JP2011190486A - Method for forming wire made from particle of magnetic substance - Google Patents

Method for forming wire made from particle of magnetic substance Download PDF

Info

Publication number
JP2011190486A
JP2011190486A JP2010056018A JP2010056018A JP2011190486A JP 2011190486 A JP2011190486 A JP 2011190486A JP 2010056018 A JP2010056018 A JP 2010056018A JP 2010056018 A JP2010056018 A JP 2010056018A JP 2011190486 A JP2011190486 A JP 2011190486A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
particles
wire
magnetic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010056018A
Other languages
Japanese (ja)
Inventor
Masatada Fuji
正督 藤
Minoru Takahashi
実 高橋
Hideo Watanabe
秀夫 渡辺
Takashi Shirai
孝 白井
Takuya Ogasawara
拓哉 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2010056018A priority Critical patent/JP2011190486A/en
Publication of JP2011190486A publication Critical patent/JP2011190486A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a wire made from particles of a magnetic substance by coagulating magnetic particles in a fluid in a certain one direction. <P>SOLUTION: This forming method includes: coating a surface of a substrate of a nonmagnetic substance with a dispersion fluid of a magnetic substance, in which the particles of the magnetic substance are dispersed; and applying a magnetic field to the coating layer in an approximately parallel direction to cause an interaction between magnetic dipoles induced in the particles of the magnetic substance. Then, the interaction forms wire-shaped aggregates with a width larger than diameters of primary particles of the magnetic substance, in which the particles of the magnetic substance range along a direction of the magnetic field, and realizes wires formed of the wire-shaped aggregates which exist in a state of being separated from each other in the vertical direction to the direction of the magnetic field. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、流体中に分布する磁性体粒子群を、磁場を印加した方向に異方凝集させることでワイヤー状に形成せしめる方法に関する。本発明により作製された流体中磁性体ワイヤーは、例えば、フォトニック、構造材料、吸音材料、異方性電極、異方性多孔体などの、機能材料創製の基盤技術として幅広い技術分野で利用することが出来る。   The present invention relates to a method of forming magnetic particles distributed in a fluid in a wire shape by anisotropic aggregation in a direction in which a magnetic field is applied. The magnetic wire in fluid produced according to the present invention is used in a wide range of technical fields as a basic technology for creating functional materials such as photonics, structural materials, sound absorbing materials, anisotropic electrodes, and anisotropic porous materials. I can do it.


近年、さまざまな産業分野における基盤技術として、基板平面上に分布する粒子群を、分散乃至は配列させる技術が開発されている。

In recent years, as a basic technology in various industrial fields, a technology for dispersing or arranging particle groups distributed on a substrate plane has been developed.

従来、非磁性体基板上に磁性体粒子を流体に分散させた磁性体分散流体からなる被覆層を形成し、この被覆層に対して垂直方向の磁場を作用させて粒子を分散させる粒子の分散方法が知られている。(特許文献1)。この方法によれば、被覆層に垂直方向の磁場が作用することにより、該被覆層に存在する磁性体粒子間に斥力が働き、各粒子が均等に分散する。   Conventionally, a coating layer made of a magnetic dispersion fluid in which magnetic particles are dispersed in a fluid is formed on a non-magnetic substrate, and a particle is dispersed by applying a perpendicular magnetic field to the coating layer. The method is known. (Patent Document 1). According to this method, when a magnetic field in the vertical direction acts on the coating layer, a repulsive force acts between the magnetic particles present in the coating layer, and the particles are evenly dispersed.

特表平11−514755号公報Japanese National Patent Publication No. 11-514755

しかし、上記従来の分散方法は薄膜にのみ適用され、厚膜には適用することが出来ない。また、上記従来の分散方法では、被覆層に対し垂直方向の分散以外に適用することも出来ない。   However, the conventional dispersion method is applied only to a thin film and cannot be applied to a thick film. Further, the conventional dispersion method cannot be applied to other than the dispersion in the direction perpendicular to the coating layer.

ここにおいて、本発明は、薄膜の厚さによらず、流体中の磁性粒子を磁場印加方向に対して平行方向に凝集させることで異方的凝集した磁性体粒子により構成されるワイヤーの形成方法を提供することを解決すべき課題としている。   Here, the present invention provides a method for forming a wire composed of magnetic particles anisotropically aggregated by aggregating magnetic particles in a fluid in a direction parallel to the magnetic field application direction, regardless of the thickness of the thin film. Providing is an issue to be solved.

発明者らは、上記従来の粒子の分散方法において、薄膜における粒子分散のみならず、厚みを持つ流体中に磁性粒子のワイヤー形成が可能ではないかと考えた。この考えから、3次元流体中に存在する磁性粒子に外部磁場を印加した場合、磁化された磁性粒子は磁場印加方向に対して水平方向に同じ磁極を持つため、粒子同士に引力が働き凝集し、垂直方向において磁極の異なる粒子同士には、斥力が働くため分散することを見出し、第1の発明を完成させるに至った。   The inventors considered that in the above conventional particle dispersion method, not only particle dispersion in a thin film but also wire formation of magnetic particles in a fluid having a thickness was possible. Based on this idea, when an external magnetic field is applied to magnetic particles existing in a three-dimensional fluid, the magnetized magnetic particles have the same magnetic pole in the horizontal direction with respect to the direction of magnetic field application, and therefore attract and act on the particles to aggregate. The inventors have found that particles having different magnetic poles in the vertical direction are dispersed due to repulsive force, and have completed the first invention.

すなわち、第1の発明は、磁性体粒子を流体に分散させた磁性体分散流体を非磁性体基板上に被覆させる工程と、該被覆層に対して略平行方向の磁場を作用させる磁場付与工程と、を備え、磁性体粒子の一次粒子径よりも大きな幅で磁性体粒子が磁場方向に沿って連なったワイヤー状の凝集体を形成し、且つ、前記ワイヤー状凝集体同士が磁場方向と垂直方向に離れた状態で存在する、磁性体粒子で構成されるワイヤーの形成方法にある(請求項1)。   That is, the first invention includes a step of coating a non-magnetic substrate with a magnetic dispersion fluid in which magnetic particles are dispersed in a fluid, and a magnetic field applying step of applying a magnetic field in a substantially parallel direction to the coating layer. And forming a wire-like aggregate in which the magnetic particles are continuous in the magnetic field direction with a width larger than the primary particle diameter of the magnetic particles, and the wire-like aggregates are perpendicular to the magnetic field direction. It exists in the formation method of the wire which consists of a magnetic body particle which exists in the state away in the direction (Claim 1).

第2の発明は、磁場は交流磁場であることを特徴とする請求項1に記載の磁性体粒子で構成されるワイヤーの形成方法にある(請求項2)。   According to a second aspect of the present invention, there is provided a method for forming a wire composed of magnetic particles according to claim 1, wherein the magnetic field is an alternating magnetic field (invention 2).

第3の発明は、磁性体粒子を分散させる流体は、硬化可能な樹脂組成物であることを特徴とする請求項1又は2に記載の磁性粒子で構成されるワイヤーの形成方法にある(請求項3)。   According to a third aspect of the present invention, there is provided a method for forming a wire composed of magnetic particles according to claim 1 or 2, wherein the fluid for dispersing the magnetic particles is a curable resin composition. Item 3).

第4の発明は、磁性体粒子は、磁性体単体若しくは少なくとも1つの磁性体成分を含む混合物から構成されることを特徴とする請求項1乃至3のいずれか1つに記載の磁性体粒子で構成されるワイヤーの形成方法にある(請求項4)。   According to a fourth aspect of the invention, in the magnetic particles according to any one of claims 1 to 3, the magnetic particles are composed of a single magnetic material or a mixture containing at least one magnetic component. It is in the formation method of the comprised wire (Claim 4).

第5の発明は、前記磁性体粒子は、一次粒子径が約50nmで粒子形状が球状乃至は略球状のニッケル単体であることを特徴とする請求項4に記載の磁性体粒子で構成されるワイヤーの形成方法にある(請求項5)。   In a fifth aspect of the present invention, the magnetic particles are composed of nickel particles having a primary particle diameter of about 50 nm and a spherical or substantially spherical particle shape. It exists in the formation method of a wire (Claim 5).

このように、本発明に係る磁性体粒子で構成されるワイヤーの形成方法によれば、流体中に分布する磁性体粒子は磁場の作用により磁極を誘起し、磁場方向に平行の位置に存在する粒子間では異符号磁極間の引力が働き、乃至は、磁場方向に垂直の位置に存在する粒子間では同符号磁極間の斥力が働き、これら磁性体粒子間の相互作用による総和の結果として、磁場作用前にランダムに存在していた該磁性体粒子は、一次粒子の複数個の凝集体が磁場方向と平行に連なったワイヤー状凝集体を形成し、尚且つ、このワイヤー状凝集体は磁場方向と垂直方向には互いに反発することによって接することなく距離が保たれた状態にせしめられるのである。   As described above, according to the method for forming a wire composed of magnetic particles according to the present invention, magnetic particles distributed in a fluid induce magnetic poles by the action of a magnetic field and exist at positions parallel to the magnetic field direction. The attractive force between the magnetic poles with different signs works between the particles, or the repulsive force between the magnetic poles with the same sign works between the particles that are perpendicular to the magnetic field direction. The magnetic particles that existed randomly before the magnetic field action form a wire-like aggregate in which a plurality of aggregates of primary particles are connected in parallel to the direction of the magnetic field. By repelling each other in the direction and the vertical direction, the distance is maintained without contact.

なお、本発明に係るワイヤーの形成方法は、ワイヤーを製造するための工程として用いられる場合には、ワイヤーの製造方法として把握されるものである。   In addition, the formation method of the wire which concerns on this invention is grasped | ascertained as a manufacturing method of a wire, when used as a process for manufacturing a wire.

実施例1における磁場印加後の試料(粒子濃度0.05vol.%)の光学顕微鏡による写真である。It is the photograph by the optical microscope of the sample (particle concentration 0.05vol.%) After the magnetic field application in Example 1. FIG. 実施例1における磁場印加後の試料(粒子濃度0.1vol.%)の光学顕微鏡による写真である。It is the photograph by the optical microscope of the sample (particle density | concentration of 0.1 vol.%) After the magnetic field application in Example 1. FIG. 実施例1における磁場印加後の試料(粒子濃度0.2vol.%)の光学顕微鏡による写真である。It is the photograph by the optical microscope of the sample (particle density | concentration of 0.2 vol.%) After the magnetic field application in Example 1. FIG. 実施例1における磁場印加後の試料(粒子濃度1vol.%)の光学顕微鏡による写真である。It is the photograph by the optical microscope of the sample (particle concentration 1vol.%) After the magnetic field application in Example 1. FIG. 実施例1における磁場未印加の試料(粒子濃度0.05vol.%)の光学顕微鏡による写真である。It is a photograph by the optical microscope of the sample (particle concentration 0.05 vol.%) To which no magnetic field is applied in Example 1. 実施例1における磁場未印加の試料(粒子濃度0.1vol.%)の光学顕微鏡による写真である。It is the photograph by the optical microscope of the sample (particle density | concentration of 0.1 vol.%) In which the magnetic field is not applied in Example 1. FIG. 実施例1における磁場未印加の試料(粒子濃度0.2vol.%)の光学顕微鏡による写真である。It is the photograph by the optical microscope of the sample (particle density | concentration of 0.2 vol.%) In which the magnetic field is not applied in Example 1. FIG. 実施例1における磁場未印加の試料(粒子濃度1.0vol.%)の光学顕微鏡による写真である。It is the photograph by the optical microscope of the sample (particle concentration 1.0vol.%) In which the magnetic field in Example 1 is not applied.

本発明に係る磁性体粒子から構成されるワイヤーの形成方法においては、先ず、磁性体粒子の乾燥粉体もしくは分散流体を流体と混合し、媒体撹拌型ボールミル等により分散せしめた磁性体分散流体を、ガラス板などの非磁性体基板にドクターブレードなどの塗工機を用いて塗布することで薄膜状に被覆層を形成せしめる。   In the method of forming a wire composed of magnetic particles according to the present invention, first, a magnetic material dispersion fluid obtained by mixing a dry powder or dispersion fluid of magnetic particles with a fluid and dispersing the mixture with a medium stirring ball mill or the like. Then, a coating layer is formed in a thin film by applying to a non-magnetic substrate such as a glass plate using a coating machine such as a doctor blade.

ここで、磁性体粒子分散させる流体としては、磁性体粒子が分散可能であれば何でも用いることができる。そしてそれらの中でも、特に、加熱、冷却乃至は光照射などによって硬化可能な樹脂と溶剤の混合物が好適に用いられることになる。また、磁性体粒子としては、磁場印加によって磁気双極子を発現する限り、強磁性、常磁性、反磁性を問わず、また磁性体単体若しくは非磁性体との混合物であれば何でも用いることができる。そしてそれらの中でも、特に、一次粒子径が約50nmで粒子形状が球状乃至は略球状のニッケル単体が好適に用いられることとなる。   As the fluid for dispersing the magnetic particles, any fluid can be used as long as the magnetic particles can be dispersed. Among them, in particular, a mixture of a resin and a solvent that can be cured by heating, cooling, or light irradiation is preferably used. As the magnetic particles, any material can be used as long as it exhibits a magnetic dipole by applying a magnetic field, as long as it is ferromagnetic, paramagnetic, or diamagnetic, and any magnetic substance alone or a mixture with a non-magnetic substance. . Among these, in particular, nickel alone having a primary particle diameter of about 50 nm and a spherical or substantially spherical particle shape is preferably used.

そして、上記のように形成された被覆層に対して、略平行方向に磁場を付与し、磁性体粒子に誘起した磁気双極子の相互作用によって、磁性体粒子は引力により磁場方向に配列し、ワイヤー状の凝集体を形成しつつ、このワイヤー状凝集体同士は、斥力により離れた状態にせしめられるのである。ここで略平行とは、薄膜に鉛直な方向をゼロと規定した際に、磁場印加方向がおよそ90°に看做せるという意味である。また、付与する磁場としては、交流磁場であり、その周波数は0 ヘルツ以上で、磁場印加および未印加のサイクル比には特に制限は無い。   Then, a magnetic field is applied in a substantially parallel direction to the coating layer formed as described above, and magnetic particles are arranged in the magnetic field direction by attractive force due to the interaction of magnetic dipoles induced in the magnetic particles, While forming a wire-like aggregate, the wire-like aggregates are made to be separated from each other by repulsive force. Here, “substantially parallel” means that the magnetic field application direction can be regarded as approximately 90 ° when the direction perpendicular to the thin film is defined as zero. Further, the magnetic field to be applied is an alternating magnetic field, the frequency thereof is 0 hertz or higher, and there is no particular limitation on the cycle ratio with and without application of the magnetic field.

このようにして形成した、磁性体粒子より構成されるワイヤーは、流体として硬化可能な樹脂組成物を用いた場合には、樹脂組成物を適宜硬化せしめることによって、樹脂中でそのワイヤー状構造を固定せしめられるのである。   The wire formed from the magnetic particles formed as described above has a wire-like structure in the resin by appropriately curing the resin composition when a resin composition that can be cured as a fluid is used. It can be fixed.

以下に、本発明の代表的な実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、なんらの制約を受けるものではないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記の具体的名記述以外にも、本発明の趣旨を逸脱しない限りにおいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。   Hereinafter, representative examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited by the description of such examples. It goes without saying. In addition to the following examples, various changes, modifications, improvements, and the like can be added to the present invention in addition to the specific name description described above without departing from the spirit of the present invention. It should be understood that.

磁性体粒子としては、一次粒子径約50nmの略球状のニッケル粒子を用意する。そして、このニッケル粒子を紫外線硬化性樹脂中に体積率を0.05から1%の範囲の所定濃度で混合し、遊星型ボールミルで2時間解砕処理を行った後、超音波を照射し、これを塗布液とした。この塗布液をドクターブレードによって膜厚が数μmになるようにガラス板上に塗布し、膜面に対して平行方向に磁場を印加させた後、紫外線を照射して樹脂を固化させた。また、比較例として、前記同様の手順で塗布した被服層に外部磁場を印加させずにそのまま紫外線を照射して樹脂を固化したサンプルも作製した。   As the magnetic particles, substantially spherical nickel particles having a primary particle diameter of about 50 nm are prepared. Then, the nickel particles are mixed in an ultraviolet curable resin at a predetermined concentration in the range of 0.05 to 1%, and after being crushed by a planetary ball mill for 2 hours, ultrasonic waves are applied to the nickel particles. A coating solution was obtained. This coating solution was applied onto a glass plate with a doctor blade so as to have a film thickness of several μm, a magnetic field was applied in a direction parallel to the film surface, and ultraviolet rays were applied to solidify the resin. In addition, as a comparative example, a sample in which the resin was solidified by irradiating ultraviolet rays as it was without applying an external magnetic field to the coating layer applied in the same procedure as described above was also produced.

磁場印加後の試料の薄膜を膜面に対して垂直方向から観察した光学顕微鏡像を、図1に塗布液中ニッケル粒子の体積率が0.05%の場合、図2に前記体積率が0.1%の場合、図3に前記体積率が0.2%の場合、図4に前記体積率が1%の場合の結果をそれぞれ示す。これらの図より、何れの粒子濃度においてもニッケル粒子が外部磁場の印加によって磁場と平行方向に配列しワイヤーを形成していることが確認できる。また、ニッケル粒子濃度が濃くなるにつれ、ワイヤーも太くなっていることが分る。塗布薄膜に対して磁場を印加しない場合の結果(図5乃至図8)では、何れの場合においても凝集した粒子がランダムに存在していることが分る。従って、図1乃至図4に見られるニッケル粒子から構成されるワイヤー状の凝集体は確かに磁場印加により形成せしめられたのである。   An optical microscope image obtained by observing the thin film of the sample after application of the magnetic field from the direction perpendicular to the film surface is shown in FIG. 1 when the volume fraction of nickel particles in the coating solution is 0.05%, and in FIG. FIG. 3 shows the results when the volume ratio is 0.2%, and FIG. 4 shows the results when the volume ratio is 1%. From these figures, it can be confirmed that at any particle concentration, nickel particles are arranged in the direction parallel to the magnetic field by applying an external magnetic field to form a wire. It can also be seen that the wire becomes thicker as the nickel particle concentration increases. From the results when the magnetic field is not applied to the coated thin film (FIGS. 5 to 8), it can be seen that aggregated particles exist randomly in any case. Therefore, the wire-like aggregates composed of the nickel particles shown in FIGS. 1 to 4 were certainly formed by applying a magnetic field.

Claims (5)

磁性体粒子を流体に分散させた磁性体分散流体を非磁性体基板上に被覆させる工程と、該被覆層に対して略平行方向の磁場を作用させる磁場付与工程と、を備え、磁性体粒子の一次粒子径以上の幅で磁性体粒子が磁場方向に沿って連なったワイヤー状の凝集体を形成し、且つ、前記ワイヤー状凝集体同士が磁場方向と垂直方向に離れた状態で存在する、磁性体粒子で構成されるワイヤーの形成方法。   A magnetic material particle comprising: a step of coating a non-magnetic substrate with a magnetic material dispersion fluid in which magnetic particles are dispersed in a fluid; and a magnetic field applying step of applying a magnetic field in a substantially parallel direction to the coating layer. Forming a wire-like aggregate in which magnetic particles are continuous along the magnetic field direction with a width equal to or greater than the primary particle diameter, and the wire-like aggregates are present in a state separated from each other in a direction perpendicular to the magnetic field direction. A method of forming a wire composed of magnetic particles. 磁場は交流磁場であることを特徴とする請求項1に記載の磁性体粒子で構成されるワイヤーの形成方法。   The method of forming a wire composed of magnetic particles according to claim 1, wherein the magnetic field is an alternating magnetic field. 磁性体粒子を分散させる流体は、硬化可能な樹脂組成物であることを特徴とする請求項1又は2に記載の磁性粒子で構成されるワイヤーの形成方法。   The method for forming a wire composed of magnetic particles according to claim 1, wherein the fluid in which the magnetic particles are dispersed is a curable resin composition. 磁性体粒子は、磁性体単体若しくは少なくとも1つの磁性体成分を含む混合物から構成されることを特徴とする請求項1乃至3のいずれか1つに記載の磁性体粒子で構成されるワイヤーの形成方法。   The formation of a wire composed of magnetic particles according to any one of claims 1 to 3, wherein the magnetic particles are composed of a magnetic substance alone or a mixture containing at least one magnetic substance component. Method. 前記磁性体粒子は、一次粒子径が約50nmで粒子形状が球状乃至は略球状のニッケル単体であることを特徴とする請求項4に記載の磁性体粒子で構成されるワイヤーの形成方法。   5. The method for forming a wire composed of magnetic particles according to claim 4, wherein the magnetic particles are simple nickel having a primary particle diameter of about 50 nm and a spherical or substantially spherical particle shape.
JP2010056018A 2010-03-12 2010-03-12 Method for forming wire made from particle of magnetic substance Pending JP2011190486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056018A JP2011190486A (en) 2010-03-12 2010-03-12 Method for forming wire made from particle of magnetic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056018A JP2011190486A (en) 2010-03-12 2010-03-12 Method for forming wire made from particle of magnetic substance

Publications (1)

Publication Number Publication Date
JP2011190486A true JP2011190486A (en) 2011-09-29

Family

ID=44795705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056018A Pending JP2011190486A (en) 2010-03-12 2010-03-12 Method for forming wire made from particle of magnetic substance

Country Status (1)

Country Link
JP (1) JP2011190486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493704B1 (en) 2013-03-07 2015-02-17 포항공과대학교 산학협력단 Method for manufacturing fine structure using magnetic field
CN116666099A (en) * 2023-06-19 2023-08-29 徐州工业职业技术学院 Preparation method of self-assembled magnetic nanowire under magnetic field effect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493704B1 (en) 2013-03-07 2015-02-17 포항공과대학교 산학협력단 Method for manufacturing fine structure using magnetic field
CN116666099A (en) * 2023-06-19 2023-08-29 徐州工业职业技术学院 Preparation method of self-assembled magnetic nanowire under magnetic field effect

Similar Documents

Publication Publication Date Title
Khalil et al. Binary colloidal structures assembled through Ising interactions
Li et al. Semiconductor nanorod liquid crystals
JP7262878B2 (en) Composition for 3D printing
Walker et al. Precision assembly of oppositely and like-charged nanoobjects mediated by charge-induced dipole interactions
Sashuk et al. Nanoparticles in a capillary trap: dynamic self-assembly at fluid interfaces
KR20170093696A (en) Composition for 3 dimensional printing
Yuan et al. Facile assembly of aligned magnetic nanoparticle chains in polymer nanocomposite films by magnetic flow coating
Chen et al. Crystallization and magnetic properties of 3D micrometer-scale simple-cubic maghemite superlattices
Lorenzo et al. Formation and magnetic manipulation of periodically aligned microchains in thin plastic membranes
Zhong et al. Facile approach for superparamagnetic CNT-Fe3O4/polystyrene tricomponent nanocomposite via synergetic dispersion
Park et al. Toxic micro/nano particles removal in water via triboelectric nanogenerator
JP6729943B2 (en) Composition for 3D printing
Cao et al. Self-assembly of large magnetic nanoparticles in ultrahigh molecular weight linear diblock copolymer films
JP2011190486A (en) Method for forming wire made from particle of magnetic substance
JP2004234865A (en) Carbon nanotube array material, its process of manufacture, carbon fiber array material, its process of manufacture and electric field emission display element
Hu et al. Surfactant-assisted hydrothermal synthesis of dendritic magnetite microcrystals
Takahashi et al. Magnetic field aligned assembly of nonmagnetic composite dumbbells in nanoparticle-based aqueous ferrofluid
Yamamoto et al. Magnetically anisotropic additive for scalable manufacturing of polymer nanocomposite: iron-coated carbon nanotubes
WO2012111837A1 (en) High-performance thermal interface films and methods thereof
JP5002778B2 (en) Method for producing transparent conductive film substrate and method for producing transparent laminate
Han et al. Facile fabrication and magnetic properties of a one-dimensional magnetite peapod in a lipid nanotube
KR102167222B1 (en) Curable Composition
JPWO2020025482A5 (en)
KR102176233B1 (en) Composition for 3 dimensional printing
JPWO2020025218A5 (en)