light intensity and carbon dioxide concentration and irradiating UV-B. A method for increasing glycyrrhizic acid production in licorice plants is disclosed. JP 2009-213456 (Patent Document 2) discloses that the production amount of flavones is obtained by applying an aqueous solution of hydrogen peroxide or hypochlorite to a growing buckwheat sprout and then irradiating it with ultraviolet light. A method for enhancing the above is disclosed.

特開2007−6778号公報Japanese Patent Laid-Open No. 2007-6778 特開2009−213456号公報JP 2009-213456 A

ジャトロファ属植物は年間降水量の少ない土地でも生育する乾燥性に強い植物である。そこで、本願発明者らはジャトロファ属植物の耐乾燥性に着目して乾燥ストレスをジャトロファ属植物に付与したところ、植物中の各種代謝産物の生産量に変化が現れることを見いだした。   Jatropha plants are highly dry plants that grow on land with low annual precipitation. Accordingly, the inventors of the present application have found that when drought stress is imparted to Jatropha plants, focusing on drought resistance of Jatropha plants, changes appear in the production of various metabolites in the plants.

本発明はこの現象を利用したものであって、本発明はジャトロファ属植物に乾燥ストレスを負荷しながら生育することにより、ジャトロファ属植物中の代謝産物の生産量を増加させることを目的とする。   The present invention utilizes this phenomenon, and an object of the present invention is to increase the production amount of metabolites in Jatropha plants by growing them while applying drought stress to them.

本発明の方法はストレスを負荷した状態でジャトロファ属植物を生育することにより、ジャトロファ属植物中の代産物を増加させる方法である。   The method of the present invention is a method for increasing a by-product in a Jatropha plant by growing the Jatropha plant under stress.

本発明によると、乾燥した状態でジャトロファ属植物を生育するという極めて簡単な方法で、代謝産物、例えばキナ酸の生産量を増加させることができる。   According to the present invention, the production of metabolites such as quinic acid can be increased by a very simple method of growing Jatropha plants in a dry state.

図1は高窒素含有培養液で乾燥ストレスを負荷しながら生育した場合における代謝産物の生産量の増減を示す図である。FIG. 1 is a graph showing the increase or decrease in the production amount of metabolites when grown in a high nitrogen-containing culture solution while being subjected to drought stress. 図2は低窒素含有培養液で乾燥ストレスを負荷しながら生育した場合における代謝産物の生産量の増減を示す図である。FIG. 2 is a diagram showing the increase or decrease in the production amount of metabolites when grown in a low nitrogen-containing culture solution while being subjected to drought stress.

本発明の方法はジャトロファ属植物に乾燥ストレスを負荷した状態で生育させることにより、ジャトロファ属植物中の代謝産物の生産量を増加させる方法である。   The method of the present invention is a method for increasing the production amount of a metabolite in a Jatropha plant by growing the plant under a drought stress on the Jatropha plant.

本発明が適用される植物はジャトロファ属植物(Jatropha属植物)である。ジャトロファ属植物は、熱帯地方原産のトウダイグサ科の潅木で、ジャトロファ・ポダグリカ(Jatropha podagurica:和名 サンゴアブラギリ)、ジャトロファ・ムルチフィダ(Jatropha multifida:和名 サケバジャトロファ)、ジャトロファ・ベルランディエリ(Jatropha berlandieri:和名 ニシキサンゴ)、ジャトロファ・インテゲリマ(Jatropha integerrima:和名 ナンヨウサクラ)、ジャトロファ・クルカス(Jatropha curcas:和名ナンヨウアブラギリ)等がある。本発明が適用されるジャトロファ属植物は特に限定されないが、その種子の有用性が高いという点から、ジャトロファ・クルカスが好適に用いられる。   A plant to which the present invention is applied is a Jatropha plant (Jatropha plant). Jatropha genus plants are shrubs of Euphorbiaceae native to the tropics. : Japanese name Nishiki Xango), Jatropha integerrima (Japanese name Nanyo Sakura), Jatropha curcas (Japanese name Nanyo Abragiri), etc. The Jatropha genus plant to which the present invention is applied is not particularly limited, but Jatropha curcas is preferably used because the usefulness of the seed is high.

本発明において「ストレスを負荷する」とは、通常の条件とは異なる条件において生育することを意味し、種々のストレス因子を通常の条件とは異なる条件に調整することによってストレスが負荷される。ストレス因子は、植物の代謝産物、特に二次代謝産物の産生量に影響を与える要因であって、例えば光(強光、弱光)、温度(高温、低温)、生育に必要な栄養成分(例えばリンや窒素)、乾燥(水不足)、無機物や有機物(塩類、重金属など)、栽培環境にある二酸化炭素が例示される。   In the present invention, “loading stress” means growing under conditions different from normal conditions, and stress is applied by adjusting various stress factors to conditions different from normal conditions. Stress factors are factors that affect the production of plant metabolites, especially secondary metabolites, such as light (strong light, weak light), temperature (high and low temperature), and nutrients necessary for growth ( Examples include phosphorus and nitrogen), drying (water shortage), inorganic and organic substances (salts, heavy metals, etc.), and carbon dioxide in the cultivation environment.

本発明において「生育する」とは、根を有する植物体を栽培するという日常使われる意味を含み、土壌を用いた栽培や水耕栽培など土壌を用いない栽培のいずれ方法も含む概念である。また、本発明においてはさらに広義の意味で用いられ、土壌や水などの培地から根を有する植物体を取り出して放置すること、または根を切り離した地上部(茎や葉)や葉のみを放置することをも含む意味で用いられる。このとき、植物体が枯れてはならず、少なくとも一部の細胞において代謝活動が維持され、代謝産物が産生される条件に置かれることが必要である。   In the present invention, “growing” is a concept that includes a daily use meaning of cultivating a plant body having a root, and includes any method of cultivation without using soil, such as cultivation with soil or hydroponics. Further, in the present invention, it is used in a broader sense, taking out a plant having a root from a medium such as soil or water and leaving it alone, or leaving only the above-ground parts (stems and leaves) or leaves from which the roots have been cut off. It is used in the meaning including doing. At this time, the plant body must not wither, and it is necessary that the metabolic activity is maintained in at least some of the cells and that the metabolite is produced.

本発明において、生育中に乾燥ストレスを負荷することが必須条件である。乾燥ストレスは、植物体に水を与えないという措置により植物体に負荷することができる。一般的には土壌pF値が1.7〜2.3の範囲が乾燥ストレスを生じない適正範囲とされ、これよりも大きな土壌pF値以上の土地で栽培できれば耐乾燥性であるとされている。ジャトロファ属植物は耐乾燥性植物であり、前記範囲よりも大きい2.3以上2.5程度のpF値の土壌であってもストレスなく栽培される。本発明においては、土壌pF値が2.5以上、好ましくは2.7以上の乾燥した土壌で栽培することにより乾燥ストレスを負荷できる。なお、土壌pF値は市販されている土壌水分計(例えば、大起理化工業(株)製pFメーター)によって測定される値である。また、本発明においては、乾燥ストレスを負荷する方法として、土壌中から取り出し水を与えない状態で放置することも有効な方法である。この場合の放置条件は、温度が20℃以上35℃以下、好ましくは25以上30℃以下、湿度が30%RH以上65%RH以下、好ましくは30%RH以上50%RH以下である。湿度が65%RHを超えた条件で放置しても有効に代謝産物を増加させることができず、湿度が30%RH未満であれば葉が乾燥して枯れてしまうおそれがある。また、20℃よりも低い温度や35℃を超える温度でも生育できず枯れてしまうおそれが強くなる。   In the present invention, it is an essential condition to apply drought stress during growth. Drought stress can be applied to the plant body by a measure not to give water to the plant body. In general, the soil pF value in the range of 1.7 to 2.3 is considered to be an appropriate range that does not cause drought stress, and if it can be cultivated on land with a soil pF value higher than this, it is said to be drought resistant. . Jatropha plants are drought-tolerant plants and can be cultivated without stress even in soil having a pF value of about 2.3 to 2.5, which is larger than the above range. In the present invention, drought stress can be applied by cultivating in dry soil having a soil pF value of 2.5 or more, preferably 2.7 or more. The soil pF value is a value measured by a commercially available soil moisture meter (for example, a pF meter manufactured by Dairika Chemical Co., Ltd.). In the present invention, as a method of applying drought stress, it is also effective to take out from the soil and leave it without giving water. In this case, the standing conditions are a temperature of 20 ° C. to 35 ° C., preferably 25 ° C. to 30 ° C., and a humidity of 30% RH to 65% RH, preferably 30% RH to 50% RH. Metabolites cannot be increased effectively even when left under conditions where the humidity exceeds 65% RH, and if the humidity is less than 30% RH, the leaves may dry out and die. In addition, there is a strong risk that it will not grow at a temperature lower than 20 ° C. or a temperature higher than 35 ° C. and will die.

ジャトロファ属植物は、種子から発芽発根する発根・発芽期を経て、子葉期、双葉期、栄養生長期、開花期、結実期へと成長する。乾燥ストレスはこの生長段階においていずれの時期において負荷してもよいが、本発明においては代謝産物の増加が期待される双葉期を経た後の生長期(幼木期)に負荷するのが好ましい。また、目的とする代謝産物によっても異なり、例えば、2次代謝産物であるキナ酸の産生量を増やす場合には、発芽から8週以降にある植物体にストレスを負荷するのが望ましい。もっとも、いずれの段階の植物体にストレスを負荷することによっても、例えばγ−アミノ酪酸などの代謝産物の産生量を増やすことができる。   Jatropha plants grow through the rooting and germination stages from the seeds to germinate roots, then into the cotyledon stage, the foliage stage, the vegetative period, the flowering stage, and the fruiting stage. The drought stress may be applied at any stage in this growth stage, but in the present invention, it is preferably applied to the growth period (young tree stage) after the foliage stage where an increase in metabolites is expected. Also, depending on the target metabolite, for example, when increasing the production amount of quinic acid, which is a secondary metabolite, it is desirable to load a plant body 8 weeks after germination. However, the amount of production of metabolites such as γ-aminobutyric acid can be increased by applying stress to the plant body at any stage.

ストレスを負荷する期間は適宜決めることができる。例えば、土壌から引き抜き放置することによって乾燥ストレスを負荷する場合には少なくとも24時間以上、好ましくは48時間以上の放置時間が望ましいが、長くとも7日間以下、好ましくは5日間以下である。24時間以上でなければストレスの負荷の効果が見られず、7日間を超えても絶対量は平衡となり産生量が増えないだけでなく、植物体が枯れるおそれがある。   The period during which stress is applied can be determined as appropriate. For example, in the case where a drying stress is applied by being pulled out from the soil, the standing time is at least 24 hours, preferably at least 48 hours, but it is at most 7 days or less, preferably 5 days or less. If it is not more than 24 hours, the effect of stress loading is not observed, and even if it exceeds 7 days, the absolute amount is balanced and the production amount does not increase, and the plant body may die.

このように、上記乾燥ストレスのような各種ストレスを生育中の植物体に負荷すれば、ストレスを負荷せずに生育した場合に比べて、ジャトロファ属植物体中における代謝産物の生産量が増加する。代謝産物は植物体全体で増加すると考えられるが、本発明においては、植物体全体で生産量が均一に増加する場合のみならず、葉や根など特定の部位において生産量が増加する場合でも差し支えない。   Thus, when various stresses such as the above-mentioned drought stress are applied to the growing plant body, the production amount of the metabolite in the Jatropha plant body is increased as compared with the case where it grows without applying the stress. . The metabolite is considered to increase in the whole plant, but in the present invention, not only when the production increases uniformly in the whole plant, but also when the production increases in specific parts such as leaves and roots. Absent.

ジャトロファ属植物中の代謝産物として、例えば、バリン、リン酸、マレイン酸、プロリン、γ−アミノ酪酸(GABA)、グルタミン酸、グルタミン、クエン酸、キナ酸(誘導体)が知られているが、この中では乾燥ストレスの負荷によってバリン、プロリン、GABA、グルタミン、キナ酸の生産量が増加し、特にGABA、の生産量は、ストレスを負荷しない場合に比べて少なくとも2倍以上、好ましい場合、例えばキナ酸では3倍以上となる。すなわち、本発明によると、ストレスを負荷せずに育成したジャトロファ属植物に比べて、代謝産物の2倍の含有量、好ましくは3倍の含有量を有するジャトロファ属植物が得られる。   As metabolites in the genus Jatropha, for example, valine, phosphoric acid, maleic acid, proline, γ-aminobutyric acid (GABA), glutamic acid, glutamine, citric acid, quinic acid (derivatives) are known. In this case, the production of valine, proline, GABA, glutamine and quinic acid is increased by the load of drought stress. In particular, the production of GABA is at least twice or more compared to the case where no stress is applied. Then it becomes more than 3 times. In other words, according to the present invention, a Jatropha plant having a content twice as high as that of a metabolite, and preferably a content three times as high as that of a Jatropha plant grown without applying stress can be obtained.

このようにして乾燥ストレスをはじめとする各種ストレスが負荷された植物体は、代謝産物を多量に含み、特に2次代謝産物の抽出原料として有効に利用される。また、ストレスが負荷された根を有する植物体は、通常の生育条件、すなわち、ストレス負荷のない状態に戻して引き続き生育させることができる。これにより、ジャトロファ属植物は開花、結実し、葉においてはキナ酸をはじめとする代謝産物の収量が増大し、種子はバイオディーゼルオイルの良好な原材料として用いられる。   Plants loaded with various stresses such as drought stress in this way contain a large amount of metabolites, and are particularly effectively used as raw materials for extracting secondary metabolites. In addition, a plant having roots loaded with stress can be continued to grow under normal growth conditions, that is, without stress loading. As a result, Jatropha plants bloom and fruit, and the yield of metabolites including quinic acid increases in the leaves, and seeds are used as a good raw material for biodiesel oil.

以上述べたように本発明の方法は遺伝子操作を経ることなく代謝産物、特にヒトに対する有用性が期待される2次代謝産物の生産量を増加させることのできる簡便な方法である。もっとも、本発明は目的とする代謝産物を生産する遺伝子とは異なる遺伝子を導入した植物体に適用することも可能である。例えば、乾燥耐性を目指して遺伝子導入を行った形質転換体や種子における現油量の増量を目指して遺伝子導入を行った形質転換体においても、本発明を適用できる。   As described above, the method of the present invention is a simple method capable of increasing the production amount of metabolites, in particular, secondary metabolites expected to be useful to humans without genetic manipulation. However, the present invention can also be applied to a plant into which a gene different from the gene that produces the target metabolite is introduced. For example, the present invention can also be applied to a transformant in which a gene is introduced with the aim of drought tolerance and a transformant in which a gene is introduced with the aim of increasing the amount of oil present in seeds.

次に実施例に基づきさらに本発明を説明するが、本発明は以下の実施例に限定されるものではなく、特許請求の範囲の範囲及びこれと均等に含まれるすべての変更が本発明に含まれることが意図される。   EXAMPLES Next, the present invention will be further described based on examples. However, the present invention is not limited to the following examples, and all modifications that are included in the scope of the claims and equivalents thereof are included in the present invention. Is intended.

〔植物体の生育〕
ジャトロファ属植物として、ジャトロファ・クルカス(Jatropha curcas)の野生型株を使用した。
[Plant growth]
A wild type strain of Jatropha curcas was used as a Jatropha plant.

〔乾燥ストレスの負荷〕
(植物体の生育)
発芽直後の実生を、プラスチック製ポットに入れた培土(バーミキュライト)に移植し、30℃の温度、2,000luxの照明下16時間の明時間の栽培条件で栽培した。用いた植物体を2群に分け、高窒素含有培養液群として19mのNO 及び10mMのNH を含む培地と低窒素含有培養液群として4mMのNO を含む培地を一日おきに与え、8週栽培した。
[Dry stress load]
(Plant growth)
The seedlings immediately after germination were transplanted to a soil (vermiculite) placed in a plastic pot, and cultivated under a light condition of 30 hours at a temperature of 30 ° C. under illumination of 2,000 lux for 16 hours. Divided plants used in two groups, high nitrogen containing broth 19m as group NO 3 - and 4mM of NO 3 as medium and low nitrogen containing culture groups containing 10 mM NH 4 + of - day media containing Give every other and cultivate for 8 weeks.

(ストレスの負荷)
上記栽培した植物体に乾燥ストレスを負荷した。根をつけた状態で植物体をポットから取り出し、30℃、60%RHの恒温室で、2,000luxの照明下16時間の明時間の条件で水を与えずに48時間放置して、乾燥ストレスを負荷した。
(Stress load)
The cultivated plant was loaded with drought stress. Remove the plant from the pot with the roots attached, leave it in a constant temperature room at 30 ° C. and 60% RH for 48 hours without irradiating water under 2,000 lux lighting for 16 hours and drying. Stressed.

〔代謝産物の産生量測定〕
乾燥ストレスを付与した後、植物体中の2次代謝産物の生産量を測定した。測定には、植物体の茎頂のもっとも若い葉から数えて第2葉と植物体の下部にある、双葉の後2番目に形成された成熟葉を用いた。それぞれの葉に穴を開けて各群40mgの葉片を採取し、測定用サンプルとした。液体窒素により凍結したサンプルを、ジルコニアボールとともにミキサーミルを用いて20Hzで一分間破砕した後、抽出バッファー(メタノール:純水;クロロホルムの2.5:1:1の混合液)を加えて再び同じ条件で5分間破砕、抽出を行った。内部標準として用いるリビトール溶液を加えたのち遠心分離し、とりわけた上清に純水を加えて再び遠心分離し、最終的に得られた水−メタノール層を一晩凍結乾燥する。誘導体化試薬(メトキシアミンとMSTFA)を直接加えて誘導体化し、GC-TOFMS(装置名:PegasusIII LECO社製)により測定した。この測定結果を図1と図2に示した。なお、図1と図2の含有量は相対値であって、同一化合物の中で異なる処理(葉)の間での比較のみ許される。
[Measurement of metabolite production]
After applying drought stress, the production amount of secondary metabolites in the plant body was measured. For the measurement, the second leaf counted from the youngest leaf at the shoot apex of the plant body and the mature leaf formed second after the twin leaf were used. A hole was made in each leaf, and 40 mg leaf pieces were collected from each group, and used as measurement samples. The sample frozen with liquid nitrogen was crushed with a zirconia ball using a mixer mill at 20 Hz for 1 minute, and then the extraction buffer (methanol: pure water; chloroform 2.5: 1: 1 mixture) was added again and again. Crushing and extraction were performed for 5 minutes under the conditions. After adding the ribitol solution used as an internal standard, the mixture is centrifuged, and in particular, pure water is added to the supernatant and centrifuged again. The finally obtained water-methanol layer is freeze-dried overnight. Derivatization reagents (methoxyamine and MSTFA) were added directly for derivatization, and measurement was performed by GC-TOFMS (device name: manufactured by Pegasus III LECO). The measurement results are shown in FIGS. The contents in FIGS. 1 and 2 are relative values, and only a comparison between different treatments (leaves) in the same compound is allowed.

図1から理解されるように、植物体に乾燥ストレスを負荷した場合、若葉ではバリン、リン酸、プロリン、γ−アミノ酪酸、グルタミン、キナ酸の含有量が増加した。これらの中で、γ−アミノ酪酸、キナ酸の含有量は約4倍近くに増加した。また、バリンやγ−アミノ酪酸では産生量が測定され、生産の促進が観察された。また、成熟葉でも、バリン、リン酸、プロリン、γ−アミノ酪酸、グルタミンの生産量が増加した。しかしながら、成熟葉における増加量は若葉における増加量よりも少なく、若葉における代謝産物の生産がより活性化されやすいものと考えられる。     As understood from FIG. 1, when drought stress was applied to the plant body, the content of valine, phosphate, proline, γ-aminobutyric acid, glutamine, and quinic acid increased in young leaves. Among these, the content of γ-aminobutyric acid and quinic acid increased nearly four times. In addition, the production amount of valine and γ-aminobutyric acid was measured, and the promotion of production was observed. In mature leaves, the production of valine, phosphate, proline, γ-aminobutyric acid, and glutamine increased. However, the amount of increase in mature leaves is less than the amount of increase in young leaves, and it is considered that the production of metabolites in young leaves is more easily activated.

本発明によると簡便な方法によって、ジャトロファ属植物中のキナ誘導体含有量を増加させることができる。   According to the present invention, the quina derivative content in the Jatropha plant can be increased by a simple method.

Claims (7)

ストレスを負荷した状態でジャトロファ属植物を生育し、ジャトロファ属植物中の代謝産物を増加させる方法。   A method for growing a Jatropha plant under stress and increasing a metabolite in the Jatropha plant. 幼木期にあるジャトロファ属植物に乾燥ストレスを負荷する請求項1に記載の方法。   The method according to claim 1, wherein drought stress is applied to a Jatropha plant in a young tree stage. 24時間以上の水を与えないことで乾燥ストレスを負荷する請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein drought stress is applied by not providing water for 24 hours or more. 前記代謝産物はキナ酸、γ−アミノ酪酸の何れかである請求項1〜3のいずれか1項に記載の方法。   The method according to claim 1, wherein the metabolite is quinic acid or γ-aminobutyric acid. 乾燥ストレスが負荷されていない状態で生育させた葉の含有量に対して2倍量以上の代謝産物を含有する葉を有する請求項1〜3に記載の方法で得られたジャトロファ属植物。   The Jatropha genus plant obtained by the method of Claims 1-3 which has a leaf containing the metabolite more than twice as much content as the content of the leaf grown in the state which was not loaded with the drought stress. 前記代謝産物はキナ酸、γ−アミノ酪酸である請求項5に記載のジャトロファ属植物。   The Jatropha plant according to claim 5, wherein the metabolite is quinic acid or γ-aminobutyric acid. キナ酸を含有する葉を有する請求項1〜3に記載の方法で得られたジャトロファ属植物。 The Jatropha genus plant obtained by the method of Claims 1-3 which has a leaf containing a quinic acid.
JP2010066359A 2010-03-23 2010-03-23 Method for cultivating genus jatropha plant Withdrawn JP2011193841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066359A JP2011193841A (en) 2010-03-23 2010-03-23 Method for cultivating genus jatropha plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066359A JP2011193841A (en) 2010-03-23 2010-03-23 Method for cultivating genus jatropha plant

Publications (1)

Publication Number Publication Date
JP2011193841A true JP2011193841A (en) 2011-10-06

Family

ID=44872818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066359A Withdrawn JP2011193841A (en) 2010-03-23 2010-03-23 Method for cultivating genus jatropha plant

Country Status (1)

Country Link
JP (1) JP2011193841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102986519A (en) * 2012-12-10 2013-03-27 中国科学院地球化学研究所 Method for indicating capacities of plants in drought stress resistance by utilizing malic acid secreted from root systems
JP2013059299A (en) * 2011-09-14 2013-04-04 Oji Holdings Corp Marker for deciding water sufficiency degree of plant and method for deciding water sufficiency degree using the same
JP2015092838A (en) * 2013-11-10 2015-05-18 ヒノン農業株式会社 Method for increasing gaba content in melon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059299A (en) * 2011-09-14 2013-04-04 Oji Holdings Corp Marker for deciding water sufficiency degree of plant and method for deciding water sufficiency degree using the same
CN102986519A (en) * 2012-12-10 2013-03-27 中国科学院地球化学研究所 Method for indicating capacities of plants in drought stress resistance by utilizing malic acid secreted from root systems
JP2015092838A (en) * 2013-11-10 2015-05-18 ヒノン農業株式会社 Method for increasing gaba content in melon

Similar Documents

Publication Publication Date Title
Ji et al. Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato
Zhu et al. Morphological and photosynthetic response of waxy corn inbred line to waterlogging
Rezaie et al. Allelopathic effects of Chenopodium album, Amaranthus retroflexus and Cynodon dactylon on germination and growth of safflower
Mahsa Hosseini et al. The effect of Salicylic acid on physiological characteristics of Lolium grass (Lolium perenne cv.“Numan”) under drought stress
Häikiö et al. Impacts of elevated ozone and nitrogen on growth and photosynthesis of European aspen (Populus tremula) and hybrid aspen (P. tremula× Populus tremuloides) clones
Baber et al. Diel patterns of leaf carbohydrate concentrations differ between seedlings and mature trees of two sympatric oak species
Waman et al. Review on clonal propagation of medicinal and aromatic plants through stem cuttings for promoting their cultivation and conservation
Kumar et al. Cover crop residues enhance growth, improve yield, and delay leaf senescence in greenhouse-grown tomatoes
Yang et al. Physiological and growth responses to defoliation of older needles in Abies alba trees grown under two light regimes
DesRochers et al. The effect of root and shoot pruning on early growth of hybrid poplars
JP2011193841A (en) Method for cultivating genus jatropha plant
Taylor et al. Carbon isotope discrimination, gas exchange, and growth of container-grown conifers under cyclic irrigation
Bharad et al. Softwood grafting as useful method of propagation for commercial multiplication of Syzygium cumini L. under semi-arid climatic conditions of India
Robakowski et al. Seasonal changes affect root prunasin concentration in Prunus serotina and override species interactions between P. serotina and Quercus petraea
Hadi et al. Effects of irrigation treatment and zinc foliar application on yield and yield components of chickpea (Cicer arietinum L.)
Ma et al. Leaf color and growth change of Sedum rubrotinctum caused by two commercial chemical products
Yao et al. Exogenous polyamines influence root morphogenesis and arbuscular mycorrhizal development of Citrus limonia seedlings
Emile et al. Influence of Exogenous Auxins on Phenolic Compounds Contents and Polyphenol oxidasic and Peroxidasic Activities in Root Differentiation in Gnetum spp.
Balabak et al. Evaluation of the Morphological and Biological, And Regenerative Capacity of Stem Cuttings of Actinidia (Аctinidia Lindl.) Cultivars, When Introduced Into Industrial Culture in the Right-Bank Forest-Steppe Zone of Ukraine
Zeljković et al. Nutrient content and growth of begonia transplants (Begonia semperflorens L.) under the influence of biostimulant application
Wu et al. Brassinolide alleviates glufosinate-ammonium toxicity by enhancing photosynthesis and nitrogen metabolism in trichosanthes kirilowii
Akova et al. Impact of nitrogen fertilization on growth and photosynthetic activity of walnut planting material (Juglans regia L.), cultivated in containers.
Pandey et al. Studies on morpho-physiological characters of different Avena species under stress conditions
Minhas et al. Response of potato to elevated CO2 under short days: Growth, physiological parameters and tuber yield
Chakrawal et al. Physioagronomic analysis of sugarcane (Saccharum spp. hybrid complex) varieties under different planting geometry

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604