JP2011191779A - Lens device - Google Patents

Lens device Download PDF

Info

Publication number
JP2011191779A
JP2011191779A JP2011109764A JP2011109764A JP2011191779A JP 2011191779 A JP2011191779 A JP 2011191779A JP 2011109764 A JP2011109764 A JP 2011109764A JP 2011109764 A JP2011109764 A JP 2011109764A JP 2011191779 A JP2011191779 A JP 2011191779A
Authority
JP
Japan
Prior art keywords
lens
optical system
light quantity
light amount
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011109764A
Other languages
Japanese (ja)
Other versions
JP5059214B2 (en
Inventor
Takaharu Nurishi
塗師  隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011109764A priority Critical patent/JP5059214B2/en
Publication of JP2011191779A publication Critical patent/JP2011191779A/en
Application granted granted Critical
Publication of JP5059214B2 publication Critical patent/JP5059214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and lightweight lens device capable of switching automatic focus control in stop-down photographing to attain photographing according to a photographer's intention. <P>SOLUTION: The lens device includes a focus moving lens group 1, a movable diaphragm 3 and a branch optical system 4 in order from the object side, and detects a focus by a focus detecting means 7 using luminous flux after branching to perform automatic focus control. In the case of restricting the movable diaphragm 3 beyond a threshold F1, automatic focus control is stopped and switched to manual focus control. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光路中に分岐光学系を有し、この分岐光学系による分岐光束を用いてオートフォーカス制御を行うレンズ装置に関するものである。   The present invention relates to a lens apparatus having a branching optical system in an optical path and performing autofocus control using a branched light beam by the branching optical system.

スチルカメラやビデオカメラ等の撮影装置におけるオートフォーカス技術は、従来から種々提案されている。例えば特許文献1には、特に光路中に分岐光学系を設け、分岐光路中に位相差による合焦状態検出手段を設けたレンズ・撮像装置が開示されている。   Conventionally, various autofocus techniques for photographing apparatuses such as a still camera and a video camera have been proposed. For example, Patent Document 1 discloses a lens / imaging apparatus in which a branching optical system is provided in the optical path, and in-focus state detection means is provided in the branching optical path.

特開平9−274130号公報JP-A-9-274130

スチルカメラでは、絞りを開放した状態でオートフォーカス制御を実施した後に、絞りを絞り込むことにより光量を調節し撮影することが可能である。しかし、放送用・ビデオ用・シネ用等の動画撮影は常に撮影状態にあるため、任意の絞り状態でオートフォーカス制御をする必要がある。   In a still camera, after performing autofocus control with the aperture open, it is possible to adjust the amount of light by narrowing down the aperture and take a picture. However, since moving image shooting for broadcasting, video, cine and the like is always in a shooting state, it is necessary to perform autofocus control in an arbitrary aperture state.

動画撮影で絞りの像側に分岐光学系を配置し、分岐後の光束を用いて位相差検出を行う場合に、被写体が明るい等により絞りが閾値よりも絞られると、二次結像レンズの瞳がけられてしまうことになる。その結果、位相差が正確に検出できず、オートフォーカス精度が低下し誤動作する問題がある。   When a branching optical system is arranged on the image side of the stop for moving image shooting and phase difference detection is performed using the branched light beam, if the stop is stopped below the threshold due to the subject being bright, the secondary imaging lens Your eyes will be cut off. As a result, there is a problem that the phase difference cannot be detected accurately, and the autofocus accuracy is lowered and malfunctions.

また、更に絞りが大きく絞られると、二次結像レンズの瞳が完全にけられてしまい、位相差が検出できず、オートフォーカス制御ができない場合もある。   In addition, when the aperture is further reduced, the pupil of the secondary imaging lens is completely removed, the phase difference cannot be detected, and autofocus control may not be possible.

特許文献1の第1実施形態のように、絞りの物体側に分岐光学系を設けると、上述の問題は発生しないが、光学系全体が大型化する問題点がある。   When the branching optical system is provided on the object side of the diaphragm as in the first embodiment of Patent Document 1, the above-described problem does not occur, but there is a problem that the entire optical system becomes large.

本発明の目的は、上述の問題点を解消し、絞り込み撮影時のオートフォーカス制御を切換え可能とし、撮影者の意図に応じた撮影が可能な小型軽量なレンズ装置を提供することにある。   An object of the present invention is to solve the above-described problems, to provide a small and lightweight lens device that can switch autofocus control during narrowed-down shooting and can perform shooting according to the photographer's intention.

上記目的を達成するための本発明に係るレンズ装置の技術的特徴は、物体側から順に、フォーカシング時に移動するフォーカスレンズ群、可動絞り、分岐光学系を備えた結像光学系を有し、前記分岐光学系による分岐光束を用いて合焦検出手段による位相差検出によって合焦検出を行うオートフォーカス制御とマニュアルフォーカス制御とを備えたレンズ装置において、前記フォーカスレンズ群から撮像手段に至る結像光学系のFナンバを閾値を越えて前記可動絞りにより絞る場合は、前記オートフォーカス制御を停止して前記マニュアルフォーカス制御に切換える切換手段を備えたことにある。   The technical feature of the lens apparatus according to the present invention for achieving the above object includes, in order from the object side, an imaging optical system including a focus lens group that moves during focusing, a movable diaphragm, and a branching optical system, In a lens apparatus having autofocus control and manual focus control for performing focus detection by phase difference detection by a focus detection means using a branched light beam by a branching optical system, imaging optics from the focus lens group to the imaging means When the F number of the system exceeds the threshold and is reduced by the movable diaphragm, there is provided switching means for stopping the autofocus control and switching to the manual focus control.

本発明に係るレンズ装置によれば、撮影者の意図に応じた絞り込み撮影時のオートフォーカス制御が可能となると共に、小型軽量化が達成できる。   According to the lens device of the present invention, it is possible to perform autofocus control at the time of narrow-down photography according to the photographer's intention, and to achieve a reduction in size and weight.

実施例1の構成図である。1 is a configuration diagram of Example 1. FIG. 合焦検出手段の光学的構成図である。It is an optical block diagram of a focus detection means. 絞りがフォーカス移動レンズ群のFナンバの閾値を越えて絞られた状態の光路図である。FIG. 6 is an optical path diagram in a state where the aperture is stopped beyond the threshold of the F number of the focus moving lens group. 絞りがフォーカス移動レンズ群のFナンバの閾値を越えて更に絞られた状態の光路図である。FIG. 6 is an optical path diagram in a state where the aperture is further stopped beyond the F number threshold of the focus moving lens group. 動作フローチャート図である。It is an operation | movement flowchart figure. 実施例2の構成図である。FIG. 6 is a configuration diagram of Example 2. 動作フローチャート図である。It is an operation | movement flowchart figure. 実施例3の構成図である。FIG. 6 is a configuration diagram of Example 3. 動作フローチャート図である。It is an operation | movement flowchart figure. 実施例4の構成図である。FIG. 6 is a configuration diagram of Example 4. 実施例5の構成図である。FIG. 10 is a configuration diagram of Example 5.

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

本発明での位相差検出方式とは、分岐光束を結像させるための一次結像レンズと、一次結像レンズの予定結像面近傍に配置されるフィールドレンズと、このフィールドレンズの後方に配置される2次結像光学系とを有する。これにより、結像光学系の瞳の異なった部分を通過する光束に基づいた対の物体像に形成すると共に、物体像のそれぞれを上記2次結像光学系の後方に配置された光電変換素子列で検出する。そして、物体像の相対的なずれ量から結像光学系の焦点状態を判別するようにした焦点検出装置により位相差を検出する方式である。   In the present invention, the phase difference detection method includes a primary imaging lens for forming an image of a branched light beam, a field lens disposed in the vicinity of a predetermined imaging surface of the primary imaging lens, and a rear of the field lens. Secondary imaging optical system. This forms a pair of object images based on light beams passing through different parts of the pupil of the imaging optical system, and each of the object images is arranged behind the secondary imaging optical system. Detect by column. The phase difference is detected by a focus detection device that determines the focus state of the imaging optical system from the relative shift amount of the object image.

(実施例1)
図1はレンズ装置である実施例1のオートフォーカスズームレンズの構成図を示している。光軸に沿って、フォーカス移動レンズ群1、変倍移動レンズ群2、可動絞り3、分岐光学系4、リレーレンズ群5、撮像手段6が配列されている。変倍移動レンズ群2は変倍用のバリエータ2aと変倍に伴う像面変動を補正用のコンペンセータ2bにより構成されている。分岐光学系4の分岐方向には合焦検出手段7が配置され、合焦検出手段7の出力は演算手段8に接続され、演算手段8には更に変倍移動レンズ群2のズーム検出手段9の出力が接続されている。また、演算手段8からフォーカス駆動手段11、絞り制御手段12にそれぞれ出力が接続され、フォーカス移動レンズ群1、可動絞り3を駆動するようになっている。
Example 1
FIG. 1 shows a configuration diagram of an autofocus zoom lens of Example 1 which is a lens device. A focus moving lens group 1, a variable magnification moving lens group 2, a movable diaphragm 3, a branching optical system 4, a relay lens group 5, and an imaging means 6 are arranged along the optical axis. The variable magnification moving lens group 2 includes a variable variator 2a for changing magnification and a compensator 2b for correcting image plane fluctuation accompanying the change in magnification. Focus detection means 7 is arranged in the branch direction of the branch optical system 4, the output of the focus detection means 7 is connected to the calculation means 8, and the calculation means 8 further includes a zoom detection means 9 of the variable magnification moving lens group 2. Is connected. Further, outputs are respectively connected from the calculation means 8 to the focus drive means 11 and the aperture control means 12 so as to drive the focus moving lens group 1 and the movable aperture 3.

そして、分岐光学系4により分岐された光束により、合焦検出手段7は合焦検出値を求め、演算手段8により演算を行い、フォーカス駆動手段11を介してフォーカス移動レンズ群1を駆動制御してオートフォーカス制御を行っている。   Then, the focus detection unit 7 obtains a focus detection value by the light beam branched by the branching optical system 4, performs a calculation by the calculation unit 8, and controls the drive of the focus moving lens group 1 via the focus drive unit 11. Auto focus control.

また、光量調節は撮像手段6の輝度信号を基に、演算手段8により絞り制動手段12を介して可動絞り3を駆動することにより行われる。   The light amount is adjusted by driving the movable diaphragm 3 via the diaphragm braking means 12 by the computing means 8 based on the luminance signal of the imaging means 6.

図2は合焦検出手段7の光学的構成図を示し、可動絞り3を介した分岐光学系4の分岐方向の光軸上には、一次結像レンズ7a、視野絞り7b、フィールドレンズ7c、2つの開口部を有する絞り7dが配列されている。絞り7dの2つの開口部のそれぞれの出射方向に、一対の二次結像レンズ7e、7e’を介して、一対の受光素子列7f、7f’が配置されている。視野絞り7b、フィールドレンズ7cは、一次結合レンズ7aの予定結像面の近傍に配置されている。   FIG. 2 shows an optical configuration diagram of the focus detection means 7. On the optical axis in the branching direction of the branching optical system 4 via the movable stop 3, a primary imaging lens 7a, a field stop 7b, a field lens 7c, A diaphragm 7d having two openings is arranged. A pair of light receiving element rows 7f and 7f 'are arranged in the respective emission directions of the two openings of the stop 7d via a pair of secondary imaging lenses 7e and 7e'. The field stop 7b and the field lens 7c are disposed in the vicinity of the planned imaging surface of the primary coupling lens 7a.

なお、フィールドレンズ7cは絞り7d、2次結像レンズ7e、7e’を介した一次結像レンズ7aの光軸を中心とし対称に配置された2つの領域に結像する作用を有している。そして、各領域を透過した光束が受光素子列7f、7f’上にそれぞれ光量分布を形成し、受光素子列7f、7f’の出力は演算手段8に送られる。   The field lens 7c has a function of forming an image on two regions symmetrically arranged with the optical axis of the primary imaging lens 7a through the diaphragm 7d and the secondary imaging lenses 7e and 7e 'as the center. . The light beams transmitted through the respective regions form light quantity distributions on the light receiving element arrays 7f and 7f ', and the outputs of the light receiving element arrays 7f and 7f' are sent to the calculation means 8.

図2に示す合焦検出手段7では、一次結像レンズ7aによる結像点が予定結像面の前側にある場合は、2つの受光素子列7f、7f’上にそれぞれ形成される物体像に関する光量分布が互いに近付いた状態となる。また、一次結像レンズ7aの結像点が予定結像面の後側にある場合は、2つの受光素子列7f、7f’上にそれぞれ形成される光量分布が互いに離れた状態となる。   In the focus detection unit 7 shown in FIG. 2, when the image forming point by the primary image forming lens 7a is on the front side of the planned image forming surface, the object images formed on the two light receiving element arrays 7f and 7f ′ are related. The light quantity distribution is close to each other. When the image forming point of the primary image forming lens 7a is on the rear side of the planned image forming surface, the light quantity distributions formed on the two light receiving element arrays 7f and 7f 'are separated from each other.

2つの受光素子列7f、7f’上にそれぞれ形成された光量分布のずれ量は、一次結像レンズ7aの焦点外れ量と或る関数関係にある。このずれ量を演算手段8により算出すると、一次結像レンズ7aの焦点外れ、即ち結像光学系の焦点外れの方向と量とを検出することができる。   The amount of deviation of the light quantity distribution formed on each of the two light receiving element arrays 7f and 7f 'has a certain functional relationship with the amount of defocus of the primary imaging lens 7a. When this deviation amount is calculated by the calculation means 8, it is possible to detect the defocusing direction and amount of the primary imaging lens 7a, that is, the defocusing direction of the imaging optical system.

なお、可動絞り3上の2つの領域を包含する最小の絞り径に対応するフォーカス移動レンズ群1から撮像手段6に至る光学系のFナンバを閾値F1とする。なお、Fナンバはこの光学系の焦点距離をf、入射瞳直径をDとしたとき、f/Dで表される。また、2対以上の二次結像レンズを有する合焦検出手段7の場合に、閾値F1は最も基線長の短い二次結像レンズ7e、7e’に対応する可動絞り3上の2つの領域に基づいて算出される。   Note that the F number of the optical system from the focus moving lens group 1 corresponding to the minimum aperture diameter including the two areas on the movable aperture 3 to the imaging means 6 is defined as a threshold F1. The F number is represented by f / D where f is the focal length of this optical system and D is the diameter of the entrance pupil. In the case of the focus detection means 7 having two or more pairs of secondary imaging lenses, the threshold value F1 is two regions on the movable diaphragm 3 corresponding to the secondary imaging lenses 7e and 7e 'having the shortest baseline length. Is calculated based on

図3に示すように、可動絞り3がFナンバの閾値F1を越えて絞られると、絞り7dを通る光束にけられが生ずる。そのため、2つの受光素子列7f、7f’上にそれぞれ形成される光量分布の重心がずれてしまい、光量分布のずれ量が正確に測定できない。また、光量が低下して蓄積時間が増大したり、S/Nが低下することにより、正確な合焦状態の検出ができなくなる。   As shown in FIG. 3, when the movable stop 3 is stopped beyond the F number threshold F1, the light beam passing through the stop 7d is garbled. For this reason, the centroids of the light quantity distributions respectively formed on the two light receiving element arrays 7f and 7f 'are shifted, and the shift amount of the light quantity distribution cannot be measured accurately. Further, since the amount of light decreases and the accumulation time increases or the S / N decreases, it becomes impossible to accurately detect the in-focus state.

更に、可動絞り3が図4に示すように絞られると、2つの受光素子列7f、7f’上に光束が到達しなくなり、合焦検出が不可能となる。   Further, when the movable stop 3 is stopped as shown in FIG. 4, the light beam does not reach the two light receiving element arrays 7f and 7f ', and the focus detection becomes impossible.

そこで本実施例では、図5に示すフローチャート図に基づいて、可動絞り3の調整及びオートフォーカス制御を行う。可動絞り3によるFナンバが閾値であるF1=(F/8)を越えて絞られ、Fナンバの数値が大きくなった場合はオートフォーカス制御を停止し、マニュアルフォーカスに切換えて、マニュアルフォーカスに移行した警告を表示する。また、Fナンバが閾値F1よりも小さければ、オートフォーカス制御を継続又はオートフォーカス制御に復帰する。   Therefore, in this embodiment, adjustment of the movable diaphragm 3 and autofocus control are performed based on the flowchart shown in FIG. When the F number by the movable diaphragm 3 is reduced beyond the threshold value F1 = (F / 8), and the F number becomes large, the autofocus control is stopped, the manual focus is switched, and the manual focus is shifted to. Displayed warnings. If the F number is smaller than the threshold value F1, the autofocus control is continued or returned to the autofocus control.

映像の解像力を低下させないためには、エアリーディスク径が撮像手段6の画素ピッチを越えない範囲で、Fナンバの閾値F1を制御することが好ましく、その範囲でのオートフォーカス制御を保証することが望ましい。従って、閾値F1は撮像手段6が感度を有する波長域の中心波長をλ、撮像手段6の画素ピッチをPとしたとき、次式を満たすことが望ましい。
1.22・λ・F1/P>1 …(1)
In order not to reduce the resolving power of the image, it is preferable to control the F number threshold value F1 within a range where the Airy disk diameter does not exceed the pixel pitch of the image pickup means 6, and to guarantee the autofocus control within that range. desirable. Therefore, it is desirable that the threshold value F1 satisfy the following equation, where λ is the center wavelength of the wavelength region in which the imaging unit 6 is sensitive and P is the pixel pitch of the imaging unit 6.
1.22 · λ · F1 / P> 1 (1)

本実施例では、撮像手段6として例えば2/3型CCDを使用しており、画面寸法は水平9.6mm、垂直5.4mm、画素数は水平1920、垂直1080、画素ピッチPは0.005mmである。また、使用波長域は400〜700nmで、中心波長λは550nm(=5.5・10−4mm)である。従って、(1)式の左辺は次式の数値となり、(1)式の条件を満たしていることが分かる。
1.22・5.5・10−4・8/0.005=1.0736 …(2)
In this embodiment, for example, a 2/3 type CCD is used as the image pickup means 6, the screen size is 9.6 mm horizontal, 5.4 mm vertical, the number of pixels is 1920 horizontal, 1080 vertical, and the pixel pitch P is 0.005 mm. It is. The use wavelength range is 400 to 700 nm, and the center wavelength λ is 550 nm (= 5.5 · 10 −4 mm). Therefore, the left side of the equation (1) is a numerical value of the following equation, which indicates that the condition of the equation (1) is satisfied.
1.22 · 5.5 · 10 −4 · 8 / 0.005 = 1.0736 (2)

(実施例2)
図6は実施例2のオートフォーカスズームレンズの構成図である。図1に示す実施例1に対して、NDフィルタを内蔵した第2の光量調節手段21が分岐光学系4とリレーレンズ群5との間の光軸上に挿入され、演算手段8の指令によりNDフィルタが駆動手段22を介して挿脱自在とされている。第2の光量調節手段21中のNDフィルタは撮像手段6に対する光量を1/4に減少させる効果を有し、絞り2段分に相当し、NDフィルタを挿入した状態のFナンバF2は、次式に設定されている。
F2=F1/2 …(3)
(Example 2)
FIG. 6 is a configuration diagram of the autofocus zoom lens of the second embodiment. In contrast to the first embodiment shown in FIG. 1, the second light quantity adjusting means 21 incorporating the ND filter is inserted on the optical axis between the branching optical system 4 and the relay lens group 5, and according to a command from the calculating means 8. The ND filter can be inserted and removed through the driving means 22. The ND filter in the second light quantity adjusting means 21 has an effect of reducing the light quantity to the image pickup means 6 to ¼. The ND filter corresponds to two stops, and the F number F2 with the ND filter inserted is Is set to an expression.
F2 = F1 / 2 (3)

本実施例2では、2つの光量調節モードを有している。第1の光量調節モードにおいては実施例1と同様に、図5に示す動作フローチャート図に基づいて、Fナンバに応じてオートフォーカスとマニュアルフォーカスを切換える。   The second embodiment has two light quantity adjustment modes. In the first light amount adjustment mode, as in the first embodiment, the auto focus and the manual focus are switched according to the F number based on the operation flowchart shown in FIG.

また、第2の光量調節モードでは、図7に示すフローチャート図に基づいて可動絞り3の制御を行い、Fナンバが閾値F1を越えないようにすると共に、第2の光量調節手段21を光路中に挿入し、オートフォーカス制御を継続する。また、FナンバがF2以下となった場合には、自動的に第2の光量調節手段21を光路から外すようにしている。   In the second light quantity adjustment mode, the movable diaphragm 3 is controlled based on the flowchart shown in FIG. 7 so that the F number does not exceed the threshold value F1, and the second light quantity adjustment means 21 is placed in the optical path. And continue autofocus control. Further, when the F number becomes equal to or less than F2, the second light quantity adjusting means 21 is automatically removed from the optical path.

(実施例3)
図8は実施例3のオートフォーカスズームレンズの構成図を示している。本実施例3では、図6の実施例2に対し、第2の光量調節手段23は駆動手段24により光量調節を無段階に可変可能としている。
(Example 3)
FIG. 8 shows a configuration diagram of the autofocus zoom lens of the third embodiment. In the third embodiment, in contrast to the second embodiment in FIG. 6, the second light amount adjusting means 23 can vary the light amount adjustment steplessly by the driving means 24.

本実施例3においても、2つの光量調節モードを有しており、第1の光量調節モードでは実施例1と同様に、図5に示す動作フローチャート図に従って、Fナンバに応じてオートフォーカスとマニュアルフォーカスを切換える。   The third embodiment also has two light quantity adjustment modes. In the first light quantity adjustment mode, as in the first embodiment, according to the operation flowchart shown in FIG. Change focus.

第2の光量調節モードでは、図9に示すフローチャート図に基づいて可動絞り3の制御を行う。即ち、被写体の光量が増大してFナンバが閾値F1に達すると、可動絞り3を閾値F1に保持したまま、光量調節を第2の光量調節手段23により行うように切換えて、オートフォーカス制御を継続する。また、第2の光量調節手段23による光量調節量がゼロとなった場合に、可動絞り3による光量調節に復帰する。   In the second light quantity adjustment mode, the movable diaphragm 3 is controlled based on the flowchart shown in FIG. That is, when the light quantity of the subject increases and the F number reaches the threshold value F1, the light quantity adjustment is performed by the second light quantity adjustment means 23 while the movable diaphragm 3 is held at the threshold value F1, and the autofocus control is performed. continue. Further, when the light amount adjustment amount by the second light amount adjusting means 23 becomes zero, the light amount adjustment by the movable diaphragm 3 is restored.

(実施例4)
図10は実施例4のオートフォーカスズームレンズを有する撮像装置の構成図を示し、図1の実施例1のオートフォーカスズームレンズ30に対し、カメラ装置である撮像部40が接続されている。
Example 4
FIG. 10 is a configuration diagram of an image pickup apparatus having an autofocus zoom lens according to the fourth embodiment. An image pickup section 40 that is a camera device is connected to the autofocus zoom lens 30 according to the first embodiment shown in FIG.

なお、撮像手段6は撮像部40内に配置され、撮像手段6の前にNDフィルタを内蔵した第2の光量調節手段25が配置され、この第2の光量調節手段25は、駆動手段26により挿脱の制御を行うようにされている。また、撮像手段6の輝度信号は光量調整を行う第2の演算手段27を介して、演算手段8に接続されている。第2の光量調節手段25は光量を1/4に減少させる効果を有し、絞り2段分に相当し、FナンバはF2=F1/2に設定されている。   The imaging unit 6 is disposed in the imaging unit 40, and a second light amount adjusting unit 25 including an ND filter is disposed in front of the imaging unit 6. The second light amount adjusting unit 25 is driven by the driving unit 26. Insertion / removal control is performed. Further, the luminance signal of the image pickup means 6 is connected to the calculation means 8 via the second calculation means 27 for adjusting the light amount. The second light amount adjusting means 25 has an effect of reducing the light amount to ¼, corresponds to two stops, and the F number is set to F2 = F1 / 2.

本実施例4では2つの光量調節モードを有しており、第1の光量調節モードでは実施例1と同様に、図5に示す動作フローチャート図により、可動絞り3のFナンバに応じてオートフォーカスとマニュアルフォーカスを切換える。第2の光量調節モードでは、図7に示すフローチャート図により可動絞り3の制御を行い、Fナンバが閾値F1を越えないようにすると共に、光路に第2の光量調節手段25を挿入し、撮像手段6の出力を基に第2の演算手段27により光量調節を行う。また、FナンバがF2よりも小さくなると、自動的に第2の光量調節手段25を光路から外す。   In the fourth embodiment, there are two light quantity adjustment modes. In the first light quantity adjustment mode, as in the first embodiment, autofocusing is performed according to the F number of the movable diaphragm 3 according to the operation flowchart shown in FIG. And switch the manual focus. In the second light quantity adjustment mode, the movable diaphragm 3 is controlled according to the flowchart shown in FIG. 7 so that the F number does not exceed the threshold value F1, and the second light quantity adjustment means 25 is inserted in the optical path to take an image. Based on the output of the means 6, the light quantity is adjusted by the second calculating means 27. When the F number becomes smaller than F2, the second light quantity adjusting means 25 is automatically removed from the optical path.

(実施例5)
図11は実施例5のオートフォーカスズームレンズを有する撮像装置の構成図である。本実施例5では、第2の光量調節手段28はシャッタ調整絞りを内蔵しており、駆動手段29により無段階に光量調節が可能とされている。
(Example 5)
FIG. 11 is a configuration diagram of an image pickup apparatus having an autofocus zoom lens according to the fifth embodiment. In the fifth embodiment, the second light quantity adjusting unit 28 has a built-in shutter adjustment diaphragm, and the driving unit 29 can adjust the light quantity steplessly.

本実施例5では、2つの光量調節モードを有しており、第1の光量調節モードでは実施例1と同様に、図5に示すフローチャート図に従って、可動絞り3のFナンバに応じてオートフォーカスとマニュアルフォーカスを切換える。   In the fifth embodiment, there are two light quantity adjustment modes. In the first light quantity adjustment mode, as in the first embodiment, according to the flow chart shown in FIG. And switch the manual focus.

第2の光量調節モードでは、図9に示すフローチャート図により可動絞り3の制御を行い被写体の光量が増大してFナンバが閾値F1に達すると、可動絞り3によるFナンバを閾値F1に保持する。光量調節はシャッタ速度を調節することにより、光量を制御する第2の光量調節手段28のシャッタ速度を駆動手段29により制御することにより、第2の演算手段27を用いて光量調整を行う。また、第2の光量調節手段28による光量調節量がゼロとなると、可動絞り3による光量調節に復帰する。   In the second light quantity adjustment mode, when the movable diaphragm 3 is controlled according to the flowchart shown in FIG. 9 and the light quantity of the subject increases and the F number reaches the threshold value F1, the F number by the movable diaphragm 3 is held at the threshold value F1. . The light amount adjustment is performed by adjusting the shutter speed, and by controlling the shutter speed of the second light amount adjusting means 28 for controlling the light amount by the driving means 29, the light amount adjustment is performed using the second calculating means 27. When the light amount adjustment amount by the second light amount adjusting means 28 becomes zero, the light amount adjustment by the movable diaphragm 3 is restored.

なお本実施例5では、第2の光量調節手段23にシャッタ調整絞りを用いているが、可変NDフィルタやカメラゲイン等を用いても同様の効果が得られる。   In the fifth embodiment, a shutter adjustment diaphragm is used for the second light amount adjusting means 23, but the same effect can be obtained by using a variable ND filter, a camera gain, or the like.

以上の説明では、本発明の好ましい実施例について述べたが、本発明はこれらの実施例に限定されないことは云うまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   In the above description, preferred embodiments of the present invention have been described. However, it goes without saying that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the present invention.

1 フォーカス移動レンズ群
2 変倍移動レンズ群
3 可動絞り
4 分岐光学系
5 リレーレンズ群
6 撮像手段
7 合焦検出手段
7a 一次結像レンズ
7b 視野絞り
7c フィールドレンズ
7d 絞り
7e、7e’ 二次結像レンズ
7f、7f’ 受光素子列
8 演算手段
9 ズーム検出手段
11 フォーカス駆動手段
12 絞り制御手段
21、23、25、28 第2の光量調節手段
27 第2の演算手段
30 オートフォーカスズームレンズ
40 撮像部
DESCRIPTION OF SYMBOLS 1 Focus moving lens group 2 Variable magnification moving lens group 3 Movable stop 4 Branch optical system 5 Relay lens group 6 Imaging means 7 Focus detection means 7a Primary imaging lens 7b Field stop 7c Field lens 7d Stop 7e, 7e 'Secondary connection Image lens 7f, 7f 'Light-receiving element array 8 Calculation means 9 Zoom detection means 11 Focus drive means 12 Aperture control means 21, 23, 25, 28 Second light quantity adjustment means 27 Second calculation means 30 Autofocus zoom lens 40 Imaging Part

Claims (9)

物体側から順に、フォーカシング時に移動するフォーカスレンズ群、可動絞り、分岐光学系を備えた結像光学系を有し、前記分岐光学系による分岐光束を用いて合焦検出手段による位相差検出によって合焦検出を行うオートフォーカス制御とマニュアルフォーカス制御とを備えたレンズ装置において、前記フォーカスレンズ群から撮像手段に至る結像光学系のFナンバを閾値を越えて前記可動絞りにより絞る場合は、前記オートフォーカス制御を停止して前記マニュアルフォーカス制御に切換える切換手段を備えたことを特徴とするレンズ装置。   In order from the object side, it has a focusing lens group that moves during focusing, a movable stop, and an imaging optical system that includes a branching optical system. In a lens apparatus equipped with autofocus control for performing focus detection and manual focus control, when the F number of the imaging optical system from the focus lens group to the image pickup means exceeds the threshold and is reduced by the movable diaphragm, A lens apparatus comprising switching means for stopping focus control and switching to the manual focus control. 前記可動絞りの物体側に、変倍時に移動する変倍レンズ群を備えた変倍光学系を有することを特徴とする請求項1に記載のレンズ装置。   The lens apparatus according to claim 1, further comprising: a variable power optical system including a variable power lens group that moves upon zooming on the object side of the movable diaphragm. 前記変倍光学系は、物体側から順に変倍用のレンズ群と、変倍に伴う像点補正用のレンズ群とにより構成することを特徴とする請求項2に記載のレンズ装置。   The lens apparatus according to claim 2, wherein the zoom optical system includes a zoom lens group and an image point correction lens group accompanying zooming in order from the object side. 前記オートフォーカス制御を停止する場合には警告表示を行うことを特徴とする請求項1〜3の何れか1つの請求項に記載のレンズ装置。   The lens apparatus according to claim 1, wherein a warning is displayed when the autofocus control is stopped. 第1、第2の光量調節モードを有し、前記第1の光量調節モードは前記可動絞りによる調節のみで光量調節を行い、前記第2の光量調節モードは前記Fナンバの閾値よりも更に光量の抑制が必要な場合に、前記可動絞りによるFナンバを前記閾値以下に保持し、前記可動絞りとは別個の第2光量調節手段により光量調節を行い、前記オートフォーカス制御を継続することを特徴とする請求項1〜4の何れか1つの請求項に記載のレンズ装置。   There are first and second light amount adjustment modes. The first light amount adjustment mode performs light amount adjustment only by adjustment with the movable diaphragm, and the second light amount adjustment mode is light amount further than the threshold of the F number. When it is necessary to suppress this, the F number by the movable diaphragm is kept below the threshold value, the light quantity is adjusted by the second light quantity adjusting means separate from the movable diaphragm, and the autofocus control is continued. The lens device according to any one of claims 1 to 4. 前記第2の光量調節手段は光量調節量を連続的に可変とし、前記第2の光量調節手段による光量調節中は前記可動絞りによる前記Fナンバを前記閾値に保持することを特徴とする請求項5に記載のオレンズ装置。   The second light quantity adjusting unit continuously varies a light quantity adjustment amount, and holds the F number by the movable diaphragm at the threshold during the light quantity adjustment by the second light quantity adjusting unit. 5. The lens apparatus according to 5. 前記第2の光量調節手段は光量調節量を段階的に可変とした請求項5に記載のレンズ装置。   The lens apparatus according to claim 5, wherein the second light amount adjusting unit changes the light amount adjustment amount stepwise. 前記第2の光量調節手段は前記結像光学系に内蔵したことを特徴とする請求項5〜7の何れか1つの請求項に記載のレンズ装置。   The lens apparatus according to any one of claims 5 to 7, wherein the second light amount adjusting means is built in the imaging optical system. 請求項1〜8に記載のレンズ装置と、該レンズ装置に装着され、前記撮像手段を有するカメラ装置とを備えたことを特徴とする撮像装置。   An imaging apparatus comprising: the lens apparatus according to claim 1; and a camera apparatus mounted on the lens apparatus and having the imaging unit.
JP2011109764A 2011-05-16 2011-05-16 Lens device Expired - Fee Related JP5059214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011109764A JP5059214B2 (en) 2011-05-16 2011-05-16 Lens device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011109764A JP5059214B2 (en) 2011-05-16 2011-05-16 Lens device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006094122A Division JP4804194B2 (en) 2006-03-30 2006-03-30 LENS DEVICE AND IMAGING DEVICE

Publications (2)

Publication Number Publication Date
JP2011191779A true JP2011191779A (en) 2011-09-29
JP5059214B2 JP5059214B2 (en) 2012-10-24

Family

ID=44796683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011109764A Expired - Fee Related JP5059214B2 (en) 2011-05-16 2011-05-16 Lens device

Country Status (1)

Country Link
JP (1) JP5059214B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479711A (en) * 1987-09-21 1989-03-24 Fuji Photo Film Co Ltd Automatic focusing adjuster
JPH0854560A (en) * 1995-03-03 1996-02-27 Nikon Corp Automatic focus detector
JPH1090748A (en) * 1996-09-12 1998-04-10 Canon Inc Image pickup device
JPH1124135A (en) * 1997-06-30 1999-01-29 Sony Corp Focusing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479711A (en) * 1987-09-21 1989-03-24 Fuji Photo Film Co Ltd Automatic focusing adjuster
JPH0854560A (en) * 1995-03-03 1996-02-27 Nikon Corp Automatic focus detector
JPH1090748A (en) * 1996-09-12 1998-04-10 Canon Inc Image pickup device
JPH1124135A (en) * 1997-06-30 1999-01-29 Sony Corp Focusing device

Also Published As

Publication number Publication date
JP5059214B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4804194B2 (en) LENS DEVICE AND IMAGING DEVICE
JP2009036844A (en) Zoom lens, and photographic system having the same
JP5906235B2 (en) Imaging device
JP3651996B2 (en) Flange back adjustment method and photographing lens using the same
KR20120093380A (en) Camera
JP5366643B2 (en) Imaging device
US7769283B2 (en) Lens apparatus wherein focus detection precision is changed in accordance with insertion of an extender optical system into or removal of the extender optical system from the light path of an imaging optical system
JP2008268815A (en) Automatic focusing device
JP5930621B2 (en) Imaging apparatus, control method therefor, and computer program
JP2015034859A (en) Automatic focus adjustment lens device and photographing device
JP5059214B2 (en) Lens device
JP2008191391A (en) Focusing mechanism, and camera
JP2011123339A (en) Lens system
JP2011091664A (en) Camera system with autofocus function, and lens system
JP2010175980A (en) Divided optical system, imaging optical system using same, and imaging device
JP2014206601A (en) Imaging apparatus and focus adjustment method
JP4845563B2 (en) Autofocus lens device
JP2006126330A (en) Camera, lens, and camera system
JP2017068173A (en) Lens device including autofocus function and imaging system
JP2007079055A (en) Auto focus imaging optical system and image pickup device
WO2016157569A1 (en) Imaging device and focus evaluation device
JP2007079030A (en) Imaging system
JP2013015567A (en) Imaging apparatus
JP2013054288A (en) Focus detecting device and imaging apparatus
JP2016006463A (en) Imaging device and control method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5059214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees