JP2011188701A - Rotor of motor for pump, pump, air conditioner, floor heating device, hot water supply device, and method of manufacturing the pump - Google Patents

Rotor of motor for pump, pump, air conditioner, floor heating device, hot water supply device, and method of manufacturing the pump Download PDF

Info

Publication number
JP2011188701A
JP2011188701A JP2010054178A JP2010054178A JP2011188701A JP 2011188701 A JP2011188701 A JP 2011188701A JP 2010054178 A JP2010054178 A JP 2010054178A JP 2010054178 A JP2010054178 A JP 2010054178A JP 2011188701 A JP2011188701 A JP 2011188701A
Authority
JP
Japan
Prior art keywords
rotor
pump
magnet
mold
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010054178A
Other languages
Japanese (ja)
Other versions
JP5143165B2 (en
Inventor
Hiroki Aso
洋樹 麻生
Kazunori Sakanobe
和憲 坂廼邊
Mineo Yamamoto
峰雄 山本
Hiroyuki Ishii
博幸 石井
Tomoyuki Hasegawa
智之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010054178A priority Critical patent/JP5143165B2/en
Publication of JP2011188701A publication Critical patent/JP2011188701A/en
Application granted granted Critical
Publication of JP5143165B2 publication Critical patent/JP5143165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor of a motor for pumps that improves pump performance by reducing a friction loss and a circulating loss. <P>SOLUTION: In the rotor of the motor for pumps, a rotor unit is formed by integrally molding a magnet and a sleeve bearing disposed inside the magnet with a thermoplastic resin, and has an impeller attachment unit formed by the thermoplastic resin. The magnet includes: a plurality of cutouts that are formed at substantially equal intervals in a peripheral direction at an inner peripheral side of an end face on a side facing a magnetic pole position detection element, and have a substantially rectangular cross-sectional shape; and a plurality of projections having a substantially rectangular cross-sectional shape formed at substantially equal intervals in a circumferential direction so that the projections project inward on an inner peripheral side at a predetermined depth from the end face on a side of the impeller attachment unit. In the integral molding by the thermoplastic resin, the cutout of the magnet is set to a lower die of a molding die to secure coaxiality, and an upper die of the molding die is pressed against the projections, thus positioning the magnet. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、ポンプ用電動機の回転子に関する。また、そのポンプ用電動機の回転子を用いたポンプ及びポンプの製造方法に関する。さらに、そのポンプを用いた空気調和装置及び床暖房装置及び給湯装置に関する。   The present invention relates to a rotor of a pump motor. The present invention also relates to a pump using the rotor of the pump motor and a method for manufacturing the pump. Furthermore, the present invention relates to an air conditioner, a floor heating device, and a hot water supply device using the pump.

マグネットとスリーブ軸受を熱可塑性樹脂で一体成形して製作されるポンプ用電動機の回転子において、ポンプ用電動機の回転子の熱可塑性樹脂による一体成形時に、スリーブ軸受及びマグネットが下型にセットされ、さらに、上型に設けられた左右スライド機構が有する切欠き押さえ部を、マグネットの羽根車取付部側の端面の外周部に形成された略角形状の切欠きに径方向から押し当てた状態でマグネットとスリーブ軸受とが熱可塑性樹脂により一体に成形されるポンプ用電動機の回転子が提案されている(例えば、特許文献1参照(実施の形態1等))。   In the rotor of the pump motor manufactured by integrally molding the magnet and the sleeve bearing with the thermoplastic resin, the sleeve bearing and the magnet are set in the lower mold when the rotor of the pump motor is integrally molded with the thermoplastic resin, Furthermore, in a state where the notch holding portion of the left and right slide mechanism provided in the upper die is pressed from the radial direction to the substantially rectangular notch formed on the outer peripheral portion of the end surface of the magnet on the impeller mounting side. There has been proposed a rotor for a pump motor in which a magnet and a sleeve bearing are integrally formed of a thermoplastic resin (see, for example, Patent Document 1 (Embodiment 1, etc.)).

また、マグネットとスリーブ軸受を熱可塑性樹脂で一体成形して製作されるポンプ用電動機の回転子において、マグネットの内径に備える半円状の溝の底面に、上型に設けられ回転子のつりあい穴を形成するためのピンを押し当てた状態でマグネットとスリーブ軸受とが熱可塑性樹脂により一体に成形されるポンプ用電動機の回転子も提案されている(例えば、特許文献1参照(実施の形態2等))。   In addition, in a rotor for a pump motor manufactured by integrally molding a magnet and a sleeve bearing with a thermoplastic resin, a rotor balancing hole provided on the upper die is provided on the bottom surface of a semicircular groove provided on the inner diameter of the magnet. There is also proposed a rotor for a pump motor in which a magnet and a sleeve bearing are integrally formed of a thermoplastic resin in a state where a pin for forming a roller is pressed (see, for example, Patent Document 1 (Embodiment 2). etc)).

特開2009−197729号公報JP 2009-197729 A

しかしながら、上記特許文献1における実施の形態1のポンプ用電動機の回転子は、マグネットの外周に備える略角形状の切欠きによる凹部が存在する。この凹部は、ポンプ用電動機の回転子が水中で回転した際の流体抵抗となる。そのため、ポンプ用電動機の回転子が水中で回転した際の摩擦損失が増大し、ポンプ効率が低下する恐れがあった。   However, the rotor of the pump motor according to the first embodiment in Patent Document 1 has a concave portion formed by a substantially square cutout provided on the outer periphery of the magnet. This recess serves as a fluid resistance when the rotor of the pump motor rotates in water. Therefore, the friction loss when the rotor of the pump electric motor rotates in water increases, and the pump efficiency may decrease.

また、上記特許文献1の実施の形態2のポンプ用電動機の回転子は、つりあい穴を経路とした循環流による循環損失が増加する。そのため、羽根車の表裏の圧力差が比較的小さく、つり合い穴を設ける必要がない場合には、不要な循環経路を設けることとなり、ポンプ効率が低下する恐れがあった。また、マグネットに押し当てられることで、金型に設けられた回転子のつり合い穴形成用のピンの寿命が低下する恐れがあった。   Further, in the rotor of the pump motor according to the second embodiment of Patent Document 1, the circulation loss due to the circulation flow using the balance hole as a route increases. Therefore, when the pressure difference between the front and back of the impeller is relatively small and it is not necessary to provide a countersunk hole, an unnecessary circulation path is provided, which may reduce pump efficiency. Moreover, there was a possibility that the life of the pin for forming the counter hole of the rotor provided in the mold may be reduced by being pressed against the magnet.

この発明は、上記のような課題を解決するためになされたもので、ポンプ用電動機の回転子の摩擦損失や循環損失を低減し、ポンプ性能の向上を図ることを可能とするポンプ用電動機の回転子及びポンプ及びポンプの製造方法を提供する。   The present invention has been made in order to solve the above-described problems, and it is possible to reduce the friction loss and the circulation loss of the rotor of the pump motor, and to improve the pump performance. A rotor, a pump, and a method for manufacturing the pump are provided.

さらに、そのポンプを搭載した空気調和装置及び床暖房装置及び給湯装置を提供する。   Furthermore, an air conditioner, a floor heating device, and a hot water supply device equipped with the pump are provided.

この発明に係るポンプ用電動機の回転子は、水回路と、磁極位置検出素子が実装された基板を備えるモールド固定子と、を椀状隔壁部品で仕切るポンプに搭載され、椀状隔壁部品内に回転自在に収納され、一端が磁極位置検出素子に対向し、他端に羽根車を取付ける羽根車取付部を有する回転子部を備えるポンプ用電動機の回転子において、
回転子部は、
マグネットと、マグネットの内側に配置されるスリーブ軸受とを熱可塑性樹脂で一体成形し、同時に熱可塑性樹脂で羽根車取付部を形成するものであって、
マグネットは、
磁極位置検出素子対向側の端面の内周側に、周方向に略等間隔に複数個形成され、断面形状が略角形状の切欠きと、
羽根車取付部側の端面から所定の深さの内周側に内側に突出するように、周方向に略等間隔に複数個形成され、断面形状が略角形状の突起と、を備え、
熱可塑性樹脂による一体成形時に、成形用金型の下型にマグネットの切欠きをセットして同軸を確保するとともに、成形用金型の上型を突起に押し当て、マグネットの位置決めを行うものである。
A rotor of a pump motor according to the present invention is mounted on a pump that partitions a water circuit and a mold stator including a substrate on which a magnetic pole position detection element is mounted, with a bowl-shaped partition wall part, In the rotor of the pump motor, which is rotatably housed, one end faces the magnetic pole position detection element, and the other end has a rotor part having an impeller mounting part for attaching the impeller.
The rotor is
A magnet and a sleeve bearing disposed inside the magnet are integrally formed of thermoplastic resin, and at the same time, the impeller mounting portion is formed of thermoplastic resin,
The magnet
A plurality of notches having a substantially square shape in cross section are formed on the inner peripheral side of the end face on the side opposite to the magnetic pole position detection element at a substantially equal interval in the circumferential direction.
A plurality of protrusions that are formed at substantially equal intervals in the circumferential direction so as to protrude inward from the end surface on the impeller mounting portion side to the inner peripheral side of a predetermined depth,
At the time of integral molding with thermoplastic resin, a magnet notch is set in the lower mold of the molding die to ensure coaxiality, and the upper mold for molding is pressed against the projection to position the magnet. is there.

この発明に係るポンプ用電動機の回転子は、スリーブ軸受とマグネットとを熱可塑性樹脂で一体成形する際に、成形用金型の下型にマグネットの切欠きをセットして同軸を確保するとともに、成形用金型の上型をマグネットの内周側に備える突起に押し当て、マグネットの位置決めを行うので、スリーブ軸受とマグネットとの位置関係及び同軸度の確保が可能となり、ポンプ用電動機の回転子の品質向上が図ることができる。   The rotor of the pump electric motor according to the present invention, when integrally molding the sleeve bearing and the magnet with the thermoplastic resin, to set the notch of the magnet in the lower mold of the molding die, to ensure the coaxial, The upper die of the molding die is pressed against the protrusion provided on the inner periphery of the magnet to position the magnet, so that the positional relationship and coaxiality between the sleeve bearing and the magnet can be secured, and the rotor of the pump motor The quality of the product can be improved.

実施の形態1を示す図で、ヒートポンプ式給湯装置300の構成図。FIG. 3 shows the first embodiment and is a configuration diagram of a heat pump hot water supply apparatus 300. FIG. 実施の形態1を示す図で、ポンプ10の分解斜視図。FIG. 3 is an exploded perspective view of the pump 10 showing the first embodiment. 実施の形態1を示す図で、モールド固定子50の斜視図。FIG. 5 shows the first embodiment and is a perspective view of a mold stator 50. 実施の形態1を示す図で、モールド固定子50の断面図。FIG. 5 shows the first embodiment and is a cross-sectional view of a mold stator 50. 実施の形態1を示す図で、固定子組立49の分解斜視図。FIG. 5 shows the first embodiment and is an exploded perspective view of the stator assembly 49; 実施の形態1を示す図で、下穴部品81を示す図((a)は側面図、(b)は平面図))。FIG. 4 is a diagram showing the first embodiment and a diagram showing a pilot hole part 81 ((a) is a side view, (b) is a plan view)). 実施の形態1を示す図で、固定子組立49の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a stator assembly 49; 実施の形態1を示す図で、ポンプ部40の分解斜視図。FIG. 5 shows the first embodiment, and is an exploded perspective view of the pump unit 40; 実施の形態1を示す図で、ポンプ10の断面図。FIG. 3 shows the first embodiment, and is a cross-sectional view of the pump 10. 実施の形態1を示す図で、ケーシング41を軸支持部46側から見た斜視図。FIG. 5 shows the first embodiment, and is a perspective view of the casing 41 as seen from the shaft support portion 46 side. 実施の形態1を示す図で、回転子部60aの断面図(図13のA−A断面図)。It is a figure which shows Embodiment 1, and sectional drawing (AA sectional drawing of FIG. 13) of the rotor part 60a. 実施の形態1を示す図で、回転子部60aを羽根車取付部67a側から見た側面図。FIG. 5 shows the first embodiment, and is a side view of the rotor portion 60a viewed from the impeller attachment portion 67a side. 実施の形態1を示す図で、回転子部60aを羽根車取付部67aの反対側から見た側面図。The side view which looked at the rotor part 60a from the opposite side of the impeller attachment part 67a in the figure which shows Embodiment 1. FIG. 実施の形態1を示す図で、スリーブ軸受66の拡大断面図。FIG. 5 shows the first embodiment, and is an enlarged sectional view of a sleeve bearing 66. 実施の形態1を示す図で、樹脂マグネット68の断面図(図17のB−B断面図)。FIG. 5 shows the first embodiment, and is a cross-sectional view of a resin magnet 68 (cross-sectional view taken along line BB in FIG. 17). 実施の形態1を示す図で、樹脂マグネット68を突起68a側から見た側面図。FIG. 5 shows the first embodiment, and is a side view of the resin magnet 68 viewed from the protrusion 68a side. 実施の形態1を示す図で、樹脂マグネット68を突起68aの反対側から見た側面図。FIG. 5 shows the first embodiment, and is a side view of the resin magnet 68 viewed from the opposite side of the protrusion 68a. 実施の形態1を示す図で、変形例1の樹脂マグネット468の断面図(図20のC−C断面図)。It is a figure which shows Embodiment 1, and sectional drawing (CC sectional drawing of FIG. 20) of the resin magnet 468 of the modification 1. As shown in FIG. 実施の形態1を示す図で、変形例1の樹脂マグネット468を突起468a側から見た側面図。FIG. 5 shows the first embodiment, and is a side view of the resin magnet 468 of the first modification viewed from the protrusion 468a side. 実施の形態1を示す図で、変形例1の樹脂マグネット468を突起468aの反対側から見た側面図。FIG. 9 shows the first embodiment, and is a side view of the resin magnet 468 of the first modification viewed from the opposite side of the protrusion 468a. 実施の形態1を示す図で、変形例2の樹脂マグネット568の断面図(図23のD−D断面図)。It is a figure which shows Embodiment 1, and sectional drawing of the resin magnet 568 of the modification 2 (DD sectional drawing of FIG. 23). 実施の形態1を示す図で、変形例2の樹脂マグネット568を突起568a側から見た側面図。FIG. 5 shows the first embodiment, and is a side view of a resin magnet 568 according to Modification 2 as viewed from the projection 568a side. 実施の形態1を示す図で、変形例2の樹脂マグネット568を突起568aの反対側から見た側面図。FIG. 5 shows the first embodiment, and is a side view of a resin magnet 568 according to Modification 2 as viewed from the opposite side of the protrusion 568a. 実施の形態1を示す図で、ポンプ10の製造工程を示す図。FIG. 5 shows the first embodiment and shows the manufacturing process of the pump 10. 実施の形態1を示す図で、冷媒−水熱交換器2を用いる装置の回路を示す概念図。FIG. 3 is a diagram illustrating the first embodiment and is a conceptual diagram illustrating a circuit of an apparatus using the refrigerant-water heat exchanger 2. 比較のために示す図で、従来例1の回転子部760の断面図(図27のX−X断面図)。It is a figure shown for a comparison and is sectional drawing of the rotor part 760 of the prior art example 1 (XX sectional drawing of FIG. 27). 比較のために示す図で、従来例1の回転子部760aを羽根車取付部767a側から見た側面図。It is a figure shown for a comparison and the side view which looked at the rotor part 760a of the prior art example 1 from the impeller attachment part 767a side. 比較のために示す図で、従来例1の樹脂マグネット768の断面図(図30のY−Y断面図)。It is a figure shown for a comparison and sectional drawing of the resin magnet 768 of the prior art example 1 (YY sectional drawing of FIG. 30). 比較のために示す図で、従来例1の樹脂マグネット768を切欠き768f側から見た側面図。It is a figure shown for the comparison, The side view which looked at the resin magnet 768 of the prior art example 1 from the notch 768f side. 比較のために示す図で、従来例1の樹脂マグネット768を切欠き768fの反対側から見た側面図。It is a figure shown for a comparison and is the side view which looked at the resin magnet 768 of the prior art example 1 from the notch 768f opposite side. 比較のために示す図で、従来例2の回転子部860aの断面図(図32のZ−Z断面図)。It is a figure shown for a comparison and is sectional drawing of the rotor part 860a of the prior art example 2 (ZZ sectional drawing of FIG. 32). 比較のために示す図で、従来例2の回転子部860aを羽根車取付部867a側から見た側面図。It is a figure shown for a comparison and the side view which looked at the rotor part 860a of the prior art example 2 from the impeller attachment part 867a side. 比較のために示す図で、従来例2の樹脂マグネット868の断面図(図35のF−F断面図)。It is a figure shown for a comparison and sectional drawing of the resin magnet 868 of the prior art example 2 (FF sectional drawing of FIG. 35). 比較のために示す図で、従来例2の樹脂マグネット868を切欠き868bの反対側から見た側面図。It is a figure shown for a comparison and the side view which looked at the resin magnet 868 of the prior art example 2 from the notch 868b opposite side. 比較のために示す図で、従来例2の樹脂マグネット868を切欠き868b側から見た側面図。It is a figure shown for a comparison and is the side view which looked at the resin magnet 868 of the prior art example 2 from the notch 868b side.

実施の形態1.
本実施の形態のポンプ用電動機の回転子は、水と磁極位置検出素子が実装された基板を備えるモールド固定子とを椀状隔壁部品で仕切るポンプに搭載され、椀状隔壁部品内に回転自在に収納され、一端が磁極位置検出素子に対向し、他端に羽根車を取付ける羽根車取付部を備えるポンプ用電動機の回転子であって、
リング状のマグネットと、マグネットの内側に配設されるスリーブ軸受とを熱可塑性樹脂で一体成形し、同時に熱可塑性樹脂で羽根車取付部を形成し、
マグネットは、磁極位置検出素子対向側の内周側に軸方向に延びる断面形状が略角形状の切欠きを略等間隔に複数個備え、
羽根車取付部側の端面から所定の深さの内周側に、軸方向に延びる断面形状が略角形状の突起を周方向に略等間隔に複数個備えたもので、熱可塑性樹脂で一体成形時に、スリーブ軸受とマグネットとの位置関係及び同軸度の確保が可能となり、ポンプ用電動機の回転子の品質向上が図ることができるものである。
Embodiment 1 FIG.
The rotor of the pump motor according to the present embodiment is mounted on a pump that partitions water and a mold stator having a substrate on which a magnetic pole position detecting element is mounted by a bowl-shaped partition wall component, and is freely rotatable within the bowl-shaped partition wall component. A rotor of a pump motor that includes an impeller mounting portion that has one end facing the magnetic pole position detection element and the other end to which the impeller is attached,
A ring-shaped magnet and a sleeve bearing disposed inside the magnet are integrally formed of thermoplastic resin, and at the same time, an impeller mounting portion is formed of thermoplastic resin.
The magnet includes a plurality of notches having a substantially square cross-sectional shape extending in the axial direction on the inner peripheral side opposite to the magnetic pole position detection element.
A plurality of protrusions with a substantially square cross section extending in the axial direction are provided on the inner peripheral side of a predetermined depth from the end surface on the impeller mounting portion side, and are integrated with thermoplastic resin at substantially equal intervals. At the time of molding, the positional relationship between the sleeve bearing and the magnet and the coaxiality can be ensured, and the quality of the rotor of the pump motor can be improved.

本実施の形態は、ポンプ用電動機の回転子に特徴があるが、先ずポンプが用いられる装置の一例であるヒートポンプ式給湯装置について、その概要を簡単に説明する。   The present embodiment is characterized by the rotor of the pump motor. First, an outline of a heat pump type hot water supply apparatus that is an example of an apparatus in which a pump is used will be briefly described.

図1は実施の形態1を示す図で、ヒートポンプ式給湯装置300の構成図である。図1に示すように、ヒートポンプ式給湯装置300は、ヒートポンプユニット100と、タンクユニット200と、ユーザが運転操作などを行う操作部11とを備える。   FIG. 1 is a diagram showing the first embodiment and is a configuration diagram of a heat pump type hot water supply apparatus 300. As shown in FIG. 1, the heat pump hot water supply apparatus 300 includes a heat pump unit 100, a tank unit 200, and an operation unit 11 on which a user performs a driving operation and the like.

図1において、ヒートポンプユニット100は、冷媒を圧縮する圧縮機1、冷媒と水とが熱交換を行う冷媒−水熱交換器2、高圧の冷媒を減圧膨張させる減圧装置3、低圧の二相冷媒を蒸発させる蒸発器4を冷媒配管15によって環状に接続された冷媒回路と、圧縮機1の吐出圧力を検出する圧力検出装置5と、蒸発器4に送風するファン7と、ファン7を駆動するファンモータ6とを備えている。   In FIG. 1, a heat pump unit 100 includes a compressor 1 that compresses refrigerant, a refrigerant-water heat exchanger 2 that exchanges heat between the refrigerant and water, a decompression device 3 that decompresses and expands high-pressure refrigerant, and a low-pressure two-phase refrigerant. A refrigerant circuit in which the evaporator 4 for evaporating the refrigerant is annularly connected by a refrigerant pipe 15, a pressure detection device 5 that detects the discharge pressure of the compressor 1, a fan 7 that blows air to the evaporator 4, and the fan 7 are driven. And a fan motor 6.

また、温度検出手段として、冷媒−水熱交換器2の沸上げ温度検出手段8と、冷媒−水熱交換器2の給水温度検出手段9と、外気温度検出手段17とを備えている。   Further, as temperature detecting means, a boiling temperature detecting means 8 of the refrigerant-water heat exchanger 2, a feed water temperature detecting means 9 of the refrigerant-water heat exchanger 2, and an outside air temperature detecting means 17 are provided.

また、ヒートポンプユニット制御部13を備える。ヒートポンプユニット制御部13は、圧力検出装置5、沸上げ温度検出手段8、給水温度検出手段9、及び外気温度検出手段17からの信号を受信し、圧縮機1の回転数制御、減圧装置3の開度制御、ファンモータ6の回転数制御を行う。   Moreover, the heat pump unit control part 13 is provided. The heat pump unit controller 13 receives signals from the pressure detector 5, the boiling temperature detector 8, the feed water temperature detector 9, and the outside air temperature detector 17, and controls the rotation speed of the compressor 1 and the decompressor 3. The opening degree control and the rotation speed control of the fan motor 6 are performed.

タンクユニット200は、冷媒−水熱交換器2で高温・高圧の冷媒と熱交換することにより加熱された湯水を貯湯する温水タンク14と、風呂水の追い焚きを行う風呂水追い焚き熱交換器31と、風呂水循環装置32と、冷媒−水熱交換器2と温水タンク14の間に配置された温水循環装置であるポンプ10と、温水循環配管16と、冷媒−水熱交換器2と温水タンク14と風呂水追い焚き熱交換器31とに接続された混合弁33と、温水タンク14と混合弁33とを接続する風呂水追い焚き配管37とを備える。   The tank unit 200 includes a hot water tank 14 that stores hot water heated by exchanging heat with a high-temperature and high-pressure refrigerant in the refrigerant-water heat exchanger 2, and a bath water reheating heat exchanger that replenishes the bath water. 31, bath water circulation device 32, pump 10 which is a hot water circulation device arranged between refrigerant-water heat exchanger 2 and hot water tank 14, hot water circulation pipe 16, refrigerant-water heat exchanger 2 and hot water. A mixing valve 33 connected to the tank 14 and the bath water reheating heat exchanger 31 and a bath water retreating pipe 37 for connecting the hot water tank 14 and the mixing valve 33 are provided.

また、温度検出手段として、タンク内水温検出装置34、風呂水追い焚き熱交換器を通過した後の水温を検出する追い焚き後水温検出装置35、混合弁33を通過した後の水温を検出する混合後水温検出装置36を備えている。   Further, as temperature detection means, a tank water temperature detection device 34, a water temperature detection device 35 for detecting the water temperature after passing through the bath water reheating heat exchanger, and a water temperature after passing through the mixing valve 33 are detected. A post-mixing water temperature detector 36 is provided.

また、タンクユニット制御部12を備える。タンクユニット制御部12は、タンク内水温検出装置34、追い焚き後水温検出装置35、混合後水温検出装置36からの信号を受信するとともに、ポンプ10の回転数制御、混合弁33の開閉制御、及び操作部11との間で信号の送受信を行う。   A tank unit controller 12 is also provided. The tank unit controller 12 receives signals from the in-tank water temperature detection device 34, the reheating water temperature detection device 35, and the mixed water temperature detection device 36, and controls the rotational speed of the pump 10, the opening and closing control of the mixing valve 33, In addition, signals are transmitted to and received from the operation unit 11.

操作部11は、ユーザが湯水の温度設定や出湯指示などを行うためのスイッチなどを備えたリモコンや操作パネルなどである。   The operation unit 11 is a remote controller, an operation panel, or the like provided with a switch or the like for the user to perform hot water temperature setting, hot water instruction, and the like.

図1において、上記のように構成したヒートポンプ式給湯装置における通常の沸上げ運転動作について説明する。操作部11またはタンクユニット200からの沸上げ運転指示がヒートポンプユニット制御部13に伝えられると、ヒートポンプユニット100は沸上げ運転を行う。   In FIG. 1, a normal boiling operation operation in the heat pump type hot water supply apparatus configured as described above will be described. When the boiling operation instruction from the operation unit 11 or the tank unit 200 is transmitted to the heat pump unit control unit 13, the heat pump unit 100 performs the boiling operation.

ヒートポンプユニット100に備えられたヒートポンプユニット制御部13は、圧力検出装置5、沸上げ温度検出手段8、給水温度検出手段9の検出値などに基づいて、圧縮機1の回転数制御、減圧装置3の開度制御、ファンモータ6の回転数制御を行う。   The heat pump unit controller 13 provided in the heat pump unit 100 controls the rotational speed of the compressor 1 and the decompression device 3 based on the detection values of the pressure detection device 5, the boiling temperature detection means 8, the feed water temperature detection means 9, and the like. The opening degree control and the rotation speed control of the fan motor 6 are performed.

また、ヒートポンプユニット制御部13とタンクユニット制御部12との間で沸上げ温度検出手段8の検出値の送受信を行い、タンクユニット制御部12は、沸上げ温度検出手段8で検出した温度が目標沸上げ温度になるよう、ポンプ10の回転数を制御する。   Further, the detection value of the boiling temperature detection means 8 is transmitted and received between the heat pump unit control unit 13 and the tank unit control unit 12, and the tank unit control unit 12 sets the temperature detected by the boiling temperature detection means 8 as the target. The rotation speed of the pump 10 is controlled so as to reach the boiling temperature.

以上のように制御されるヒートポンプ式給湯装置300において、圧縮機1から吐出された高温高圧の冷媒は冷媒−水熱交換器2で給水回路側へ放熱しながら温度低下する。放熱して冷媒−水熱交換器2を通過した高圧低温の冷媒は、減圧装置3で減圧される。減圧装置3を通過した冷媒は蒸発器4に流入し、そこで外気空気から吸熱する。蒸発器4を出た低圧冷媒は圧縮機1に吸入されて循環し冷凍サイクルを形成する。   In the heat pump type hot water supply apparatus 300 controlled as described above, the temperature of the high-temperature and high-pressure refrigerant discharged from the compressor 1 decreases while dissipating heat to the water supply circuit side in the refrigerant-water heat exchanger 2. The high-pressure and low-temperature refrigerant that has radiated heat and passed through the refrigerant-water heat exchanger 2 is decompressed by the decompression device 3. The refrigerant that has passed through the decompression device 3 flows into the evaporator 4 where it absorbs heat from outside air. The low-pressure refrigerant exiting the evaporator 4 is sucked into the compressor 1 and circulates to form a refrigeration cycle.

一方、温水タンク14の下部の水は、温水循環装置であるポンプ10の駆動により冷媒−水熱交換器2へ導かれる。ここで、冷媒−水熱交換器2からの放熱によって水が加熱され、加熱された湯水は温水循環配管16を通って温水タンク14の上部に戻されて蓄熱される。   On the other hand, the water in the lower part of the hot water tank 14 is guided to the refrigerant-water heat exchanger 2 by driving the pump 10 which is a hot water circulation device. Here, water is heated by the heat radiation from the refrigerant-water heat exchanger 2, and the heated hot water is returned to the upper part of the hot water tank 14 through the hot water circulation pipe 16 and stored.

以上のように、ヒートポンプ式給湯装置300において、温水タンク14と冷媒−水熱交換器2との間の温水循環配管16に、湯水を循環させる温水循環装置としてポンプ10が用いられる。   As described above, in the heat pump hot water supply apparatus 300, the pump 10 is used as a hot water circulation apparatus that circulates hot water in the hot water circulation pipe 16 between the hot water tank 14 and the refrigerant-water heat exchanger 2.

図2は実施の形態1を示す図で、図2はポンプ10の分解斜視図である。   FIG. 2 is a diagram showing the first embodiment, and FIG. 2 is an exploded perspective view of the pump 10.

図2に示すように、ポンプ10は、回転子(後述する)の回転により水を吸水して吐出するポンプ部40と、回転子を駆動するモールド固定子50と、ポンプ部40とモールド固定子50とを締結する締結ネジであるタッピングネジ160(図2の例は、4本)とを備える。   As shown in FIG. 2, the pump 10 includes a pump unit 40 that absorbs and discharges water by rotation of a rotor (described later), a mold stator 50 that drives the rotor, a pump unit 40, and a mold stator. And tapping screws 160 (four in the example of FIG. 2) that are fastening screws that fasten 50.

本実施の形態に係るポンプ10は、4本のタッピングネジ160をポンプ部40のボス部44に形成されたネジ穴44aを介し、モールド固定子50に埋め込まれた下穴部品81の下穴84(図4参照)に締結することでポンプ10を組み立てる。   In the pump 10 according to the present embodiment, four tapping screws 160 are prepared through the screw holes 44 a formed in the boss portion 44 of the pump portion 40, and the pilot holes 84 of the pilot hole component 81 embedded in the mold stator 50. The pump 10 is assembled by fastening to (refer FIG. 4).

先ず、モールド固定子50の構成について説明する。図3乃至図7は実施の形態1を示す図で、図3はモールド固定子50の斜視図、図4はモールド固定子50の断面図、図5は固定子組立49の分解斜視図、図6は下穴部品81を示す図((a)は側面図、(b)は平面図))、図7は固定子組立49の斜視図である。   First, the configuration of the mold stator 50 will be described. 3 to 7 are diagrams showing the first embodiment. FIG. 3 is a perspective view of the mold stator 50. FIG. 4 is a cross-sectional view of the mold stator 50. FIG. 5 is an exploded perspective view of the stator assembly 49. 6 is a view showing a pilot hole part 81 ((a) is a side view, (b) is a plan view)), and FIG. 7 is a perspective view of a stator assembly 49. FIG.

図3、図4に示すように、モールド固定子50は、固定子組立49(後述する)をモールド樹脂53によりモールド成形することにより、モールド固定子50が得られる。   As shown in FIGS. 3 and 4, the mold stator 50 is obtained by molding a stator assembly 49 (described later) with a mold resin 53.

モールド固定子50の軸方向の一方の端面(ポンプ部40側)は、外周縁部に沿って平らなポンプ部設置面63になっている。   One end face (on the pump part 40 side) in the axial direction of the mold stator 50 is a flat pump part installation surface 63 along the outer peripheral edge part.

ポンプ部設置面63には、第2の溝64が径方向に放射状に複数形成されている。この第2の溝64は、後述する椀状隔壁部品90の鍔部90b(図8参照)の補強用リブの逃がし溝である。図3の例では、第2の溝64は、後述する椀状隔壁部品90の鍔部90bの補強用リブに対応して、周方向に略等間隔に6本形成されている。   A plurality of second grooves 64 are formed radially on the pump portion installation surface 63 in the radial direction. The second groove 64 is a relief groove for a reinforcing rib of a flange portion 90b (see FIG. 8) of the flange-shaped partition wall component 90 described later. In the example of FIG. 3, six second grooves 64 are formed at substantially equal intervals in the circumferential direction corresponding to reinforcing ribs of the flange portion 90 b of the flange-shaped partition wall component 90 described later.

また、ポンプ部設置面63には、6本の第2の溝64の外側端部を結ぶ環状の第3の溝65を備える。この環状の第3の溝65は、椀状隔壁部品90の鍔部90bに形成される環状のリブに対応している。   The pump portion installation surface 63 is provided with an annular third groove 65 that connects the outer end portions of the six second grooves 64. The annular third groove 65 corresponds to an annular rib formed in the flange portion 90 b of the flange-shaped partition wall component 90.

さらに、ポンプ部設置面63には、四隅に略円柱状の樹脂成形品の下穴部品81の足部85(図6参照)が軸方向に埋め込まれている。モールド樹脂53によるモールド成形時に、下穴部品81の足部85の一方の端面(ポンプ部40側)は、成形金型の金型押え部82(図4参照)になる。そのため、下穴部品81が、ポンプ部設置面63より所定の距離だけ内側に埋め込まれる形で表出している。表出しているのは、金型押え部82及びタッピングネジ160用の下穴84である。   Furthermore, foot portions 85 (see FIG. 6) of pilot hole parts 81 of substantially cylindrical resin molded products are embedded in the four corners of the pump portion installation surface 63 in the axial direction. At the time of molding with the mold resin 53, one end face (the pump part 40 side) of the foot part 85 of the pilot hole part 81 becomes a mold pressing part 82 (see FIG. 4) of the molding die. Therefore, the pilot hole part 81 is exposed in a form embedded inside the pump part installation surface 63 by a predetermined distance. What is exposed is a mold retainer 82 and a pilot hole 84 for the tapping screw 160.

後述する固定子組立49から引き出されるリード線52が、モールド固定子50のポンプ部40の反対側の軸方向端面付近から外部に引き出されている。   A lead wire 52 drawn from a stator assembly 49 to be described later is drawn to the outside from the vicinity of the axial end surface on the opposite side of the pump portion 40 of the mold stator 50.

モールド固定子50のモールド樹脂53(熱硬化性樹脂)によるモールド成形時の軸方向の位置決めは、基板押え部品95(図7参照)に形成されている複数個の突起95aの軸方向外側の端面が、上型の金型押え部になる。そのため、モールド固定子50の基板58側の軸方向端面に、複数個の突起95aの軸方向外側の端面(金型押え面)が表出している(図示せず)。   The axial positioning of the mold stator 50 during molding with the mold resin 53 (thermosetting resin) is performed on the axially outer end faces of the plurality of protrusions 95a formed on the substrate pressing component 95 (see FIG. 7). However, it becomes the upper mold holder. Therefore, the axially outer end surfaces (die pressing surfaces) of the plurality of protrusions 95a are exposed on the axial end surface of the mold stator 50 on the substrate 58 side (not shown).

また、反結線側の絶縁部56の軸方向端面よりさらに外側(軸方向の)に延びる突起56a(図5、図7参照)が、下型の金型押え部になる。そのため、モールド固定子50の基板58の反対側の軸方向端面に、複数個の突起56aが表出している(図示せず)。   Further, a protrusion 56a (see FIGS. 5 and 7) extending further outward (in the axial direction) than the axial end face of the insulating portion 56 on the anti-connection side is a lower mold pressing portion. Therefore, a plurality of protrusions 56a are exposed on the axial end surface of the mold stator 50 opposite to the substrate 58 (not shown).

モールド固定子50のモールド成形時の径方向の位置決めは、固定子鉄心54の内周面が金型に嵌合することでなされる。そのため、図2、図3に示すモールド固定子50の内周部に、固定子鉄心54のティースの先端部が露出している。   The radial positioning of the mold stator 50 at the time of molding is performed by fitting the inner peripheral surface of the stator core 54 to the mold. Therefore, the tips of the teeth of the stator core 54 are exposed at the inner peripheral portion of the mold stator 50 shown in FIGS.

モールド固定子50の内部の構成、即ち、固定子組立49(図4に示す、リード線52、固定子鉄心54、絶縁部56、コイル57、基板58、端子59等)、下穴部品81については、後述する。   Regarding the internal structure of the mold stator 50, that is, the stator assembly 49 (lead wire 52, stator core 54, insulating portion 56, coil 57, substrate 58, terminal 59, etc. shown in FIG. 4) and pilot hole component 81. Will be described later.

次に、固定子組立49について説明する。図5、図7に示すように、固定子組立49は、固定子47と、下穴部品81とを備える。   Next, the stator assembly 49 will be described. As shown in FIGS. 5 and 7, the stator assembly 49 includes a stator 47 and a pilot hole part 81.

固定子組立49は、以下に示す手順で製作される。
(1)厚さが0.1〜0.7mm程度の電磁鋼板が帯状に打ち抜かれ、かしめ、溶接、接着等で積層された帯状の固定子鉄心54を製作する。帯状の固定子鉄心54は、複数個のティースを備える。図3に示すモールド固定子50の内周部に、固定子鉄心54のティースの先端部が露出している。ここで示す固定子鉄心54は、薄肉連結部で連結されている6個のティースを有するので、図3においても、6箇所に固定子鉄心のティースの先端部が露出している。但し、図3で見えているのは二箇所のみ。
(2)固定子鉄心54のティースには、絶縁部56が施される。絶縁部56は、例えば、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂を用いて、固定子鉄心54と一体に又は別体で成形される。
(3)絶縁部56が施されたティースに、集中巻のコイルが巻回される。6個の集中巻のコイル57を接続して、三相のシングルY結線の巻線を形成する。
(4)三相のシングルY結線であるので、絶縁部56の結線側には、各相(U相、V相、W相)のコイル57(図4参照)が接続される端子59(電源が供給される電源端子及び中性点端子)が組付けられる。電源端子は3個、中性点端子は1個である。
(5)基板58が結線側の絶縁部56(端子59が組付けられる側)に取り付けられる。基板58は、基板押え部品95により絶縁部56との間に挟持される。基板58には、電動機(ブラシレスDCモータ)を駆動するIC58a(駆動素子)、回転子60の位置を検出するホール素子(位置検出素子)等が実装されている。IC58aやホール素子を、電子部品と定義する。また、基板58には、その外周縁部付近の切り欠き部にリード線52を口出しするリード線口出し部品61が、取り付けられる。
(6)リード線口出し部品61が取り付けられた基板58が基板押え部品95により絶縁部56に固定され、端子59と基板58とが半田付けされた固定子47に下穴部品81を組みつけることで固定子組立49が完成する。
The stator assembly 49 is manufactured by the following procedure.
(1) An electromagnetic steel sheet having a thickness of about 0.1 to 0.7 mm is punched into a band shape, and a band-shaped stator core 54 laminated by caulking, welding, bonding or the like is manufactured. The strip-shaped stator core 54 includes a plurality of teeth. The tips of the teeth of the stator core 54 are exposed at the inner periphery of the mold stator 50 shown in FIG. Since the stator core 54 shown here has six teeth connected by thin-walled connecting portions, the tips of the teeth of the stator core are exposed at six locations also in FIG. However, only two locations are visible in FIG.
(2) An insulating portion 56 is applied to the teeth of the stator core 54. The insulating portion 56 is formed integrally with or separately from the stator core 54 using, for example, a thermoplastic resin such as PBT (polybutylene terephthalate).
(3) A concentrated coil is wound around the teeth provided with the insulating portion 56. Six concentrated winding coils 57 are connected to form a three-phase single Y-connection winding.
(4) Since it is a three-phase single Y connection, a terminal 59 (power supply) to which a coil 57 (see FIG. 4) of each phase (U phase, V phase, W phase) is connected on the connection side of the insulating portion 56 Power supply terminal and neutral point terminal) are assembled. There are three power terminals and one neutral point terminal.
(5) The board | substrate 58 is attached to the insulation part 56 (side in which the terminal 59 is assembled | attached) on the connection side. The substrate 58 is sandwiched between the insulating portion 56 by the substrate pressing component 95. On the substrate 58, an IC 58a (driving element) for driving an electric motor (brushless DC motor), a Hall element (position detecting element) for detecting the position of the rotor 60, and the like are mounted. The IC 58a and the Hall element are defined as electronic components. In addition, a lead wire lead-out component 61 that leads out the lead wire 52 to a notch near the outer peripheral edge portion is attached to the substrate 58.
(6) The board 58 to which the lead wire lead-out part 61 is attached is fixed to the insulating portion 56 by the board pressing part 95, and the pilot hole part 81 is assembled to the stator 47 to which the terminal 59 and the board 58 are soldered. Thus, the stator assembly 49 is completed.

下穴部品81の構成を図5、図6により説明する。下穴部品81は、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂を成形して形成される。   The configuration of the pilot hole part 81 will be described with reference to FIGS. The pilot hole part 81 is formed by molding a thermoplastic resin such as PBT (polybutylene terephthalate).

図6に示すように、タッピングネジ160の下穴84を備えた略円柱部の複数の足部85が、薄肉の連結部87で連結されている。略円柱部の足部85は、下穴部品81を固定子47とともにモールド成形した後、下穴部品81の抜け防止のため、足部85の表出端面(金型押え部82、及び、突起83端部)を基準に太くなるテーパ状である。   As shown in FIG. 6, a plurality of substantially cylindrical foot portions 85 each having a pilot hole 84 for the tapping screw 160 are connected by a thin connecting portion 87. After the pilot hole part 81 is molded together with the stator 47, the substantially cylindrical leg part 85 is formed so that the pilot hole part 81 is prevented from coming off, and the exposed end surface (the mold presser part 82 and the protrusion) 83 end portion) is a taper shape that becomes thicker.

また、下穴部品81は、下穴部品81の回転防止のための複数の突起85aを足部85の外周部に備えている。下穴部品81は略円柱部の足部85を薄肉の連結部87で連結することで、モールド金型へ一度でセット可能なことにより、加工コストの低減が可能となる。   In addition, the pilot hole part 81 includes a plurality of protrusions 85 a for preventing rotation of the pilot hole part 81 on the outer peripheral part of the foot part 85. The pilot hole part 81 can be set in a mold at once by connecting the substantially cylindrical foot 85 with a thin connecting part 87, so that the processing cost can be reduced.

図5、図7に示すように、下穴部品81の連結部87に、下穴部品81を固定子47に組み付けるための複数の爪86を備える。図5の例では、2本の爪86を備える。   As shown in FIGS. 5 and 7, the connecting portion 87 of the pilot hole component 81 is provided with a plurality of claws 86 for assembling the pilot hole component 81 to the stator 47. In the example of FIG. 5, two claws 86 are provided.

固定子47の固定子鉄心54の外周部に形成された溝54aに、下穴部品81の爪86を係り止めすることにより、固定子47と下穴部品81とをモールド金型へ一度でセット可能なことにより、加工コストの低減が可能とる。   By fixing the claw 86 of the pilot hole part 81 in the groove 54a formed in the outer peripheral portion of the stator core 54 of the stator 47, the stator 47 and the pilot hole part 81 are set in the mold once. If possible, the processing cost can be reduced.

固定子47に下穴部品81を係り止めした固定子組立49のモールド樹脂53によるモールド成形時に、下穴部品81のタッピングネジ160用の下穴84の開口側の端面(金型押え部82)と、下穴部品81の他端面に備える突起83(図4参照)とを、モールド成形金型により狭持することで下穴部品81の軸方向の位置決めを行う。   When the stator assembly 49, in which the pilot hole part 81 is locked to the stator 47, is molded by the mold resin 53, the end face on the opening side of the pilot hole 84 for the tapping screw 160 of the pilot hole part 81 (die holding part 82) And the protrusion 83 (refer FIG. 4) with which the other end surface of the pilot hole part 81 is clamped with a molding die, and the axial direction positioning of the pilot hole part 81 is performed.

下穴部品81のタッピングネジ160用の下穴84の開口側の端面の金型押え部82の外径を、下穴部品81の開口側の端面の外径より小さくする。それにより、下穴部品81の端面は、金型押え部82を除く部分が、モールド樹脂53で覆われる。従って、下穴部品81の両端面がモールド樹脂53で覆われるので、下穴部品81の表出を抑制し、ポンプ10の品質向上を図ることが可能となる。   The outer diameter of the mold pressing portion 82 on the opening side end face of the lower hole 84 for the tapping screw 160 of the lower hole part 81 is made smaller than the outer diameter of the end face on the opening side of the lower hole part 81. As a result, the end surface of the pilot hole part 81 is covered with the mold resin 53 except for the mold pressing portion 82. Therefore, since both end surfaces of the pilot hole component 81 are covered with the mold resin 53, it is possible to suppress the exposure of the pilot hole component 81 and improve the quality of the pump 10.

モールド固定子50は、固定子47に組み付けられた下穴部品81がモールド樹脂53で一体に成形され、このとき下穴部品81の足部85のタッピングネジ160用の下穴84が表出する。ポンプ部40に形成されたネジ穴44aを介して、ポンプ部40とモールド固定子50とをタッピングネジ160で下穴84に締結して組み付けることにより、ポンプ部40とモールド固定子50とを強固に組み付けることが可能となる。   In the mold stator 50, the pilot hole part 81 assembled to the stator 47 is integrally formed with the mold resin 53, and at this time, the pilot hole 84 for the tapping screw 160 of the foot portion 85 of the pilot hole part 81 is exposed. . By tightening and assembling the pump unit 40 and the mold stator 50 to the pilot hole 84 with the tapping screw 160 through the screw holes 44a formed in the pump unit 40, the pump unit 40 and the mold stator 50 are firmly connected. It becomes possible to assemble to.

また、図示はしないが、ポンプ部40とモールド固定子50とを強固に取り付けるために、下穴部品81の代替品として、外周に抜け防止、且つ回転防止のための突起を備えた金属製のネジ穴を有するインサートナットを用いることも可能である。下穴部品81、もしくはインサートナットの種類や取付け位置の変更は、金型の取付け部分の変更で対応可能となる。ネジ穴を有するインサートナットを用いる場合は、ネジには締付けネジを使用する。   In addition, although not shown in the drawings, in order to firmly attach the pump unit 40 and the mold stator 50, as an alternative to the pilot hole part 81, a metal made of protrusions for preventing slipping and rotation prevention on the outer periphery is provided. It is also possible to use an insert nut having a screw hole. Changes in the type and mounting position of the pilot hole part 81 or the insert nut can be handled by changing the mounting part of the mold. When using an insert nut having a screw hole, a tightening screw is used.

次に、ポンプ部40の構成を説明する。図8乃至図10は実施の形態1を示す図で、図8はポンプ部40の分解斜視図、図9はポンプ10の断面図、図10はケーシング41を軸支持部46側から見た斜視図である。図8に示すように、ポンプ部40は、以下に示す要素で構成される。
(1)ケーシング41:水の吸水口42(吸入口)と吐出口43とを有し、内部に回転子60の羽根車60bを収納する。ケーシング41は、PPS(ポリフェニレンサルファイド)などの熱可塑性樹脂を用いて成形される。ケーシング41には、吸水口42側の端部に、ポンプ部40とモールド固定子50とを組み付ける際に用いられるネジ穴44aを有するボス部44が4箇所に設けられる。また、ケーシング41には、ポンプ10を、例えば、ヒートポンプ式給湯装置300のタンクユニット200に固定するための孔45aを有する取付脚45を3箇所に備える。
(2)スラスト軸受71:スラスト軸受71の材質はアルミナ等のセラミックである。回転子60は、ポンプ10の運転中、回転子60の羽根車60bの表裏に作用する水の圧力差によりスラスト軸受71を介してケーシング41に押し付けられるため、スラスト軸受にはセラミックにより製作されたものを使用し、耐摩耗性、摺動性を確保している。
(3)回転子60:回転子60は、回転子部60aと、羽根車60bとを備える。回転子部60aは、フェライト等の磁性粉末と樹脂を混練したペレットを成形したリング状(円筒状)の樹脂マグネット68(マグネットの一例)と、樹脂マグネット68の内側に設けられる円筒形のスリーブ軸受66(例えば、カーボン製)とが、例えばPPE(ポリフェニレンエーテル)等の樹脂部67で一体化される(図9参照)。羽根車60bは、例えばPPE(ポリフェニレンエーテル)等の樹脂成形品である。回転子部60aと、羽根車60bとが超音波溶着等により接合される。本実施の形態は、回転子60の回転子部60aに特徴があるので、その詳細は後述する。
(4)軸70:椀状隔壁部品90の軸支持部94に軸70の一端が挿入され、軸70の他端がケーシング41の軸支持部46に挿入される。椀状隔壁部品90の軸支持部94に挿入される軸70の一端は、軸支持部94に対して回転しないように挿入される。そのため、軸70の一端は所定の長さ(軸方向)円形の一部を切り欠いている(D字形状)。軸支持部94の孔もそれに合わせた形状になっている。ケーシング41の軸支持部46(図10も参照)に挿入される軸70の他端も、所定の長さ(軸方向)円形の一部を切り欠いている(D字形状)。即ち、軸70は長さ方向に対称形である。但し、軸70の他端は、ケーシング41の軸支持部46に回転可能に挿入される。軸70が長さ方向に対称形なのは、軸70を椀状隔壁部品90の軸支持部94に挿入する際に、上下の向きを意識することなく組立を可能とするためである。
(5)Oリング80:Oリング80は、ポンプ部40のケーシング41と椀状隔壁部品90とのシールを行う。
(6)椀状隔壁部品90:椀状隔壁部品90は、PPE(ポリフェニレンエーテル)などの熱可塑性樹脂を用いて成形される。椀状隔壁部品90は、モールド固定子50との嵌合部である椀状隔壁部90aと、鍔部90bとを備える。椀状隔壁部90aは、円形の底部と円筒形の隔壁とで構成される。円形の底部の内面の略中央部に、軸70の一端が挿入される軸支持部94が立設している。椀状隔壁部90aの外周面に軸方向に延びるリブ91(図示せず)が形成されている。リブ91(図示せず)は、椀状隔壁部90aの根元(鍔部90bとの連結部)から軸方向に所定の長さ形成されている。そして、リブ91(図示せず)の径方向の寸法は、椀状隔壁部90aの根元側が大きく、先に行くに従って小さくなるテーパ形状である。鍔部90bには、鍔部90bを補強する補強リブ(図示せず)が径方向に放射状に6個形成されている。その中の任意の一つの補強リブに椀状隔壁部90aのリブ91が接続している。これにより、椀状隔壁部品90の成形金型の製作が容易になる。また、鍔部90bには、モールド固定子50のポンプ部40のポンプ部設置面63に形成される環状の第3の溝65に納まる環状リブ(図示せず)を備える。また、鍔部90bには、タッピングネジ160が通る孔90dが4箇所に形成されている。さらに、鍔部90bのケーシング41側の面に、Oリング80を収納する環状のOリング収納溝90cが形成されている。
Next, the configuration of the pump unit 40 will be described. 8 to 10 show the first embodiment, FIG. 8 is an exploded perspective view of the pump unit 40, FIG. 9 is a sectional view of the pump 10, and FIG. 10 is a perspective view of the casing 41 viewed from the shaft support unit 46 side. FIG. As shown in FIG. 8, the pump part 40 is comprised by the element shown below.
(1) Casing 41: It has a water suction port 42 (suction port) and a discharge port 43, and houses the impeller 60b of the rotor 60 therein. The casing 41 is molded using a thermoplastic resin such as PPS (polyphenylene sulfide). The casing 41 is provided with four boss portions 44 having screw holes 44a used at the time of assembling the pump portion 40 and the mold stator 50 at the end on the water inlet 42 side. Moreover, the casing 41 is provided with the attachment leg 45 which has the hole 45a for fixing the pump 10 to the tank unit 200 of the heat pump type hot-water supply apparatus 300, for example in three places.
(2) Thrust bearing 71: The material of the thrust bearing 71 is ceramic such as alumina. Since the rotor 60 is pressed against the casing 41 via the thrust bearing 71 by the pressure difference of water acting on the front and back of the impeller 60b of the rotor 60 during the operation of the pump 10, the thrust bearing is made of ceramic. The product is used to ensure wear resistance and slidability.
(3) Rotor 60: The rotor 60 includes a rotor portion 60a and an impeller 60b. The rotor portion 60a includes a ring-shaped (cylindrical) resin magnet 68 (an example of a magnet) formed from pellets obtained by kneading magnetic powder such as ferrite and resin, and a cylindrical sleeve bearing provided inside the resin magnet 68. 66 (for example, made of carbon) is integrated with a resin portion 67 such as PPE (polyphenylene ether) (see FIG. 9). The impeller 60b is a resin molded product such as PPE (polyphenylene ether). The rotor part 60a and the impeller 60b are joined by ultrasonic welding or the like. Since this embodiment is characterized by the rotor portion 60a of the rotor 60, details thereof will be described later.
(4) Shaft 70: One end of the shaft 70 is inserted into the shaft support portion 94 of the bowl-shaped partition wall component 90, and the other end of the shaft 70 is inserted into the shaft support portion 46 of the casing 41. One end of the shaft 70 inserted into the shaft support portion 94 of the bowl-shaped partition wall component 90 is inserted so as not to rotate with respect to the shaft support portion 94. Therefore, one end of the shaft 70 is cut out of a part of a circle having a predetermined length (axial direction) (D-shape). The hole of the shaft support portion 94 is also shaped accordingly. The other end of the shaft 70 inserted into the shaft support portion 46 (see also FIG. 10) of the casing 41 is also cut out of a circular portion having a predetermined length (axial direction) (D-shape). That is, the axis 70 is symmetrical in the length direction. However, the other end of the shaft 70 is rotatably inserted into the shaft support portion 46 of the casing 41. The reason why the shaft 70 is symmetrical in the length direction is that when the shaft 70 is inserted into the shaft support portion 94 of the bowl-shaped partition wall component 90, assembly is possible without being aware of the vertical direction.
(5) O-ring 80: The O-ring 80 seals the casing 41 of the pump unit 40 and the bowl-shaped partition wall component 90.
(6) Cage-like partition wall part 90: Cage-like partition wall part 90 is molded using a thermoplastic resin such as PPE (polyphenylene ether). The bowl-shaped partition wall component 90 includes a bowl-shaped partition wall portion 90 a that is a fitting portion with the mold stator 50 and a flange portion 90 b. The bowl-shaped partition wall 90a is composed of a circular bottom and a cylindrical partition. A shaft support portion 94 into which one end of the shaft 70 is inserted is erected at a substantially central portion of the inner surface of the circular bottom portion. Ribs 91 (not shown) extending in the axial direction are formed on the outer peripheral surface of the bowl-shaped partition wall 90a. The rib 91 (not shown) is formed to have a predetermined length in the axial direction from the base of the flange-shaped partition wall portion 90a (the connection portion with the flange portion 90b). And the dimension of the radial direction of the rib 91 (not shown) is a taper shape in which the base side of the bowl-shaped partition part 90a is large, and becomes small as it goes ahead. In the flange portion 90b, six reinforcing ribs (not shown) that reinforce the flange portion 90b are formed radially in the radial direction. The rib 91 of the bowl-shaped partition wall 90a is connected to any one of the reinforcing ribs. Thereby, manufacture of the shaping die of the bowl-shaped partition part 90 becomes easy. In addition, the flange portion 90 b includes an annular rib (not shown) that fits in an annular third groove 65 formed on the pump portion installation surface 63 of the pump portion 40 of the mold stator 50. In addition, holes 90d through which the tapping screw 160 passes are formed in the flange portion 90b at four locations. Furthermore, an annular O-ring storage groove 90c for storing the O-ring 80 is formed on the surface of the flange portion 90b on the casing 41 side.

ポンプ10は、椀状隔壁部品90にOリング80を設置した後、ケーシング41を椀状隔壁部品90に組付けポンプ部40を組立、モールド固定子50にポンプ部40を組付けタッピングネジ160等により固定して組立てられる。   In the pump 10, the O-ring 80 is installed in the bowl-shaped partition wall part 90, the casing 41 is assembled to the bowl-shaped partition wall part 90, the pump part 40 is assembled, the pump part 40 is assembled to the mold stator 50, and the tapping screw 160 or the like. Fixed and assembled.

モールド固定子50とポンプ部40とを組み付ける際に、モールド固定子50の内周部に軸方向に形成されている第1の溝(図示せず)と、椀状隔壁部品90の椀状隔壁部90aの外周面に軸方向に延びるリブ(図示せず)とが嵌合することにより、回転方向(周方向)の位置決めがなされる。   When assembling the mold stator 50 and the pump unit 40, a first groove (not shown) formed in the axial direction on the inner peripheral portion of the mold stator 50, and the bowl-shaped partition wall of the bowl-shaped partition wall component 90 Positioning in the rotational direction (circumferential direction) is achieved by fitting an axially extending rib (not shown) to the outer peripheral surface of the portion 90a.

モールド固定子50とポンプ部40との嵌合は、以下のように行われる。椀状隔壁部品90の椀状隔壁部90aの外周面の鍔部90bと反対側の部分にはリブ(図示せず)がないので、モールド固定子50の内周に、ポンプ部40の椀状隔壁部90aの先端部(リブ(図示せず)がない部分)を任意の位置で挿入することができる。   The mold stator 50 and the pump unit 40 are fitted as follows. Since there is no rib (not shown) on the part of the outer peripheral surface of the bowl-shaped partition wall part 90 a opposite to the collar part 90 b, the bowl-shaped partition part 90 has a bowl-like shape of the pump part 40 on the inner circumference of the mold stator 50. The tip of the partition wall 90a (the portion without a rib (not shown)) can be inserted at an arbitrary position.

挿入が進み、ポンプ部40の椀状隔壁部90aのリブ(図示せず)がモールド固定子50の内周の開口部側の端部までくると、モールド固定子50の内周部に軸方向に形成されている第1の溝(図示せず)と、椀状隔壁部品90の椀状隔壁部90aの外周面に軸方向に延びるリブ(図示せず)とが合わないとそれ以上は挿入できないが、ある程度モールド固定子50の内周にポンプ部40の椀状隔壁部90aが挿入されているので、回転させることで容易に第1の溝(図示せず)とリブ(図示せず)との位置を合わせることができる。   When the insertion proceeds and the rib (not shown) of the bowl-shaped partition wall 90a of the pump unit 40 reaches the end on the opening side of the inner periphery of the mold stator 50, it is axially directed to the inner periphery of the mold stator 50. If the first groove (not shown) formed in the groove and the rib (not shown) extending in the axial direction are not aligned with the outer peripheral surface of the bowl-shaped partition wall portion 90a of the bowl-shaped partition wall component 90, it is inserted further. However, since the bowl-shaped partition wall 90a of the pump unit 40 is inserted to some extent on the inner periphery of the mold stator 50, the first groove (not shown) and rib (not shown) can be easily rotated. And can be aligned.

第1の溝(図示せず)とリブ(図示せず)との位置が合えば、ポンプ部40の椀状隔壁部90aをモールド固定子50の内周に完全に挿入することができる。   If the positions of the first groove (not shown) and the rib (not shown) are aligned, the bowl-shaped partition wall 90a of the pump unit 40 can be completely inserted into the inner periphery of the mold stator 50.

椀状隔壁部品90の椀状隔壁部90aの内周には、椀状隔壁部品90の軸支持部94に挿入される軸70に回転子60が嵌められて収納される。従って、モールド固定子50と回転子60との同軸を確保するために、モールド固定子50の内周と椀状隔壁部品90の椀状隔壁部90aの外周との隙間はできるだけ小さい方がよい。例えば、その隙間は、0.02〜0.06mm程度に選ばれる。   On the inner periphery of the bowl-shaped partition wall portion 90 a of the bowl-shaped partition wall component 90, the rotor 60 is fitted and accommodated on the shaft 70 inserted into the shaft support portion 94 of the bowl-shaped partition wall component 90. Therefore, in order to ensure the coaxiality of the mold stator 50 and the rotor 60, the gap between the inner periphery of the mold stator 50 and the outer periphery of the bowl-shaped partition wall portion 90a of the bowl-shaped partition wall component 90 should be as small as possible. For example, the gap is selected to be about 0.02 to 0.06 mm.

モールド固定子50の内周と椀状隔壁部品90の椀状隔壁部90aの外周との隙間を小さくすると、モールド固定子50の内周に椀状隔壁部品90の椀状隔壁部90aを挿入する場合に、空気が逃げる道がないと挿入が困難になる。   When the gap between the inner periphery of the mold stator 50 and the outer periphery of the bowl-shaped partition wall portion 90a of the bowl-shaped partition wall component 90 is reduced, the bowl-shaped partition wall portion 90a of the bowl-shaped partition wall component 90 is inserted into the inner periphery of the mold stator 50. In some cases, insertion is difficult if there is no way for air to escape.

そのため、モールド固定子50の内周部に軸方向に形成される第1の溝(図示せず)を設けて、この第1の溝(図示せず)を空気の逃げ道としている。   Therefore, a first groove (not shown) formed in the axial direction is provided in the inner peripheral portion of the mold stator 50, and this first groove (not shown) serves as an air escape path.

また、椀状隔壁部品90と、モールド固定子50との周方向の位置決めが必要である。   Further, circumferential positioning of the bowl-shaped partition wall component 90 and the mold stator 50 is necessary.

椀状隔壁部品90とモールド固定子50との周方向の位置決めを行うために、モールド固定子50の内周部に軸方向に形成される第1の溝(図示せず)に、椀状隔壁部90aのリブ(図示せず)が嵌るようにしている。   In order to perform circumferential positioning of the bowl-shaped partition wall component 90 and the mold stator 50, a bowl-shaped partition wall is formed in a first groove (not shown) formed in the axial direction on the inner peripheral portion of the mold stator 50. A rib (not shown) of the portion 90a is fitted.

空気の逃げ道であるモールド固定子50の第1の溝(図示せず)を、椀状隔壁部90aのリブ(図示せず)が塞いでしまうと、椀状隔壁部品90のモールド固定子50への挿入が困難になる。そこで、椀状隔壁部品90がモールド固定子50に完全に挿入された状態で、モールド固定子50の第1の溝(図示せず)と椀状隔壁部90aのリブ(図示せず)との間に隙間ができるようにしている。その隙間は、最も狭い所(リブ(図示せず)の径方向の寸法が最も大きい所)で1mm前後にしている。   If the rib (not shown) of the hook-shaped partition wall portion 90a blocks the first groove (not shown) of the mold stator 50 that is an air escape path, the mold stator 50 of the hook-shaped partition wall component 90 is closed. Insertion becomes difficult. Therefore, in a state where the bowl-shaped partition wall component 90 is completely inserted into the mold stator 50, the first groove (not shown) of the mold stator 50 and the rib (not shown) of the bowl-shaped partition wall 90a. There is a gap between them. The gap is set to about 1 mm at the narrowest place (where the radial dimension of the rib (not shown) is the largest).

このように、モールド固定子50の内周と椀状隔壁部品90の椀状隔壁部90aの外周との隙間はできるだけ小さくして(例えば、0.02〜0.06mm程度)モールド固定子50回転子60との同軸を確保しつつ、且つ、モールド固定子50の内周部に軸方向に形成される空気の逃げ道となる第1の溝(図示せず)を設けて、モールド固定子50の内周への椀状隔壁部品90の挿入を容易としている。さらに、椀状隔壁部90aに、椀状隔壁部90aの根元(鍔部90bとの連結部)から軸方向に所定長さリブ(図示せず)を形成し、リブ(図示せず)の径方向の寸法を、椀状隔壁部90aの根元側が大きく、先に行くに従って小さくなるテーパ形状とし、リブ(図示せず)がモールド固定子50の第1の溝(図示せず)に所定の径方向の隙間(1mm程度)ができる状態で嵌合するようにしているので、モールド固定子50と椀状隔壁部品90との位置決めができるとともに、モールド固定子50と椀状隔壁部品90との組付けを容易に行うことができる。   As described above, the gap between the inner periphery of the mold stator 50 and the outer periphery of the bowl-shaped partition wall portion 90a of the bowl-shaped partition wall component 90 is made as small as possible (for example, about 0.02 to 0.06 mm), and the mold stator 50 rotates. A first groove (not shown) serving as an air escape path formed in the axial direction is provided in the inner peripheral portion of the mold stator 50 while ensuring the coaxiality with the child 60. It is easy to insert the bowl-shaped partition wall component 90 into the inner periphery. Further, a rib (not shown) having a predetermined length is formed in the bowl-shaped partition wall portion 90a in the axial direction from the base of the bowl-shaped partition wall portion 90a (connecting portion with the flange portion 90b), and the diameter of the rib (not shown) The dimension of the direction is a tapered shape in which the base side of the bowl-shaped partition wall portion 90a is large and decreases toward the front, and a rib (not shown) has a predetermined diameter in the first groove (not shown) of the mold stator 50. Since the fitting is performed with a gap in the direction (about 1 mm), the mold stator 50 and the bowl-shaped partition wall part 90 can be positioned, and the mold stator 50 and the bowl-shaped partition wall part 90 are assembled. Can be easily attached.

図11乃至図14は実施の形態1を示す図で、図11は回転子部60aの断面図(図13のA−A断面図)、図12は回転子部60aを羽根車取付部67a側から見た側面図、図13は回転子部60aを羽根車取付部67aの反対側から見た側面図、図14はスリーブ軸受66の拡大断面図である。   11 to 14 are diagrams showing the first embodiment. FIG. 11 is a cross-sectional view of the rotor portion 60a (AA cross-sectional view of FIG. 13), and FIG. 12 shows the rotor portion 60a on the impeller mounting portion 67a side. 13 is a side view of the rotor portion 60a viewed from the side opposite to the impeller mounting portion 67a, and FIG. 14 is an enlarged cross-sectional view of the sleeve bearing 66.

図11乃至図14を参照しながら回転子部60aについて説明する。図11乃至図13に示すように、回転子部60aは、少なくとも以下の要素を備える。そして、例えば、PPE(ポリフェニレンエーテル)等の熱可塑性樹脂(樹脂部67)により、樹脂マグネット68と、スリーブ軸受66とが一体成形される。
(1)樹脂マグネット68;
(2)スリーブ軸受66;
(3)樹脂部67(熱可塑性樹脂で構成される部分、羽根車60bを取付ける羽根車取付部67aは、熱可塑性樹脂で構成される樹脂部67に形成される)。
The rotor section 60a will be described with reference to FIGS. As shown in FIGS. 11 to 13, the rotor section 60 a includes at least the following elements. For example, the resin magnet 68 and the sleeve bearing 66 are integrally formed of a thermoplastic resin (resin portion 67) such as PPE (polyphenylene ether).
(1) Resin magnet 68;
(2) sleeve bearing 66;
(3) Resin portion 67 (the portion made of thermoplastic resin, the impeller mounting portion 67a for attaching the impeller 60b is formed in the resin portion 67 made of thermoplastic resin).

樹脂マグネット68は、略リング状(円筒状)で、フェライト等の磁性粉末と樹脂を混練したペレットで成形したものである。   The resin magnet 68 has a substantially ring shape (cylindrical shape) and is formed of pellets obtained by kneading a magnetic powder such as ferrite and a resin.

スリーブ軸受66(例えば、カーボン製)は、樹脂マグネット68の内側に設けられる。スリーブ軸受66は、形状が円筒状である。スリーブ軸受66は、ポンプ10の椀状隔壁部品90に組み付けられた軸70に嵌合して回転するため、軸受けの材料に好適な焼結カーボン、カーボン繊維を添加したPPS(ポリフェニレンサルファイド)等の熱可塑性樹脂、セラミック等で製作される。スリーブ軸受66は、概略軸中心から両端に向かって外径が小さくなる抜きテーパを備え、外周側の概略軸中心に回り止めとなる半球状の突起66a(図14参照)を複数備える。   The sleeve bearing 66 (for example, made of carbon) is provided inside the resin magnet 68. The sleeve bearing 66 has a cylindrical shape. Since the sleeve bearing 66 rotates by being fitted to the shaft 70 assembled to the bowl-shaped partition wall component 90 of the pump 10, sintered carbon suitable for a bearing material, PPS (polyphenylene sulfide) added with carbon fiber, or the like. Manufactured with thermoplastic resin, ceramic, etc. The sleeve bearing 66 has a draft taper whose outer diameter decreases from the approximate axial center toward both ends, and includes a plurality of hemispherical protrusions 66a (see FIG. 14) that prevent rotation at the approximate axial center on the outer peripheral side.

羽根車取付部67a側の樹脂マグネット68の端面に形成される樹脂部67には、樹脂成形用金型の上型に設けられるマグネット押さえ部の箇所に第1の凹部67bが形成される。第1の凹部67bは、図11の例では、略中央部(径方向)に形成される。第1の凹部67bは、樹脂マグネット68の突起68aと対向する位置に形成される。   In the resin portion 67 formed on the end surface of the resin magnet 68 on the impeller mounting portion 67a side, a first recess 67b is formed at a location of a magnet pressing portion provided in the upper mold of the resin molding die. In the example of FIG. 11, the first concave portion 67b is formed in a substantially central portion (radial direction). The first recess 67 b is formed at a position facing the protrusion 68 a of the resin magnet 68.

また、羽根車取付部67aと反対側の樹脂マグネット68の内周面に形成される樹脂部67には、樹脂成形用金型の下型に設けられる位置決め用突起(図示せず)に嵌め合わされる切欠き67dが形成される(図11、図13参照)。切欠き67dは、図13の例では、略90°間隔で4箇所に形成される。切欠き67dは、樹脂マグネット68の切欠き68b(後述、図15)の位置に形成される。   Further, the resin portion 67 formed on the inner peripheral surface of the resin magnet 68 on the side opposite to the impeller mounting portion 67a is fitted with a positioning projection (not shown) provided on the lower mold of the resin molding die. A notch 67d is formed (see FIGS. 11 and 13). In the example of FIG. 13, the notches 67d are formed at four locations at approximately 90 ° intervals. The notch 67d is formed at a position of a notch 68b (described later, FIG. 15) of the resin magnet 68.

例えば、PPE(ポリフェニレンエーテル)等の熱可塑性樹脂(樹脂部67)により、樹脂マグネット68と、スリーブ軸受66とが一体成形される。   For example, the resin magnet 68 and the sleeve bearing 66 are integrally formed of a thermoplastic resin (resin portion 67) such as PPE (polyphenylene ether).

図15乃至図17は実施の形態1を示す図で、図15は樹脂マグネット68の断面図(図17のB−B断面図)、図16は樹脂マグネット68を突起68a側から見た側面図、図17は樹脂マグネット68を突起68aの反対側から見た側面図である。   15 to 17 show the first embodiment. FIG. 15 is a sectional view of the resin magnet 68 (BB sectional view of FIG. 17). FIG. 16 is a side view of the resin magnet 68 viewed from the protrusion 68a side. FIG. 17 is a side view of the resin magnet 68 as viewed from the opposite side of the protrusion 68a.

次に、図15乃至図17を参照しながら樹脂マグネット68の構成を説明する。ここで示す樹脂マグネット68は、磁極数が8極のものである。樹脂マグネット68は、回転子60に成形された状態で、羽根車取付部67aと反対側の端面の内周側に、テーパ状の切欠き68bを周方向に略等間隔に複数個備える。図17の例では、切欠き68bは8個である。切欠き68bは、内側よりも端面側の径が大きくなるテーパ形状である。   Next, the configuration of the resin magnet 68 will be described with reference to FIGS. 15 to 17. The resin magnet 68 shown here has eight magnetic poles. The resin magnet 68 is provided with a plurality of tapered notches 68b at substantially equal intervals in the circumferential direction on the inner peripheral side of the end surface opposite to the impeller mounting portion 67a in a state of being molded in the rotor 60. In the example of FIG. 17, there are eight notches 68b. The notch 68b has a tapered shape in which the diameter on the end face side is larger than the inner side.

樹脂マグネット68は、テーパ状の切欠き68bが形成された端面と反対側の端面から所定の深さの内周側に、略角形状(円弧形状)の突起68aを周方向に略等間隔に複数個備える。図16の例では、突起68aは4個である。   The resin magnet 68 has substantially square (arc-shaped) protrusions 68a at substantially equal intervals in the circumferential direction from the end surface opposite to the end surface where the tapered notch 68b is formed to the inner peripheral side of a predetermined depth. Provide multiple. In the example of FIG. 16, there are four protrusions 68a.

突起68aは、プラスチックマグネット(樹脂マグネット素材)が供給されるゲート68cの位置と、略同一放射線状に樹脂マグネット68の中心部に向かって隆起する形で形成されている。   The protrusion 68a is formed so as to protrude toward the center of the resin magnet 68 in the same radial shape as the position of the gate 68c to which the plastic magnet (resin magnet material) is supplied.

図16に示すように、突起68aは、側面から見て略角形状(円弧形状)である。突起68aがゲート68cの位置と同一放射線状に位置することで、突起68aの形成が容易となり、樹脂マグネット68の生産性が向上する。即ち、後述する変形例1の樹脂マグネット468(図18乃至図20)のように、突起68aがゲート68c間に位置した場合、突起68aはウエルド位置(樹脂のフローフロント(流動先端部)が会合した場所)となり樹脂が充填しにくい、強度不足などの問題が起こりやすく、成形圧力を上げないと成形できない。突起68aがゲート68c位置に配置することで、上記の問題点を解決し、マグネットの品質向上と生産性向上が可能となる。突起68aの形状は、略角形状(円弧形状)に限定されるものではない。三角、台形、半円、多角形等の形状でもよい。   As shown in FIG. 16, the protrusion 68a has a substantially square shape (arc shape) when viewed from the side. Since the protrusion 68a is located in the same radial shape as the gate 68c, the formation of the protrusion 68a is facilitated, and the productivity of the resin magnet 68 is improved. That is, when the protrusion 68a is positioned between the gates 68c as in a resin magnet 468 (FIGS. 18 to 20) of Modification 1 described later, the protrusion 68a is welded (resin flow front (flow front end) is associated). ) And the resin is difficult to fill, and problems such as insufficient strength are likely to occur, and molding cannot be performed without increasing the molding pressure. By disposing the protrusion 68a at the position of the gate 68c, the above-described problems can be solved, and the quality of the magnet and the productivity can be improved. The shape of the protrusion 68a is not limited to a substantially square shape (arc shape). A shape such as a triangle, a trapezoid, a semicircle, or a polygon may be used.

樹脂マグネット68は、回転子60に成形された状態で、羽根車取付部67aが形成される側に、プラスチックマグネット(樹脂マグネット素材)が供給されるゲート68cを備え、ゲートの周囲は所定の深さの略円柱状の凹部68dになっている。   The resin magnet 68 includes a gate 68c to which a plastic magnet (resin magnet material) is supplied on the side where the impeller mounting portion 67a is formed in a state where the resin magnet 68 is molded into the rotor 60, and the periphery of the gate has a predetermined depth. This is a substantially cylindrical recess 68d.

樹脂マグネット68の中空部は、突起68aが形成される端面から概略軸方向の中心位置までストレートで、かつ、突起68aが形成される端面の反対側端面から概略軸方向の中心位置までは抜きテーパである。そのため、樹脂マグネット68の生産性が向上し、製造コストの低減が可能となっている。即ち、マグネットの中空部が抜きテーパとなっていることで、金型(上型)への取られを防止し、マグネットの生産性向上が可能となる。マグネットを成形する金型は、突起68aの上型と下型に分けられ、下型で形成される中空部の一部がストレートとなっていることで、より上型への取られを防止し、マグネットの生産性向上が可能となる。下型からはエジェクタピンで押し出して取り出す。   The hollow portion of the resin magnet 68 is straight from the end face where the protrusion 68a is formed to the center position in the approximate axial direction, and is tapered from the end face opposite to the end face where the protrusion 68a is formed to the center position in the approximate axial direction. It is. Therefore, the productivity of the resin magnet 68 is improved, and the manufacturing cost can be reduced. That is, since the hollow portion of the magnet is tapered and tapered, it can be prevented from being taken into the mold (upper mold) and the productivity of the magnet can be improved. The mold for molding the magnet is divided into an upper mold and a lower mold of the protrusion 68a, and a part of the hollow portion formed by the lower mold is straight, thereby preventing the mold from being taken into the upper mold. , Magnet productivity can be improved. Remove from the lower mold by pushing it out with ejector pins.

図15乃至図17に示す樹脂マグネット68は、突起68aがゲート68cの位置と同一放射線状に位置することで、突起68aの形成が容易となり、樹脂マグネット68の生産性が向上するが、反面、図16に示すように磁極数と突起数が非同数の構成の場合、略中心に突起68aが存在する磁極と、略中心に突起68aが存在しない磁極とが交互に混在することになる。突起68aのある磁極は、他の磁極と比べて厚肉となり高磁力となるため、突起68aが極中心にある場合は極数と同数でないと磁力がアンバランスとなる。   In the resin magnet 68 shown in FIGS. 15 to 17, the protrusion 68a is positioned in the same radial shape as the position of the gate 68c, thereby facilitating the formation of the protrusion 68a and improving the productivity of the resin magnet 68. As shown in FIG. 16, in the case where the number of magnetic poles and the number of protrusions are not the same, the magnetic poles having the protrusion 68a at the approximate center and the magnetic poles having the protrusion 68a not at the approximate center are alternately mixed. The magnetic pole with the protrusion 68a is thicker and has a higher magnetic force than the other magnetic poles. Therefore, when the protrusion 68a is at the pole center, the magnetic force is unbalanced unless the number is the same as the number of poles.

図18乃至図20は実施の形態1を示す図で、図18は変形例1の樹脂マグネット468の断面図(図20のC−C断面図)、図19は変形例1の樹脂マグネット468を突起468a側から見た側面図、図20は変形例1の樹脂マグネット468を突起468aの反対側から見た側面図である。   18 to 20 show the first embodiment. FIG. 18 is a cross-sectional view of the resin magnet 468 of the first modification (C-C cross-sectional view of FIG. 20), and FIG. 19 shows the resin magnet 468 of the first modification. The side view seen from the processus | protrusion 468a side, FIG. 20 is the side view which looked at the resin magnet 468 of the modification 1 from the other side of the processus | protrusion 468a.

図18乃至図20に示す変形例1の樹脂マグネット468は、4個の突起468aがゲート468c(全部で8個)の間に形成されている。即ち、4個の突起468aは、極間に形成されている。ゲート468cと突起468aは、周方向に略等間隔に形成されている。従って、8箇所ある極間は、突起468aが存在するものと、突起468aが存在しないものとが交互に配置されている。   In the resin magnet 468 of Modification 1 shown in FIGS. 18 to 20, four protrusions 468a are formed between the gates 468c (eight in total). That is, the four protrusions 468a are formed between the poles. The gate 468c and the protrusion 468a are formed at substantially equal intervals in the circumferential direction. Accordingly, between the eight poles, ones with projections 468a and ones without projections 468a are alternately arranged.

変形例1の樹脂マグネット468の長所は、各磁極の肉厚が概略均一であるから、各磁極の磁力がアンバランスにならない点である。反面、ウエルド位置(樹脂のフローフロント(流動先端部)が会合した場所)が突起468aの位置になるため、突起468aの部分に樹脂が十分に充填されずに、強度不足などの問題が起こりやすい。   The advantage of the resin magnet 468 of Modification 1 is that the magnetic force of each magnetic pole does not become unbalanced because the thickness of each magnetic pole is substantially uniform. On the other hand, since the weld position (where the resin flow front (flow front end) meets) is the position of the protrusion 468a, the protrusion 468a is not sufficiently filled with resin, and problems such as insufficient strength are likely to occur. .

図21乃至図23は実施の形態1を示す図で、変形例2の樹脂マグネット568の断面図(図23のD−D断面図)、図22は変形例2の樹脂マグネット568を突起568a側から見た側面図、図23は変形例2の樹脂マグネット568を突起568aの反対側から見た側面図である。   FIGS. 21 to 23 are diagrams showing the first embodiment, and a sectional view of the resin magnet 568 of the second modification (a sectional view taken along the line DD in FIG. 23). FIG. 22 shows the resin magnet 568 of the second modification on the protrusion 568a side. FIG. 23 is a side view of the resin magnet 568 of Modification 2 as viewed from the opposite side of the protrusion 568a.

図21乃至図23に示す変形例2の樹脂マグネット568のように、樹脂マグネット568の磁極中心をゲート568cの位置とし、且つ突起568aを樹脂マグネット568の磁極数(8極)と同数とすることで樹脂マグネット568の磁力が向上し、ポンプ用電動機の性能向上を図ることができる。即ち、ゲート568cの位置は、樹脂マグネット568の配向がかかりやすいため、ゲート568cの位置を磁極中心とすることで樹脂マグネット568の配向精度を向上することが可能となる。   Like the resin magnet 568 of the modified example 2 shown in FIGS. 21 to 23, the center of the magnetic pole of the resin magnet 568 is set to the position of the gate 568c, and the number of protrusions 568a is the same as the number of magnetic poles (8 poles) of the resin magnet 568. Thus, the magnetic force of the resin magnet 568 is improved, and the performance of the pump motor can be improved. That is, since the resin magnet 568 is easily oriented at the position of the gate 568c, the orientation accuracy of the resin magnet 568 can be improved by setting the position of the gate 568c as the center of the magnetic pole.

また、突起568aがゲート568cの位置と同一放射線状に位置することで、突起568aの形成が容易となり、樹脂マグネット568の生産性を向上することが可能となる。   Further, since the protrusion 568a is located in the same radial shape as the position of the gate 568c, the formation of the protrusion 568a is facilitated, and the productivity of the resin magnet 568 can be improved.

次に、ポンプ用電動機の回転子60の熱可塑性樹脂による一体成形について説明する。樹脂マグネット68を例とする。   Next, integral molding of the rotor 60 of the pump motor with the thermoplastic resin will be described. The resin magnet 68 is taken as an example.

樹脂マグネット68とスリーブ軸受66とを一体に成形する金型は、上型と下型で構成される(図示せず)。先ず、スリーブ軸受66が下型にセットされる。スリーブ軸受66は、横断面形状が対称であるため、周方向の向きを合わせることなく金型にセットすることができる。スリーブ軸受66は、外周部に突起66a(図14参照)を複数備えるが、突起66aの位置は特に限定するものではない。そのため、作業工程が簡素化されて生産性が向上し、製造コストの低減が可能となる。   A mold for integrally molding the resin magnet 68 and the sleeve bearing 66 includes an upper mold and a lower mold (not shown). First, the sleeve bearing 66 is set in the lower mold. Since the sleeve bearing 66 has a symmetrical cross-sectional shape, it can be set in the mold without matching the circumferential direction. The sleeve bearing 66 includes a plurality of protrusions 66a (see FIG. 14) on the outer peripheral portion, but the position of the protrusion 66a is not particularly limited. Therefore, the work process is simplified, the productivity is improved, and the manufacturing cost can be reduced.

スリーブ軸受66は、下型にセットされた時、下型に備えるスリーブ軸受挿入部(図示せず)に、スリーブ軸受66の内径が保持されることにより、スリーブ軸受66と後工程でセットされる樹脂マグネット68との同軸度の精度が確保される。   When the sleeve bearing 66 is set in the lower mold, the sleeve bearing 66 is set in a subsequent process by holding the inner diameter of the sleeve bearing 66 in a sleeve bearing insertion portion (not shown) provided in the lower mold. The accuracy of the coaxiality with the resin magnet 68 is ensured.

樹脂マグネット68は、スリーブ軸受66が下型にセットされた後に、樹脂マグネット68の一方の端面(ポンプ用電動機の回転子60の状態で、羽根車取付部67aと反対側の端面)の内径に備えるテーパ状の切欠き68bが下型に設けられる位置決め用突起(図示せず)に嵌め合わされてセットされる。図17の例では、切欠き68bは8個あるが、その中の略90°間隔の4個が下型の位置決め用突起(図示せず)に嵌め合わされる。切欠き68bを8個設けるのは、樹脂マグネット68を下型にセットする際の作業性を向上させるためである。   The resin magnet 68 has an inner diameter of one end surface of the resin magnet 68 (the end surface opposite to the impeller mounting portion 67a in the state of the rotor 60 of the pump motor) after the sleeve bearing 66 is set in the lower mold. The taper-shaped notch 68b provided is fitted and set to a positioning projection (not shown) provided on the lower mold. In the example of FIG. 17, there are eight notches 68b, and four of them are fitted with lower positioning protrusions (not shown) at approximately 90 ° intervals. The eight cutouts 68b are provided in order to improve workability when the resin magnet 68 is set in the lower mold.

さらに、上型が有するマグネット押さえ部(図示せず)を、樹脂マグネット68の他方の端面(ポンプ用電動機の回転子60の状態で、羽根車取付部67a側の端面)の内周部に形成された略角形状の突起68aに軸方向から押し当てる。それにより、スリーブ軸受66と樹脂マグネット68との位置関係および同軸が確保される。   Further, a magnet pressing portion (not shown) of the upper mold is formed on the inner peripheral portion of the other end surface of the resin magnet 68 (the end surface on the impeller mounting portion 67a side in the state of the rotor 60 of the pump motor). It presses against the substantially square-shaped protrusion 68a made from the axial direction. Thereby, the positional relationship and coaxiality of the sleeve bearing 66 and the resin magnet 68 are ensured.

図16の例では、樹脂マグネット68の内周の略角形状(円弧形状)の突起68aは、全部で4個あり、突起68aの金型設置面(金型で押えられる部分)は一体成形後に表出する。突起68aが4個となっているのは、樹脂マグネット68の位置決め精度を確保すると同時に、一体成形に用いる熱可塑性樹脂の流入経路を確保することで、一体成形時の成形条件を緩和し、生産性を向上するためである。   In the example of FIG. 16, there are a total of four substantially angular (arc-shaped) protrusions 68a on the inner periphery of the resin magnet 68, and the mold installation surface (the part pressed by the mold) of the protrusions 68a is formed after integral molding. Express. The four protrusions 68a ensure the positioning accuracy of the resin magnet 68 and at the same time secure the inflow path of the thermoplastic resin used for integral molding, thereby reducing the molding conditions during integral molding and producing. This is to improve the performance.

下型の樹脂マグネット68の挿入部(図示せず)と樹脂マグネット68の外径との間に隙間がある場合でも、上型が有する突起押さえ部(図示せず)が、内径押さえ部(位置決め用突起)との同軸度を確保することにより、スリーブ軸受66と樹脂マグネット68との位置関係及び同軸度の確保が可能となり、ポンプ10の品質向上を図ることが可能となる。   Even when there is a gap between the insertion portion (not shown) of the lower mold resin magnet 68 and the outer diameter of the resin magnet 68, the protrusion holding portion (not shown) of the upper die is fixed to the inner diameter holding portion (positioning). By securing the coaxiality with the projections), the positional relationship and coaxiality between the sleeve bearing 66 and the resin magnet 68 can be secured, and the quality of the pump 10 can be improved.

また逆に、下型の樹脂マグネット68の挿入部(図示せず)と樹脂マグネット68の外径との間に隙間を作ることにより、樹脂マグネット68を金型にセットする作業性が向上し、製造コストが低減される。   Conversely, by creating a gap between the insertion portion (not shown) of the lower mold resin magnet 68 and the outer diameter of the resin magnet 68, the workability of setting the resin magnet 68 in the mold is improved. Manufacturing costs are reduced.

図26乃至図35は比較のために示す図で、図26は従来例1の回転子部760の断面図(図27のX−X断面図)、図27は従来例1の回転子部760aを羽根車取付部767a側から見た側面図、図28は従来例1の樹脂マグネット768の断面図(図30のY−Y断面図)、図29は従来例1の樹脂マグネット768を切欠き768f側から見た側面図、図30は従来例1の樹脂マグネット768を切欠き768fの反対側から見た側面図、図31は従来例2の回転子部860aの断面図(図32のZ−Z断面図)、図32は従来例2の回転子部860aを羽根車取付部867a側から見た側面図、図33は従来例2の樹脂マグネット868の断面図(図35のF−F断面図)、図34は従来例2の樹脂マグネット868を切欠き868bの反対側から見た側面図、図35は従来例2の樹脂マグネット868を切欠き868b側から見た側面図である。尚、以下の説明では、図26乃至図35について、全ての符号の説明は省略する。   FIGS. 26 to 35 are views for comparison, FIG. 26 is a cross-sectional view of the rotor portion 760 of the conventional example 1 (XX cross-sectional view of FIG. 27), and FIG. FIG. 28 is a cross-sectional view of the resin magnet 768 of the conventional example 1 (YY cross-sectional view of FIG. 30), and FIG. 29 is a cutaway view of the resin magnet 768 of the conventional example 1. FIG. 30 is a side view of the conventional resin magnet 768 cut away from the notch 768f, and FIG. 31 is a cross-sectional view of the rotor portion 860a of the conventional example 2 (Z in FIG. 32). -Z cross-sectional view), FIG. 32 is a side view of the rotor portion 860a of the conventional example 2 as viewed from the impeller mounting portion 867a side, and FIG. 33 is a cross-sectional view of the resin magnet 868 of the conventional example 2 (FF of FIG. 34 is a cutaway view of the resin magnet 868 of the second conventional example. b side view from the opposite side of FIG. 35 is a side view of the resin magnet 868 in the conventional example 2 from the notch 868b side. In the following description, the description of all reference numerals for FIGS. 26 to 35 is omitted.

従来例1のポンプ用電動機の回転子760の回転子部760aは、樹脂マグネット768の略角形状の切欠き768f(図28参照)の中の略180°間隔の2個に、上型に設けられた左右スライド機構が有する切欠き押さえ部(図示せず)が押し当てられるため、樹脂部767はその箇所に凹部767gが形成される。この凹部767gは、ポンプ用電動機の回転子760が水中で回転した際の摩擦損失の一因となる。   The rotor portion 760a of the rotor 760 of the pump motor of Conventional Example 1 is provided on the upper die at two intervals of about 180 ° in the substantially rectangular notch 768f (see FIG. 28) of the resin magnet 768. Since the notch holding portion (not shown) of the left / right slide mechanism is pressed against, the resin portion 767 is formed with a recess 767g. The recess 767g contributes to friction loss when the rotor 760 of the pump motor rotates in water.

また、従来例2のポンプ用電動機の回転子860の回転子部860aは、つりあい穴867e(図31参照)を経路とした循環流(水)による循環損失が増加する。そのため、羽根車(図示せず)の表裏の圧力差が比較的小さく、つり合い穴867eを設ける必要がない場合には、不要な循環経路を設けることとなり、ポンプ効率が低下する恐れがあった。   Further, in the rotor portion 860a of the rotor 860 of the pump motor according to the conventional example 2, the circulation loss due to the circulating flow (water) through the balance hole 867e (see FIG. 31) increases. Therefore, when the pressure difference between the front and back of the impeller (not shown) is relatively small and it is not necessary to provide the countersunk hole 867e, an unnecessary circulation path is provided, which may reduce pump efficiency.

従来例1のポンプ用電動機の回転子760の回転子部760a(図26参照)は、つり合い穴767eを設ける必要がなければ廃止すればよい。しかし、従来例2の回転子部860a(図31参照)では、つり合い穴形成用のピン(図示せず)で樹脂マグネット868を押さえているため、つり合い穴867aを廃止できない。   The rotor portion 760a (see FIG. 26) of the rotor 760 of the pump motor of Conventional Example 1 may be eliminated if it is not necessary to provide the countersunk hole 767e. However, in the rotor portion 860a of the conventional example 2 (see FIG. 31), since the resin magnet 868 is pressed by a pin (not shown) for forming a balance hole, the balance hole 867a cannot be eliminated.

これに対し、本発明のポンプ用電動機の回転子60の場合は、その外周面に上型の左右スライド機構が有する切欠き押さえ部(図示せず)による樹脂部67の凹部が存在しない。そのため、ポンプ用電動機の回転子60が水中で回転した際の摩擦損失を低減でき、ポンプ10の性能向上を図ることが可能となる。また、つり合い穴が存在する場合と比べて、つり合い穴を経由した循環経路による循環損失を低減でき、ポンプ10の性能向上を図ることが可能となる。   On the other hand, in the case of the rotor 60 of the pump motor according to the present invention, there is no concave portion of the resin portion 67 by the notch holding portion (not shown) of the upper left and right slide mechanism on the outer peripheral surface. Therefore, the friction loss when the rotor 60 of the pump motor rotates in water can be reduced, and the performance of the pump 10 can be improved. Moreover, compared with the case where a countersink exists, the circulation loss by the circulation path | route via a counterhole can be reduced, and it becomes possible to aim at the performance improvement of the pump 10. FIG.

樹脂マグネット68とスリーブ軸受66とが金型にセットされた後、PPE(ポリフェニレンエーテル)等の熱可塑性樹脂が射出成形されて、回転子部60aが形成される。このとき、樹脂マグネット68の金型で押さえられない切欠き68b(図17)、即ち4箇所の切欠き68bと、樹脂マグネット68の射出成形時のゲート68c(図16)の周囲に設けられた凹部68d(図16)とが熱可塑性樹脂の樹脂部67に埋設され回転トルクの伝達部分となる。   After the resin magnet 68 and the sleeve bearing 66 are set in a mold, a thermoplastic resin such as PPE (polyphenylene ether) is injection molded to form the rotor portion 60a. At this time, notches 68b (FIG. 17) that cannot be pressed by the mold of the resin magnet 68, that is, the four notches 68b, and the gate 68c (FIG. 16) at the time of injection molding of the resin magnet 68 are provided. The recessed portion 68d (FIG. 16) is embedded in the resin portion 67 of thermoplastic resin and serves as a rotational torque transmission portion.

樹脂マグネット68とスリーブ軸受66とが熱可塑性樹脂にて一体に成形された後、樹脂マグネット68に着磁を施す際、回転子部60aの羽根車取付部67aと反対側の樹脂マグネット68端面の内周面に形成される切欠き67d(図13では4箇所)を着磁時の位置決めに利用することで、精度の良い着磁が可能となる。   After the resin magnet 68 and the sleeve bearing 66 are integrally formed of thermoplastic resin, when the resin magnet 68 is magnetized, the end surface of the resin magnet 68 opposite to the impeller mounting portion 67a of the rotor portion 60a is formed. By using the notches 67d (four locations in FIG. 13) formed on the inner peripheral surface for positioning during magnetization, accurate magnetization can be achieved.

以上のように、本実施の形態によれば、以下の効果を奏する。
(1)ポンプ用電動機の回転子60の熱可塑性樹脂(樹脂部67)による一体成形時、上型が有する突起押さえ部(図示せず)を、樹脂マグネット68のポンプ用電動機の回転子60の状態で、羽根車取付部67a側の端面の内周部に形成された略角形状の突起68aに押し当てることにより、スリーブ軸受66と樹脂マグネット68との位置関係および同軸が確保される。
(2)また、本実施の形態のポンプ用電動機の回転子60は、その外周面に上型の左右スライド機構が有する切欠き押さえ部(図示せず)による樹脂部の凹部(例えば、図25の凹部767g)やつり合い穴(例えば、図25のつり合い穴767e)による循環経路が存在しないため、ポンプ用電動機の回転子60が水中で回転した際の摩擦損失や循環損失を低減でき、ポンプ10の性能向上が可能となる。
(3)樹脂マグネット68とスリーブ軸受66とが金型にセットされた後、PPS(ポリフェニレンサルファイド)等の熱可塑性樹脂が射出成形されて、ポンプ用電動機の回転子60が形成されるときに、樹脂マグネット68の金型で押さえられない切欠き68b(図17参照)、即ち4箇所の切欠き68bと、樹脂マグネット68の射出成形時のゲート68cの周囲に設けられた凹部68d(図16参照)とが熱可塑性樹脂の樹脂部67に埋設されるので、樹脂マグネット68から樹脂部67へ確実に回転トルクを伝達することができる。
(4)樹脂マグネット68の着磁時に、ポンプ用電動機の回転子60の羽根車取付部67aと反対側の樹脂マグネット68端面の内周面に形成される切欠き68bを着磁時の位置決めに利用することで、精度の良い着磁が可能となる。
As described above, according to the present embodiment, the following effects can be obtained.
(1) At the time of integral molding of the rotor 60 of the pump motor 60 with the thermoplastic resin (resin portion 67), the protrusion pressing portion (not shown) of the upper die is used as the rotor 60 of the pump motor of the resin magnet 68. In this state, the positional relationship and the coaxial relationship between the sleeve bearing 66 and the resin magnet 68 are ensured by pressing against the substantially square-shaped protrusion 68a formed on the inner peripheral portion of the end surface on the impeller mounting portion 67a side.
(2) Further, the rotor 60 of the pump electric motor of the present embodiment has a resin part recess (for example, FIG. 25) formed by a notch holding part (not shown) of the upper left and right slide mechanism on the outer peripheral surface thereof. In this case, the friction loss and the circulation loss when the rotor 60 of the pump motor rotates in water can be reduced. It is possible to improve the performance.
(3) After the resin magnet 68 and the sleeve bearing 66 are set in the mold, a thermoplastic resin such as PPS (polyphenylene sulfide) is injection-molded to form the rotor 60 of the pump motor. Notches 68b (see FIG. 17) that cannot be pressed by the mold of the resin magnet 68, that is, four notches 68b, and recesses 68d provided around the gate 68c during the injection molding of the resin magnet 68 (see FIG. 16). ) Is embedded in the resin portion 67 of the thermoplastic resin, the rotational torque can be reliably transmitted from the resin magnet 68 to the resin portion 67.
(4) When magnetizing the resin magnet 68, the notch 68b formed on the inner peripheral surface of the end surface of the resin magnet 68 opposite to the impeller mounting portion 67a of the rotor 60 of the pump motor is used for positioning at the time of magnetization. By using it, it is possible to magnetize with high accuracy.

図24は実施の形態1を示す図で、ポンプ10の製造工程を示す図である。図24により、ポンプ10の製造工程を説明する。
(1)ステップ1:固定子47を製造する。先ず、厚さが0.1〜0.7mm程度の電磁鋼板が帯状に打ち抜かれ、かしめ、溶接、接着等で積層され、薄肉連結部で連結された帯状の固定子鉄心54を製作する。ティースには、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂を用いる絶縁部56が施される。絶縁部56が施されたティースに集中巻のコイル57が巻回される。例えば、12個の集中巻のコイル57を接続して、三相のシングルY結線の巻線を形成する。三相のシングルY結線であるので、絶縁部56の結線側には、各相(U相、V相、W相)のコイル57が接続される端子59(電源が供給される電源端子及び中性点端子)が組付けられる。併せて、スリーブ軸受66を製造する。併せて、樹脂マグネット68を成形する。
(2)基板58を製造する。基板58は、基板押え部品95により絶縁部56との間に挟持される。基板58には、電動機(ブラシレスDCモータ)を駆動するIC、回転子60の位置を検出するホール素子等が実装されている。また、基板58には、その外周縁部付近の切り欠き部にリード線を口出しするリード線口出し部品61が、取り付けられる。併せて、回転子部60aを製造する。回転子部60aは、フェライト等の磁性粉末と樹脂を混練したペレットを成形したリング状(円筒状)の樹脂マグネット68と、樹脂マグネット68の内側に設けられる円筒形のスリーブ軸受66(例えば、カーボン製)とが、例えばPPE(ポリフェニレンエーテル)等の樹脂で一体化される。さらに、併せて、羽根車60bを成形する。羽根車60bは、PPE(ポリフェニレンエーテル)などの熱可塑性樹脂を用いて成形される。
(3)ステップ2:基板58を固定子47に固定する。リード線口出し部品61が取り付けられた基板58が基板押え部品95により絶縁部56に固定される。併せて、回転子部60aに羽根車60bを超音波溶着等により組付ける。併せて、椀状隔壁部品90を成形する。併せて、軸70とスラスト軸受71を製造する。軸70は、SUSで製造される。スラスト軸受71はセラミックで製造される。
(4)ステップ3:端子59(電源が供給される電源端子及び中性点端子)と基板58とを半田付けする。固定子47に、下穴部品81を組み付けることで固定子組立49が完成する。椀状隔壁部品90に回転子60等を組付ける。さらに、併せて、ケーシング41を成形する。ケーシング41は、PPS(ポリフェニレンサルファイド)などの熱可塑性樹脂を用いて成形される。
(5)ステップ4:固定子組立49をモールド成形して、モールド固定子50を製造する。併せて、椀状隔壁部品90にケーシング41を固定してポンプ部40を組立てる。さらに、併せて、タッピングネジ160を製造する。
(6)ステップ5:ポンプ10の組立を行う。モールド固定子50にポンプ部40を組付けタッピングネジ160で固定する。
FIG. 24 is a diagram illustrating the first embodiment, and is a diagram illustrating a manufacturing process of the pump 10. The manufacturing process of the pump 10 will be described with reference to FIG.
(1) Step 1: The stator 47 is manufactured. First, an electromagnetic steel plate having a thickness of about 0.1 to 0.7 mm is punched into a strip shape, laminated by caulking, welding, adhesion, or the like, and a strip-shaped stator core 54 connected by a thin connection portion is manufactured. The teeth are provided with an insulating portion 56 using a thermoplastic resin such as PBT (polybutylene terephthalate). A concentrated winding coil 57 is wound around the teeth provided with the insulating portion 56. For example, twelve concentrated winding coils 57 are connected to form a three-phase single Y-connection winding. Since it is a three-phase single Y connection, a terminal 59 (a power supply terminal to which power is supplied and a medium) Sex point terminal) is assembled. In addition, the sleeve bearing 66 is manufactured. In addition, the resin magnet 68 is formed.
(2) The substrate 58 is manufactured. The substrate 58 is sandwiched between the insulating portion 56 by the substrate pressing component 95. On the substrate 58, an IC for driving an electric motor (brushless DC motor), a Hall element for detecting the position of the rotor 60, and the like are mounted. In addition, a lead wire lead-out component 61 that feeds a lead wire into a notch portion near the outer peripheral edge portion is attached to the substrate 58. In addition, the rotor part 60a is manufactured. The rotor portion 60a includes a ring-shaped (cylindrical) resin magnet 68 formed by pelletizing a magnetic powder such as ferrite and a resin, and a cylindrical sleeve bearing 66 (for example, carbon) provided inside the resin magnet 68. For example, PPE (polyphenylene ether). At the same time, the impeller 60b is formed. The impeller 60b is molded using a thermoplastic resin such as PPE (polyphenylene ether).
(3) Step 2: The substrate 58 is fixed to the stator 47. The substrate 58 to which the lead wire lead-out component 61 is attached is fixed to the insulating portion 56 by the substrate holding component 95. At the same time, the impeller 60b is assembled to the rotor portion 60a by ultrasonic welding or the like. In addition, the bowl-shaped partition wall component 90 is formed. In addition, the shaft 70 and the thrust bearing 71 are manufactured. The shaft 70 is manufactured from SUS. The thrust bearing 71 is made of ceramic.
(4) Step 3: Solder the terminal 59 (the power supply terminal to which power is supplied and the neutral point terminal) and the substrate 58. By assembling the pilot hole part 81 to the stator 47, the stator assembly 49 is completed. The rotor 60 and the like are assembled to the bowl-shaped partition wall component 90. In addition, the casing 41 is molded together. The casing 41 is molded using a thermoplastic resin such as PPS (polyphenylene sulfide).
(5) Step 4: The stator assembly 49 is molded to manufacture the mold stator 50. In addition, the pump 41 is assembled by fixing the casing 41 to the bowl-shaped partition wall component 90. In addition, a tapping screw 160 is also manufactured.
(6) Step 5: Assemble the pump 10. The pump unit 40 is assembled to the mold stator 50 and fixed with a tapping screw 160.

図25は実施の形態1を示す図で、冷媒−水熱交換器2を用いる装置の回路を示す概念図である。冒頭で説明したヒートポンプ式給湯装置300は、冷媒−水熱交換器2を用いる装置の一例である。   FIG. 25 shows the first embodiment and is a conceptual diagram showing a circuit of an apparatus using the refrigerant-water heat exchanger 2. The heat pump hot water supply apparatus 300 described at the beginning is an example of an apparatus that uses the refrigerant-water heat exchanger 2.

冷媒−水熱交換器2を用いる装置は、例えば、空気調和装置もしくは床暖房装置もしくは給湯装置等である。本実施の形態のポンプ10は、冷媒−水熱交換器2を用いる装置の水回路に搭載されて、冷媒−水熱交換器2で冷却もしくは加熱された水(湯)を水回路内で循環させる。   The apparatus using the refrigerant-water heat exchanger 2 is, for example, an air conditioning apparatus, a floor heating apparatus, a hot water supply apparatus, or the like. The pump 10 according to the present embodiment is mounted in a water circuit of a device using the refrigerant-water heat exchanger 2 and circulates water (hot water) cooled or heated by the refrigerant-water heat exchanger 2 in the water circuit. Let

図25に示す冷媒−水熱交換器2を用いる装置は、冷媒を圧縮する圧縮機1(例えば、スクロール圧縮機、ロータリ圧縮機等)、冷媒と水とが熱交換を行う冷媒−水熱交換器2、蒸発器4(熱交換器)等を有する冷媒回路を備える。また、ポンプ10、冷媒−水熱交換器2、負荷20等を有する水回路を備える。   The apparatus using the refrigerant-water heat exchanger 2 shown in FIG. 25 includes a compressor 1 that compresses refrigerant (for example, a scroll compressor, a rotary compressor, etc.), and refrigerant-water heat exchange in which heat is exchanged between the refrigerant and water. And a refrigerant circuit having an evaporator 2, an evaporator 4 (heat exchanger), and the like. Moreover, the water circuit which has the pump 10, the refrigerant | coolant-water heat exchanger 2, the load 20, etc. is provided.

実施の形態1のポンプ用電動機の回転子60を搭載したポンプ10を、冷媒−水熱交換器2を用いる装置(空気調和装置もしくは床暖房装置もしくは給湯装置)に適用した場合、ポンプ10の性能及び品質向上、生産性の向上に伴い、冷媒−水熱交換器2を用いる装置(空気調和装置もしくは床暖房装置もしくは給湯装置)の性能向上及び品質向上、コスト低減が可能となる。   When the pump 10 equipped with the rotor 60 of the pump motor of the first embodiment is applied to a device (an air conditioner, a floor heating device, or a hot water supply device) that uses the refrigerant-water heat exchanger 2, the performance of the pump 10 And with quality improvement and productivity improvement, performance improvement, quality improvement, and cost reduction of the apparatus (air conditioning apparatus, floor heating apparatus, or hot water supply apparatus) using the refrigerant-water heat exchanger 2 can be achieved.

上述の説明では、樹脂マグネット68の成形時に、プラスチックマグネット(樹脂マグネット素材)は樹脂マグネット68の凹部68dのゲート68cから供給されるようにしたが、樹脂マグネット68の羽根車取付部67a側に形成される突起68aにゲートを設け、樹脂マグネット68を射出成形するようにしてもよい。それにより、樹脂マグネット68の射出成形時のランナー量低減によるポンプ10の低コスト化が図れる。   In the above description, when the resin magnet 68 is molded, the plastic magnet (resin magnet material) is supplied from the gate 68c of the recess 68d of the resin magnet 68, but formed on the impeller mounting portion 67a side of the resin magnet 68. The protrusion 68a may be provided with a gate, and the resin magnet 68 may be injection molded. Thereby, the cost of the pump 10 can be reduced by reducing the amount of runners during injection molding of the resin magnet 68.

1 圧縮機、2 冷媒−水熱交換器、3 減圧装置、4 蒸発器、5 圧力検出装置、6 ファンモータ、7 ファン、8 沸上げ温度検出手段、9 給水温度検出手段、10 ポンプ、11 操作部、12 タンクユニット制御部、13 ヒートポンプユニット制御部、14 温水タンク、15 冷媒配管、16 温水循環配管、17 外気温度検出手段、20 負荷、31 風呂水追い焚き熱交換器、32 風呂水循環装置、33 混合弁、34 タンク内水温検出装置、35 追い焚き後水温検出装置、36 混合後水温検出装置、37 風呂水追い焚き配管、40 ポンプ部、41 ケーシング、42 吸水口、43 吐出口、44 ボス部、44a ネジ穴、45 取付脚、45a 孔、46 軸支持部、47 固定子、49 固定子組立、50 モールド固定子、52 リード線、53 モールド樹脂、54 固定子鉄心、56 絶縁部、57 コイル、58 基板、58a IC、59 端子、60 回転子、60a 回転子部、60b 羽根車、61 リード線口出し部品、63 ポンプ部設置面、66 スリーブ軸受、67 樹脂部、67b 第1の凹部、68 樹脂マグネット、68a 突起、68b 切欠き、68c ゲート、68d 凹部、70 軸、71 スラスト軸受、80 Oリング、81 下穴部品、82 金型押え部、83 突起、84 下穴、85 足部、85a 突起、86 爪、87 連結部、90 椀状隔壁部品、90a 椀状隔壁部、90b 鍔部、90c Oリング収納溝、90d 孔、91 リブ、93 環状リブ、94 軸支持部、95 基板押え部品、100 ヒートポンプユニット、160 タッピングネジ、200 タンクユニット、300 ヒートポンプ式給湯装置、468 樹脂マグネット、468a 突起、ゲート 468c、568 樹脂マグネット、568a 突起、568c ゲート、760 回転子、760a 回転子部、767a 羽根車取付部、767e つりあい穴、768 樹脂マグネット、768b 切欠き、768f 切欠き、767g 凹部、860 回転子、860a 回転子部、867a 羽根車取付部、867e つりあい穴、868 樹脂マグネット、868f 金型押え部、867g 切欠き。   1 compressor, 2 refrigerant-water heat exchanger, 3 decompression device, 4 evaporator, 5 pressure detection device, 6 fan motor, 7 fan, 8 boiling temperature detection means, 9 feed water temperature detection means, 10 pump, 11 operation Part, 12 tank unit control part, 13 heat pump unit control part, 14 hot water tank, 15 refrigerant pipe, 16 hot water circulation pipe, 17 outside air temperature detecting means, 20 load, 31 bath water reheating heat exchanger, 32 bath water circulation apparatus, 33 Mixing valve, 34 Water temperature detecting device in tank, 35 Water temperature detecting device after reheating, 36 Water temperature detecting device after mixing, 37 Bath water reheating piping, 40 Pump part, 41 Casing, 42 Water inlet, 43 Discharge port, 44 Boss Part, 44a screw hole, 45 mounting leg, 45a hole, 46 shaft support part, 47 stator, 49 stator assembly, 50 mold Stator, 52 Lead wire, 53 Mold resin, 54 Stator core, 56 Insulating part, 57 Coil, 58 Substrate, 58a IC, 59 terminal, 60 Rotor, 60a Rotor part, 60b Impeller, 61 Lead wire lead-out part, 63 Pump section installation surface, 66 Sleeve bearing, 67 Resin section, 67b First recess, 68 Resin magnet, 68a Protrusion, 68b Notch, 68c Gate, 68d Recess, 70 shaft, 71 Thrust bearing, 80 O-ring, 81 Bottom Hole part, 82 Mold holding part, 83 Protrusion, 84 Pilot hole, 85 Foot part, 85a Protrusion, 86 Claw, 87 Connecting part, 90 Rib-like partition part, 90a Rib-like partition part, 90b Rib part, 90c O-ring storage Groove, 90d hole, 91 rib, 93 annular rib, 94 shaft support, 95 substrate holding part, 100 heat pump unit , 160 tapping screw, 200 tank unit, 300 heat pump hot water supply device, 468 resin magnet, 468a protrusion, gate 468c, 568 resin magnet, 568a protrusion, 568c gate, 760 rotor, 760a rotor portion, 767a impeller mounting portion, 767e Balance hole, 768 Resin magnet, 768b Notch, 768f Notch, 767g Recess, 860 Rotor, 860a Rotor, 867a Impeller mounting, 867e Balance hole, 868 Resin magnet, 868f Mold retainer, 867g Notch Missing.

Claims (11)

水回路と、磁極位置検出素子が実装された基板を備えるモールド固定子と、を椀状隔壁部品で仕切るポンプに搭載され、前記椀状隔壁部品内に回転自在に収納され、一端が前記磁極位置検出素子に対向し、他端に羽根車を取付ける羽根車取付部を有する回転子部を備えるポンプ用電動機の回転子において、
前記回転子部は、
マグネットと、前記マグネットの内側に配置されるスリーブ軸受とを熱可塑性樹脂で一体成形し、同時に前記熱可塑性樹脂で前記羽根車取付部を形成するものであって、
前記マグネットは、
前記磁極位置検出素子対向側の端面の内周側に、周方向に略等間隔に複数個形成され、断面形状が略角形状の切欠きと、
前記羽根車取付部側の端面から所定の深さの内周側に内側に突出するように、周方向に略等間隔に複数個形成され、断面形状が略角形状の突起と、を備え、
前記熱可塑性樹脂による一体成形時に、成形用金型の下型に前記マグネットの前記切欠きをセットして同軸を確保するとともに、前記成形用金型の上型を前記突起に押し当て、前記マグネットの位置決めを行うことを特徴とするポンプ用電動機の回転子。
A water circuit and a mold stator including a substrate on which a magnetic pole position detecting element is mounted are mounted on a pump that partitions the partition with a bowl-shaped partition wall part, and is rotatably accommodated in the bowl-shaped partition wall part, and one end of the pole position In the rotor of the electric motor for a pump provided with a rotor portion having an impeller mounting portion that faces the detection element and attaches the impeller at the other end,
The rotor part is
A magnet and a sleeve bearing disposed inside the magnet are integrally formed of a thermoplastic resin, and at the same time, the impeller mounting portion is formed of the thermoplastic resin,
The magnet
A plurality of notches having a substantially square shape in cross section are formed on the inner peripheral side of the end surface facing the magnetic pole position detection element at a substantially equal interval in the circumferential direction.
A plurality of protrusions that are formed at substantially equal intervals in the circumferential direction so as to protrude inwardly from the end surface on the impeller mounting portion side to the inner peripheral side of a predetermined depth,
At the time of integral molding with the thermoplastic resin, the notch of the magnet is set in the lower mold of the molding mold to ensure the coaxiality, and the upper mold of the molding mold is pressed against the protrusion, and the magnet The rotor of the motor for pumps characterized by performing positioning.
前記マグネットの前記羽根車取付部側に形成される前記突起は、当該回転子に形成される磁極の略中心に一致する、前記樹脂マグネットが供給されるゲートの位置と、略同一放射線状に該マグネットの中心部に向かって隆起する形で形成されていることを特徴とする請求項1記載のポンプ用電動機の回転子。   The protrusion formed on the impeller mounting portion side of the magnet coincides substantially with the center of the magnetic pole formed on the rotor, and substantially the same radial shape as the position of the gate to which the resin magnet is supplied. The rotor for a pump motor according to claim 1, wherein the rotor is formed so as to protrude toward the center of the magnet. 前記マグネットの前記羽根車取付部側に形成される前記突起は、当該回転子に形成される磁極間、且つ前記樹脂マグネットが供給されるゲート間に位置することを特徴とする請求項1のポンプ用電動機の回転子。   2. The pump according to claim 1, wherein the protrusion formed on the impeller mounting portion side of the magnet is positioned between magnetic poles formed on the rotor and between a gate to which the resin magnet is supplied. Electric motor rotor. 前記マグネットの前記羽根車取付部側に形成される前記突起は、当該回転子に形成される磁極と同数とすることを特徴とする請求項1のポンプ用電動機の回転子。   The rotor of a pump motor according to claim 1, wherein the number of the protrusions formed on the magnet on the side of the impeller mounting portion is the same as the number of magnetic poles formed on the rotor. 前記マグネットの前記羽根車取付部側に形成される前記突起にゲートを設け、前記マグネットを射出成形することを特徴とする請求項1乃至4のいずれかに記載のポンプ用電動機の回転子。   The rotor for a pump motor according to any one of claims 1 to 4, wherein a gate is provided on the protrusion formed on the impeller mounting portion side of the magnet, and the magnet is injection-molded. 前記マグネットの中空部は、前記突起が形成される端面から概略軸方向の中心位置までストレートで、かつ、前記突起が形成される端面の反対側端面から概略軸方向の中心位置までは抜きテーパとなっていることを特徴とする請求項1乃至5のいずれかに記載のポンプ用電動機の回転子。   The hollow portion of the magnet is straight from the end surface where the projection is formed to the center position in the approximate axial direction, and is tapered from the end surface opposite to the end surface where the projection is formed to the center position in the approximate axial direction. The rotor of the electric motor for pumps according to any one of claims 1 to 5 characterized by things. 請求項1乃至6のいずれかに記載のポンプ用電動機の回転子を搭載したことを特徴とするポンプ。   A pump comprising the pump motor rotor according to any one of claims 1 to 6. 請求項7のポンプを搭載したことを特徴とする空気調和装置。   An air conditioner equipped with the pump according to claim 7. 請求項7のポンプを搭載したことを特徴とする床暖房装置。   A floor heating apparatus, wherein the pump according to claim 7 is mounted. 請求項7のポンプを搭載したことを特徴とする給湯装置。   A hot water supply apparatus, wherein the pump according to claim 7 is mounted. 請求項7記載のポンプの製造方法であって、
固定子を製造し、併せてマグネットを成形し、さらに併せてスリーブ軸受を製造し、
前記固定子に巻線し、併せて基板を製造し、併せて羽根車を製造し、さらに併せて前記マグネットと前記スリーブ軸受を一体成形して回転子部を製造し、
前記固定子に前記基板を組み付け、併せて前記羽根車と前記回転子部を組み付け、さらに併せて軸とスラスト軸受と椀状隔壁部品とを製造し、
前記固定子の端子と前記基板とを半田付けし、併せて下穴部品を成形し、併せてケーシングを成形し、さらに併せて前記椀状隔壁部品に回転子等を組付け、
前記固定子と下穴部品とをモールド一体成形してモールド固定子を製造し、併せてタッピングネジを製造し、さらに併せて前記椀状隔壁部品に前記ケーシングを固定してポンプ部を組立て、
前記モールド固定子に前記ポンプ部を組付け、前記タッピングネジで固定することを特徴とするポンプの製造方法。
It is a manufacturing method of the pump of Claim 7, Comprising:
A stator is manufactured, a magnet is molded together, and a sleeve bearing is manufactured together.
Winding around the stator, producing a substrate together, producing an impeller together, further producing a rotor part by integrally molding the magnet and the sleeve bearing,
Assembling the substrate to the stator, assembling the impeller and the rotor part together, and further producing a shaft, a thrust bearing, and a bowl-shaped partition wall part,
Soldering the terminal of the stator and the substrate, forming a pilot hole part together, forming a casing together, and further attaching a rotor or the like to the bowl-shaped partition part,
The stator and pilot hole parts are molded integrally with a mold to produce a mold stator, and a tapping screw is manufactured together.Furthermore, the casing is fixed to the bowl-shaped partition wall part and a pump part is assembled.
A pump manufacturing method, wherein the pump portion is assembled to the mold stator and fixed with the tapping screw.
JP2010054178A 2010-03-11 2010-03-11 Motor rotor for pump, pump, air conditioner, floor heating device, hot water supply device, and pump manufacturing method Active JP5143165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054178A JP5143165B2 (en) 2010-03-11 2010-03-11 Motor rotor for pump, pump, air conditioner, floor heating device, hot water supply device, and pump manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054178A JP5143165B2 (en) 2010-03-11 2010-03-11 Motor rotor for pump, pump, air conditioner, floor heating device, hot water supply device, and pump manufacturing method

Publications (2)

Publication Number Publication Date
JP2011188701A true JP2011188701A (en) 2011-09-22
JP5143165B2 JP5143165B2 (en) 2013-02-13

Family

ID=44794323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054178A Active JP5143165B2 (en) 2010-03-11 2010-03-11 Motor rotor for pump, pump, air conditioner, floor heating device, hot water supply device, and pump manufacturing method

Country Status (1)

Country Link
JP (1) JP5143165B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114433A1 (en) * 2012-01-31 2013-08-08 三菱電機株式会社 Pump, refrigeration cycle device, and method for producing pump
WO2013114432A1 (en) * 2012-01-31 2013-08-08 三菱電機株式会社 Pump, refrigeration cycle device, and method for producing pump
WO2013114431A1 (en) * 2012-01-31 2013-08-08 三菱電機株式会社 Pump, refrigeration cycle device, and method for producing pump
WO2014054175A1 (en) * 2012-10-05 2014-04-10 三菱電機株式会社 Pump, pump manufacturing method, and refrigeration cycle device
WO2014115249A1 (en) * 2013-01-22 2014-07-31 三菱電機株式会社 Pump, method for manufacturing pump, and refrigeration cycle device
EP2863061A4 (en) * 2012-06-19 2016-06-08 Mitsubishi Electric Corp Pump, method for manufacturing pump, and refrigeration cycle device
JP2016116346A (en) * 2014-12-16 2016-06-23 日立アプライアンス株式会社 Rotator
JP2019520031A (en) * 2016-06-06 2019-07-11 マックス ベールマン ゲーエムベーハー Magnetic rotation component
KR102075460B1 (en) * 2018-10-11 2020-02-10 지엠비코리아 주식회사 Impeller-Rotor assembly
WO2023157131A1 (en) * 2022-02-16 2023-08-24 三菱電機株式会社 Permanent magnet rotor and method for manufacturing permanent magnet rotor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230111184A1 (en) * 2020-04-30 2023-04-13 Hangzhou Sanhua Research Institute Co., Ltd. Fabrication method for rotor assembly, rotor assembly, and electric pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329993A (en) * 2000-05-19 2001-11-30 Matsushita Electric Ind Co Ltd Impeller for pump
JP2006121807A (en) * 2004-10-21 2006-05-11 Mitsubishi Electric Corp Manufacturing method for rotor of motor, the rotor of motor, motor, air-conditioning apparatus, refrigerator, ventilation fan, and resin-molded metal mold of rotor of motor
JP2009197729A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Rotor of motor for pump, motor for pump, pump, and method for manufacturing rotor of motor for pump
JP2009202481A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Fan made of plastic
JP2010038082A (en) * 2008-08-07 2010-02-18 Mitsubishi Electric Corp Pump, heat pump hot-water supply device, and method of manufacturing pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329993A (en) * 2000-05-19 2001-11-30 Matsushita Electric Ind Co Ltd Impeller for pump
JP2006121807A (en) * 2004-10-21 2006-05-11 Mitsubishi Electric Corp Manufacturing method for rotor of motor, the rotor of motor, motor, air-conditioning apparatus, refrigerator, ventilation fan, and resin-molded metal mold of rotor of motor
JP2009197729A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Rotor of motor for pump, motor for pump, pump, and method for manufacturing rotor of motor for pump
JP2009202481A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Fan made of plastic
JP2010038082A (en) * 2008-08-07 2010-02-18 Mitsubishi Electric Corp Pump, heat pump hot-water supply device, and method of manufacturing pump

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811168A4 (en) * 2012-01-31 2015-12-30 Mitsubishi Electric Corp Pump, refrigeration cycle device, and method for producing pump
GB2513774B (en) * 2012-01-31 2018-12-05 Mitsubishi Electric Corp Pump, refrigeration cycle apparatus, and method for manufacturing pump
WO2013114433A1 (en) * 2012-01-31 2013-08-08 三菱電機株式会社 Pump, refrigeration cycle device, and method for producing pump
US10451072B2 (en) 2012-01-31 2019-10-22 Mitsubishi Electric Corporation Pump, refrigeration cycle apparatus, and method for manufacturing pump
WO2013114432A1 (en) * 2012-01-31 2013-08-08 三菱電機株式会社 Pump, refrigeration cycle device, and method for producing pump
GB2513774A (en) * 2012-01-31 2014-11-05 Mitsubishi Electric Corp Pump, refrigeration cycle device, and method for producing pump
US20150052934A1 (en) * 2012-01-31 2015-02-26 Mitsubishi Electric Corporation Pump, refrigeration cycle apparatus, and method for manufacturing pump
US20150052935A1 (en) * 2012-01-31 2015-02-26 Mitsubishi Electric Corporation Pump, refrigeration cycle apparatus, and method for manufacturing pump
JPWO2013114433A1 (en) * 2012-01-31 2015-05-11 三菱電機株式会社 Pump, refrigeration cycle apparatus and pump manufacturing method
JPWO2013114432A1 (en) * 2012-01-31 2015-05-11 三菱電機株式会社 Pump, refrigeration cycle apparatus and pump manufacturing method
JPWO2013114431A1 (en) * 2012-01-31 2015-05-11 三菱電機株式会社 Pump, refrigeration cycle apparatus and pump manufacturing method
US10132320B2 (en) 2012-01-31 2018-11-20 Mitsubishi Electric Corporation Pump, refrigeration cycle apparatus, and method for manufacturing pump
US9568012B2 (en) 2012-01-31 2017-02-14 Mitsubishi Electric Corporation Pump, refrigeration cycle apparatus, and method for manufacturing pump
EP2811167A4 (en) * 2012-01-31 2015-12-23 Mitsubishi Electric Corp Pump, refrigeration cycle device, and method for producing pump
WO2013114431A1 (en) * 2012-01-31 2013-08-08 三菱電機株式会社 Pump, refrigeration cycle device, and method for producing pump
US9698655B2 (en) 2012-06-19 2017-07-04 Mitsubishi Electric Corporation Pump, method for manufacturing pump, and refrigeration cycle device
EP2863061A4 (en) * 2012-06-19 2016-06-08 Mitsubishi Electric Corp Pump, method for manufacturing pump, and refrigeration cycle device
JP5925329B2 (en) * 2012-10-05 2016-05-25 三菱電機株式会社 Electric motor rotor, electric motor, pump, and refrigeration cycle apparatus
GB2522353A (en) * 2012-10-05 2015-07-22 Mitsubishi Electric Corp Pump, pump manufacturing method, and refrigeration cycle device
US20150159656A1 (en) * 2012-10-05 2015-06-11 Mitsubishi Electric Corporation Pump, method for manufacturing pump, and refrigeration cycle device
US9903372B2 (en) 2012-10-05 2018-02-27 Mitsubishi Electric Corporation Pump, method for manufacturing pump, and refrigeration cycle device
WO2014054175A1 (en) * 2012-10-05 2014-04-10 三菱電機株式会社 Pump, pump manufacturing method, and refrigeration cycle device
GB2522353B (en) * 2012-10-05 2019-11-06 Mitsubishi Electric Corp Pump, method for manufacturing pump, and refrigeration cycle device
WO2014115249A1 (en) * 2013-01-22 2014-07-31 三菱電機株式会社 Pump, method for manufacturing pump, and refrigeration cycle device
JP2016116346A (en) * 2014-12-16 2016-06-23 日立アプライアンス株式会社 Rotator
JP2019520031A (en) * 2016-06-06 2019-07-11 マックス ベールマン ゲーエムベーハー Magnetic rotation component
US11156227B2 (en) 2016-06-06 2021-10-26 Max Baermann Gmbh Magnetic rotation component
KR102075460B1 (en) * 2018-10-11 2020-02-10 지엠비코리아 주식회사 Impeller-Rotor assembly
WO2023157131A1 (en) * 2022-02-16 2023-08-24 三菱電機株式会社 Permanent magnet rotor and method for manufacturing permanent magnet rotor

Also Published As

Publication number Publication date
JP5143165B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5143165B2 (en) Motor rotor for pump, pump, air conditioner, floor heating device, hot water supply device, and pump manufacturing method
JP5925329B2 (en) Electric motor rotor, electric motor, pump, and refrigeration cycle apparatus
JP5264859B2 (en) Rotor of motor for pump, pump, air conditioner, floor heating device and hot water supply device
JP5901649B2 (en) Pump, refrigeration cycle apparatus and pump manufacturing method
JP4954269B2 (en) Pump and heat pump type hot water supply device
JP6016911B2 (en) Electric motor rotor, electric motor, pump, and refrigeration cycle apparatus
JP6005073B2 (en) Pump, refrigeration cycle apparatus and pump manufacturing method
JP6029597B2 (en) Pump, refrigeration cycle apparatus and pump manufacturing method
JP4901838B2 (en) Pump and heat pump type hot water supply device
JP6029598B2 (en) Pump, refrigeration cycle apparatus and pump manufacturing method
JP5951049B2 (en) Mold stator, pump, pump manufacturing method, and refrigeration cycle apparatus
JP5220073B2 (en) Pump and heat pump type hot water supply device
JP4864054B2 (en) Pump and heat pump type hot water supply device
JP5052635B2 (en) Motor rotor for pump, pump, air conditioner, floor heating device, hot water supply device, and pump manufacturing method
JP5264952B2 (en) Pump, air conditioner, floor heating device, hot water supply device, and method of manufacturing pump
JP4845941B2 (en) Pump, heat pump type hot water supply apparatus and pump manufacturing method
JP4912370B2 (en) Pump and heat pump type hot water supply device
JP4969602B2 (en) Pump, heat pump type hot water supply apparatus and pump manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250