JP2011190426A - Absorbing resin particle and manufacturing method thereof - Google Patents

Absorbing resin particle and manufacturing method thereof Download PDF

Info

Publication number
JP2011190426A
JP2011190426A JP2010218631A JP2010218631A JP2011190426A JP 2011190426 A JP2011190426 A JP 2011190426A JP 2010218631 A JP2010218631 A JP 2010218631A JP 2010218631 A JP2010218631 A JP 2010218631A JP 2011190426 A JP2011190426 A JP 2011190426A
Authority
JP
Japan
Prior art keywords
weight
absorbent resin
resin particles
polylactic acid
crosslinked polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010218631A
Other languages
Japanese (ja)
Other versions
JP5264850B2 (en
Inventor
Hiroko Sugiyama
紘子 杉山
Toshinobu Ishida
豪伸 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
San Dia Polymers Ltd
Original Assignee
San Dia Polymers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San Dia Polymers Ltd filed Critical San Dia Polymers Ltd
Priority to JP2010218631A priority Critical patent/JP5264850B2/en
Publication of JP2011190426A publication Critical patent/JP2011190426A/en
Application granted granted Critical
Publication of JP5264850B2 publication Critical patent/JP5264850B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of poor productivity and remarkably poor absorbing performance of the conventional absorbing resin particles using a plant-based material compared with the conventional polyacrylic acid-based absorbing resin particles. <P>SOLUTION: The absorbing resin particle includes (A) a cross-linked polymer (A1) having as the essential constituent units (a1) a water-soluble vinyl monomer and/or (a2) a hydrolyzable vinyl monomer and (a3) a cross-linking agent, and (B) a polylactic acid. The weight average molecular weight of (B) is 5,000 to 200,000. (B) is included by 5 to 30 wt.% based on the weight of (A1). (B) is included by 0.1 to 25 wt.% based on the weight of (A1) in the absorbing resin particle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、吸収性樹脂粒子及びこの製造方法に関するものである。   The present invention relates to absorbent resin particles and a method for producing the same.

吸収性樹脂粒子は自重の数十倍から数千倍の水を吸収できる樹脂であり、例えばポリアクリル酸系吸収性樹脂等が知られている。これらの吸収性樹脂はその高い吸水性を利用して使い捨ての衛生用品に多く使用されている。しかし、これら吸収性樹脂を含む衛生用品の処理方法は環境負荷の観点から問題があり、焼却炉での処理方法では、地球温暖化の原因となることが指摘されている。このような状況下でカーボンニュートラルの観点から植物由来原料を用いた吸収性樹脂粒子が望まれている。   Absorbent resin particles are resins that can absorb water several tens to several thousand times their own weight. For example, polyacrylic acid-based absorbent resins are known. These absorptive resins are often used in disposable sanitary goods because of their high water absorption. However, it has been pointed out that the treatment method of sanitary goods containing these absorbent resins has a problem from the viewpoint of environmental load, and that the treatment method in an incinerator causes global warming. Under such circumstances, absorbent resin particles using plant-derived materials are desired from the viewpoint of carbon neutral.

植物由来原料を用いた吸収性樹脂としては、例えばカルボキシメチルポリ乳酸架橋体(特許文献1、11)アルギン酸架橋体、澱粉架橋体(特許文献2)、ポリアミノ酸架橋体(特許文献3〜7)、ガラクトマンナンー金属架橋体(特許文献8〜10)等が知られている。   Examples of absorbent resins using plant-derived raw materials include crosslinked carboxymethyl polylactic acid (Patent Documents 1 and 11), crosslinked alginic acid, crosslinked starch (Patent Document 2), and crosslinked polyamino acid (Patent Documents 3 to 7). Further, galactomannan-metal cross-linked bodies (Patent Documents 8 to 10) and the like are known.

特開2004−010634号公報JP 2004-010634 A 特開昭55−15634号公報Japanese Patent Laid-Open No. 55-15634 特開平7−224163号公報JP 7-224163 A 特開平7−309943号公報JP 7-309943 A 特開平8−59820号公報JP-A-8-59820 特開平8−504219号公報JP-A-8-504219 特開平9−169840号公報JP-A-9-169840 特開平8−59891号公報JP-A-8-59891 特公平3−66321号公報Japanese Patent Publication No. 3-66321 特開昭56−97450号公報JP 56-97450 A 米国特許第4650716号公報U.S. Pat. No. 4,650,716

しかしながら、これらの植物由来原料を用いた吸収性樹脂粒子は、従来のポリアクリル酸系の吸収性樹脂粒子に比べて生産性が悪い上、著しく吸収性能が劣るという問題があり、実用化に至っていない。   However, the absorbent resin particles using these plant-derived raw materials have a problem that the productivity is worse than the conventional polyacrylic acid-based absorbent resin particles and the absorption performance is remarkably inferior, leading to practical use. Not in.

本発明の目的は、植物由来原料を含み、しかも吸収性能に優れた吸収性樹脂粒子及びその製造方法を提供することにある。   An object of the present invention is to provide absorbent resin particles containing a plant-derived raw material and having excellent absorption performance, and a method for producing the same.

本発明の吸収性樹脂粒子の特徴は、水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)、並びに架橋剤(a3)を必須構成単位とする架橋重合体(A1)とポリ乳酸(B)を含んでなる吸収性樹脂粒子であって、(B)の重量平均分子量が5000〜200000であり、(B)を(A1)の重量に基づき5〜30重量%含有し、(B)を吸収性樹脂粒子内部に(A1)の重量に基づき0.1〜25重量%含有することを要旨とする。   The feature of the absorbent resin particles of the present invention is that the water-soluble vinyl monomer (a1) and / or the hydrolyzable vinyl monomer (a2), and the crosslinked polymer (A1) having a crosslinking agent (a3) as essential constituent units and poly Absorbent resin particles comprising lactic acid (B), wherein (B) has a weight average molecular weight of 5,000 to 200,000, and (B) is contained in an amount of 5 to 30% by weight based on the weight of (A1); The gist is to contain 0.1 to 25% by weight of B) in the absorbent resin particles based on the weight of (A1).

本発明の吸収性樹脂粒子の製造方法の特徴は、吸収性樹脂粒子の製造方法において、水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)並びに架橋剤(a3)を必須構成単量体(a)とする単量体を共重合して架橋重合体(A1)を得た後、(A1)とポリ乳酸(B)とを混合して架橋重合体(A1)/ポリ乳酸複合体ゲルを得る工程(1);又は
水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)並びに架橋剤(a3)を必須構成単量体(a)とする単量体と、ポリ乳酸(B)とを混合した後、単量体を共重合して架橋重合体(A1)/ポリ乳酸複合体ゲルを得る工程(2)を含んでなり、
(B)の重量平均分子量が5000〜200000であり、
(B)の使用量が架橋重合体(A1)の重量に基づき5〜30重量%であり、
(B)を吸収性樹脂粒子内部に架橋重合体(A1)の重量に基づき0.1〜25%重量含有することを要旨とする。
A feature of the method for producing absorbent resin particles of the present invention is that the water-soluble vinyl monomer (a1) and / or hydrolyzable vinyl monomer (a2) and crosslinking agent (a3) are essential components in the method for producing absorbent resin particles. After the monomer (a) is copolymerized to obtain a crosslinked polymer (A1), (A1) and polylactic acid (B) are mixed to form a crosslinked polymer (A1) / polylactic acid. A step of obtaining a composite gel (1); or a monomer having the water-soluble vinyl monomer (a1) and / or the hydrolyzable vinyl monomer (a2) and the crosslinking agent (a3) as an essential constituent monomer (a); And (2) comprising mixing the polylactic acid (B) and then copolymerizing the monomers to obtain a crosslinked polymer (A1) / polylactic acid composite gel.
(B) has a weight average molecular weight of 5,000 to 200,000,
The amount of (B) used is 5 to 30% by weight based on the weight of the crosslinked polymer (A1),
It is summarized that 0.1 to 25% by weight of (B) is contained in the absorbent resin particles based on the weight of the crosslinked polymer (A1).

本発明の吸収性樹脂粒子は、植物由来原料(ポリ乳酸)を用いているにもかかわらず、高い吸収性能を発揮する。また、本発明の吸収性樹脂粒子の製造法によれば、植物由来原料(ポリ乳酸)を用いているにもかかわらず、高い吸収性能を発揮する吸収性樹脂粒子を容易に製造できる。   The absorbent resin particles of the present invention exhibit high absorption performance despite using plant-derived raw materials (polylactic acid). Moreover, according to the manufacturing method of the absorbent resin particle of this invention, although the plant-derived raw material (polylactic acid) is used, the absorbent resin particle which exhibits high absorption performance can be manufactured easily.

膨潤容積測定法による膨潤容積を測定するための装置全体を模式的に示した正面断面図。Front sectional drawing which showed typically the whole apparatus for measuring the swelling volume by a swelling volume measuring method. 膨潤容積測定法による膨潤容積を測定するための底板付円筒1および取手付円盤2を模式的に示した側面投影図。The side projection figure which showed typically the cylinder 1 with a baseplate and the disk 2 with a handle for measuring the swelling volume by a swelling volume measuring method. 膨潤容積測定法による膨潤容積を測定するための取手付円盤2を模式的に示した上面図。The top view which showed typically the disk 2 with a handle for measuring the swelling volume by a swelling volume measuring method.

水溶性ビニルモノマー(a1)としては特に限定はなく公知{たとえば、特許第3648553号公報、特開2003−165883号公報、特開2005−75982号公報、特開2005−95759号公報}のビニルモノマー等が使用できる。   The water-soluble vinyl monomer (a1) is not particularly limited and is known {for example, a vinyl monomer disclosed in Japanese Patent No. 3648553, Japanese Patent Laid-Open No. 2003-165883, Japanese Patent Laid-Open No. 2005-75982, Japanese Patent Laid-Open No. 2005-95759}. Etc. can be used.

加水分解性ビニルモノマー(a2)は、加水分解により水溶性ビニルモノマー(a1)となるビニルモノマーを意味し、特に限定はなく公知{たとえば、特許第3648553号公報、特開2003−165883号公報、特開2005−75982号公報、特開2005−95759号公報}のビニルモノマー等が使用できる。なお、水溶性ビニルモノマーとは、25℃の水100gに少なくとも100g溶解する性質を持つビニルモノマーを意味する。また、加水分解性とは、50℃の水及び必要により触媒(酸又は塩基等)の作用により加水分解され水溶性になる性質を意味する。加水分解性ビニルモノマーの加水分解は、重合中、重合後及びこれらの両方のいずれでもよいが、得られる吸収性樹脂粒子の分子量の観点等から重合後が好ましい。   The hydrolyzable vinyl monomer (a2) means a vinyl monomer that becomes a water-soluble vinyl monomer (a1) by hydrolysis, and is not particularly limited (for example, Japanese Patent No. 3648553, JP-A No. 2003-165883, The vinyl monomer etc. of Unexamined-Japanese-Patent No. 2005-75982, Unexamined-Japanese-Patent No. 2005-95759} etc. can be used. The water-soluble vinyl monomer means a vinyl monomer having a property of dissolving at least 100 g in 100 g of water at 25 ° C. The term “hydrolyzable” refers to the property of being hydrolyzed by the action of 50 ° C. water and, if necessary, the catalyst (acid or base) to make it water-soluble. Hydrolysis of the hydrolyzable vinyl monomer may be performed either during polymerization, after polymerization, or both of them, but from the viewpoint of the molecular weight of the resulting absorbent resin particles, etc., is preferable.

これらのうち、吸収特性の観点等から、水溶性ビニルモノマー(a1)が好ましく、さらに好ましくはアニオン性ビニルモノマー、次に好ましくはカルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ−、ジ−若しくはトリ−アルキルアンモニオ基を有するビニルモノマー、次に好ましくはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、特に好ましくは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、次に特に好ましくは(メタ)アクリル酸(塩)、最も好ましくはアクリル酸(塩)である。   Of these, water-soluble vinyl monomers (a1) are preferred from the viewpoint of absorption characteristics, etc., more preferably anionic vinyl monomers, and more preferably carboxy (salt) groups, sulfo (salt) groups, amino groups, carbamoyl groups. Vinyl monomers having an ammonio group or a mono-, di- or tri-alkyl ammonio group, then preferably vinyl monomers having a carboxy (salt) group or a carbamoyl group, particularly preferably (meth) acrylic acid (salt) and (Meth) acrylamide, next particularly preferably (meth) acrylic acid (salt), most preferably acrylic acid (salt).

なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。
また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩又はアンモニウム(NH)塩等が含まれる。これらの塩のうち、吸収特性の観点等から、アルカリ金属塩及びアンモニウム塩が好ましく、さらに好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。
The “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”. Moreover, (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylate, and (meth) acrylamide means acrylamide or methacrylamide.
Examples of the salt include an alkali metal (such as lithium, sodium and potassium) salt, an alkaline earth metal (such as magnesium and calcium) salt or an ammonium (NH 4 ) salt. Among these salts, alkali metal salts and ammonium salts are preferable from the viewpoint of absorption characteristics and the like, more preferably alkali metal salts, and particularly preferably sodium salts.

水溶性ビニルモノマー(a1)又は加水分解性ビニルモノマー(a2)のいずれかを構成単位とする場合、それぞれ単独で構成単位としてもよく、また、必要により2種以上を構成単位としてもよい。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合も同様である。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合、これらの含有モル比(a1/a2)は、75/25〜99/1が好ましく、さらに好ましくは85/15〜95/5、特に好ましくは90/10〜93/7、最も好ましくは91/9〜92/8である。この範囲であると、吸収性能がさらに良好となる。   When either the water-soluble vinyl monomer (a1) or the hydrolyzable vinyl monomer (a2) is used as a structural unit, each may be used alone as a structural unit, or two or more kinds may be used as a structural unit if necessary. The same applies when the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units. Further, when the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as structural units, the content molar ratio (a1 / a2) is preferably 75/25 to 99/1, more preferably. 85/15 to 95/5, particularly preferably 90/10 to 93/7, and most preferably 91/9 to 92/8. Within this range, the absorption performance is further improved.

架橋剤(a3)としては特に限定はなく公知{たとえば、特許第3648553号公報、特開2003−165883号公報、特開2005−75982号公報、特開2005−95759号公報}の架橋剤等が使用できる。
これらのうち、吸収特性の観点等から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、さらに好ましくは炭素数2〜10のポリオールのポリ(メタ)アリルエーテル、特に好ましくはトリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリロキシエタン及びペンタエリスリトールトリアリルエーテル、最も好ましくはペンタエリスリトールトリアリルエーテルである。
The cross-linking agent (a3) is not particularly limited, and known cross-linking agents such as those disclosed in known {eg, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883, Japanese Patent Application Laid-Open No. 2005-75982, Japanese Patent Application Laid-Open No. 2005-95759}, Can be used.
Among these, from the viewpoint of absorption characteristics, etc., a crosslinking agent having two or more ethylenically unsaturated groups is preferable, more preferably a poly (meth) allyl ether of a polyol having 2 to 10 carbon atoms, particularly preferably triallylsia. Nurate, triallyl isocyanurate, tetraallyloxyethane and pentaerythritol triallyl ether, most preferably pentaerythritol triallyl ether.

架橋剤(a3)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位のモル数に基づいて、0.001〜5が好ましく、さらに好ましくは0.005〜3、特に好ましくは0.01〜1である。この範囲であると、吸収特性がさらに良好となる。   The content (mol%) of the crosslinking agent (a3) unit is preferably 0.001 to 5, more preferably, based on the number of moles of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit. Is 0.005 to 3, particularly preferably 0.01 to 1. Within this range, the absorption characteristics are further improved.

水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)並びに架橋剤(a3)を必須構成単量体とする単量体には、これらの他に、これらと共重合可能なその他のビニルモノマー(a4)を含むことができる   In addition to these, monomers having water-soluble vinyl monomer (a1) and / or hydrolyzable vinyl monomer (a2) and crosslinking agent (a3) as essential constituent monomers are copolymerizable with these. Of vinyl monomer (a4)

共重合可能なその他のビニルモノマー(a4)としては特に限定はなく公知{たとえば、特許第3648553号、特開2003−165883号、特開2005−75982号、特開2005−95759号}の疎水性ビニルモノマー等が使用できる。   Other vinyl monomers (a4) that can be copolymerized are not particularly limited and are known {eg, hydrophobicity of Japanese Patent No. 3648553, Japanese Patent Laid-Open No. 2003-165883, Japanese Patent Laid-Open No. 2005-75982, Japanese Patent Laid-Open No. 2005-95759}. Vinyl monomers can be used.

その他のビニルモノマー(a4)を含む場合、その他のビニルモノマー(a4)の使用量(モル%)は、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)のモル数に基づいて、0.01〜5が好ましく、さらに好ましくは0.05〜3、次に好ましくは0.08〜2、特に好ましくは0.1〜1.5である。なお、吸収性能等の観点から、その他のビニルモノマー(a4)を使用しないことが最も好ましい。   When the other vinyl monomer (a4) is included, the usage amount (mol%) of the other vinyl monomer (a4) is based on the number of moles of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2). 0.01-5 is preferable, More preferably, it is 0.05-3, Next, Preferably it is 0.08-2, Most preferably, it is 0.1-1.5. In view of absorption performance and the like, it is most preferable not to use any other vinyl monomer (a4).

水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)、並びに架橋剤(a3)を必須構成単量体とする単量体を共重合し架橋重合体(A1)を得る方法としては、公知の水溶液重合{断熱重合、薄膜重合及び噴霧重合法等;特開昭55−133413号等}や、公知の逆相懸濁重合{特公昭54−30710号、特開昭56−26909号及び特開平1−5808号等}と同様にしてできる。   As a method of obtaining a crosslinked polymer (A1) by copolymerizing a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2) and a monomer having a crosslinking agent (a3) as an essential constituent monomer. Are known aqueous solution polymerization {adiabatic polymerization, thin film polymerization, spray polymerization method, etc .; JP-A-55-133413, etc.] and known reverse phase suspension polymerization {JP-B-54-30710, JP-A-56-26909. No. 1 and Japanese Patent Laid-Open No. 1-5808 etc.}.

重合によって得られる含水ゲル{架橋重合体(A1)と水とからなる。}は、必要に応じて細断することができる。細断する場合、細断後のゲルの大きさ(最長径)は、50μm〜10cmが好ましく、さらに好ましくは100μm〜2cm、特に好ましくは1mm〜1cmである。   Water-containing gel obtained by polymerization {consists of a crosslinked polymer (A1) and water. } Can be shredded as necessary. When chopping, the size (longest diameter) of the gel after chopping is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 1 mm to 1 cm.

細断は、公知の方法で行うことができ、通常の細断装置{たとえば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機}等を使用して細断できる。   Shredding can be performed by a known method, and can be shredded using a normal shredding device {for example, a bex mill, rubber chopper, pharma mill, mincing machine, impact crusher and roll crusher}. .

架橋重合体(A1)は1種でもよいし、2種以上の混合物であってもよい。   The cross-linked polymer (A1) may be one type or a mixture of two or more types.

本発明において、ポリ乳酸(B)は、重量平均分子量が5000〜200000である。吸収性能の観点から、より好ましくは10000〜200000、さらに好ましくは15000〜200000である。
使用するポリ乳酸(B)の重量平均分子量は以下の方法で測定される。
測定したいポリ乳酸をジメチルホルムアミドに溶解し、測定サンプルとする。東ソー製のGPC測定装置(カラム:TSKgel α−M)を用い、カラム温度40℃で測定を行う。解析には標準物質としてポリエチレングリコールを用い、ポリエチレングリコール分子量換算でポリ乳酸の重量平均分子量を算出する。
In the present invention, the polylactic acid (B) has a weight average molecular weight of 5,000 to 200,000. From a viewpoint of absorption performance, More preferably, it is 10,000-200000, More preferably, it is 15000-200000.
The weight average molecular weight of the polylactic acid (B) used is measured by the following method.
A polylactic acid to be measured is dissolved in dimethylformamide to obtain a measurement sample. The measurement is performed at a column temperature of 40 ° C. using a Tosoh GPC measurement device (column: TSKgel α-M). For the analysis, polyethylene glycol is used as a standard substance, and the weight average molecular weight of polylactic acid is calculated in terms of polyethylene glycol molecular weight.

ポリ乳酸(B)の体積平均粒子径は、に特に限定はないが、吸収性能の観点から、0.5〜100μmが好ましく、より好ましくは0.5〜80μm、さらに好ましくは0.5〜50μmである。   The volume average particle diameter of the polylactic acid (B) is not particularly limited, but is preferably 0.5 to 100 μm, more preferably 0.5 to 80 μm, still more preferably 0.5 to 50 μm from the viewpoint of absorption performance. It is.

本発明に使用するポリ乳酸(B)の形状は、特に限定はなく、繊維状、粉末状が使用できる。また、(B)の性状は特に限定はなく、エマルジョン状態等のものが使用できる。吸収性能の観点から、粉末状及びエマルジョン状態のものが好ましく、より好ましくはエマルジョン状態のものである。   The shape of the polylactic acid (B) used for this invention does not have limitation in particular, A fibrous form and a powder form can be used. Further, the property of (B) is not particularly limited, and an emulsion state or the like can be used. From the viewpoint of absorption performance, those in powder form and emulsion state are preferable, and those in emulsion state are more preferable.

ポリ乳酸(B)の含有量(重量%)は、架橋重合体(A1)の重量に基づいて、5〜30であり、好ましくは7〜27、さらに好ましくは10〜25である。この範囲であると、吸収性能がさらに良好となる。
(B)の含有量が、5未満では、吸収性物品に用いたとき耐カブレ性が悪くなり、30を超えると吸収性物品に用いたとき耐モレ性が悪化する。
Content (weight%) of polylactic acid (B) is 5-30 based on the weight of a crosslinked polymer (A1), Preferably it is 7-27, More preferably, it is 10-25. Within this range, the absorption performance is further improved.
When the content of (B) is less than 5, the anti-fogging property is deteriorated when used in an absorbent article, and when it exceeds 30, the anti-moisture resistance is deteriorated when used in an absorbent article.

ポリ乳酸(B)は吸収性樹脂粒子内部に含有される。(B)の吸収性樹脂粒子内部の含有量(重量%)は、架橋重合体(A1)の重量に基づいて、0.1〜25であり、吸収特性の観点から、好ましくは0.5〜25、さらに好ましくは1〜20である。
(B)の吸収性樹脂粒子内部の含有量が、0.1未満では、吸収性物品に用いたとき耐カブレ性が悪くなり、25を超えると吸収性物品に用いたとき耐モレ性が悪化する。
Polylactic acid (B) is contained inside the absorbent resin particles. The content (% by weight) inside the absorbent resin particles of (B) is 0.1 to 25 based on the weight of the crosslinked polymer (A1), and from the viewpoint of absorption characteristics, preferably 0.5 to 25, more preferably 1-20.
When the content of the absorbent resin particles in (B) is less than 0.1, the anti-fogging property is deteriorated when used for an absorbent article, and when it is more than 25, the anti-moisture resistance is deteriorated when used for an absorbent article. To do.

本発明においては、ポリ乳酸(B)は、吸収特性の観点から、吸収性樹脂粒子表面に存在することが好ましい。
吸収性樹脂粒子表面に存在する(B)の量(重量%)は、架橋重合体(A1)の重量に基づいて、吸収性能の観点から、好ましくは0.1〜10、さらに好ましくは0.3〜5である。
In the present invention, the polylactic acid (B) is preferably present on the surface of the absorbent resin particles from the viewpoint of absorption characteristics.
The amount (% by weight) of (B) present on the surface of the absorbent resin particles is preferably 0.1 to 10, more preferably 0.8 based on the weight of the crosslinked polymer (A1) from the viewpoint of absorption performance. 3-5.

なお、上述したポリ乳酸(B)のそれぞれの含有量は下記の方法で測定される。
<吸収性樹脂粒子表面に存在するポリ乳酸(B)の含有量の測定法>
ガラス製のビーカーに吸収性樹脂粒子1重量部をアセトン100重量部を加え、25℃で1時間攪拌して放置し、濾紙を用いた濾過により濾紙上の残さと濾液とに分離し、濾液をポリ乳酸の抽出液とする。この抽出液を事前に秤量したガラス製のビーカーに採取し、エバポレーターを用い30℃前後で溶媒を蒸発させた後、秤量する。溶媒蒸発後の重量から事前に秤量したビーカーの重量を引ひいたものを算出し蒸発乾固物の重量とする。濾紙上の残さを用いて、アセトン100重量部を加え抽出する同様の操作を2回くり返し、3回の抽出で得られた蒸発乾固物の合計重量を100倍したものを表面に存在するポリ乳酸の含有量(重量%)とする。
In addition, each content of the polylactic acid (B) mentioned above is measured by the following method.
<Measurement method of content of polylactic acid (B) present on absorbent resin particle surface>
Add 1 part by weight of absorbent resin particles to a glass beaker and add 100 parts by weight of acetone, stir for 1 hour at 25 ° C., and separate the residue on the filter paper and the filtrate by filtration using filter paper. A polylactic acid extract is used. The extract is collected in a pre-weighed glass beaker, and the solvent is evaporated at around 30 ° C. using an evaporator, and then weighed. The weight after evaporating the solvent minus the weight of the beaker weighed in advance is calculated and used as the weight of the evaporated dry product. Using the residue on the filter paper, the same operation of adding 100 parts by weight of acetone and extracting was repeated twice, and the total weight of the evaporated and dried product obtained by the three extractions was multiplied by 100 to obtain poly on the surface. Let the content (% by weight) of lactic acid.

<吸収性樹脂粒子内部に存在するポリ乳酸(B)の含有量の測定法>
ガラス製のビーカーに上記測定法で使用した抽出後の吸収性樹脂粒子を十分乾燥させた後1重量部をイオン交換水を50重量部加えて膨潤させ、アセトン100重量部を加え、25℃にて24時間攪拌して放置し、濾紙を用いた濾過により濾紙上の残さと濾液とに分離し、濾液をポリ乳酸の抽出液とする。この抽出液を事前に秤量したガラス製のビーカーに採取し、エバポレーターを用い30℃前後で溶媒を蒸発させた後、秤量する。溶媒蒸発後の重量から事前に秤量したビーカーの重量をひいたものを算出し蒸発乾固物の重量とする。濾紙上の残さを用いて、イオン交換水50重量部及びアセトン100重量部を加え抽出する同様の操作を2回くり返し、3回の抽出で得られた蒸発乾固物の合計重量を100倍したものを内部に存在するポリ乳酸の含有量(重量%)とする。
<Measurement method of content of polylactic acid (B) present in absorbent resin particles>
After fully absorbing the absorbent resin particles after extraction used in the above measurement method in a glass beaker, 1 part by weight is swelled with 50 parts by weight of ion-exchanged water, 100 parts by weight of acetone is added, and the mixture is heated to 25 ° C. The mixture is left to stir for 24 hours, and is separated into a residue on the filter paper and a filtrate by filtration using a filter paper, and the filtrate is used as an extract of polylactic acid. The extract is collected in a pre-weighed glass beaker, and the solvent is evaporated at around 30 ° C. using an evaporator, and then weighed. The weight obtained by subtracting the weight of the beaker weighed in advance from the weight after evaporation of the solvent is calculated and used as the weight of the evaporated and dried product. Using the residue on the filter paper, the same operation of extraction by adding 50 parts by weight of ion exchange water and 100 parts by weight of acetone was repeated twice, and the total weight of the evaporated and dried product obtained by the three extractions was multiplied by 100. The content is the content (% by weight) of polylactic acid present in the interior.

本発明の吸収性樹脂粒子は、さらに疎水性物質(C)を含有させることができる。   The absorbent resin particles of the present invention can further contain a hydrophobic substance (C).

吸収性樹脂粒子に対する疎水性物質(C)の含有量(重量%)は、吸収性物品の耐カブレ性及び吸収性物品の耐モレ性の観点から、架橋重合体(A1)の重量に基づいて、0.01〜10が好ましく、好ましくは0.01〜5、さらに好ましくは0.05〜2、特に好ましくは0.1〜1である。   The content (% by weight) of the hydrophobic substance (C) with respect to the absorbent resin particles is based on the weight of the crosslinked polymer (A1) from the viewpoint of the anti-fogging resistance of the absorbent article and the anti-moisture resistance of the absorbent article. , 0.01 to 10, preferably 0.01 to 5, more preferably 0.05 to 2, particularly preferably 0.1 to 1.

吸収性樹脂粒子内部の疎水性物質(C)の含有量(重量%)は、吸収性物品の耐カブレ性及び吸収性物品の耐モレ性の観点から、架橋重合体(A1)の重量に基づいて、0.01〜10が好ましく、さらに好ましくは0.01〜5、次にさらに好ましくは0.05〜2、特に好ましくは0.1〜1である。
吸収性樹脂粒子の表面に存在する疎水性物質(C)の含有量(重量%)は、吸収性物品の耐カブレ性及び吸収性物品の耐モレ性の観点から、架橋重合体(A1)の重量に基づいて、0.001〜1が好ましく、さらに好ましくは0.005〜0.5、次にさらに好ましくは0.01〜0.3、特に好ましくは0.01〜0.1である。
The content (% by weight) of the hydrophobic substance (C) inside the absorbent resin particles is based on the weight of the crosslinked polymer (A1) from the viewpoint of the anti-fogging resistance of the absorbent article and the anti-moisture resistance of the absorbent article. 0.01 to 10 is preferable, more preferably 0.01 to 5, then more preferably 0.05 to 2, and particularly preferably 0.1 to 1.
The content (% by weight) of the hydrophobic substance (C) present on the surface of the absorbent resin particles is determined from the cross-linked polymer (A1) from the viewpoint of the anti-fogging property of the absorbent article and the anti-moisture resistance of the absorbent article. Based on weight, it is preferably 0.001-1, more preferably 0.005-0.5, still more preferably 0.01-0.3, and particularly preferably 0.01-0.1.

なお、吸収性樹脂粒子の表面に存在する疎水性物質(C)の含有量は下記の方法で測定される。
<吸収性樹脂粒子の表面に存在する疎水性物質の含有量の測定法>
ガラス製のビーカーに吸収性樹脂粒子1重量部を、有機溶媒(有機溶媒100重量部に、少なくとも0.01重量部の疎水性物質を25℃〜110℃で溶かすことができる有機溶媒。なおこの溶かすことができる温度を溶解温度とする。)1000重量部を加え、溶解温度で24時間攪拌して放置し、濾紙を用いた濾過と分液漏斗による水相の分離により有機溶媒を回収し、疎水性物質の抽出液とする。この抽出液を事前に秤量したガラス製のビーカーに採取し、溶媒を蒸発させた後、秤量する。濾過液蒸発後の重量から事前に秤量したビーカーの重量をひいたものを100倍する。濾紙上に残った抽出後のサンプルを用いて、同様の操作を2回くり返し、3回の抽出で得られた蒸発乾固物の合計量を吸収性樹脂粒子が含有する疎水性物質の含有量(重量%)とする。
In addition, content of the hydrophobic substance (C) which exists on the surface of an absorbent resin particle is measured by the following method.
<Measurement method of content of hydrophobic substance present on surface of absorbent resin particles>
In a glass beaker, 1 part by weight of the absorbent resin particles and an organic solvent (an organic solvent in which at least 0.01 part by weight of a hydrophobic substance is dissolved in 100 parts by weight of the organic solvent at 25 ° C. to 110 ° C.). The temperature at which the solution can be dissolved is taken as the dissolution temperature.) 1000 parts by weight are added, and the mixture is stirred for 24 hours at the dissolution temperature and left to stand. Use an extract of a hydrophobic substance. The extract is collected in a pre-weighed glass beaker, the solvent is evaporated, and then weighed. Multiply by 100 times the weight of the beaker weighed in advance from the weight after evaporation of the filtrate. Using the sample after extraction remaining on the filter paper, the same operation is repeated twice, and the content of the hydrophobic substance contained in the absorbent resin particles is the total amount of the evaporated and dried product obtained by the extraction three times. (% By weight).

疎水性物質(C)としては、炭素数が8〜26の1価の脂肪族炭化水素基を少なくとも1つ有し、カルボキシル基と水素結合を形成しうる官能基を少なくとも1つ有する化合物が含まれる。
(C)が有する炭素数8〜26の1価の脂肪族炭化水素基の数は、吸収性物品の対カブレ性の観点から、1〜5が好ましく、さらに好ましくは1〜4、次に更に好ましくは1〜3である。
(C)が有するカルボキシル基と水素結合を形成しうる官能基の数は、吸収性物品の対モレ性の観点から、1〜5が好ましく、さらに好ましくは1〜4、次に更に好ましくは1〜3である。
The hydrophobic substance (C) includes a compound having at least one monovalent aliphatic hydrocarbon group having 8 to 26 carbon atoms and at least one functional group capable of forming a hydrogen bond with a carboxyl group. It is.
The number of monovalent aliphatic hydrocarbon groups having 8 to 26 carbon atoms that (C) has is preferably from 1 to 5, more preferably from 1 to 4, and still more preferably from the viewpoint of anti-fogging properties of the absorbent article. Preferably it is 1-3.
The number of functional groups capable of forming hydrogen bonds with the carboxyl group (C) is preferably from 1 to 5, more preferably from 1 to 4, and even more preferably 1 from the viewpoint of the ability to absorb the absorbent article. ~ 3.

炭素数8〜26の1価の脂肪族炭化水素基としては、直鎖状及び分岐鎖状の炭化水素基が含まれる。吸収性物品の対カブレ性の観点から、直鎖状が好ましい。   Examples of the monovalent aliphatic hydrocarbon group having 8 to 26 carbon atoms include linear and branched hydrocarbon groups. From the viewpoint of the anti-fogging property of the absorbent article, a straight chain is preferable.

炭素数8〜26の1価の脂肪族炭化水素基として具体的には、オクチル基及びヘキサコシル基等が挙げられる。   Specific examples of the monovalent aliphatic hydrocarbon group having 8 to 26 carbon atoms include an octyl group and a hexacosyl group.

カルボキシル基と水素結合を形成しうる官能基としては、カルボキシル基(この塩を含む)、リン酸基(この塩を含む)、スルホ基(この塩を含む)、一級アミノ基(この塩を含む)、二級アミノ基(この塩を含む)、三級アミノ基(この塩を含む)、水酸基、エステル結合、リン酸エステル結合、スルホン酸エステル結合、アミド結合、ウレタン結合及びウレア結合が挙げられる。   The functional group capable of forming a hydrogen bond with the carboxyl group includes a carboxyl group (including this salt), a phosphate group (including this salt), a sulfo group (including this salt), and a primary amino group (including this salt). ), Secondary amino groups (including this salt), tertiary amino groups (including this salt), hydroxyl groups, ester bonds, phosphate ester bonds, sulfonate ester bonds, amide bonds, urethane bonds and urea bonds. .

カルボキシル基を有する疎水性物質(C)としては、ノナン酸、オクタデカン酸及びヘプタコサン酸等が挙げられる。この塩としては、ナトリウム、カリウム、亜鉛、カルシウム、マグネシウム及びアルミニウム(以下、Na、K、Zn、Ca、Mg、Alと略す)等との塩が挙げられ、塩基性塩も含まれる。   Examples of the hydrophobic substance (C) having a carboxyl group include nonanoic acid, octadecanoic acid, and heptacosanoic acid. Examples of the salt include salts with sodium, potassium, zinc, calcium, magnesium, aluminum (hereinafter abbreviated as Na, K, Zn, Ca, Mg, Al) and the like, and basic salts are also included.

リン酸基を有する疎水性物質(C)としては、オクチルリン酸及びヘキサコシルリン酸等が挙げられる。この塩としては、Na、K、Zn、Ca、Mg及びAl等との塩が挙げられ、塩基性塩及び酸性塩も含まれる。   Examples of the hydrophobic substance (C) having a phosphoric acid group include octyl phosphoric acid and hexacosyl phosphoric acid. Examples of the salt include salts with Na, K, Zn, Ca, Mg, Al, and the like, and basic salts and acidic salts are also included.

スルホン酸基を有する疎水性物質(C)としては、オクチルスルホン酸及びヘキサコシルスルホン酸等が挙げられる。この塩としては、Na、K、Zn、Ca、Mg及びAl等との塩が挙げられ、塩基性塩も含まれる。   Examples of the hydrophobic substance (C) having a sulfonic acid group include octylsulfonic acid and hexacosylsulfonic acid. Examples of the salt include salts with Na, K, Zn, Ca, Mg, Al, and the like, and basic salts are also included.

一級アミノ基を有する疎水性物質(C)としては、オクチルアミン及びヘキサコシルアミン等が挙げられる。この塩としては塩酸、カルボン酸、硫酸及び硝酸等との塩が挙げられ、酸性塩も含まれる。   Examples of the hydrophobic substance (C) having a primary amino group include octylamine and hexacosylamine. Examples of the salt include salts with hydrochloric acid, carboxylic acid, sulfuric acid, nitric acid and the like, and acidic salts are also included.

二級アミノ基を有する疎水性物質(C)としては、メチルオクチルアミン、メチルヘキサコシルアミン、オクチルヘキサコシルアミン、ジヘキサコシルアミン及びメチルオクタデシルアミン等が挙げられる。この塩としては塩酸、カルボン酸、硫酸及び硝酸等との塩が挙げられ、酸性塩も含まれる。   Examples of the hydrophobic substance (C) having a secondary amino group include methyloctylamine, methylhexacosylamine, octylhexacosylamine, dihexacosylamine, and methyloctadecylamine. Examples of the salt include salts with hydrochloric acid, carboxylic acid, sulfuric acid, nitric acid and the like, and acidic salts are also included.

三級アミノ基を有する疎水性物質(C)としては、ジメチルオクチルアミン、ジメチルヘキサコシルアミン、メチルオクチルヘキサコシルアミン及びメチルジヘキサコシルアミン等が挙げられる。この塩としては塩酸、カルボン酸、硫酸及び硝酸等との塩が挙げられ、酸性塩も含まれる。   Examples of the hydrophobic substance (C) having a tertiary amino group include dimethyloctylamine, dimethylhexacosylamine, methyloctylhexacosylamine, and methyldihexacosylamine. Examples of the salt include salts with hydrochloric acid, carboxylic acid, sulfuric acid, nitric acid and the like, and acidic salts are also included.

水酸基を有する疎水性物質(C)としては、オクチルアルコール、オクタデシルアルコール及びヘキサコシルアルコール等が挙げられる。   Examples of the hydrophobic substance (C) having a hydroxyl group include octyl alcohol, octadecyl alcohol, and hexacosyl alcohol.

エステル結合を有する疎水性物質(C)としては、炭素数8〜26の長鎖脂肪酸と水酸基を少なくとも1つ有する炭素数1〜26のアルコールとのエステル化物及び炭素数8〜26の長鎖脂肪族アルコールとカルボキシル基を少なくとも1つ有する炭素数1〜7の炭化水素基を有するカルボン酸とのエステル化物等が挙げられる。   Examples of the hydrophobic substance (C) having an ester bond include an esterified product of a long chain fatty acid having 8 to 26 carbon atoms and an alcohol having 1 to 26 carbon atoms and an alcohol having 1 to 26 carbon atoms and a long chain fat having 8 to 26 carbon atoms. And an esterified product of a carboxylic acid having a hydrocarbon group having 1 to 7 carbon atoms and at least one carboxylic group.

炭素数8〜26の長鎖脂肪酸と水酸基を少なくとも1つ有する炭素数1〜26のアルコールとのエステル化物としては、ノナン酸メチル、ヘプタコサン酸メチル、ノナン酸ヘキサコシル、ヘプタコサン酸ヘキサコシル、グリセリンノナン酸モノエステル、グリセリンオクタデカン酸モノエステル、グリセリンヘプタコサン酸モノエステル、ペンタエリスリットノナン酸モノエステル、ペンタエリスリットヘプタコサン酸モノエステル、ソルビットノナン酸モノエステル、ソルビットヘプタコサン酸モノエステル、ショ糖ノナン酸モノエステル、ショ糖ノナン酸トリエステル、ショ糖ドデカン酸モノエステル、ショ糖オクタデカン酸モノエステル、ショ糖オクタデカン酸ジエステル、ショ糖オクタデカン酸トリエステル、ショ糖ドコサン酸モノエステル、ショ糖ヘプタコサン酸モノエステル、ショ糖ヘプタコサン酸トリエステル及び牛脂等が挙げられる。   Examples of esterified products of long chain fatty acids having 8 to 26 carbon atoms and alcohols having 1 to 26 carbon atoms having at least one hydroxyl group include methyl nonanoate, methyl heptacosanoate, hexacosyl nonanoate, hexacosyl heptacosanoate, monoglyceryl nonanoate Esters, glycerin octadecanoic acid monoester, glycerin heptacosanoic acid monoester, pentaerythrit nonanoic acid monoester, pentaerythrit heptacosanoic acid monoester, sorbit nonanoic acid monoester, sorbit heptacosanoic acid monoester, sucrose nonanoic acid monoester Esters, sucrose nonanoic acid triester, sucrose dodecanoic acid monoester, sucrose octadecanoic acid monoester, sucrose octadecanoic acid diester, sucrose octadecanoic acid triester, sucrose docosanoic acid monoester Ester, sucrose heptacosanoic acid monoester, sucrose heptacosanoic acid triester and beef tallow, and the like.

炭素数8〜26の長鎖脂肪族アルコールとカルボキシル基を少なくとも1つ有する炭素数2〜8のカルボン酸とのエステル化物としては、酢酸オクチル、オクチル酸オクチル、酢酸ヘキサコシル及びオクチル酸ヘキサコシル等が挙げられる。   Examples of the esterified product of a long-chain aliphatic alcohol having 8 to 26 carbon atoms and a carboxylic acid having 2 to 8 carbon atoms having at least one carboxyl group include octyl acetate, octyl octylate, hexacosyl acetate and hexacosyl octylate. It is done.

リン酸エステル結合を有する疎水性物質(C)としては、炭素数8〜26の長鎖脂肪族アルコールとリン酸との脱水縮合物及びこの塩が挙げられる。たとえば、オクチルリン酸エステル及びヘキサコシルリン酸エステル等が挙げられ、この塩としてNa及びK等との塩が挙げられる。リン酸エステルには、モノエステル以外にジエステル及びトリエステルも含まれる。   Examples of the hydrophobic substance (C) having a phosphate ester bond include a dehydration condensate of a long chain aliphatic alcohol having 8 to 26 carbon atoms and phosphoric acid, and a salt thereof. For example, octyl phosphate ester, hexacosyl phosphate ester and the like can be mentioned, and examples of the salt include salts with Na and K. The phosphate ester includes a diester and a triester in addition to the monoester.

硫酸エステル結合を有する疎水性物質(C)としては、炭素数8〜26の長鎖脂肪族アルコールと硫酸との脱水縮合物及びこの塩が挙げられる。たとえば、オクチル硫酸エステル及びヘキサコシル硫酸エステル等が挙げられ、この塩としてNa及びK等との塩が挙げられる。硫酸エステルには、モノエステル以外にジエステルも含まれる。   Examples of the hydrophobic substance (C) having a sulfate ester bond include a dehydration condensate of a long chain aliphatic alcohol having 8 to 26 carbon atoms and sulfuric acid, and a salt thereof. Examples thereof include octyl sulfate and hexacosyl sulfate, and examples of the salt include salts with Na and K. In addition to monoesters, sulfates include diesters.

アミド結合を有する疎水性物質(C)としては、炭素数8〜26の長鎖脂肪族一級アミンと炭素数1〜26の炭化水素基を有するカルボン酸とのアミド化物、アンモニア又は炭素数1〜7の1級アミンと炭素数8〜26の長鎖脂肪酸とのアミド化物、少なくとも1つの直鎖脂肪族炭化水素基の炭素数が8〜26の長鎖脂肪族二級アミンと炭素数1〜26のカルボン酸とのアミド化物及び少なくとも1つの炭化水素基の炭素数が1〜7の二級アミンと炭素数8〜26の長鎖脂肪酸とのアミド化物が挙げられる。   Examples of the hydrophobic substance (C) having an amide bond include an amidated product of a long-chain aliphatic primary amine having 8 to 26 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 26 carbon atoms, ammonia, or 1 to 1 carbon atoms. An amidated product of a primary amine of 7 and a long chain fatty acid having 8 to 26 carbon atoms, a long chain aliphatic secondary amine having 8 to 26 carbon atoms of at least one linear aliphatic hydrocarbon group and 1 to 1 carbon atoms Examples thereof include amidated products of 26 carboxylic acids and amidated products of secondary amines having 1 to 7 carbon atoms of at least one hydrocarbon group and long-chain fatty acids having 8 to 26 carbon atoms.

炭素数8〜26の長鎖脂肪族一級アミンと炭素数1〜26の炭化水素基を有するカルボン酸とのアミド化物としては、1級アミンとカルボン酸とが1:1で反応した物と1:2で反応した物に分けられる。1:1で反応した物としては、酢酸N−オクチルアミド、酢酸N−ヘキサコシルアミド、ヘプタコサン酸N−オクチルアミド及びヘプタコサン酸N−ヘキサコシルアミド等が挙げられる。1:2で反応したものとしては、二酢酸N−オクチルアミド、二酢酸N−ヘキサコシルアミド、ジヘプタコサン酸N−オクチルアミド及びジヘプタコサン酸N−ヘキサコシルアミド等が挙げられる。なお、1級アミンとカルボン酸とが1:2で反応した物の場合、使用するカルボン酸は、同一でも異なっていてもよい。   As an amidation product of a long-chain aliphatic primary amine having 8 to 26 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 26 carbon atoms, a product obtained by reacting a primary amine and a carboxylic acid 1: 1 is used. : Divided into those reacted in 2. Examples of the product reacted at 1: 1 include acetic acid N-octylamide, acetic acid N-hexacosylamide, heptacosanoic acid N-octylamide, heptacosanoic acid N-hexacosylamide, and the like. Examples of those reacted at 1: 2 include diacetate N-octylamide, diacetate N-hexacosylamide, diheptacosanoic acid N-octylamide, and diheptacosanoic acid N-hexacosylamide. In the case where the primary amine and the carboxylic acid are reacted at 1: 2, the carboxylic acid used may be the same or different.

アンモニア又は炭素数1〜7の1級アミンと炭素数8〜26の長鎖脂肪酸とのアミド化物としては、アンモニア又は1級アミンとカルボン酸とが1:1で反応した物と1:2で反応した物に分けられる。1:1で反応した物としては、ノナン酸アミド、ノナン酸メチルアミド、ノナン酸N−ヘプチルアミド、ヘプタコサン酸アミド、ヘプタコサン酸N−メチルアミド、ヘプタコサン酸N−ヘプチルアミド及びヘプタコサン酸N−ヘキサコシルアミド等が挙げられる。1:2で反応したものとしては、ジノナン酸アミド、ジノナン酸N−メチルアミド、ジノナン酸N−ヘプチルアミド、ジヘプタコサン酸アミド、ジヘプタコサン酸N−メチルアミド、ジヘプタコサン酸N−ヘプチルアミド及びジヘプタコサン酸N−ヘキサコシルアミド等が挙げられる。なお、アンモニア又は1級アミンとカルボン酸とが1:2で反応した物の場合、使用するカルボン酸は、同一でも異なっていてもよい。   As an amidation product of ammonia or a primary amine having 1 to 7 carbon atoms and a long-chain fatty acid having 8 to 26 carbon atoms, ammonia or a reaction product of primary amine and carboxylic acid 1: 1 may be used at 1: 2. Divided into reacted products. The products reacted at 1: 1 include nonanoic acid amide, nonanoic acid methylamide, nonanoic acid N-heptylamide, heptacosanoic acid amide, heptacosanoic acid N-methylamide, heptacosanoic acid N-heptylamide and heptacosanoic acid N-hexacosylamide Etc. The reaction in 1: 2 was as follows: dinonanoic acid amide, dinonanoic acid N-methylamide, dinonanoic acid N-heptylamide, diheptacosanoic acid amide, diheptacosanoic acid N-methylamide, diheptacosanoic acid N-heptylamide and diheptacosanoic acid N-hexacosoxy And luamide. In the case where ammonia or a primary amine and a carboxylic acid are reacted at a ratio of 1: 2, the carboxylic acid used may be the same or different.

炭素数8〜26の長鎖脂肪族二級アミンと炭素数1〜26のカルボン酸とのアミド化物としては、酢酸N−メチルオクチルアミド、酢酸N−メチルヘキサコシルアミド、酢酸N−オクチルヘキサコシルアミド、酢酸N−ジヘキサコシルアミド、ヘプタコサン酸N−メチルオクチルアミド、ヘプタコサン酸N−メチルヘキサコシルアミド、ヘプタコサン酸N−オクチルヘキサコシルアミド及びヘプタコサン酸N−ジヘキサコシルアミド等が挙げられる。   Examples of the amidated product of a long-chain aliphatic secondary amine having 8 to 26 carbon atoms and a carboxylic acid having 1 to 26 carbon atoms include N-methyloctylamide acetate, N-methylhexacosylamide acetate, and N-octylhexate acetate. Cosylamide, acetic acid N-dihexacosylamide, heptacosanoic acid N-methyloctylamide, heptacosanoic acid N-methylhexacosylamide, heptacosanoic acid N-octylhexacosylamide and heptacosanoic acid N-dihexacosylamide Etc.

炭素数1〜7の二級アミンと炭素数8〜26の長鎖脂肪酸とのアミド化物としては、ノナン酸N−ジメチルアミド、ノナン酸N−メチルヘプチルアミド、ノナン酸N−ジヘプチルアミド、ヘプタコサン酸N−ジメチルアミド、ヘプタコサン酸N−メチルヘプチルアミド及びヘプタコサン酸N−ジヘプチルアミド等が挙げられる。   Examples of amidated products of secondary amines having 1 to 7 carbon atoms and long chain fatty acids having 8 to 26 carbon atoms include nonanoic acid N-dimethylamide, nonanoic acid N-methylheptylamide, nonanoic acid N-diheptylamide, heptacosane Examples include acid N-dimethylamide, heptacosanoic acid N-methylheptylamide, and heptacosanoic acid N-diheptylamide.

ウレタン結合を持つ疎水性物質(C)としては、炭素数8〜26の長鎖脂肪族アルコールとイソシアネート基を少なくとも1つ有する化合物との反応物が挙げられる。長鎖脂肪族アルコールとしては、オクチルアルコール及びヘキサコシルアルコール等が挙げられ、イソシアネート基を少なくとも1つ有する化合物としては、メチルイソシアネート、ヘキサコシルイソシアネート、メチレンジイソシアネート及びヘキサメチレンジイソシアネート等が挙げられる。   Examples of the hydrophobic substance (C) having a urethane bond include a reaction product of a long-chain aliphatic alcohol having 8 to 26 carbon atoms and a compound having at least one isocyanate group. Examples of the long chain aliphatic alcohol include octyl alcohol and hexacosyl alcohol, and examples of the compound having at least one isocyanate group include methyl isocyanate, hexacosyl isocyanate, methylene diisocyanate, and hexamethylene diisocyanate.

ウレア結合を持つ疎水性物質(C)としては、炭素数8〜26の炭化水素基を有する1級又は2級アミンとイソシアネート基を少なくとも1つ有する化合物との反応物が挙げられる。1級アミンとしては、オクチルアミン及びヘキサコシルアミン等が挙げられる。2級アミンとしては、メチルオクチルアミン、メチルヘキサコシルアミン、オクチルヘキサコシルアミン及びジヘキサコシルアミン等が挙げられる。イソシアネート基を少なくとも1つ有する化合物としては、メチルイソシアネート、ヘキサコシルイソシアネート、メチレンジイソシアネート及びヘキサメチレンジイソシアネート等が挙げられる。   Examples of the hydrophobic substance (C) having a urea bond include a reaction product of a primary or secondary amine having a hydrocarbon group having 8 to 26 carbon atoms and a compound having at least one isocyanate group. Examples of the primary amine include octylamine and hexacosylamine. Examples of secondary amines include methyl octyl amine, methyl hexacosyl amine, octyl hexacosyl amine, and dihexacosyl amine. Examples of the compound having at least one isocyanate group include methyl isocyanate, hexacosyl isocyanate, methylene diisocyanate and hexamethylene diisocyanate.

これらの疎水性物質(C)のなかで、吸収性物品の耐モレ性の観点から、カルボキシル基と水素結合を形成しうる官能基として、カルボキシル基(この塩を含む)、リン酸基(この塩を含む)、スルホ基(この塩を含む)、一級アミノ基(この塩を含む)、二級アミノ基(この塩を含む)、三級アミノ基(この塩を含む)、水酸基、エステル結合、リン酸エステル結合、スルホン酸エステル結合及びアミド結合からなる群より選ばれる少なくとも1種を有する化合物が好ましく、さらに好ましくは、カルボキシル基(この塩を含む)、一級アミノ基(この塩を含む)、二級アミノ基(この塩を含む)、三級アミノ基(この塩を含む)、水酸基、エステル結合及びアミド結合からなる群より選ばれる少なくとも1種を有する化合物である。   Among these hydrophobic substances (C), from the viewpoint of the moisture resistance of the absorbent article, as a functional group capable of forming a hydrogen bond with a carboxyl group, a carboxyl group (including this salt), a phosphate group (this Salt), sulfo group (including this salt), primary amino group (including this salt), secondary amino group (including this salt), tertiary amino group (including this salt), hydroxyl group, ester bond , A compound having at least one selected from the group consisting of a phosphate ester bond, a sulfonate ester bond and an amide bond, more preferably a carboxyl group (including this salt), a primary amino group (including this salt) A compound having at least one selected from the group consisting of a secondary amino group (including this salt), a tertiary amino group (including this salt), a hydroxyl group, an ester bond and an amide bond.

本発明の吸収性樹脂粒子はさらに吸収性樹脂粒子の表面に無機質粉末(D)を含有させることもできる。無機質粉末(D)としては、親水性無機物粒子(d1)及び疎水性無機粒子(d2)等が含まれる。
親水性無機物粒子(d1)としては、ガラス、シリカゲル、シリカ及びクレー等の粒子が挙げられる。
疎水性無機物粒子(d2)としては、炭素繊維、カオリン、タルク、マイカ、ベントナイト、セリサイト、アスベスト及びシラス等の粒子が挙げられる。
これらのうち、親水性無機粒子(d1)が好ましく、最も好ましいのはシリカである。
The absorbent resin particles of the present invention can further contain an inorganic powder (D) on the surface of the absorbent resin particles. The inorganic powder (D) includes hydrophilic inorganic particles (d1) and hydrophobic inorganic particles (d2).
Examples of the hydrophilic inorganic particles (d1) include particles such as glass, silica gel, silica, and clay.
Examples of the hydrophobic inorganic particles (d2) include particles of carbon fiber, kaolin, talc, mica, bentonite, sericite, asbestos, shirasu, and the like.
Of these, hydrophilic inorganic particles (d1) are preferred, and silica is most preferred.

親水性無機粒子(d1)及び疎水性無機粒子(d2)の形状としては、不定形(破砕状)、真球状、フィルム状、棒状及び繊維状等のいずれでもよいが、不定形(破砕状)又は真球状が好ましく、さらに好ましくは真球状である。   The shape of the hydrophilic inorganic particles (d1) and the hydrophobic inorganic particles (d2) may be any of an irregular shape (crushed shape), a true spherical shape, a film shape, a rod shape, and a fibrous shape, but the irregular shape (crushed shape). Alternatively, a true spherical shape is preferable, and a true spherical shape is more preferable.

吸収性樹脂粒子の表面に存在する無機質粉末(D)の含有量(重量%)は、架橋重合体(A1)の重量に基づいて、0.01〜3.0が好ましく、さらに好ましくは0.05〜1、次に好ましくは0.1〜0.8、特に好ましくは0.2〜0.7、最も好ましくは0.3〜0.6である。この範囲であると、吸収性物品の耐カブレ性がさらに良好となる。   The content (% by weight) of the inorganic powder (D) present on the surface of the absorbent resin particles is preferably 0.01 to 3.0, more preferably 0.8, based on the weight of the crosslinked polymer (A1). 05 to 1, then preferably 0.1 to 0.8, particularly preferably 0.2 to 0.7, most preferably 0.3 to 0.6. Within this range, the anti-fogging property of the absorbent article is further improved.

本発明の吸収性樹脂粒子には、他の添加剤{たとえば、公知(特開2003−225565号、特開2006−131767号等)の防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、着色剤、芳香剤、消臭剤及び有機質繊維状物等}を含むこともできる。これらの添加剤を含有させる場合、添加剤の含有量(重量%)は、架橋重合体(A1)の重量に基づいて、0.001〜10が好ましく、さらに好ましくは0.01〜5、特に好ましくは0.05〜1、最も好ましくは0.1〜0.5である。   The absorbent resin particles of the present invention may contain other additives (for example, known preservatives, fungicides, antibacterial agents, antioxidants, ultraviolet rays (for example, JP 2003-225565 A, JP 2006-131767 A). An absorbent, a colorant, a fragrance, a deodorant, an organic fibrous material, etc.}. When these additives are contained, the content (% by weight) of the additives is preferably 0.001 to 10, more preferably 0.01 to 5, particularly preferably based on the weight of the crosslinked polymer (A1). Preferably it is 0.05 to 1, most preferably 0.1 to 0.5.

本発明の吸収性樹脂粒子は、吸収性樹脂粒子1g当たりの生理食塩水に対する膨潤容積測定法において、膨潤容積が5mlに達するまでの時間(t1)と、膨潤容積が40mlに達するまで時間(t2)との比(t2/t1)が5〜20であることが好ましく、さらに好ましくは5〜15であり、最も好ましくは5〜10である。また、(t1)は20秒〜50秒であることが好ましく、さらに好ましくは20秒〜45秒であり、最も好ましくは30秒〜40秒である。また、(t2)は230〜820秒であることが好ましい。
この範囲であると吸収性物品の耐カブレ性がさらに良好になる。ポリ乳酸(B)の含有量や(B)の体積平均粒径、疎水性物質(C)の含有量、吸収性樹脂粒子の見掛け密度、吸収性樹脂粒子の重量平均粒径等を前記及び後記の好ましい範囲に調整することで、膨潤容積測定法における(t2/t1)及び(t1)を好ましい範囲に調整できる。
例えば、(t1)を大きくするには、ポリ乳酸(B)の体積平均粒径を大きくする方法が挙げられる。また、例えば、(t2/t1)を大きくするには、ポリ乳酸(B)の体積平均粒径を小さくする、又はポリ乳酸(B)の含有量を増やす等の方法が挙げられる。
The absorbent resin particles of the present invention have a time (t1) until the swollen volume reaches 5 ml and a time (t2) until the swollen volume reaches 40 ml in the method for measuring the swollen volume with respect to physiological saline per 1 g of the absorbent resin particles. ) (T2 / t1) is preferably 5 to 20, more preferably 5 to 15, and most preferably 5 to 10. Further, (t1) is preferably 20 seconds to 50 seconds, more preferably 20 seconds to 45 seconds, and most preferably 30 seconds to 40 seconds. Further, (t2) is preferably 230 to 820 seconds.
Within this range, the anti-fogging property of the absorbent article is further improved. The content of polylactic acid (B), the volume average particle diameter of (B), the content of hydrophobic substance (C), the apparent density of absorbent resin particles, the weight average particle diameter of absorbent resin particles, etc. are described above and below. By adjusting to the preferable range, (t2 / t1) and (t1) in the swelling volume measuring method can be adjusted to the preferable range.
For example, in order to increase (t1), a method of increasing the volume average particle diameter of polylactic acid (B) can be mentioned. Further, for example, in order to increase (t2 / t1), a method of decreasing the volume average particle diameter of polylactic acid (B) or increasing the content of polylactic acid (B) can be mentioned.

なお、膨潤容積測定法は、25±2℃、湿度50±10%の室内で、図1に示す装置を用いて行う測定法である。なお、使用する生理食塩水の温度は25℃±2℃である。図1に示した装置はアクリル製の底付円筒1とアクリル製の円盤2からなる。底付円筒1は、内径81mm、長さ35mmの円筒の一方の開口部に底があり、残りの一方は開口している底付円筒である。
アクリル製の円盤2は、外径80.5mm、厚さ12mmの円盤である。円盤2は、直径70.5mm、深さ4mmの円形状のくぼみが円盤の中心と円の中心が一致する位置にある。そして円盤2には、円形状のくぼみ部分に、取手として、長さ13mm、外径15mmの円柱が、円盤2の中心と円柱の底面の中心が一致する位置にある。
さらに、円盤2は、直径2mmの穴64個が放射状にあいたものである(図3参照)。円盤2の穴について説明する。穴は、円盤の八等分線上に円盤の中心から10mmの位置から30mmの位置の間に直径2mmの穴が5個ずつ5mmの等間隔に存在する(計40個)。それに加え、上記の等分線から22.5°傾いた八等分線上に円盤の中心から20mmの位置から30mmの位置の間に直径2mmの穴が3個ずつ5mmの等間隔に存在する(計24個)。
そして、円盤2の重量は、60g±5gである。
The swelling volume measurement method is a measurement method performed using the apparatus shown in FIG. 1 in a room at 25 ± 2 ° C. and a humidity of 50 ± 10%. The temperature of the physiological saline used is 25 ° C. ± 2 ° C. The apparatus shown in FIG. 1 comprises an acrylic bottomed cylinder 1 and an acrylic disk 2. The bottomed cylinder 1 is a bottomed cylinder having a bottom at one opening of a cylinder having an inner diameter of 81 mm and a length of 35 mm, and the other one being open.
The acrylic disk 2 is a disk having an outer diameter of 80.5 mm and a thickness of 12 mm. The disk 2 has a circular recess having a diameter of 70.5 mm and a depth of 4 mm at a position where the center of the disk coincides with the center of the circle. In the disk 2, a circular cylinder having a length of 13 mm and an outer diameter of 15 mm as a handle is located at a position where the center of the disk 2 coincides with the center of the bottom surface of the cylinder.
Furthermore, the disk 2 is made up of 64 holes having a diameter of 2 mm that are radially formed (see FIG. 3). The hole of the disk 2 will be described. There are five holes each having a diameter of 2 mm at equal intervals of 5 mm between the position of 10 mm from the center of the disk and the position of 30 mm on the bisector of the disk (total of 40 holes). In addition, three holes with a diameter of 2 mm are present at equal intervals of 5 mm on a bisector inclined at 22.5 ° from the above-mentioned bisector, between 20 mm and 30 mm from the center of the disk. 24 in total).
The weight of the disk 2 is 60 g ± 5 g.

<膨潤容積の測定法>
垂直に立てた円筒(1)内に150〜850μmの粒子径にふるい分けした測定試料2.50g(含水率は8.0%以下)を秤量し、底付円筒1の底部にほぼ均一な厚みになるように投入し、円盤2を円柱の取手が上になるように載せ、厚み計(例えばMitutoyo社製デジマチックインジケータ ID−F150)を用いて円筒の底面から円盤の取手の上面までの距離を測定する。この時、デジマチックインジケータの測定棒の重み(140g±10g)であり、吸収性樹脂粒子にかかる圧力は測定棒及び円盤の2重みがかかるので3.9±0.3g/cmとなる。次に、デジマッチクインジケーターの厚みの表示を0にする。引き続いて生理食塩水120mlを2秒以内に底付円筒1内に投入する。この投入開始の時間を0とし、断続的に円盤2が上昇した距離H(cm)を記録する。吸水開始から所定時間経過後における吸収性樹脂粒子の吸収量を以下の式により求める。
<Measurement method of swelling volume>
2.50 g of a measurement sample (moisture content of 8.0% or less) sieved to a particle diameter of 150 to 850 μm is weighed in a vertically standing cylinder (1), and the bottom of the bottomed cylinder 1 has a substantially uniform thickness. The disc 2 is placed so that the column handle is facing upward, and the distance from the bottom surface of the cylinder to the top surface of the disc handle is measured using a thickness meter (for example, Digimatic Indicator ID-F150 manufactured by Mitutoyo). taking measurement. At this time, it is the weight (140 g ± 10 g) of the measuring rod of the digimatic indicator, and the pressure applied to the absorbent resin particles is 3.9 ± 0.3 g / cm 2 because two weights of the measuring rod and the disk are applied. Next, the display of the thickness of the Digimatch indicator is set to zero. Subsequently, 120 ml of physiological saline is introduced into the bottomed cylinder 1 within 2 seconds. The time for starting the charging is set to 0, and the distance H (cm) at which the disk 2 is intermittently raised is recorded. The absorption amount of the absorbent resin particles after the elapse of a predetermined time from the start of water absorption is determined by the following formula.

Figure 2011190426
Figure 2011190426

同じ測定を5回行い、その平均値を測定値とする。円盤2が上昇した距離を測定する際の吸収性樹脂粒子にかかる圧力が3.9±0.3g/cmであれば、特に限定しない。 The same measurement is performed 5 times, and the average value is taken as the measured value. There is no particular limitation as long as the pressure applied to the absorbent resin particles when measuring the distance the disk 2 has moved up is 3.9 ± 0.3 g / cm 2 .

本発明の製造方法で得られる吸収性樹脂粒子は吸収性能に優れる。吸収性樹脂粒子の保水量は20〜50g/gが好ましく、より好ましくは20〜45g/g、さらに好ましくは20〜40g/gである。吸収性樹脂粒子の示す荷重下吸収量は、10〜25g/gが好ましく、より好ましくは12〜20g/g、さらに好ましくは15〜20g/gである。   The absorbent resin particles obtained by the production method of the present invention are excellent in absorption performance. The water retention amount of the absorbent resin particles is preferably 20 to 50 g / g, more preferably 20 to 45 g / g, and still more preferably 20 to 40 g / g. 10-25 g / g is preferable, as for the absorbed amount under load which an absorptive resin particle shows, More preferably, it is 12-20 g / g, More preferably, it is 15-20 g / g.

なお、吸収性樹脂粒子の保水量と荷重下吸収量は以下のようにして測定される。
<保水量の測定法>
目開き63μm(JIS Z8801−1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9重量%)1,000ml中に無撹拌下、1時間浸漬した後、15分間吊るして水切りする。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から保水量を求める。なお、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃である。
The water retention amount and the absorption amount under load of the absorbent resin particles are measured as follows.
<Measurement method of water retention>
1.00 g of a measurement sample is put into a tea bag (20 cm long, 10 cm wide) made of a nylon net having a mesh size of 63 μm (JIS Z8801-1: 2006), and 1,000 ml of physiological saline (saline concentration 0.9% by weight). After soaking for 1 hour without stirring, hang for 15 minutes and drain. Thereafter, each tea bag is placed in a centrifuge, centrifuged at 150 G for 90 seconds to remove excess physiological saline, and the weight (h1) including the tea bag is measured to obtain the water retention amount from the following equation. In addition, the temperature of the physiological saline used and measurement atmosphere is 25 degreeC +/- 2 degreeC.

保水量(g/g)=(h1)−(h2) Water retention amount (g / g) = (h1)-(h2)

(h2)は、測定試料の無い場合について上記と同様の操作により計測したティーバックの重量である。   (H2) is the weight of the tea bag measured by the same operation as described above when there is no measurement sample.

また、荷重下吸収量は以下のようにして測定される。
<荷重下吸収量>
目開き63μm(JIS Z8801−1:2006)のナイロン網を底面に貼った円筒型プラスチックチューブ(内径:25mm、高さ:34mm)内に、250〜500μmの粒子径にふるい分けした測定試料0.16gを秤量し、円筒型プラスチックチューブを垂直にしてナイロン網上に測定試料がほぼ均一厚さになるように整えた後、この測定試料の上に分銅(重量:310.6g、外径:24.5mm、)を乗せる。この円筒型プラスチックチューブ全体の重量(M1)を計量した後、生理食塩水(食塩濃度0.9重量%)60mlの入ったシャーレ(直径:12cm)の中に測定試料及び分銅の入った円筒型プラスチックチューブを垂直に立ててナイロン網側を下面にして浸し、60分静置する。60分後に、円筒型プラスチックチューブをシャーレから引き上げ、これを斜めに傾け、垂れた水滴を除去した後、測定試料及び分銅の入った円筒型プラスチックチューブ全体の重量(M2)を計量し、次式から荷重下吸収量を求める。なお、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃である。
Further, the amount of absorption under load is measured as follows.
<Absorption under load>
0.16 g of a measurement sample sieved to a particle diameter of 250 to 500 μm in a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) having a nylon mesh of 63 μm (JIS Z8801-1: 2006) pasted on the bottom. Were weighed and the cylindrical plastic tube was placed vertically so that the measurement sample had a substantially uniform thickness on the nylon mesh, and then a weight (weight: 310.6 g, outer diameter: 24. 5mm,). After measuring the weight (M1) of the entire cylindrical plastic tube, a cylindrical type containing a measurement sample and a weight in a petri dish (diameter: 12 cm) containing 60 ml of physiological saline (salt concentration: 0.9% by weight). Stand the plastic tube vertically and immerse it with the nylon mesh side down, and let stand for 60 minutes. After 60 minutes, pull up the cylindrical plastic tube from the petri dish, tilt it diagonally, remove the dripping water drops, weigh the entire cylindrical plastic tube containing the measurement sample and weight (M2), and Obtain the amount absorbed under load. In addition, the temperature of the physiological saline used and measurement atmosphere is 25 degreeC +/- 2 degreeC.

荷重下吸収量(g/g)={(M2)−(M1)}/0.16 Absorption under load (g / g) = {(M2)-(M1)} / 0.16

本発明の吸収性樹脂粒子の重量平均粒子径(μm)は、100〜800が好ましく、さらに好ましくは200〜500、特に好ましくは300〜400である。この範囲であると、吸収性能がさらに良好となる。   100-800 are preferable, as for the weight average particle diameter (micrometer) of the absorptive resin particle | grains of this invention, More preferably, it is 200-500, Most preferably, it is 300-400. Within this range, the absorption performance is further improved.

微粒子の含有量は少ない方が吸収性能が良好となるため、全粒子に占める106μm以下(好ましくは150μm以下)の微粒子の含有量が3重量%以下が好ましく、さらに好ましくは1重量%以下である。   The smaller the content of fine particles, the better the absorption performance. Therefore, the content of fine particles of 106 μm or less (preferably 150 μm or less) in all particles is preferably 3% by weight or less, more preferably 1% by weight or less. .

なお、重量平均粒子径は、測定試料の粒度分布を測定し、対数確率紙{横軸:粒径、縦軸:累積含有量(重量%)}に、累積含有量と粒子径との関係をプロットし、累積含有量が50重量%に対応する粒子径を求めることにより得られる。粒度分布は、JIS Z8815−1994に準拠して測定され、たとえば、内径150mm、深さ45mmのふるい{目開き:710μm、500μm、300μm、150μm及び106μm}を、目開きの狭いふるいを下にして重ね、一番上の最も目開きの広い710μmのふるいの上に、測定試料50gを入れ、ふるい振動機にて10分間ふるい、各ふるいの上に残った測定試料の重量を測定し、最初の測定試料の重量に基づく各ふるいの上に残った測定試料の重量%を求めることによって測定される。
微粒子の含有量は、上記の重量平均粒子径を求める際に作成するプロットを用いて求めることができる。
In addition, the weight average particle size is obtained by measuring the particle size distribution of the measurement sample, and the logarithmic probability paper {horizontal axis: particle size, vertical axis: cumulative content (% by weight)} has a relationship between the cumulative content and the particle size. It is obtained by plotting and determining the particle size corresponding to a cumulative content of 50% by weight. The particle size distribution is measured in accordance with JIS Z8815-1994. For example, sieves having an inner diameter of 150 mm and a depth of 45 mm {openings: 710 μm, 500 μm, 300 μm, 150 μm, and 106 μm} are used with a narrow opening sieve. Overlay, put 50 g of measurement sample on top of 710 μm sieve with widest opening, sieve for 10 minutes with sieve shaker, measure weight of measurement sample remaining on each sieve, It is measured by determining the weight percent of the measurement sample remaining on each sieve based on the weight of the measurement sample.
The content of the fine particles can be determined using a plot created when determining the weight average particle diameter.

本発明の吸収性樹脂粒子の見掛け密度(g/ml)は、吸収性物品の耐カブレ性の観点から0.54〜0.70が好ましく、さらに好ましくは0.56〜0.65、特に好ましくは0.58〜0.60である。   The apparent density (g / ml) of the absorbent resin particles of the present invention is preferably from 0.54 to 0.70, more preferably from 0.56 to 0.65, particularly preferably from the viewpoint of anti-fogging properties of the absorbent article. Is 0.58 to 0.60.

本発明の吸収性樹脂粒子の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ等に適用したとき、繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点及び吸収性能の観点から、不定形破砕状及びパール状が好ましい。   The shape of the absorbent resin particle of the present invention is not particularly limited, and examples thereof include an irregular crushed shape, a flake shape, a pearl shape, and a rice grain shape. Among these, when applied to a paper diaper or the like, from the viewpoint of good entanglement with the fibrous material, no fear of dropping off from the fibrous material, and from the viewpoint of absorption performance, an irregularly crushed shape and a pearl shape are preferable.

本発明の吸収性樹脂粒子は、以下の本発明の製造方法で好ましく製造することができる。
吸収性樹脂粒子の製造方法において、水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)並びに架橋剤(a3)を必須構成単量体(a)とする単量体を共重合して架橋重合体(A1)を得た後、(A1)とポリ乳酸(B)とを混合して架橋重合体(A1)/ポリ乳酸複合体ゲルを得る工程(1);又は
水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)並びに架橋剤(a3)を必須構成単量体(a)とする単量体と、ポリ乳酸(B)とを混合した後、単量体を重合して架橋重合体(A1)/ポリ乳酸複合体ゲルを得る工程(2)を含んでなり、
(B)の重量平均分子量が5000〜200000であり、
(B)の使用量が架橋重合体(A1)の重量に基づき5〜30重量%であり、
(B)を吸収性樹脂粒子内部に架橋重合体(A1)の重量に基づき0.1〜15.0%重量含有する吸収性樹脂粒子の製造方法。
The absorbent resin particles of the present invention can be preferably produced by the following production method of the present invention.
Copolymerization of water-soluble vinyl monomer (a1) and / or hydrolyzable vinyl monomer (a2) and monomer having cross-linking agent (a3) as essential constituent monomer (a) in the method for producing absorbent resin particles To obtain a crosslinked polymer (A1), and then (A1) and polylactic acid (B) are mixed to obtain a crosslinked polymer (A1) / polylactic acid composite gel (1); or water-soluble vinyl After mixing the monomer (a1) and / or the monomer having the hydrolyzable vinyl monomer (a2) and the crosslinking agent (a3) as the essential constituent monomer (a) with the polylactic acid (B), a single amount Polymerizing the body to obtain a crosslinked polymer (A1) / polylactic acid composite gel (2),
(B) has a weight average molecular weight of 5,000 to 200,000,
The amount of (B) used is 5 to 30% by weight based on the weight of the crosslinked polymer (A1),
The manufacturing method of the absorbent resin particle which contains 0.1 to 15.0 weight% of (B) in the inside of an absorbent resin particle based on the weight of a crosslinked polymer (A1).

<工程(1)について>
架橋重合体(A1)とポリ乳酸(B)とを混合する方法としては、(1)架橋重合体(A1)と水からなる含水ゲルと、ポリ乳酸(B)とを混合する方法;(2)架橋重合体(A1)(乾燥粒子)と水と、ポリ乳酸(B)とを混合する方法が含まれる。これらのうち、吸収性能等の観点から、(1)の方法が好ましい。
<About step (1)>
As a method of mixing the crosslinked polymer (A1) and the polylactic acid (B), (1) a method of mixing the crosslinked polymer (A1), a water-containing gel composed of water, and the polylactic acid (B); (2 ) A method of mixing the crosslinked polymer (A1) (dry particles), water, and polylactic acid (B) is included. Among these, the method (1) is preferable from the viewpoint of absorption performance and the like.

架橋重合体(A1)とポリ乳酸(B)との混合温度(℃)は、30〜150が好ましく、さらに好ましくは40〜120、特に好ましくは50〜100である。この範囲であると、さらに均一混合しやすくなり、吸収性能がさらに良好となる。   The mixing temperature (° C.) of the crosslinked polymer (A1) and the polylactic acid (B) is preferably 30 to 150, more preferably 40 to 120, and particularly preferably 50 to 100. Within this range, it becomes easier to mix evenly, and the absorption performance is further improved.

架橋重合体(A1)とポリ乳酸(B)との混合装置としては、公知の装置{双腕型ニーダー、インターナルミキサー(バンバリーミキサー)、セルフクリーニング型ミキサー、ギアコンパウンダー、スクリュー型押し出し機、スクリュー型ニーダー、ミンチ機、タービュライザー、円筒型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、双腕型混合機、粉砕型ニーダー、溝型混合機、鋤型混合機等}が使用できる。これらは複数個を組み合わせて使用できる。   As a mixing device of the crosslinked polymer (A1) and the polylactic acid (B), a known device {double-arm kneader, internal mixer (Banbury mixer), self-cleaning mixer, gear compounder, screw-type extruder, Screw type kneader, minced machine, turbulizer, cylindrical mixer, V-shaped mixer, ribbon type mixer, screw type mixer, double arm type mixer, pulverizing type kneader, groove type mixer, vertical type mixer Can be used. These can be used in combination.

<工程(2)について>
水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)、並びに架橋剤(a3)を必須構成単量体(a)とする単量体と、ポリ乳酸(B)との混合は、均一混合できれば方法に制限はなく、公知の方法で行うことができる。
<About step (2)>
Mixing the water-soluble vinyl monomer (a1) and / or the hydrolyzable vinyl monomer (a2) and the monomer having the crosslinking agent (a3) as an essential constituent monomer (a) with polylactic acid (B) The method is not limited as long as it can be uniformly mixed, and can be carried out by a known method.

単量体とポリ乳酸(B)との混合装置としては、公知の装置{双腕型ニーダー、インターナルミキサー(バンバリーミキサー)、セルフクリーニング型ミキサー、ギアコンパウンダー、スクリュー型押し出し機、スクリュー型ニーダー、ミンチ機、タービュライザー、円筒型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、双腕型混合機、粉砕型ニーダー、溝型混合機及び鋤型混合機等}等が使用できる。これらは複数個を組み合わせてもよい。   As a mixing device of monomer and polylactic acid (B), known devices {double-arm kneader, internal mixer (Banbury mixer), self-cleaning mixer, gear compounder, screw extruder, screw kneader , Mincing machines, turbulizers, cylindrical mixers, V-shaped mixers, ribbon-type mixers, screw-type mixers, double-armed mixers, pulverizing kneaders, groove-type mixers, vertical mixers, etc.} Etc. can be used. A plurality of these may be combined.

水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)、並びに架橋剤(a3)を必須構成単量体(a)とする単量体を共重合する方法としては、公知の水溶液重合{断熱重合、薄膜重合及び噴霧重合法等;特開昭55−133413号等}や、公知の逆相懸濁重合{特公昭54−30710号、特開昭56−26909号及び特開平1−5808号等}と同様にしてできる。   As a method for copolymerizing a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2) and a monomer having a crosslinking agent (a3) as an essential constituent monomer (a), a known aqueous solution is used. Polymerization {adiabatic polymerization, thin film polymerization, spray polymerization, etc .; JP-A-55-133413, etc.} and known reverse phase suspension polymerization (JP-B-54-30710, JP-A-56-26909, and JP-A-1) −5808 etc.}.

工程(1)又は(2)において、混合する前のポリ乳酸(B)の体積平均粒子径については、前述した体積平均粒子径と同様の範囲が好ましく、また、混合する前のポリ乳酸(B)の性状についても同様に前述したものが好ましい。   In the step (1) or (2), the volume average particle diameter of the polylactic acid (B) before mixing is preferably in the same range as the volume average particle diameter described above, and the polylactic acid (B before mixing) Similarly, the above-mentioned property is preferable.

工程(1)又は(2)で得た架橋重合体(A1)/ポリ乳酸複合体ゲルは、後処理により吸収性樹脂粒子に導くことができる。
後処理としては、細断、溶媒留去(乾燥)、粉砕、粒度調節、表面架橋及び添加剤の混合等が含まれる。これらの後処理は組み合わせて行ってもよいし、いずれか一つだけ行ってもよい。また、後処理の順番に制限はなく、適宜決定されるが、上記の順序が好ましい。なお、これらの後処理のうち、乾燥を含むことが好ましい。また、水溶液重合を採用する場合、さらに、粉砕を含むことが好ましい。
The crosslinked polymer (A1) / polylactic acid composite gel obtained in the step (1) or (2) can be led to the absorbent resin particles by post-treatment.
Post-processing includes shredding, solvent evaporation (drying), pulverization, particle size adjustment, surface crosslinking, and mixing of additives. These post-processing may be performed in combination, or only one of them may be performed. Moreover, there is no restriction | limiting in the order of post-processing, Although it determines suitably, said order is preferable. Of these post-treatments, it is preferable to include drying. Moreover, when employ | adopting aqueous solution polymerization, it is preferable that a grinding | pulverization is included further.

<細断>
細断は、公知の方法で行うことができ、公知の細断装置{たとえば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機}等を使用して細断できる。
<Shred>
Shredding can be performed by a known method, and can be shredded using a known shredding device {for example, a bex mill, rubber chopper, pharma mill, mincing machine, impact crusher and roll crusher}. .

細断する場合、細断後の複合体ゲルの大きさ(最長径)は、50μm〜10cmが好ましく、さらに好ましくは100μm〜2cm、特に好ましくは1mm〜1cmである。この範囲であると、さらに取り扱いしやすくなることの他に、この後に溶媒を留去する場合、溶媒をさらに留去しやすくなり、また、その後に粉砕する場合、さらに粉砕しやすくなる。   When shredding, the size (longest diameter) of the composite gel after shredding is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, in addition to being easier to handle, when the solvent is subsequently distilled off, the solvent is further easily distilled off, and when pulverizing thereafter, the pulverization is further facilitated.

<溶媒留去(乾燥)>
工程(1)又は(2)の共重合において、溶媒(有機溶媒及び水等)を使用した場合、この溶媒を留去することが好ましい。
溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、吸収性樹脂粒子の重量に基づいて、10〜0.01が好ましく、さらに好ましくは5〜0.05、特に好ましくは3〜0.1、最も好ましくは1〜0.5である。この範囲であると、吸収性能がさらに良好となる。
<Solvent evaporation (drying)>
In the copolymerization in the step (1) or (2), when a solvent (such as an organic solvent and water) is used, the solvent is preferably distilled off.
When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after distillation is preferably 10 to 0.01, more preferably 5 to 0.05, based on the weight of the absorbent resin particles. Particularly preferred is 3 to 0.1, and most preferred is 1 to 0.5. Within this range, the absorption performance is further improved.

溶媒に水を含む場合、留去後の水分(重量%)は、吸収性樹脂粒子の重量に基づいて、0〜20が好ましく、さらに好ましくは0〜10、特に好ましくは0〜7、最も好ましくは0〜3である。この範囲であると、吸収性能及び乾燥後のハンドリング性(吸収性樹脂粒子の粉体流動性等)がさらに良好となる。   When water is contained in the solvent, the water content (% by weight) after distillation is preferably 0 to 20, more preferably 0 to 10, particularly preferably 0 to 7, most preferably based on the weight of the absorbent resin particles. Is 0-3. Within this range, the absorption performance and handling properties after drying (powder fluidity of the absorbent resin particles, etc.) are further improved.

なお、有機溶媒の含有量及び水分は、赤外水分測定器{株式会社ケット科学研究所製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W}により加熱したときの加熱前後の測定試料の重量減量から求められる。   In addition, the content and moisture of the organic solvent are an infrared moisture measuring device {JE400 manufactured by Kett Science Laboratory Co., Ltd .: 120 ± 5 ° C., 30 minutes, atmospheric humidity before heating 50 ± 10% RH, lamp specification 100V, It is calculated | required from the weight loss of the measurement sample before and behind heating when heated by 40W}.

溶媒(水を含む。)を留去する方法としては、80〜230℃の温度の熱風で留去(乾燥)する方法、100〜230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法及び赤外線による乾燥法等が適用できる。
なお、溶媒留去に先立ち、デカンテーション及び濾過等により、溶媒を除くことができる。
As a method of distilling off the solvent (including water), a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C., a thin film drying method using a drum dryer heated to 100 to 230 ° C., (heating ) Vacuum drying, freeze drying, infrared drying, etc. can be applied.
Prior to distilling off the solvent, the solvent can be removed by decantation, filtration or the like.

<粉砕>
粉砕は溶媒を留去した後に行うことが好ましい。
粉砕方法は特に限定がなく、公知の粉砕装置{たとえば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機}等により粉砕できる。
<Crushing>
The pulverization is preferably performed after the solvent is distilled off.
The pulverization method is not particularly limited, and can be pulverized by a known pulverizer (for example, a hammer-type pulverizer, an impact-type pulverizer, a roll-type pulverizer, and a shet airflow-type pulverizer).

<粒度調節>
粉砕された粒子は、必要によりふるい分け等により粒度調節される。
<Granularity control>
The size of the pulverized particles is adjusted by sieving or the like as necessary.

<表面架橋>
裁断された細断ゲル又は粉砕された粒子は、必要に応じて、表面架橋剤により表面架橋処理を行うことができる。
表面架橋剤としては、公知{たとえば、特開昭59−189103号、特開昭58−180233号、特開昭61−16903号、特開昭61−211305号、特開昭61−252212号、特開昭51−136588号及び特開昭61−257235号等}の表面架橋剤{多価グリシジル、多価アルコール、多価アミン、多価アジリジン、多価イソシアネート、シランカップリング剤及び多価金属等}等が使用できる。これらの表面架橋剤のうち、経済性及び吸収性能の観点から、多価グリシジル、多価アルコール及び多価アミンが好ましく、さらに好ましくは多価グリシジル及び多価アルコール、特に好ましくは多価グリシジル、最も好ましくはエチレングリコールジグリシジルエーテルである。
<Surface cross-linking>
The cut chopped gel or the pulverized particles can be subjected to surface cross-linking treatment with a surface cross-linking agent, if necessary.
As the surface crosslinking agent, known {for example, JP 59-189103, JP 58-180233, JP 61-16903, JP 61-2111305, JP 61-252212, Surface cross-linking agents {polyvalent glycidyl, polyhydric alcohol, polyvalent amine, polyvalent aziridine, polyvalent isocyanate, silane coupling agent and polyvalent metal of JP-A-51-136588 and JP-A-61-257235} Etc.} can be used. Of these surface cross-linking agents, from the viewpoint of economy and absorption performance, polyvalent glycidyl, polyhydric alcohol and polyvalent amine are preferable, more preferably polyvalent glycidyl and polyhydric alcohol, particularly preferably polyvalent glycidyl, Preferred is ethylene glycol diglycidyl ether.

表面架橋をする場合、表面架橋剤の使用量(重量%)は、表面架橋剤の種類、架橋の条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収性能の観点等から、必須構成単量体(a)の重量に基づいて、0.001〜3が好ましく、さらに好ましくは0.005〜2、特に好ましくは0.01〜1である。   In the case of surface cross-linking, the amount (% by weight) of the surface cross-linking agent is not particularly limited because it can be changed variously depending on the type of surface cross-linking agent, cross-linking conditions, target performance, etc. From a viewpoint etc., based on the weight of an essential constituent monomer (a), 0.001-3 are preferable, More preferably, it is 0.005-2, Most preferably, it is 0.01-1.

表面架橋をする場合、表面架橋方法は、公知{たとえば、特許第3648553号、特開2003−165883号、特開2005−75982号、特開2005−95759号}の方法が適用できる。   In the case of surface crosslinking, a known method {for example, Japanese Patent No. 3648553, Japanese Patent Laid-Open No. 2003-165883, Japanese Patent Laid-Open No. 2005-75982, Japanese Patent Laid-Open No. 2005-95759} can be applied.

<添加剤の混合>
細断ゲル、乾燥粒子、粉砕粒子又は表面架橋粒子等には、前述の他の添加剤を混合することができる。
他の添加剤を混合する場合、均一混合できれば混合方法に制限はなく、公知の混合方法が適用できる。
<Mixing of additives>
The above-mentioned other additives can be mixed with the chopped gel, dry particles, pulverized particles, surface cross-linked particles, and the like.
When other additives are mixed, the mixing method is not limited as long as uniform mixing is possible, and a known mixing method can be applied.

本発明の吸収性樹脂粒子は、繊維状物と共に吸収体とすることができる。吸収体の構造及び製造方法等は、公知のもの{特開2003−225565号公報、特開2006−131767号公報及び特開2005−097569号公報等}と同様である。また、この吸収体は吸収性物品{紙おむつや生理用ナプキン等}を構成することが好ましい。吸収性物品の製造方法等は、公知のもの{特開2003−225565号公報、特開2006−131767号公報及び特開2005−097569号公報等}と同様である。   The absorbent resin particles of the present invention can be used as an absorbent body together with a fibrous material. The structure and manufacturing method of the absorber are the same as those known in the art (Japanese Patent Laid-Open Nos. 2003-225565, 2006-131767, and 2005-097569, etc.). Moreover, it is preferable that this absorber comprises absorbent articles {paper diapers, sanitary napkins, etc.}. The manufacturing method and the like of the absorbent article are the same as known ones (Japanese Unexamined Patent Publication Nos. 2003-225565, 2006-131767, and 2005-097569, etc.).

本発明の吸収性樹脂粒子を、繊維状物と共に吸収体とする場合、吸収性樹脂粒子と繊維の重量比率(吸収性樹脂粒子の重量/繊維の重量)40/60〜70/30が好ましく、さらに好ましくは50/50〜60/40である。   When the absorbent resin particle of the present invention is used as an absorbent body together with a fibrous material, the weight ratio of the absorbent resin particle to the fiber (weight of absorbent resin particle / weight of fiber) is preferably 40/60 to 70/30, More preferably, it is 50 / 50-60 / 40.

以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。なお、特に定めない限り、部は重量部、%は重量%を示す。なお、保水量、荷重下吸収量は前述した方法により測定した。   Hereinafter, although an example and a comparative example explain the present invention further, the present invention is not limited to these. Unless otherwise specified, “part” means “part by weight” and “%” means “% by weight”. The water retention amount and the absorption amount under load were measured by the methods described above.

<製造例1>
水溶性ビニルモノマー(a1−1){アクリル酸、三菱化学株式会社製、純度100%}108.5部(1.51モル部)、架橋剤(a3−1){ペンタエリスリトールトリアリルエーテル、ダイソ−株式会社製}0.35部(0.0014モル部)及び脱イオン水389.9部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.43部及び2%アスコルビン酸水溶液0.81部を添加・混合して重合を開始させた。混合物の温度が60℃に達した後、60±2℃で約8時間重合することにより架橋重合体含水ゲル(A1−1)を得た。
<Production Example 1>
Water-soluble vinyl monomer (a1-1) {acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100%} 108.5 parts (1.51 mol parts), cross-linking agent (a3-1) {pentaerythritol triallyl ether, diiso -Made by Co., Ltd.} 0.35 parts (0.0014 mol parts) and 389.9 parts deionized water were kept at 3 ° C. with stirring and mixing. Nitrogen was introduced into the mixture to bring the dissolved oxygen amount to 1 ppm or less, and then 0.43 part of 1% aqueous hydrogen peroxide solution and 0.81 part of 2% ascorbic acid aqueous solution were added and mixed to initiate polymerization. . After the temperature of the mixture reached 60 ° C., polymerization was performed at 60 ± 2 ° C. for about 8 hours to obtain a crosslinked polymer hydrogel (A1-1).

<製造例2>
水溶性ビニルモノマー(a1−1){アクリル酸、三菱化学株式会社製、純度100%}131.5部(1.83モル部)、架橋剤(a3−1){ペンタエリスリトールトリアリルエーテル、ダイソ−株式会社製}0.43部(0.0017モル部)及び脱イオン水366.5部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.53部及び2%アスコルビン酸水溶液0.99部を添加・混合して重合を開始させた。混合物の温度が70℃に達した後、70±2℃で約8時間重合することにより架橋重合体含水ゲル(A1−2)を得た。
<Production Example 2>
Water-soluble vinyl monomer (a1-1) {acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100%} 131.5 parts (1.83 mol parts), crosslinking agent (a3-1) {pentaerythritol triallyl ether, diiso -Made by Co., Ltd.} 0.43 parts (0.0017 mole part) and 366.5 parts deionized water were kept at 3 ° C. with stirring and mixing. Nitrogen was introduced into the mixture to bring the dissolved oxygen amount to 1 ppm or less, and then 0.53 parts of 1% aqueous hydrogen peroxide solution and 0.99 parts of 2% aqueous ascorbic acid solution were added and mixed to initiate polymerization. . After the temperature of the mixture reached 70 ° C., polymerization was performed at 70 ± 2 ° C. for about 8 hours to obtain a crosslinked polymer hydrogel (A1-2).

<製造例3>
水溶性ビニルモノマー(a1−1){アクリル酸、三菱化学株式会社製、純度100%}62.00部(0.86モル部)、架橋剤(a3−1){ペンタエリスリトールトリアリルエーテル、ダイソ−株式会社製}0.20部(0.0008モル部)及び脱イオン水437.0部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.25部及び2%アスコルビン酸水溶液0.47部を添加・混合して重合を開始させた。混合物の温度が35℃に達した後、35±2℃で約8時間重合することにより架橋重合体含水ゲル(A1−3)を得た。
<Production Example 3>
Water-soluble vinyl monomer (a1-1) {acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100%} 62.00 parts (0.86 mole parts), cross-linking agent (a3-1) {pentaerythritol triallyl ether, diiso -Made by Co., Ltd.} 0.20 part (0.0008 mol part) and 437.0 parts deionized water were kept at 3 ° C. with stirring and mixing. Nitrogen was introduced into the mixture to bring the dissolved oxygen amount to 1 ppm or less, and then 0.25 part of a 1% aqueous hydrogen peroxide solution and 0.47 part of a 2% aqueous ascorbic acid solution were added and mixed to initiate polymerization. . After the temperature of the mixture reached 35 ° C., polymerization was performed at 35 ± 2 ° C. for about 8 hours to obtain a crosslinked polymer hydrogel (A1-3).

<製造例4>
水溶性ビニルモノマー(a1−1){アクリル酸、三菱化学株式会社製、純度100%}77.45部(1.08モル部)、架橋剤(a3−1){ペンタエリスリトールトリアリルエーテル、ダイソ−株式会社製}0.25部(0.0010モル部)及び脱イオン水421.3部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.31部及び2%アスコルビン酸水溶液0.58部を添加・混合して重合を開始させた。混合物の温度が40℃に達した後、40±2℃で約8時間重合することにより架橋重合体含水ゲル(A1−4)を得た。
<Production Example 4>
Water-soluble vinyl monomer (a1-1) {acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100%} 77.45 parts (1.08 mol part), cross-linking agent (a3-1) {pentaerythritol triallyl ether, diiso -KK made} 0.25 part (0.0010 mol part) and 421.3 parts deionized water were kept at 3 ° C. with stirring and mixing. Nitrogen was introduced into the mixture to reduce the dissolved oxygen amount to 1 ppm or less, and then 0.31 part of 1% aqueous hydrogen peroxide solution and 0.58 part of 2% ascorbic acid aqueous solution were added and mixed to initiate polymerization. . After the temperature of the mixture reached 40 ° C., polymerization was performed at 40 ± 2 ° C. for about 8 hours to obtain a crosslinked polymer hydrogel (A1-4).

<実施例1>
製造例1で得た架橋重合体含水ゲル(A1−1)400部をミンチ機(ROYAL社製12VR−400K)で細断しながら、35%水酸化ナトリウム水溶液99.2部を添加して混合・中和し、引き続きポリ乳酸(B1){活性剤を用いた高圧乳化により得られたポリ乳酸エマルション(重量平均分子量50,000、体積平均粒子径1.0μm、有効分40%)}39.7部を添加して混合し、細断ゲルを得た。さらに細断ゲルを通気型バンド乾燥機{90℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710〜150μmの粒子径範囲に調整して、粉砕粒子を得た。ついで、粉砕粒子100部を高速攪拌(ホソカワミクロン株式会社製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤{エチレングリコールジグリシジルエーテルを濃度9%で含有する水/メタノール混合溶液(水/メタノール=70/30;重量比)}5.5部を添加し、均一混合した後、90℃で45分間静置して、本発明の吸収性樹脂粒子(1)を得た。
<Example 1>
While chopping 400 parts of the crosslinked polymer hydrogel (A1-1) obtained in Production Example 1 with a mincing machine (12VR-400K manufactured by ROYAL), add 99.2 parts of 35% aqueous sodium hydroxide and mix. Neutralization followed by polylactic acid (B1) {polylactic acid emulsion obtained by high-pressure emulsification using an activator (weight average molecular weight 50,000, volume average particle diameter 1.0 μm, effective content 40%)} 39. 7 parts were added and mixed to obtain a chopped gel. Further, the chopped gel was dried with a ventilation band dryer {90 ° C., wind speed 2 m / sec} to obtain a dried product. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), and then sieved to adjust the particle size to a particle size range of 710 to 150 μm to obtain pulverized particles. Subsequently, 100 parts of the pulverized particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd .: rotation speed 2000 rpm), and a surface cross-linking agent {water / methanol mixture containing ethylene glycol diglycidyl ether at a concentration of 9% was added thereto. Solution (water / methanol = 70/30; weight ratio)} 5.5 parts was added, mixed uniformly, and then allowed to stand at 90 ° C. for 45 minutes to obtain absorbent resin particles (1) of the present invention. .

<実施例2>
「ポリ乳酸(B1)39.8部」を「ポリ乳酸(B2){活性剤を用いた高圧乳化により得られたポリ乳酸エマルション(重量平均分子量5,000、体積平均粒子径0.5μm、有効分35%)}45.4部」に変更したこと以外、実施例1と同様にして、本発明の吸収性樹脂粒子(2)を得た。
<Example 2>
“Polylactic acid (B1) 39.8 parts” is replaced with “polylactic acid (B2) {polylactic acid emulsion obtained by high-pressure emulsification using an activator (weight average molecular weight 5,000, volume average particle size 0.5 μm, effective Min. 35%)} 45.4 parts ”, except that the absorbent resin particles (2) of the present invention were obtained in the same manner as in Example 1.

<実施例3>
「ポリ乳酸(B1)39.7部」を「ポリ乳酸(B3){活性剤を用いた高圧乳化により得られたポリ乳酸エマルション(重量平均分子量200,000、体積平均粒子径100μm、有効分20%)}79.4部」に変更したこと以外、実施例1と同様にして、本発明の吸収性樹脂粒子(3)を得た。
<Example 3>
“Polylactic acid (B1) 39.7 parts” is replaced with “polylactic acid (B3) {polylactic acid emulsion obtained by high-pressure emulsification using an activator (weight average molecular weight 200,000, volume average particle diameter 100 μm, effective fraction 20). %)} 79.4 parts ”In the same manner as in Example 1, the absorbent resin particles (3) of the present invention were obtained.

<実施例4>
「製造例1で得た架橋重合体含水ゲル(A1−1)400部」を「製造例2で得た架橋重合体含水ゲル(A1−2)400部」に変更したこと、「35%水酸化ナトリウム水溶液99.2部」を「35%水酸化ナトリウム水溶液120.2部」に変更したこと、「ポリ乳酸(B1)39.7部」を「ポリ乳酸(B1)16.0部」に変更したこと以外、実施例1と同様にして、本発明の吸収性樹脂粒子(4)を得た。
<Example 4>
“400 parts of the crosslinked polymer hydrogel (A1-1) obtained in Production Example 1” was changed to “400 parts of the crosslinked polymer hydrogel (A1-2) obtained in Production Example 2”, “35% water “99.2 parts of aqueous sodium oxide solution” was changed to “120.2 parts of 35% aqueous sodium hydroxide solution”, and “39.7 parts of polylactic acid (B1)” was changed to “16.0 parts of polylactic acid (B1)”. Except having changed, it carried out similarly to Example 1, and obtained the absorbent resin particle (4) of this invention.

<実施例5>
「製造例1で得た架橋重合体含水ゲル(A1−1)400部」を「製造例3で得た架橋重合体含水ゲル(A1−3)400部」に変更したこと、「35%水酸化ナトリウム水溶液99.2部」を「35%水酸化ナトリウム水溶液56.7部」に変更したこと、「ポリ乳酸(B1)39.7部」を「ポリ乳酸(B1)45.4部」に変更したこと以外、実施例1と同様にして、本発明の吸収性樹脂粒子(5)を得た。
<Example 5>
“400 parts of the crosslinked polymer hydrogel (A1-1) obtained in Production Example 1” was changed to “400 parts of the crosslinked polymer hydrogel (A1-3) obtained in Production Example 3”, “35% water “99.2 parts of sodium oxide aqueous solution” was changed to “56.7 parts of 35% aqueous sodium hydroxide solution” and “39.7 parts of polylactic acid (B1)” was changed to “45.4 parts of polylactic acid (B1)”. Except having changed, it carried out similarly to Example 1, and obtained the absorbent resin particle (5) of this invention.

<実施例6>
「製造例1で得た架橋重合体含水ゲル(A1−1)400部」を「製造例4で得た架橋重合体含水ゲル(A1−4)400部」に変更したこと、「35%水酸化ナトリウム水溶液99.2部」を「35%水酸化ナトリウム水溶液70.9部」に変更したこと、「ポリ乳酸(B1)39.7部」を「ポリ乳酸(B4){活性剤を用いた高圧乳化により得られたポリ乳酸エマルション(重量平均分子量6,000、体積平均粒子径50μm、有効分38%)}10.0部」に変更したこと以外、実施例1と同様にして、本発明の吸収性樹脂粒子(6)を得た。
<Example 6>
“400 parts of the crosslinked polymer hydrogel (A1-1) obtained in Production Example 1” was changed to “400 parts of the crosslinked polymer hydrogel (A1-4) obtained in Production Example 4”, “35% water “99.2 parts of sodium oxide aqueous solution” was changed to “70.9 parts of 35% aqueous sodium hydroxide solution”, “39.7 parts of“ polylactic acid (B1) ”was changed to“ polylactic acid (B4) {using activator The polylactic acid emulsion obtained by high-pressure emulsification (weight average molecular weight 6,000, volume average particle diameter 50 μm, effective content 38%)} 10.0 parts ” Absorbent resin particles (6) were obtained.

<実施例7>
「製造例1で得た架橋重合体含水ゲル(A1−1)400部」を「製造例4で得た架橋重合体含水ゲル(A1−4)400部」に変更したこと、「35%水酸化ナトリウム水溶液99.2部」を「35%水酸化ナトリウム水溶液70.9部」に変更したこと、「ポリ乳酸(B1)39.7部」を「ポリ乳酸(B1)37.8部」に変更したこと以外、実施例1と同様にして、本発明の吸収性樹脂粒子(7)を得た。
<Example 7>
“400 parts of the crosslinked polymer hydrogel (A1-1) obtained in Production Example 1” was changed to “400 parts of the crosslinked polymer hydrogel (A1-4) obtained in Production Example 4”, “35% water “99.2 parts of sodium oxide aqueous solution” was changed to “70.9 parts of 35% aqueous sodium hydroxide solution”, and “39.7 parts of polylactic acid (B1)” was changed to “37.8 parts of polylactic acid (B1)”. Except having changed, it carried out similarly to Example 1, and obtained the absorbent resin particle (7) of this invention.

<実施例8>
「製造例1で得た架橋重合体含水ゲル(A1−1)400部」を「製造例2で得た架橋重合体含水ゲル(A1−2)400部」に変更したこと、「35%水酸化ナトリウム水溶液99.2部」を「35%水酸化ナトリウム水溶液120.2部」に変更したこと、「ポリ乳酸(B1)39.7部」を「ポリ乳酸(B3)32.1部」に変更したこと以外、実施例1と同様にして、本発明の吸収性樹脂粒子(8)を得た。
<Example 8>
“400 parts of the crosslinked polymer hydrogel (A1-1) obtained in Production Example 1” was changed to “400 parts of the crosslinked polymer hydrogel (A1-2) obtained in Production Example 2”, “35% water “99.2 parts of sodium oxide aqueous solution” was changed to “120.2 parts of 35% aqueous sodium hydroxide solution”, “39.7 parts of“ polylactic acid (B1) ”was changed to“ 32.1 parts of polylactic acid (B3) ” Except having changed, it carried out similarly to Example 1, and obtained the absorbent resin particle (8) of this invention.

<実施例9>
「ポリ乳酸(B1)39.7部」を「ポリ乳酸(B5){可塑剤を用いた湿式粉砕により得られたポリ乳酸粉末(重量平均分子量50,000、体積平均粒子径240μm)}10.6部」に変更したこと以外、実施例1と同様にして、本発明の吸収性樹脂粒子(9)を得た。
<Example 9>
"39.7 parts of polylactic acid (B1)" is replaced with "polylactic acid (B5) {polylactic acid powder obtained by wet pulverization using a plasticizer (weight average molecular weight 50,000, volume average particle diameter 240 µm)} 10. Absorbent resin particles (9) of the present invention were obtained in the same manner as in Example 1 except that the amount was changed to “6 parts”.

<実施例10>
製造例1で得た架橋重合体含水ゲル(A1−1)400部をミンチ機(ROYAL社製12VR−400K)で細断しながら、35%水酸化ナトリウム水溶液99.2部を添加して混合・中和し、引き続きポリ乳酸(B1)39.7部及び疎水性物質(C−1){ショ糖ステアリン酸モノエステル}1.06部を添加して混合し、細断ゲルを得た。さらに細断ゲルを通気型バンド乾燥機{90℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710〜150μmの粒子径範囲に調整して、粉砕粒子を得た。ついで、粉砕粒子100部を高速攪拌(ホソカワミクロン株式会社製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤{エチレングリコールジグリシジルエーテルを濃度9%で含有する水/メタノール混合溶液(水/メタノール=70/30;重量比)}5.5部を添加し、均一混合した後、90℃で45分間静置して、本発明の吸収性樹脂粒子(10)を得た。
<Example 10>
While chopping 400 parts of the crosslinked polymer hydrogel (A1-1) obtained in Production Example 1 with a mincing machine (12VR-400K manufactured by ROYAL), add 99.2 parts of 35% aqueous sodium hydroxide and mix. -Neutralized and subsequently 39.7 parts of polylactic acid (B1) and 1.06 part of hydrophobic substance (C-1) {sucrose stearate monoester} were added and mixed to obtain a chopped gel. Further, the chopped gel was dried with a ventilation band dryer {90 ° C., wind speed 2 m / sec} to obtain a dried product. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), and then sieved to adjust the particle size to a particle size range of 710 to 150 μm to obtain pulverized particles. Subsequently, 100 parts of the pulverized particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd .: rotation speed 2000 rpm), and a surface cross-linking agent {water / methanol mixture containing ethylene glycol diglycidyl ether at a concentration of 9% was added thereto. Solution (water / methanol = 70/30; weight ratio)} 5.5 parts was added, mixed uniformly, and then allowed to stand at 90 ° C. for 45 minutes to obtain absorbent resin particles (10) of the present invention. .

<実施例11〜37>
表1に記載の疎水性物質(C)及び仕込量にしたこと以外、実施例10と同様にして、本発明の吸収性樹脂粒子(11)〜(37)を得た。
<Examples 11 to 37>
Absorbent resin particles (11) to (37) of the present invention were obtained in the same manner as in Example 10 except that the hydrophobic substance (C) and the charged amount described in Table 1 were used.

Figure 2011190426
Figure 2011190426

<実施例38>
水溶性ビニルモノマー(a1−1){アクリル酸}21.7部(0.30モル部)、水溶性ビニルモノマー(a1−2){アクリル酸ナトリウム}72.9部(0.78モル部)、架橋剤(a3−2){エチレングリコールジグリシジルエーテル}0.17部(0.00097モル部)、ポリ乳酸(B1)35.6部及び脱イオン水492.2部を攪拌・混合しながら3℃に保った。この混合物中に窒素ガスを流入させて、混合物中の溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.31部及び2%アスコルビン酸水溶液0.58部を添加・混合して重合を開始させた。混合物の温度が40℃に達した後、40±2℃で約8時間重合することにより架橋重合体含水ゲル(A1−5)を得た。
<Example 38>
Water-soluble vinyl monomer (a1-1) {acrylic acid} 21.7 parts (0.30 mol part), water-soluble vinyl monomer (a1-2) {sodium acrylate} 72.9 parts (0.78 mol part) While stirring and mixing 0.17 part (0.00097 mol part) of the crosslinking agent (a3-2) {ethylene glycol diglycidyl ether}, 35.6 parts of polylactic acid (B1) and 492.2 parts of deionized water. Maintained at 3 ° C. Nitrogen gas is allowed to flow into this mixture so that the amount of dissolved oxygen in the mixture is 1 ppm or less, and then 0.31 part of 1% aqueous hydrogen peroxide solution and 0.58 part of 2% aqueous ascorbic acid solution are added and mixed. Polymerization was started. After the temperature of the mixture reached 40 ° C., polymerization was performed at 40 ± 2 ° C. for about 8 hours to obtain a crosslinked polymer hydrogel (A1-5).

得られた架橋重合体含水ゲル(A1−5)400部をミンチ機(ROYAL社製12VR−400K)で細断して、細断ゲルを得た。さらに細断ゲルを通気型バンド乾燥機{90℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710〜150μmの粒子径範囲に調整して、粉砕粒子を得た。ついで、粉砕粒子100部を高速攪拌(ホソカワミクロン株式会社製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤{エチレングリコールジグリシジルエーテルを濃度9%で含有する水/メタノール混合溶液(水/メタノール=70/30;重量比)}3.0部を添加し、均一混合した後、90℃で45分間静置して、本発明の吸収性樹脂粒子(38)を得た。   400 parts of the obtained crosslinked polymer hydrogel (A1-5) was chopped with a mincing machine (12VR-400K manufactured by ROYAL) to obtain a chopped gel. Further, the chopped gel was dried with a ventilation band dryer {90 ° C., wind speed 2 m / sec} to obtain a dried product. The dried product was pulverized with a juicer mixer (Osterizer BLENDER manufactured by Oster), and then sieved to adjust the particle size to a particle size range of 710 to 150 μm to obtain pulverized particles. Subsequently, 100 parts of the pulverized particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd .: rotation speed: 2000 rpm). 3.0 parts of a solution (water / methanol = 70/30; weight ratio)} was added, mixed uniformly, and then allowed to stand at 90 ° C. for 45 minutes to obtain absorbent resin particles (38) of the present invention. .

実施例1〜38で得られた吸収性樹脂粒子(1〜38)のポリ乳酸(B)の内部含有量及び表面含有量、疎水性物質(C)の内部含有量及び表面含有量を表2に示す。なお、表2において%は架橋重合体(A1)の重量に基づく、含有量(重量%)を示す。   Table 2 shows the internal content and surface content of the polylactic acid (B) and the internal content and surface content of the hydrophobic substance (C) in the absorbent resin particles (1 to 38) obtained in Examples 1 to 38. Shown in In Table 2,% indicates the content (% by weight) based on the weight of the crosslinked polymer (A1).

Figure 2011190426
Figure 2011190426

<比較例1>
カルボキシメチルセルロース(アルドリッチ社製、置換度0.7)の5%水溶液4000部とポリビニルアルコール(和光純薬工業株式会社製、重量平均分子量44000、ケン化度88モル%)の5%水溶液1000部とを80℃で5時間攪拌混合して、混合水溶液を得た。ついで、この混合水溶液に、40%グリオキザール水溶液50部と濃硫酸2.5部とを加え、均一攪拌した後、100℃の熱風乾燥機で7時間静置して、架橋反応させながら、乾燥して、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製、OSTERIZER BLENDER)で粉砕した後、目開き710μm及び150μmのふるいでふるい分けして、比較用の吸収性樹脂粒子(H1)を得た。
<Comparative Example 1>
4000 parts of a 5% aqueous solution of carboxymethyl cellulose (Aldrich, substitution degree 0.7) and 1000 parts of a 5% aqueous solution of polyvinyl alcohol (Wako Pure Chemical Industries, Ltd., weight average molecular weight 44000, saponification degree 88 mol%) Was stirred and mixed at 80 ° C. for 5 hours to obtain a mixed aqueous solution. Next, 50 parts of 40% glyoxal aqueous solution and 2.5 parts of concentrated sulfuric acid were added to this mixed aqueous solution, stirred uniformly, and then allowed to stand in a hot air dryer at 100 ° C. for 7 hours to dry the crosslinking reaction. As a result, a dried product was obtained. The dried product was pulverized with a juicer mixer (Osterizer BLENDER, manufactured by Oster Co., Ltd.) and then sieved with a sieve having openings of 710 μm and 150 μm to obtain comparative absorbent resin particles (H1).

<比較例2>
比較例1で得た吸収性樹脂粒子(H1)100部を高速攪拌(ホソカワミクロン株式会社製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤{エチレングリコールジグリシジルエーテルを濃度9%で含有する水/メタノール混合溶液(水/メタノール=70/30;重量比)}5.0部を添加し、均一混合した後、90℃で45分間静置して、比較用の吸収性樹脂粒子(H2)を得た。
<Comparative example 2>
While 100 parts of the absorbent resin particles (H1) obtained in Comparative Example 1 were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd .: rotation speed: 2000 rpm), the surface crosslinking agent {ethylene glycol diglycidyl ether was added at a concentration. Water / methanol mixed solution containing 9% (water / methanol = 70/30; weight ratio)} 5.0 parts was added, mixed uniformly, and then allowed to stand at 90 ° C. for 45 minutes for absorption for comparison. Resin particles (H2) were obtained.

<比較例3>
熱風乾燥機内の静置時間を「7時間」から「10時間」に変更したこと以外、比較例1と同様にして、比較用の吸収性樹脂粒子(H3)を得た。
<Comparative Example 3>
Absorbent resin particles (H3) for comparison were obtained in the same manner as in Comparative Example 1 except that the standing time in the hot air dryer was changed from “7 hours” to “10 hours”.

実施例1〜38及び比較例1〜3で得た吸収性樹脂粒子について、見かけ密度、重量平均粒子径、保水量及び荷重下吸収量と膨潤容積測定法による評価を行い、これらの結果を表3に示した。   About the absorptive resin particles obtained in Examples 1 to 38 and Comparative Examples 1 to 3, the apparent density, the weight average particle diameter, the water retention amount, the absorption amount under load, and the swelling volume measurement method are evaluated, and the results are shown. It was shown in 3.

Figure 2011190426
Figure 2011190426

表3から判るように、本発明の吸収性樹脂粒子(実施例1〜38)は、比較例1〜3の吸収性樹脂粒子に比べ、保水量及び荷重下吸収量が著しく優れ、吸収速度パターンが適切である。   As can be seen from Table 3, the absorbent resin particles (Examples 1 to 38) of the present invention are significantly superior in water retention and absorption under load compared to the absorbent resin particles of Comparative Examples 1 to 3, and an absorption rate pattern. Is appropriate.

引き続き、吸収速度パターンが適切であると、吸収性物品に適用したとき、どのような吸収特性を示すか評価した。実施例1〜21及び比較例1〜3で得た吸収性樹脂粒子を用いて、以下のようにして、吸収性物品(紙おむつ1〜38)を調製し、SDME法による表面ドライネス値を評価し、この結果を表4に示した。   Subsequently, when the absorption rate pattern was appropriate, it was evaluated what absorption characteristics were exhibited when applied to an absorbent article. Using the absorbent resin particles obtained in Examples 1 to 21 and Comparative Examples 1 to 3, absorbent articles (paper diapers 1 to 38) were prepared as follows, and the surface dryness value by the SDME method was evaluated. The results are shown in Table 4.

<吸収性物品(紙おむつ)の調製>
フラッフパルプ100部と評価試料{吸収性樹脂粒子}100部とを気流型混合装置{株式会社オーテック社製パッドフォーマー}で混合して、混合物を得た後、この混合物を坪量約500g/mとなるように均一にアクリル板(厚み4mm)上に積層し、5kg/cmの圧力で30秒間プレスし、吸収体(1)を得た。この吸収体(1)を10cm×40cmの長方形に裁断し、各々の上下に吸収体と同じ大きさの吸水紙(坪量15.5g/m、アドバンテック社製、フィルターペーパー2番)を配置し、さらにポリエチレンシート(タマポリ社製ポリエチレンフィルムUB−1)を裏面に、不織布(坪量20g/m、旭化成社製エルタスガード)を表面に配置することにより紙おむつ(1)を調製した。吸収性樹脂粒子と繊維の重量比率(吸収性樹脂粒子の重量/繊維の重量)は50/50であった。
<Preparation of absorbent articles (paper diapers)>
100 parts of fluff pulp and 100 parts of an evaluation sample {absorbent resin particles} were mixed with an airflow type mixing apparatus {Pad former manufactured by Autech Co., Ltd.} to obtain a mixture. laminated on m 2 and so as to uniformly acrylic plate (thickness 4 mm), and pressed for 30 seconds at a pressure of 5 kg / cm 2, to obtain absorbent body (1). This absorbent body (1) is cut into a 10 cm × 40 cm rectangle, and water absorbent paper (basis weight 15.5 g / m 2 , manufactured by Advantech, filter paper No. 2) having the same size as the absorbent body is arranged above and below each. Further, a paper diaper (1) was prepared by disposing a polyethylene sheet (polyethylene film UB-1 manufactured by Tamapoly Co., Ltd.) on the back surface and a non-woven fabric (basis weight 20 g / m 2 , Eltas Guard manufactured by Asahi Kasei Co., Ltd.) on the surface. The weight ratio of the absorbent resin particles to the fibers (weight of the absorbent resin particles / weight of the fibers) was 50/50.

<SDME法による表面ドライネス値>
SDME(Surface Dryness Measurement Equipment)試験器(WK system社製)の検出器を十分に湿らした紙おむつ{人工尿(塩化カリウム0.03重量%、硫酸マグネシウム0.08重量%、塩化ナトリウム0.8重量%及び脱イオン水99.09重量%)の中に紙おむつを浸し、60分放置して調製した。}の上に置き、0%ドライネス値を設定し、次に、SDME試験器の検出器を乾いた紙おむつ{紙おむつを80℃、2時間加熱乾燥して調製した。}の上に置き100%ドライネスを設定し、SDME試験器の校正を行った。次に、測定する紙おむつの中央に金属リング(内径70mm、長さ50mm)をセットし、人工尿80mlを注入し、人工尿を吸収し終えたら{人工尿による光沢が確認できなくなるまで}、直ちに金属リングを取り去り、紙おむつの中央及びその左右{紙おむつ40cmの端から10cmの等間隔に3箇所}にSDME検出器を3つ載せて、表面ドライネス値の測定を開始し、測定開始から5分後の値をそれぞれ表面ドライネス値(1−1){中央}、表面ドライネス値(1−2){左}、表面ドライネス値(1−3){右}とした。
なお、人工尿、測定雰囲気及び放置雰囲気は、25±5℃、65±10%RHで行った。
<Surface dryness value by SDME method>
A disposable diaper {artificial urine (0.03% by weight of potassium chloride, 0.08% by weight of magnesium sulfate, 0.88% by weight of sodium sulfate, 0.8% by weight of sodium chloride) in which the detector of the SDME (Surface Dryness Measurement Equipment) tester (manufactured by WK system) % And deionized water 99.09% by weight) and a paper diaper was soaked for 60 minutes. }, A 0% dryness value was set, and then the detector of the SDME tester was prepared by drying a paper diaper {paper diaper at 80 ° C. for 2 hours by heating. } Was set to 100% dryness, and the SDME tester was calibrated. Next, set a metal ring (inner diameter 70 mm, length 50 mm) in the center of the paper diaper to be measured, inject 80 ml of artificial urine, and absorb the artificial urine {until no gloss can be confirmed by artificial urine}, immediately Remove the metal ring, place three SDME detectors on the center of the paper diaper and its left and right sides (three locations at equal intervals of 10 cm from the end of the 40 cm paper diaper), and start measuring the surface dryness value, 5 minutes after the start of the measurement Were the surface dryness value (1-1) {center}, the surface dryness value (1-2) {left}, and the surface dryness value (1-3) {right}, respectively.
The artificial urine, measurement atmosphere, and standing atmosphere were 25 ± 5 ° C. and 65 ± 10% RH.

Figure 2011190426
Figure 2011190426

表4から判るように、本発明の吸収性樹脂粒子を使用した吸収性物品は、比較用の吸収性樹脂粒子を使用した吸収性物品に比べ、表面ドライネス値(1−1)、(1−2)、(1−3)に偏りがなく優れていた。すなわち、本発明の吸収性樹脂粒子は、吸収性物品に適用したとき優れた吸収特性であった。したがって、本発明の吸収性樹脂粒子を適用した吸収性物品は環境の負荷が少なく、漏れやカブレ等の心配がないことが容易に予測される。   As can be seen from Table 4, the absorbent article using the absorbent resin particles of the present invention has a surface dryness value (1-1), (1- 2) and (1-3) were excellent with no bias. That is, the absorbent resin particles of the present invention have excellent absorption characteristics when applied to absorbent articles. Therefore, it is easily predicted that the absorbent article to which the absorbent resin particles of the present invention are applied has little environmental load and there is no fear of leakage or fog.

本発明の吸収性樹脂粒子は、吸収性樹脂粒子と繊維状物とを含有してなる吸収体に適用でき、この吸収体を備えてなる吸収性物品{紙おむつ、生理用ナプキン及び医療用保血剤等}に有用である。また、ペット尿吸収剤、携帯トイレ用尿ゲル化剤、青果物用鮮度保持剤、肉類・魚介類用ドリップ吸収剤、保冷剤、使い捨てカイロ、電池用ゲル化剤、植物・土壌用保水剤、結露防止剤、止水剤、パッキング剤及び人工雪等の種々の用途にも使用できる。   The absorbent resin particles of the present invention can be applied to an absorbent body containing absorbent resin particles and a fibrous material, and absorbent articles {paper diapers, sanitary napkins, and medical blood retaining bodies comprising the absorbent body. It is useful for the agent}. In addition, pet urine absorbent, urine gelling agent for portable toilets, freshness preservation agent for fruits and vegetables, drip absorbent for meat and seafood, cooler, disposable warmer, battery gelling agent, water retention agent for plants and soil, dew condensation It can also be used in various applications such as inhibitors, water-stopping agents, packing agents and artificial snow.

1 底板付円筒
2 取手付円盤
3 吸収性樹脂粒子
4 デジマチックインジケーターの厚み表示部
5 デジマチックインジケーターの厚み測定用の棒
6 デジマチックインジケータの台

1 Cylinder with bottom plate 2 Disc with handle 3 Absorbent resin particle 4 Digimatic indicator thickness display 5 Digimatic indicator thickness measurement bar 6 Digimatic indicator base

Claims (11)

水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)、並びに架橋剤(a3)を必須構成単位とする架橋重合体(A1)とポリ乳酸(B)を含んでなる吸収性樹脂粒子であって、(B)の重量平均分子量が5000〜200000であり、(B)を(A1)の重量に基づき5〜30重量%含有し、(B)を吸収性樹脂粒子内部に(A1)の重量に基づき0.1〜25重量%含有する吸収性樹脂粒子。 Absorbent resin comprising a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2), and a crosslinked polymer (A1) having a crosslinking agent (a3) as essential constituent units and polylactic acid (B) Particles having a weight average molecular weight of 5000 to 200000, containing 5 to 30% by weight of (B) based on the weight of (A1), and containing (B) in the absorbent resin particles (A1 Absorbent resin particles containing 0.1 to 25% by weight based on the weight of ポリ乳酸(B)が吸収性樹脂粒子表面に存在する請求項1に記載の吸収性樹脂粒子。 The absorbent resin particle according to claim 1, wherein polylactic acid (B) is present on the surface of the absorbent resin particle. さらに疎水性物質(C)を含有してなる請求項1又は2に記載の吸収性樹脂粒子。 The absorbent resin particles according to claim 1 or 2, further comprising a hydrophobic substance (C). 吸収性樹脂粒子の内部に存在する疎水性物質(C)の含有量が、架橋重合体(A1)の重量に基づき、0.01〜10重量%である請求項3に記載の吸収性樹脂粒子。 The absorbent resin particle according to claim 3, wherein the content of the hydrophobic substance (C) present inside the absorbent resin particle is 0.01 to 10% by weight based on the weight of the crosslinked polymer (A1). . 吸収性樹脂粒子の表面に存在する疎水性物質(C)の含有量が、架橋重合体(A1)の重量に基づき、0.001〜1重量%である請求項3又は4に記載の吸収性樹脂粒子。 The absorptivity according to claim 3 or 4, wherein the content of the hydrophobic substance (C) present on the surface of the absorbent resin particles is 0.001 to 1% by weight based on the weight of the crosslinked polymer (A1). Resin particles. さらに無機質粉末(D)が、架橋重合体(A1)の重量に基づき、吸収性樹脂粒子表面に0.01〜3重量%存在する請求項1〜5のいずれかに記載の吸収性樹脂粒子。 The absorbent resin particle according to any one of claims 1 to 5, wherein the inorganic powder (D) is present on the surface of the absorbent resin particle in an amount of 0.01 to 3% by weight based on the weight of the crosslinked polymer (A1). 吸収性樹脂粒子1g当たりの生理食塩水に対する膨潤容積測定法において、膨潤容積が5mlに達するまでの時間(t1)と、膨潤容積が40mlに達するまで時間(t2)の比(t2/t1)が5〜20である請求項1〜6のいずれかに記載の吸収性樹脂粒子。 In the swelling volume measurement method for physiological saline per gram of absorbent resin particles, the ratio (t2 / t1) between the time (t1) until the swelling volume reaches 5 ml and the time (t2) until the swelling volume reaches 40 ml is It is 5-20, The absorptive resin particle in any one of Claims 1-6. 吸収性樹脂粒子1g当たりの生理食塩水に対する膨潤容積測定法において、膨潤容積が5mlに達するまでの時間(t1)が20〜50秒、膨潤容積が40mlに達するまで時間(t2)が230〜820秒である請求項1〜7のいずれかに記載の吸収性樹脂粒子。 In the swelling volume measurement method for physiological saline per 1 g of absorbent resin particles, the time (t1) until the swelling volume reaches 5 ml is 20 to 50 seconds, and the time (t2) until the swelling volume reaches 40 ml is 230 to 820. The absorbent resin particle according to claim 1, which is a second. 吸収性樹脂粒子の製造方法において、水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)並びに架橋剤(a3)を必須構成単量体(a)とする単量体を共重合して架橋重合体(A1)を得た後、(A1)とポリ乳酸(B)とを混合して架橋重合体(A1)/ポリ乳酸複合体ゲルを得る工程(1);又は
水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)並びに架橋剤(a3)を必須構成単量体(a)とする単量体と、ポリ乳酸(B)とを混合した後、単量体を重合して架橋重合体(A1)/ポリ乳酸複合体ゲルを得る工程(2)を含んでなり、
(B)の重量平均分子量が5000〜200000であり、
(B)の使用量が架橋重合体(A1)の重量に基づき5〜30重量%であり、
(B)を吸収性樹脂粒子内部に架橋重合体(A1)の重量に基づき0.1〜25%重量含有する吸収性樹脂粒子の製造方法。
Copolymerization of water-soluble vinyl monomer (a1) and / or hydrolyzable vinyl monomer (a2) and monomer having cross-linking agent (a3) as essential constituent monomer (a) in the method for producing absorbent resin particles To obtain a crosslinked polymer (A1), and then (A1) and polylactic acid (B) are mixed to obtain a crosslinked polymer (A1) / polylactic acid composite gel (1); or water-soluble vinyl After mixing the monomer (a1) and / or the monomer having the hydrolyzable vinyl monomer (a2) and the crosslinking agent (a3) as the essential constituent monomer (a) with the polylactic acid (B), a single amount Polymerizing the body to obtain a crosslinked polymer (A1) / polylactic acid composite gel (2),
(B) has a weight average molecular weight of 5,000 to 200,000,
The amount of (B) used is 5 to 30% by weight based on the weight of the crosslinked polymer (A1),
The manufacturing method of the absorbent resin particle which contains 0.1 to 25weight% of (B) in the inside of an absorbent resin particle based on the weight of a crosslinked polymer (A1).
混合する前のポリ乳酸(B)の体積平均粒子径が0.5〜100μmである請求項9に記載の製造方法。 The production method according to claim 9, wherein the volume average particle diameter of the polylactic acid (B) before mixing is 0.5 to 100 µm. 混合する前のポリ乳酸(B)がエマルション状態である請求項9又は10に記載の製造方法。
The production method according to claim 9 or 10, wherein the polylactic acid (B) before mixing is in an emulsion state.
JP2010218631A 2010-02-19 2010-09-29 Absorbent resin particles and method for producing the same Expired - Fee Related JP5264850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218631A JP5264850B2 (en) 2010-02-19 2010-09-29 Absorbent resin particles and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010034270 2010-02-19
JP2010034270 2010-02-19
JP2010218631A JP5264850B2 (en) 2010-02-19 2010-09-29 Absorbent resin particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011190426A true JP2011190426A (en) 2011-09-29
JP5264850B2 JP5264850B2 (en) 2013-08-14

Family

ID=44795672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218631A Expired - Fee Related JP5264850B2 (en) 2010-02-19 2010-09-29 Absorbent resin particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5264850B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207997A (en) * 2010-03-30 2011-10-20 San-Dia Polymer Ltd Absorbing resin composition, and absorber and absorbent article including the same
JP2011252088A (en) * 2010-06-02 2011-12-15 San-Dia Polymer Ltd Absorbing resin particle, absorbing material containing the same, and absorbing article
JP2018039944A (en) * 2016-09-09 2018-03-15 Sdpグローバル株式会社 Method for producing absorbent resin particle
WO2021246243A1 (en) * 2020-06-04 2021-12-09 住友精化株式会社 Method for producing cross-linked polymer particles and method for producing water-absorbent resin particles
CN114264528A (en) * 2021-12-25 2022-04-01 湖北省地质局第一地质大队 A resin treatment section of thick bamboo and appearance liquid preparation facilities for effective phosphorus of soil detects

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6890190B2 (en) * 2017-12-21 2021-06-18 株式会社日本触媒 Water-absorbent resin powder for heating element composition, and heating element composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347038A (en) * 1998-06-05 1999-12-21 Yasuto Takeuchi Method and device to selectivity inhibit transmission in canal or cavity using high water absorptive resin
JP2005015995A (en) * 2003-06-06 2005-01-20 Mitsubishi Chemicals Corp Process for producing absorbent article
JP2005097569A (en) * 2003-08-29 2005-04-14 San-Dia Polymer Ltd Absorbency resin particle, and absorber and absorbency article by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347038A (en) * 1998-06-05 1999-12-21 Yasuto Takeuchi Method and device to selectivity inhibit transmission in canal or cavity using high water absorptive resin
JP2005015995A (en) * 2003-06-06 2005-01-20 Mitsubishi Chemicals Corp Process for producing absorbent article
JP2005097569A (en) * 2003-08-29 2005-04-14 San-Dia Polymer Ltd Absorbency resin particle, and absorber and absorbency article by using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207997A (en) * 2010-03-30 2011-10-20 San-Dia Polymer Ltd Absorbing resin composition, and absorber and absorbent article including the same
JP2011252088A (en) * 2010-06-02 2011-12-15 San-Dia Polymer Ltd Absorbing resin particle, absorbing material containing the same, and absorbing article
JP2018039944A (en) * 2016-09-09 2018-03-15 Sdpグローバル株式会社 Method for producing absorbent resin particle
WO2021246243A1 (en) * 2020-06-04 2021-12-09 住友精化株式会社 Method for producing cross-linked polymer particles and method for producing water-absorbent resin particles
CN114264528A (en) * 2021-12-25 2022-04-01 湖北省地质局第一地质大队 A resin treatment section of thick bamboo and appearance liquid preparation facilities for effective phosphorus of soil detects
CN114264528B (en) * 2021-12-25 2023-10-20 湖北省地质局第一地质大队 Resin treatment cylinder for detecting available phosphorus in soil and sample liquid preparation device

Also Published As

Publication number Publication date
JP5264850B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5264850B2 (en) Absorbent resin particles and method for producing the same
JP5553772B2 (en) Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
JP4150252B2 (en) Method for producing water absorbent resin
JP5180560B2 (en) Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
WO2016143736A1 (en) Process for producing aqueous-liquid-absorbing resin particles, aqueous-liquid-absorbing resin particles, absorbent, and absorbent article
KR102226473B1 (en) Particulate water-absorbing agent and process for producing same
JP5461024B2 (en) Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
WO2014046106A1 (en) Aqueous liquid absorbing resin, aqueous liquid absorbing composition, and absorbent body and absorbent article using same
JP5649336B2 (en) Method for producing absorbent resin particles
JP5685241B2 (en) Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
JP5188824B2 (en) Absorbent resin particles and method for producing the same
JP5356712B2 (en) Method for producing absorbent resin particles
JP5131945B2 (en) Aqueous liquid absorbent resin, aqueous liquid absorbent composition, and absorbent body and absorbent article using the same
JP5184030B2 (en) Absorbent resin particles, method for producing the same, and absorbent article
JP5685007B2 (en) Absorbent resin particles, absorber containing the same, and absorbent article
JP2010241975A (en) Absorptive resin particle, and absorbing material and absorbing article containing the same
JP5684995B2 (en) Absorbent resin composition, absorbent body containing the same, and absorbent article
JP5721976B2 (en) Absorbent resin particles and method for producing the same
JP2023514628A (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
JP2018039924A (en) Method for producing aqueous liquid absorptive resin particle
JP5784282B2 (en) Absorbent resin particles, absorbent body and absorbent article using the same
JP6935996B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using them
JP2011032442A (en) Absorptive resin particles, absorptive material and absorptive article
JP7453918B2 (en) Water-absorbing resin particles and their manufacturing method
JP4613155B2 (en) Water absorbent resin and method for producing water absorbent resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees