JP2011190783A - Liquid fuel burning gas turbine - Google Patents

Liquid fuel burning gas turbine Download PDF

Info

Publication number
JP2011190783A
JP2011190783A JP2010060098A JP2010060098A JP2011190783A JP 2011190783 A JP2011190783 A JP 2011190783A JP 2010060098 A JP2010060098 A JP 2010060098A JP 2010060098 A JP2010060098 A JP 2010060098A JP 2011190783 A JP2011190783 A JP 2011190783A
Authority
JP
Japan
Prior art keywords
gas turbine
water
air
combustor
liquid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010060098A
Other languages
Japanese (ja)
Other versions
JP5325819B2 (en
Inventor
Akinori Hayashi
明典 林
Osamu Yokota
修 横田
Yoshitaka Hirata
義隆 平田
Tatsuya Sekiguchi
達也 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010060098A priority Critical patent/JP5325819B2/en
Publication of JP2011190783A publication Critical patent/JP2011190783A/en
Application granted granted Critical
Publication of JP5325819B2 publication Critical patent/JP5325819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve efficiency of a whole system, by reducing soot and dust, and a NOx emission concentration, in a gas turbine power generation system supplying liquid fuel and atomization air for atomizing the liquid fuel to a combustor to drive a gas turbine. <P>SOLUTION: The gas turbine includes: a gas turbine compressor 23 compressing air; the combustor 22 mixing and burning air with the liquid fuel 5 compressed by a gas turbine compressor 23 to generate combustion gas 25; a turbine 26 driven by the combustion gas 25 generated by the combustor 22; and a means for supplying the atomization air 4 atomizing the liquid fuel 5. The gas turbine further includes a mixer 2 supplying water to the atomization air 4, and atomization mixed fluid 6 as fluid from the mixer 2 is supplied to the combustor 22. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は液体燃料焚きガスタービンに係り、特に煤塵およびNOxの低減を要求されたガスタ−ビンを高効率に運用する構造および運用方法に関するものである。   The present invention relates to a liquid fuel-fired gas turbine, and more particularly to a structure and operation method for operating a gas turbine that is required to reduce dust and NOx with high efficiency.

従来の液体燃料焚きガスタービン燃焼器では、液体燃料微粒化の対策として噴霧空気方式が採用されている。この噴霧空気方式では、バーナの液体燃料噴出孔周囲に空気を高速に噴出させて、空気と液体燃料のせん断力により液体燃料を微粒化し、液体燃料と燃焼用空気の混合を促進させる。これにより、燃焼器の着火性能が向上すると共に排出燃焼ガス中の煤塵が低減でき、また燃焼場においてNOx生成に寄与する局所的な高温領域を小さくできるため、NOx排出量が低減する。   In a conventional liquid fuel-fired gas turbine combustor, a spray air system is adopted as a countermeasure for atomization of liquid fuel. In this atomizing air system, air is ejected at high speed around the liquid fuel ejection hole of the burner, the liquid fuel is atomized by the shearing force of the air and the liquid fuel, and the mixing of the liquid fuel and the combustion air is promoted. As a result, the ignition performance of the combustor is improved, soot in the exhaust combustion gas can be reduced, and the local high temperature region contributing to NOx generation in the combustion field can be reduced, so that the NOx emission amount is reduced.

さらに従来のガスタービン燃焼器ではNOx排出量を低減するために、水噴射方式を採用している。これは水を噴射することで燃焼場の局所的な高温領域を低減する。   Further, the conventional gas turbine combustor adopts a water injection method in order to reduce the NOx emission amount. This reduces the local high temperature region of the combustion field by injecting water.

特開2001−227745号公報JP 2001-227745 A 特開2003−21309号公報JP 2003-21309 A 特開2008−89298号公報JP 2008-89298 A

従来の噴霧空気および水噴射方式に係る燃焼器として、例えば特開2001−227745号公報,特開2003−21309号公報、および特開2008−89298号公報に記載のものが公知である。開示された何れの燃焼器も液体燃料である油,水および噴霧空気を燃焼場へバーナ端面もしくは端面近傍から噴出させて、油の微粒化を図ると共にNOx排出量を低減させる構造である。しかし開示されている発明は、油,水および噴霧空気を個別に供給し、バーナ出口のスロート部にて混合、微粒化を図る構造であり、予め油,水および噴霧空気を混合する構造は採用していない。   As combustors according to conventional spray air and water injection systems, for example, those described in JP 2001-227745 A, JP 2003-21309 A, and JP 2008-89298 A are known. Each of the disclosed combustors has a structure in which oil, water, and atomized air, which are liquid fuels, are jetted from a burner end face or near the end face to atomize the oil and reduce NOx emissions. However, the disclosed invention is a structure in which oil, water and spray air are separately supplied and mixed and atomized at the throat portion of the burner outlet, and a structure in which oil, water and spray air are mixed in advance is adopted. Not done.

噴霧空気の噴出流速を増加させて液体燃料を微粒化するためには、ガスタービン圧縮機の吐出空気以上となる噴霧空気の供給圧力が必要となり、通常、噴霧空気を生成するためのアトマイズ圧縮機を設置する。アトマイズ圧縮機から吐出した噴霧空気の温度は、圧縮過程で高温となるため、液体燃料流路の周囲にこの高温空気を供給すると液体燃料がコーキングする可能性があり、バーナに噴霧空気を供給する前に冷却器にて噴霧空気を冷却している。このように液体燃料微粒化のためにアトマイズ圧縮機の動力と噴霧空気の冷却によって、システム全体の効率が低下する。   In order to atomize the liquid fuel by increasing the spray flow rate of the spray air, the supply pressure of the spray air that is higher than the discharge air of the gas turbine compressor is required. Usually, the atomizer compressor for generating the spray air Is installed. Since the temperature of the sprayed air discharged from the atomizing compressor becomes high during the compression process, if this high-temperature air is supplied around the liquid fuel flow path, the liquid fuel may coke, and the sprayed air is supplied to the burner. The atomizing air is cooled by a cooler before. Thus, the efficiency of the entire system is reduced by the power of the atomizing compressor and the cooling of the atomized air for atomizing the liquid fuel.

また、水噴射方式の場合、燃焼場の局所高温領域に対して効果的に水を供給し、燃焼温度を低下させる必要があり、水の供給量を増やしてNOxを低下させようとする場合は、失火やフリッカーなどの不安定燃焼を誘発するおそれがある。   In the case of the water injection method, it is necessary to effectively supply water to the local high temperature region of the combustion field and lower the combustion temperature. In the case of trying to decrease NOx by increasing the water supply amount There is a risk of causing unstable combustion such as misfire and flicker.

本発明の目的は、上記のように噴霧空気方式もしくは噴霧空気と水噴射の併用方式をガスタービン発電プラントに用いた場合に、アトマイズ圧縮機の動力,噴霧空気の熱損失および水噴射量を低減させてシステム全体の効率を向上させるとともに、効果的な水供給方式を採用しNOx排出量を低減させるガスタービンやその運転方法を提供することにある。   The object of the present invention is to reduce the power of the atomizing compressor, the heat loss of the atomizing air, and the water injection amount when the atomizing air method or the combination method of atomizing air and water injection is used in the gas turbine power plant as described above. In addition to improving the efficiency of the entire system, an effective water supply method is adopted to provide a gas turbine that reduces NOx emissions and an operation method thereof.

本発明は、アトマイズ圧縮機もしくはガスタービン圧縮機から吐出した液体燃料微粒化用の噴霧空気に対して、燃焼器に供給するための噴霧空気系統に水を噴射し、噴霧空気と水を混合する混合器を設けたことを最も主要な特徴とする。   The present invention injects water into a spray air system for supplying to a combustor with respect to spray air for atomizing liquid fuel discharged from an atomizer compressor or a gas turbine compressor, and mixes the spray air and water. The main feature is the provision of a mixer.

また本発明は、上記の混合器に供給される噴霧空気の温度と圧力もしくは混合後の噴霧空気と水もしくは蒸気混合流体の温度と圧力、もしくはその両方の温度と圧力を監視し、混合器に供給する水の量を制御することを特徴とする。   The present invention also monitors the temperature and pressure of the atomizing air supplied to the above-mentioned mixer or the temperature and pressure of the atomized air and water or steam mixed fluid after mixing, or the temperature and pressure of both. It is characterized by controlling the amount of water supplied.

また本発明は、噴霧空気もしくは上記混合流体が燃焼器のバーナに供給した後、バーナ内部の混合室にて、さらに液体燃料もしくは液体燃料と水が混合する構造を具備し、バーナの燃焼側端面にて、これらの混合流体が噴出可能な構造とすることを特徴とする。   Further, the present invention comprises a structure in which liquid fuel or liquid fuel and water are further mixed in a mixing chamber inside the burner after the sprayed air or the mixed fluid is supplied to the burner of the combustor, and the combustion side end face of the burner Thus, the mixed fluid can be ejected.

本発明によれば、アトマイズ圧縮機の動力,噴霧空気の熱損失および水噴射量を低減させてシステム全体の効率を向上させるとともに、効果的な水供給方式を採用しNOx排出量を低減させるガスタービンやその運転方法を提供することにある。   According to the present invention, the power of the atomizing compressor, the heat loss of the atomizing air, and the water injection amount are reduced to improve the efficiency of the entire system, and the gas that adopts an effective water supply method to reduce the NOx emission amount. It is to provide a turbine and a method for operating the turbine.

本発明に関わるガスタービンシステムを示した図。(実施例1)The figure which showed the gas turbine system in connection with this invention. Example 1 本発明に関わるガスタービンシステムを示した図。(実施例2)The figure which showed the gas turbine system in connection with this invention. (Example 2) 水流量と混合流体の温度の関係を示した図。(実施例2)The figure which showed the relationship between the water flow rate and the temperature of mixed fluid. (Example 2) 水流量と噴霧空気流量の関係を示した図。(実施例2)The figure which showed the relationship between the water flow rate and the spraying air flow rate. (Example 2) 本発明に関わるガスタービンの運転方法を示した図。(実施例2)The figure which showed the operating method of the gas turbine concerning this invention. (Example 2) 本発明に関わるガスタービン燃焼器を示した図。(実施例3)The figure which showed the gas turbine combustor in connection with this invention. (Example 3) 本発明に関わるガスタービン燃焼器を示した図。(実施例4)The figure which showed the gas turbine combustor in connection with this invention. Example 4

噴霧空気方式もしくは噴霧空気と水噴射の併用方式をガスタービン発電プラントに用いた場合に、アトマイズ圧縮機の動力,噴霧空気の熱損失および水噴射量を低減させてシステム全体の効率を向上させるとともに、効果的な水供給方式を採用しNOx排出量を低減するシステム,燃焼器の構造およびその制御方法を実現した。   When the atomizing air method or the combination method of atomizing air and water injection is used in a gas turbine power plant, the power of the atomizing compressor, the heat loss of atomizing air, and the amount of water injection are reduced and the efficiency of the entire system is improved. An effective water supply system was adopted to realize a system that reduces NOx emissions, the structure of the combustor, and its control method.

本発明を用いた実施例として、ガスタービンのシステム構成を図1に示す。システムは液体燃料5供給系統,噴霧空気4供給系統,水タンク1,供給系統7,噴霧空気4と水の混合器2,燃焼器22,ガスタービン圧縮機23,タービン26,発電機27から構成される。ここで液体燃料5として、一般的にガスタービンでは灯油,軽油,A重油等が使用される。   As an embodiment using the present invention, a system configuration of a gas turbine is shown in FIG. The system is composed of a liquid fuel 5 supply system, a spray air 4 supply system, a water tank 1 and a supply system 7, a spray air 4 and water mixer 2, a combustor 22, a gas turbine compressor 23, a turbine 26 and a generator 27. Is done. Here, kerosene, light oil, A heavy oil or the like is generally used as the liquid fuel 5 in the gas turbine.

ガスタービン起動時、液体燃料5とアトマイズ圧縮機15により昇圧された空気17が噴霧空気4となって燃焼器22に供給され、噴霧空気4により液体燃料5を微粒化して燃焼器22を着火する。ガスタービン起動時は、燃焼器22内部の圧力は低く、このため噴霧空気4の供給圧力も低いため、噴霧空気4の温度は液体燃料5のコーキング温度以下となっている。ガスタービン起動昇速,部分負荷運転に至る過程にて、ガスタービン圧縮機23の吐出圧力は増加し、アトマイズ圧縮機15の供給圧力および噴霧空気4の温度が上昇して、液体燃料5のコーキング温度以上となった時、噴霧空気4の供給系統に設置した混合器2に対して、水タンク1と水ポンプ3により水を供給することで、噴霧空気4の温度を低下させることができる。この際、系統内のドレン化防止のため、混合器2は、混合器2に供給する水を微粒化可能な構造、例えば水噴霧の機構を備え、混合器2の中に供給された水を全て蒸発させ水蒸気にすることが望ましい。ドレン発生を防止し、噴霧空気4の温度を効果的に低下させるために、水流量調整弁10と噴霧空気流量調整弁11により、混合器2に供給される水と噴霧空気4の流量を制御する。混合器2にて混合された噴霧空気と水蒸気の噴霧混合流体6は、燃焼器22に供給されて液体燃料5を微粒化する。これは煤塵発生量を低減させるだけでなく、液体燃料5の微粒化時に液滴の周囲に不活性ガスである水蒸気を供給できるため、局所的な火炎温度の高温化を防止し、NOx排出濃度を低減できる。また従来、熱交換器により低下させていた噴霧空気4の温度を、水の供給のみで低下できるため、冷却用の熱交換器が不要となり、水を供給した分の噴霧空気量を少なくできる。更にタービン26の作動流体として燃焼器22に供給された噴霧混合流体6に含まれる水蒸気が使用できるため、システム全体の効率を向上させることができる。   When the gas turbine is started, the air 17 pressurized by the liquid fuel 5 and the atomizing compressor 15 is supplied to the combustor 22 as atomized air 4, and the liquid fuel 5 is atomized by the atomized air 4 to ignite the combustor 22. . When the gas turbine is started, the pressure inside the combustor 22 is low, and therefore the supply pressure of the spray air 4 is also low. Therefore, the temperature of the spray air 4 is equal to or less than the coking temperature of the liquid fuel 5. In the process of gas turbine start-up acceleration and partial load operation, the discharge pressure of the gas turbine compressor 23 increases, the supply pressure of the atomizing compressor 15 and the temperature of the atomizing air 4 rise, and the coking of the liquid fuel 5 occurs. When the temperature becomes higher than the temperature, the temperature of the spray air 4 can be lowered by supplying water to the mixer 2 installed in the supply system of the spray air 4 by the water tank 1 and the water pump 3. At this time, in order to prevent draining in the system, the mixer 2 has a structure capable of atomizing the water supplied to the mixer 2, for example, a water spray mechanism, and the water supplied into the mixer 2 is supplied to the mixer 2. It is desirable to evaporate all the water vapor. In order to prevent drain generation and to effectively lower the temperature of the spray air 4, the water flow control valve 10 and the spray air flow control valve 11 control the flow rate of the water supplied to the mixer 2 and the spray air 4. To do. The atomized mixed fluid 6 of atomized air and water vapor mixed in the mixer 2 is supplied to the combustor 22 to atomize the liquid fuel 5. This not only reduces the amount of dust generated, but also allows water vapor, which is an inert gas, to be supplied around the droplets when the liquid fuel 5 is atomized. Can be reduced. In addition, since the temperature of the spray air 4 that has conventionally been lowered by the heat exchanger can be lowered only by supplying water, a cooling heat exchanger is not necessary, and the amount of spray air that is supplied with water can be reduced. Furthermore, since the water vapor contained in the spray mixed fluid 6 supplied to the combustor 22 as the working fluid of the turbine 26 can be used, the efficiency of the entire system can be improved.

ガスタービン負荷が上昇し、液体燃料5の供給量が増加した場合、燃焼器22の燃焼温度が上昇するため燃焼は安定し、煤塵発生量が低下する。また、液体燃料5の供給圧力が増加するため、圧力噴霧により液体燃料5単体での微粒化が促進する。このため液体燃料5を微粒化するための噴霧空気圧力も低減でき、アトマイズ圧縮機15の代わりにガスタービン圧縮機23からの抽気空気16を抽気空気流量調整弁12によって制御し、噴霧空気4として使用すれば、アトマイズ圧縮機15の動力を抑えることができ、システム全体の効率が向上する。   When the gas turbine load is increased and the supply amount of the liquid fuel 5 is increased, the combustion temperature of the combustor 22 is increased, so that the combustion is stabilized and the generation amount of dust is reduced. Moreover, since the supply pressure of the liquid fuel 5 increases, atomization of the liquid fuel 5 alone is promoted by pressure spraying. For this reason, the atomizing air pressure for atomizing the liquid fuel 5 can also be reduced, and instead of the atomizing compressor 15, the extraction air 16 from the gas turbine compressor 23 is controlled by the extraction air flow rate adjusting valve 12 and used as the atomizing air 4. Then, the power of the atomizing compressor 15 can be suppressed, and the efficiency of the entire system is improved.

本発明を用いた第2の実施例として、ガスタービンのシステム構成を図2に示す。本システムは図1の実施例で示したシステムに対し、噴霧空気4系統の混合器2上流部に圧力・温度・流量計測器30を、また噴霧流体系統の燃焼器22上流部に温度計測器31を設置している。圧力・温度・流量計測器30は、計測した各物性値を演算器32に出力し、演算器にて各物性値から計算された弁開度を用いて、第1の水供給系統8の水流量調整弁13を制御する。また、温度計測器31の下流にドレントラップ33を設け、噴霧混合流体6中に生成したドレンを分離する。さらに、供給系統7から分岐し燃焼器22に直接水を供給可能な第2の水供給系統9が設けられており、第2の水流量調整弁14により燃焼器22に供給する水の流量を制御する。混合器2は、噴霧空気4の供給配管に水噴霧ノズル51を設けた単純な構造として、コスト低下を図っている。   As a second embodiment using the present invention, a system configuration of a gas turbine is shown in FIG. This system is different from the system shown in the embodiment of FIG. 1 in that the pressure / temperature / flow rate measuring device 30 is upstream of the mixer 2 of the four atomizing air systems, and the temperature measuring device is upstream of the combustor 22 of the atomizing fluid system. 31 is installed. The pressure / temperature / flow rate measuring device 30 outputs the measured physical property values to the computing device 32, and uses the valve opening calculated from the physical property values by the computing device to use the water in the first water supply system 8. The flow control valve 13 is controlled. In addition, a drain trap 33 is provided downstream of the temperature measuring device 31 to separate the drain generated in the spray mixed fluid 6. Further, a second water supply system 9 is provided which can branch from the supply system 7 and supply water directly to the combustor 22. The flow rate of water supplied to the combustor 22 by the second water flow rate adjustment valve 14 is set. Control. The mixer 2 has a simple structure in which the water spray nozzle 51 is provided in the supply pipe for the spray air 4 to reduce the cost.

混合器2において噴霧空気4に水を供給する際、混合器2内部および混合器2の下流系統に蒸発しなかった水がドレンとして残る場合が考えられる。このドレンが搬送されて燃焼器22に供給されると液体燃料5の微粒化が抑制されるだけでなく、燃焼場に水の塊が供給されるために不安定燃焼を誘発する。噴霧空気4に水蒸気として供給可能な水の量は、飽和水蒸気として噴霧空気4の流量,圧力および温度で決定される。図3に混合器2に噴射する水の量と、噴霧空気4と水蒸気の噴霧混合流体温度の関係を示す。噴霧空気4に対する水の流量比率を増加させると噴霧混合流体6の温度が低下し、図中に示した飽和温度Trに達する。この温度は、噴霧空気4に対する水の流量比率,混合器2内部の圧力に依存し、水が全て水蒸気となる最低温度となり、この条件において混合器2に供給する最大水流量Wrが決定する。図2において、混合器2に供給する噴霧空気4の流量,圧力および温度を計測器で監視,水の供給限界値Wrを演算器で計算できれば、第1の水流量調整弁を制御して水のドレン化を防止することが可能となる。また、混合器2内部にて水が全て水蒸気になった場合でも、噴霧混合流体6を燃焼器22に供給する系統にて、自然放熱等により噴霧混合流体6の温度が低下し、ドレンが発生する恐れがある。特にガスタービンの昇速時や負荷変化時は、噴霧混合流体温度が不安定となることが考えられ、本実施例のようにできるだけ燃焼器22の近傍にて温度計測器により噴霧混合流体6の温度を監視することが望ましい。さらに、噴霧混合流体6中にドレンが発生した場合においても、ドレントラップ33によりドレンを分離することができ、本ドレンは水タンク1、もしくは第2の水供給系統9に供給することで再利用が可能となる。   When water is supplied to the atomizing air 4 in the mixer 2, it is conceivable that water that has not evaporated remains in the mixer 2 and in the downstream system of the mixer 2 as a drain. When this drain is conveyed and supplied to the combustor 22, not only atomization of the liquid fuel 5 is suppressed but also a mass of water is supplied to the combustion field, thereby causing unstable combustion. The amount of water that can be supplied to the atomizing air 4 as water vapor is determined by the flow rate, pressure, and temperature of the atomizing air 4 as saturated water vapor. FIG. 3 shows the relationship between the amount of water injected into the mixer 2 and the temperature of the spray mixed fluid of the spray air 4 and water vapor. When the ratio of the flow rate of water to the atomized air 4 is increased, the temperature of the atomized mixed fluid 6 decreases and reaches the saturation temperature Tr shown in the figure. This temperature depends on the ratio of the flow rate of water to the sprayed air 4 and the pressure inside the mixer 2, and becomes the lowest temperature at which all water becomes water vapor. Under this condition, the maximum water flow rate Wr supplied to the mixer 2 is determined. In FIG. 2, if the flow rate, pressure and temperature of the atomizing air 4 supplied to the mixer 2 can be monitored with a measuring instrument and the water supply limit value Wr can be calculated with a calculator, the first water flow rate adjusting valve is controlled to control the water. It becomes possible to prevent the draining of. In addition, even when all the water in the mixer 2 becomes water vapor, the temperature of the spray mixed fluid 6 decreases due to natural heat dissipation or the like in the system that supplies the spray mixed fluid 6 to the combustor 22, and drainage is generated. There is a fear. In particular, when the gas turbine is accelerated or when the load changes, it is considered that the temperature of the spray mixed fluid becomes unstable. As in this embodiment, the temperature of the spray mixed fluid 6 is as close to the combustor 22 as possible. It is desirable to monitor temperature. Further, even when drain is generated in the spray mixed fluid 6, the drain can be separated by the drain trap 33, and this drain is reused by being supplied to the water tank 1 or the second water supply system 9. Is possible.

混合器2に水を供給した場合、図3に示したように噴霧混合流体6の温度が低下すると共に水を供給した分、噴霧混合流体6の流量が増加する。従って噴霧混合流体6の質量流量を一定に保つ場合は、噴霧空気4の流量を減少させることができる。図4に混合器2に噴射する水の量と。噴霧混合流体6の質量流量を一定に保つ場合の噴霧空気流量の関係を示す。噴霧空気4への水供給により、噴霧空気量を低下させることができ、アトマイズ圧縮機15の動力を低減できる。   When water is supplied to the mixer 2, the temperature of the spray mixed fluid 6 decreases as shown in FIG. 3, and the flow rate of the spray mixed fluid 6 increases by the amount of water supplied. Therefore, when the mass flow rate of the spray mixed fluid 6 is kept constant, the flow rate of the spray air 4 can be reduced. FIG. 4 shows the amount of water injected into the mixer 2. The relationship of the spray air flow rate in the case of keeping the mass flow rate of the spray mixed fluid 6 constant is shown. By supplying water to the atomizing air 4, the amount of atomizing air can be reduced, and the power of the atomizing compressor 15 can be reduced.

本実施例において、供給系統7から分岐し、燃焼器22に直接水が供給可能な第2の水供給系統9を設けている。これは、ガスタービンが高負荷となり燃焼温度が上昇した場合は、混合器2からの水蒸気だけでは充分な低NOx化が図られない可能性があり、第2の水供給系統9により燃焼場に水を直接噴射し、NOx排出量を低減する。   In the present embodiment, a second water supply system 9 that branches from the supply system 7 and can supply water directly to the combustor 22 is provided. This is because when the gas turbine becomes heavily loaded and the combustion temperature rises, the steam from the mixer 2 alone may not achieve a sufficiently low NOx, and the second water supply system 9 will bring it into the combustion field. Water is directly injected to reduce NOx emissions.

図2のシステムを用いたガスタービン運用の実施例として、ガスタービン回転数および負荷,液体燃料流量,噴霧空気流量,水流量の経時変化を図5に示す。ガスタービンの着火および起動昇速時においては、アトマイズ圧縮機15から供給される噴霧空気4を用いて液体燃料5を微粒化させる。ガスタービン回転数が増加するに従い液体燃料流量、および噴霧空気量が増加し、更に噴霧空気4の温度が上昇する。ガスタービンが無負荷定格速度運転に達した時、断熱圧縮により噴霧空気温度は一般的に300℃程度になる。この時、噴霧空気4による液体燃料5のコーキングを防止するため、混合器2に水を供給し、噴霧空気4の温度を低下させ、混合後は噴霧混合流体6として燃焼器22に供給する。尚、図5に示すように水を供給した分、噴霧空気4の流量を低下することができる。ガスタービンが負荷上昇を開始し、燃焼が安定して煤塵排出量が低減後、噴霧空気4の供給元をアトマイズ圧縮機15からガスタービン圧縮機23に切替えて、ガスタービン圧縮機吐出空気24の抽気空気16を噴霧空気4として使用する。更にガスタービン負荷が上昇し、NOx排出量が増加する場合、第2の水供給系統9から燃焼器22に水を直接供給し、燃焼場に噴霧、高負荷時のNOx排出濃度を低減する。本ガスタービン運転方法を採用することで、ガスタービンの起動から定格負荷まで、高効率、かつNOx排出量を低減した運用が実現できる。   As an embodiment of gas turbine operation using the system of FIG. 2, changes over time in the gas turbine rotation speed and load, liquid fuel flow rate, spray air flow rate, and water flow rate are shown in FIG. At the time of ignition and startup acceleration of the gas turbine, the liquid fuel 5 is atomized using the atomized air 4 supplied from the atomizing compressor 15. As the rotational speed of the gas turbine increases, the liquid fuel flow rate and the amount of atomizing air increase, and the temperature of the atomizing air 4 further increases. When the gas turbine reaches a no-load rated speed operation, the atomizing air temperature is generally about 300 ° C. due to adiabatic compression. At this time, in order to prevent coking of the liquid fuel 5 by the sprayed air 4, water is supplied to the mixer 2, the temperature of the sprayed air 4 is lowered, and after mixing, the sprayed mixed fluid 6 is supplied to the combustor 22. As shown in FIG. 5, the flow rate of the atomizing air 4 can be reduced by the amount of water supplied. After the gas turbine starts to increase the load, the combustion is stable and the dust discharge is reduced, the supply source of the atomizing air 4 is switched from the atomizing compressor 15 to the gas turbine compressor 23, and the gas turbine compressor discharge air 24 The bleed air 16 is used as the atomizing air 4. When the gas turbine load further increases and the NOx emission amount increases, water is directly supplied from the second water supply system 9 to the combustor 22 to spray the combustion field and reduce the NOx emission concentration at high load. By adopting this gas turbine operation method, it is possible to realize operation with high efficiency and reduced NOx emission from the start of the gas turbine to the rated load.

図2のシステムを用いた最適な燃焼器形態の実施例を図6に示す。尚、図6は燃焼器22の横断面図を示している。燃焼器22では、ガスタービン圧縮機吐出空気24と液体燃料5によって燃焼ガス25を生成する。生成された燃焼ガス25はタービン26を回転させて発電機27で発電させる。   An example of an optimal combustor configuration using the system of FIG. 2 is shown in FIG. FIG. 6 shows a cross-sectional view of the combustor 22. In the combustor 22, combustion gas 25 is generated by the gas turbine compressor discharge air 24 and the liquid fuel 5. The generated combustion gas 25 rotates the turbine 26 and is generated by the generator 27.

図6に示すように燃焼器22は外筒43とエンドフランジ46で囲まれ、内筒壁44で囲まれた燃焼室45,液体燃料5を燃焼室45に供給し燃焼させるバーナ49より構成される。   As shown in FIG. 6, the combustor 22 is surrounded by an outer cylinder 43 and an end flange 46, and is composed of a combustion chamber 45 surrounded by an inner cylinder wall 44 and a burner 49 that supplies the liquid fuel 5 to the combustion chamber 45 and burns it. The

液体燃料5,噴霧空気4もしくは噴霧混合流体6,第2の水供給系統9から供給された水は、燃焼器22中心軸上に設置されたバーナ49に各々供給される。バーナ49は、内部に混合室40を具備しており、混合室40へ液体燃料5を噴霧する燃料噴霧ノズル52が設置されている。また、燃料噴霧ノズル52の周囲には噴霧空気スワラ50が設けられ、噴霧空気4もしくは噴霧混合流体6が旋回流を伴い混合室40へ供給し、液体燃料5の微粒化を促進する。噴霧空気スワラ50の上流において噴霧空気4もしくは噴霧混合流体6の供給部に第2の水供給系統9から供給された水を噴霧する水噴霧ノズル51が設置されており、噴霧空気4もしくは噴霧混合流体6へ水を混合する。   Water supplied from the liquid fuel 5, the spray air 4 or the spray mixed fluid 6, and the second water supply system 9 is supplied to a burner 49 installed on the central axis of the combustor 22. The burner 49 includes a mixing chamber 40 inside, and a fuel spray nozzle 52 that sprays the liquid fuel 5 into the mixing chamber 40 is installed. Further, a spray air swirler 50 is provided around the fuel spray nozzle 52, and the spray air 4 or the spray mixed fluid 6 is supplied to the mixing chamber 40 with a swirl flow to promote atomization of the liquid fuel 5. A water spray nozzle 51 for spraying water supplied from the second water supply system 9 is installed in the supply part of the spray air 4 or the spray mixed fluid 6 upstream of the spray air swirler 50, and the spray air 4 or spray mixing is performed. Mix water into fluid 6.

このように混合室40に供給される直前に噴霧空気4もしくは噴霧混合流体6へ第2の水供給系統9から供給された水を混合することにより、水が蒸発しなかった場合においても、水噴霧ノズル51により水は霧状で混合室40に供給される。また、混合室40を設けることにより、噴霧空気4もしくは噴霧混合流体6中に液体燃料5および水を霧状で分散させることができる。液体燃料5と水の液滴が分散した混合流体は、混合室40下流の燃焼室45へ供給され燃焼する。このように燃焼場において液体燃料5の液滴近傍で水液滴の急激な蒸発によるミクロ爆発が、更に液体燃料5を微粒化し、煤塵およびNOx排出濃度を低減する。   Even when water does not evaporate by mixing the water supplied from the second water supply system 9 into the spray air 4 or the spray mixed fluid 6 immediately before being supplied to the mixing chamber 40 in this way, Water is supplied to the mixing chamber 40 in the form of mist by the spray nozzle 51. Further, by providing the mixing chamber 40, the liquid fuel 5 and water can be dispersed in the spray air 4 or the spray mixed fluid 6 in a mist form. The mixed fluid in which the liquid fuel 5 and water droplets are dispersed is supplied to the combustion chamber 45 downstream of the mixing chamber 40 and combusts. Thus, the micro explosion caused by the rapid evaporation of water droplets in the vicinity of the droplets of the liquid fuel 5 in the combustion field further atomizes the liquid fuel 5 to reduce the dust and NOx emission concentration.

バーナ49の混合室40周囲にはガスタービン圧縮機吐出空気24に旋回を伴って燃焼室45に供給させる空気スワラ54を設けており、空気スワラ54に供給するガスタービン圧縮機吐出空気24に水噴霧が可能な水噴霧ノズル51を設置している。燃焼器22に供給する水を、混合室40とガスタービン圧縮機吐出空気24に分割することで、燃焼場の極度な温度低下を防止し、燃焼安定性を損なうことなくガスタービンの運用が可能となる。   An air swirler 54 is provided around the mixing chamber 40 of the burner 49 to supply the gas turbine compressor discharge air 24 to the combustion chamber 45 with swirling, and water is supplied to the gas turbine compressor discharge air 24 supplied to the air swirler 54. A water spray nozzle 51 capable of spraying is installed. By dividing the water supplied to the combustor 22 into the mixing chamber 40 and the gas turbine compressor discharge air 24, an extreme temperature drop in the combustion field can be prevented and the gas turbine can be operated without impairing the combustion stability. It becomes.

図2のシステムを用いた最適な燃焼器形態について第2の実施例を図7に示す。本実施例は、図6の実施例に対して、混合室40へ第2の水供給系統9から供給された水を噴霧する水噴霧ノズル51が設置されている。また混合室40下流に混合流体噴霧ノズル53を設けている。   A second embodiment of the optimum combustor configuration using the system of FIG. 2 is shown in FIG. In the present embodiment, a water spray nozzle 51 for spraying water supplied from the second water supply system 9 to the mixing chamber 40 is installed in the embodiment of FIG. A mixed fluid spray nozzle 53 is provided downstream of the mixing chamber 40.

このように混合室40へ直接水を噴霧可能な構造とすることによって、噴霧空気4もしくは噴霧混合流体6中に液体燃料5および水を霧状で分散させることができ、噴霧空気,水蒸気,液体燃料5と水の液滴が均一に混合可能となる。液体燃料5と水の液滴が分散した混合流体は、混合室40下流に設けた混合流体噴霧ノズル53によって燃焼室45へ再度噴霧されて燃焼場に供給される。このように液体燃料5と水は2段で噴霧されるため、燃焼室45において微粒化が促進し、燃焼場においては液体燃料5の液滴近傍で水液滴の急激な蒸発によるミクロ爆発が、更に液体燃料5を微粒化し、燃焼安定性を損なうことなく煤塵およびNOx排出濃度を低減する。   In this way, by making the structure capable of spraying water directly into the mixing chamber 40, the liquid fuel 5 and water can be dispersed in the spray air 4 or the spray mixed fluid 6 in the form of mist, and the spray air, water vapor, liquid The fuel 5 and water droplets can be mixed uniformly. The mixed fluid in which the liquid fuel 5 and water droplets are dispersed is sprayed again into the combustion chamber 45 by the mixed fluid spray nozzle 53 provided downstream of the mixing chamber 40 and supplied to the combustion field. Since the liquid fuel 5 and the water are sprayed in two stages in this way, atomization is promoted in the combustion chamber 45, and in the combustion field, a micro explosion due to rapid evaporation of water droplets occurs in the vicinity of the liquid fuel 5 droplets. Further, the liquid fuel 5 is atomized to reduce the dust and NOx emission concentration without impairing the combustion stability.

以上説明した各実施例のガスタービンは、空気を圧縮するガスタービン圧縮機23と、ガスタービン圧縮機23で圧縮された空気と液体燃料5とを混合燃焼させて燃焼ガス25を生成する燃焼器22と、燃焼器22で生成された燃焼ガス25で駆動するタービン26とを備え、液体燃料5を微粒化する噴霧空気4を供給する手段を有するガスタービンにおいて、噴霧空気4に水を供給する混合器2を備え、混合器2からの流体である噴霧混合流体6を燃焼器22に供給するよう構成されている。   The gas turbine of each embodiment described above includes a gas turbine compressor 23 that compresses air, and a combustor that generates combustion gas 25 by mixing and burning the air compressed by the gas turbine compressor 23 and the liquid fuel 5. 22 and a turbine 26 driven by the combustion gas 25 generated by the combustor 22, and water is supplied to the spray air 4 in a gas turbine having means for supplying the spray air 4 for atomizing the liquid fuel 5. A mixer 2 is provided, and a spray mixed fluid 6 that is a fluid from the mixer 2 is supplied to the combustor 22.

このような燃焼器では、圧縮機から吐出した高温の噴霧空気を、噴霧空気に直接水を供給し混合することで温度を低下することができ、熱交換を用いた冷却器等が不要となる。それとともに、混合後の水蒸気と空気を液体燃料微粒化用の作動流体として使用できるため、噴霧空気を生成する量を低減できる。また、供給した水は噴霧空気とともにガスタービン燃焼器に供給されてタービンを駆動する作動流体として使用できるため、圧縮機動力を含めたシステム全体の効率が向上する。さらに噴霧空気に含まれる水蒸気は、バーナ近傍における高温燃焼領域の温度を下げて効果的にNOx排出濃度を低減することができる。   In such a combustor, the temperature of the high-temperature sprayed air discharged from the compressor can be lowered by supplying water to the sprayed air and mixing it, and a cooler using heat exchange is not necessary. . At the same time, since the steam and air after mixing can be used as the working fluid for atomizing the liquid fuel, the amount of atomized air generated can be reduced. Moreover, since the supplied water can be used as a working fluid that is supplied to the gas turbine combustor together with the atomized air to drive the turbine, the efficiency of the entire system including the compressor power is improved. Further, the water vapor contained in the atomized air can effectively reduce the NOx emission concentration by lowering the temperature of the high temperature combustion region in the vicinity of the burner.

さらに上述の実施例では、混合器2に供給する噴霧空気の流量,温度,圧力のうちの少なくとも一つを計測する計測手段である、圧力・温度・流量計測器30を備えており、ここからの情報に基づいて混合器2に供給する水の流量を制御する手段を備えている。混合器2に供給される噴霧空気と混合後の流体の温度や圧力を監視することで、噴霧空気中で蒸発可能な水の量を制御することができ、液体燃料微粒化用の混合流体をバーナに供給する系統にて、水蒸気のドレン化を防止でき、不安定燃焼を抑制することができる。   Further, the above-described embodiment includes the pressure / temperature / flow rate measuring device 30 which is a measuring means for measuring at least one of the flow rate, temperature, and pressure of the atomizing air supplied to the mixer 2. Based on this information, there is provided means for controlling the flow rate of water supplied to the mixer 2. By monitoring the temperature and pressure of the sprayed air supplied to the mixer 2 and the fluid after mixing, the amount of water that can be evaporated in the sprayed air can be controlled. In the system supplied to the burner, the steam can be prevented from being drained and unstable combustion can be suppressed.

各実施例の燃焼器では、噴霧空気と水蒸気の混合流体を燃焼器のバーナに供給後、混合流体中に液体燃料もしくは液体燃料と水を噴霧、混合後にバーナ端面からこれらの混合流体を燃焼場に噴霧することで、液体燃料を2段で微粒化できる。さらに実施例2のように、混合器2に水を供給する第1の水供給系統8と、この系統は別に燃焼器22に水を供給する第二の水供給系統9とを設ければ、更に水の噴霧により、液体燃料と水を液滴状態で混合することができる。そうすと、液体燃料液滴の近傍で水の急激な蒸発による爆発が更に液体燃料を微粒化し、NOx排出量および煤塵排出量を効果的に低減できる。   In the combustor of each embodiment, after supplying a mixed fluid of spray air and water vapor to the burner of the combustor, liquid fuel or liquid fuel and water are sprayed into the mixed fluid, and after mixing, the mixed fluid is burned from the burner end face to the combustion field. By spraying the liquid fuel, the liquid fuel can be atomized in two stages. Further, as in Example 2, if a first water supply system 8 for supplying water to the mixer 2 and a second water supply system 9 for supplying water to the combustor 22 are provided separately from this system, Furthermore, liquid fuel and water can be mixed in droplets by spraying water. Then, the explosion due to the rapid evaporation of water near the liquid fuel droplets further atomizes the liquid fuel, and the NOx emission amount and the dust emission amount can be effectively reduced.

各実施例の構造および制御方法を採用すれば、アトマイズ圧縮機の動力,噴霧空気の熱損失および水噴射量を低減させてシステム全体の効率を向上させるとともに、NOxおよび煤塵排出量を低減したガスタービン発電プラントを運用することができる。   By adopting the structure and control method of each embodiment, the power of the atomizing compressor, the heat loss of spray air and the amount of water injection are reduced to improve the efficiency of the entire system, and the gas with reduced NOx and dust emission A turbine power plant can be operated.

1 水タンク
2 混合器
3 水ポンプ
4 噴霧空気
5 液体燃料
6 噴霧混合流体
7 供給系統
8 第1の水供給系統
9 第2の水供給系統
10 水流量調整弁
11 噴霧空気流量調整弁
12 抽気空気流量調整弁
13 第1の水流量調整弁
14 第2の水流量調整弁
15 アトマイズ圧縮機
16 抽気空気
17 空気
22 燃焼器
23 ガスタービン圧縮機
24 ガスタービン圧縮機吐出空気
25 燃焼ガス
26 タービン
27 発電機
28 排ガス
30 圧力・温度・流量計測器
31 温度計測器
32 演算器
40 混合室
43 外筒
44 内筒壁
45 燃焼室
46 エンドフランジ
47 空気噴孔
49 バーナ
50 噴霧空気スワラ
51 水噴霧ノズル
52 燃料噴霧ノズル
53 混合流体噴霧ノズル
54 空気スワラ
DESCRIPTION OF SYMBOLS 1 Water tank 2 Mixer 3 Water pump 4 Spray air 5 Liquid fuel 6 Spray mixed fluid 7 Supply system 8 1st water supply system 9 2nd water supply system 10 Water flow rate adjustment valve 11 Spray air flow rate adjustment valve 12 Extraction air Flow adjustment valve 13 First water flow adjustment valve 14 Second water flow adjustment valve 15 Atomizing compressor 16 Extracted air 17 Air 22 Combustor 23 Gas turbine compressor 24 Gas turbine compressor discharge air 25 Combustion gas 26 Turbine 27 Power generation Machine 28 Exhaust gas 30 Pressure / temperature / flow rate measuring device 31 Temperature measuring device 32 Calculator 40 Mixing chamber 43 Outer tube 44 Inner tube wall 45 Combustion chamber 46 End flange 47 Air injection hole 49 Burner 50 Spray air swirler 51 Water spray nozzle 52 Fuel Spray nozzle 53 Mixed fluid spray nozzle 54 Air swirler

Claims (9)

空気を圧縮する圧縮機と、
前記圧縮機で圧縮された空気と液体燃料とを混合燃焼させて燃焼ガスを生成する燃焼器と、
前記燃焼器で生成された燃焼ガスで駆動するタービンとを備え、
前記液体燃料を微粒化する噴霧空気を供給する手段を有するガスタービンにおいて、
前記噴霧空気に水を供給する混合器を備え、前記混合器からの流体を前記燃焼器に供給するよう構成されたことを特徴とするガスタービン。
A compressor for compressing air;
A combustor that generates combustion gas by mixing and burning air compressed by the compressor and liquid fuel;
A turbine driven by combustion gas generated in the combustor,
In a gas turbine having means for supplying atomized air for atomizing the liquid fuel,
A gas turbine comprising a mixer for supplying water to the atomized air, and configured to supply a fluid from the mixer to the combustor.
請求項1のガスタービンにおいて、
前記混合器に供給する噴霧空気の流量,温度,圧力のうちの少なくとも一つを計測する計測手段を備え、前記計測手段の情報に基づいて、前記混合器に供給する水の流量を制御する手段を備えたことを特徴とするガスタービン発電システム。
The gas turbine of claim 1.
Means for measuring at least one of the flow rate, temperature, and pressure of the spray air supplied to the mixer, and for controlling the flow rate of water supplied to the mixer based on information of the measurement means A gas turbine power generation system comprising:
請求項1または2のガスタービンにおいて、
前記噴霧空気は前記圧縮機が生成した圧縮空気の一部であることを特徴とするガスタービン。
The gas turbine according to claim 1 or 2,
The gas turbine according to claim 1, wherein the atomized air is a part of the compressed air generated by the compressor.
請求項1から請求項3の何れかのガスタービンおいて、
前記混合器に水を供給する第一の水供給系統と、前記燃焼器に水を供給する第二の水供給系統を備えたことを特徴とするガスタービン。
In the gas turbine according to any one of claims 1 to 3,
A gas turbine comprising: a first water supply system that supplies water to the mixer; and a second water supply system that supplies water to the combustor.
請求項4のガスタービンにおいて、
前記燃焼器が、
前記混合器からの流体に、前記第二の水供給系統の水を噴霧する水噴霧ノズルと、
前記水噴霧ノズルで水を噴霧された前記流体と前記液体燃料とを混合する混合室とを有することを特徴とするガスタービン。
The gas turbine according to claim 4.
The combustor,
A water spray nozzle for spraying water from the second water supply system onto the fluid from the mixer;
A gas turbine comprising: a mixing chamber for mixing the fluid sprayed with water by the water spray nozzle and the liquid fuel.
請求項4のガスタービンにおいて、
前記第二の水供給系統の水を、前記混合室に噴霧する水噴霧ノズルを備えたことを特徴とするガスタービン。
The gas turbine according to claim 4.
A gas turbine comprising a water spray nozzle for spraying water from the second water supply system into the mixing chamber.
請求項4から請求項6の何れかのガスタービンにおいて、
前記燃焼器が、
前記混合器からの流体と前記液体燃料とを混合する混合室と
前記圧縮機で生成された圧縮空気を供給する圧縮空気供給系統と、
前記圧縮空気供給系統に、前記第二の水供給系統からの水を供給する系統とを有することを特徴とするガスタービン。
The gas turbine according to any one of claims 4 to 6,
The combustor,
A mixing chamber that mixes the fluid from the mixer and the liquid fuel; a compressed air supply system that supplies compressed air generated by the compressor;
A gas turbine comprising: a system for supplying water from the second water supply system to the compressed air supply system.
請求項5から請求項7の何れかのガスタービンにおいて、
前記燃焼器は前記混合室の下流に燃焼室を備え、
前記混合室の流体を前記燃焼室に噴霧する液体燃料噴霧ノズルを有することを特徴とするガスタービン。
The gas turbine according to any one of claims 5 to 7,
The combustor includes a combustion chamber downstream of the mixing chamber;
A gas turbine comprising a liquid fuel spray nozzle for spraying the fluid in the mixing chamber onto the combustion chamber.
空気を圧縮する圧縮機と、
前記圧縮機で圧縮された空気と液体燃料とを混合燃焼させて燃焼ガスを生成する燃焼器と、
前記燃焼器で生成された燃焼ガスで駆動するタービンとを備え、
前記燃料を微粒化する噴霧空気を供給する手段を有するガスタービンの運転方法において、
水を供給して温度を低下させた後に、前記噴霧空気を前記燃焼器に供給することを特徴とするガスタービンの運転方法。
A compressor for compressing air;
A combustor that generates combustion gas by mixing and burning air compressed by the compressor and liquid fuel;
A turbine driven by combustion gas generated in the combustor,
In a gas turbine operation method comprising means for supplying atomized air for atomizing the fuel,
A method for operating a gas turbine, comprising: supplying water to the combustor after supplying water to lower the temperature.
JP2010060098A 2010-03-17 2010-03-17 Liquid fuel-fired gas turbine Active JP5325819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060098A JP5325819B2 (en) 2010-03-17 2010-03-17 Liquid fuel-fired gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060098A JP5325819B2 (en) 2010-03-17 2010-03-17 Liquid fuel-fired gas turbine

Publications (2)

Publication Number Publication Date
JP2011190783A true JP2011190783A (en) 2011-09-29
JP5325819B2 JP5325819B2 (en) 2013-10-23

Family

ID=44795943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060098A Active JP5325819B2 (en) 2010-03-17 2010-03-17 Liquid fuel-fired gas turbine

Country Status (1)

Country Link
JP (1) JP5325819B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227885A (en) * 2012-04-24 2013-11-07 Niigata Power Systems Co Ltd Gas turbine combustor
JP2014145563A (en) * 2013-01-30 2014-08-14 Mitsubishi Heavy Ind Ltd Combustor
JP2015075314A (en) * 2013-10-11 2015-04-20 川崎重工業株式会社 Gas turbine fuel injection device
JP2016006377A (en) * 2015-09-24 2016-01-14 新潟原動機株式会社 Gas turbine combustor
DE102018127168B3 (en) 2018-08-14 2019-10-17 Eberspächer Climate Control Systems GmbH & Co. KG vehicle heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117910U (en) * 1975-03-19 1976-09-24
JP2000002420A (en) * 1998-06-16 2000-01-07 Toyota Central Res & Dev Lab Inc Multiple fluid injection combustor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117910U (en) * 1975-03-19 1976-09-24
JP2000002420A (en) * 1998-06-16 2000-01-07 Toyota Central Res & Dev Lab Inc Multiple fluid injection combustor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227885A (en) * 2012-04-24 2013-11-07 Niigata Power Systems Co Ltd Gas turbine combustor
JP2014145563A (en) * 2013-01-30 2014-08-14 Mitsubishi Heavy Ind Ltd Combustor
JP2015075314A (en) * 2013-10-11 2015-04-20 川崎重工業株式会社 Gas turbine fuel injection device
JP2016006377A (en) * 2015-09-24 2016-01-14 新潟原動機株式会社 Gas turbine combustor
DE102018127168B3 (en) 2018-08-14 2019-10-17 Eberspächer Climate Control Systems GmbH & Co. KG vehicle heater
US11072222B2 (en) 2018-08-14 2021-07-27 Eberspächer Climate Control Systems GmbH Combustion chamber assembly unit

Also Published As

Publication number Publication date
JP5325819B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP6840458B2 (en) Premix nozzle with integrated liquid evaporator
US9523311B2 (en) Method of operating a gas turbine, and gas turbine with water injection
JP4765646B2 (en) Control method of gas turbine
US11156157B2 (en) Combustion device and gas turbine engine system
JP5618337B2 (en) Gas turbine combustor
JP4659543B2 (en) Gas turbine combustor, method for preventing carbonization of fuel, and purge method
JP5325819B2 (en) Liquid fuel-fired gas turbine
JP4735548B2 (en) High-humidity air-utilizing gas turbine and its operating method
JP2008231963A (en) Humid air gas turbine, controller of humid air gas turbine, and method of controlling humid air gas turbine
JP2008031847A (en) Gas turbine combustor, its operating method, and modification method of gas turbine combustor
JP6491898B2 (en) Spray nozzle, combustion apparatus using spray nozzle, and gas turbine plant
US9169777B2 (en) Gas turbine engine with water and steam injection
JP4719704B2 (en) Gas turbine combustor
JP2009085456A (en) Gas turbine combustor
JP2002038970A (en) Gas turbine combustor
JP4584054B2 (en) Fuel nozzle for gas turbine combustor
JP2017138023A (en) Steam injection gas turbine
JP2013177988A (en) Gas turbine combustor
JP5507504B2 (en) Gas turbine combustor
US20140298817A1 (en) Arrangement for preparation of liquid fuel for combustion and a method of preparing liquid fuel for combustion
RU2818739C2 (en) Nozzle with low emissions, combustion chamber for two-component fuel with low emissions and gas turbine generator unit
JP2012122421A (en) Gas turbine system and humidification control method
JP5877138B2 (en) Gas turbine combustor and fuel supply method for gas turbine combustor
JP2018527514A (en) Independently controlled three-stage water injection into the diffusion burner
JPH10311229A (en) Gas turbine plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R151 Written notification of patent or utility model registration

Ref document number: 5325819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250