JP2011188556A - Apparatus and method for controlling charging/discharging of storage battery - Google Patents

Apparatus and method for controlling charging/discharging of storage battery Download PDF

Info

Publication number
JP2011188556A
JP2011188556A JP2010048361A JP2010048361A JP2011188556A JP 2011188556 A JP2011188556 A JP 2011188556A JP 2010048361 A JP2010048361 A JP 2010048361A JP 2010048361 A JP2010048361 A JP 2010048361A JP 2011188556 A JP2011188556 A JP 2011188556A
Authority
JP
Japan
Prior art keywords
control
storage battery
stage
discharge
control amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010048361A
Other languages
Japanese (ja)
Inventor
Masao Fujita
昌雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2010048361A priority Critical patent/JP2011188556A/en
Publication of JP2011188556A publication Critical patent/JP2011188556A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive method and apparatus for instantaneously and stably controlling charging/discharging currents on a stage-by-stage basis just by changing control software in multiplexed PCS configured by connecting multiple storage battery modules in series. <P>SOLUTION: (1) A quantity of control Q for controlling an overall active power is determined from a deviation in the overall active power P (=I<SB>dc1</SB>×V<SB>dc1</SB>+I<SB>dc2</SB>×V<SB>dc2</SB>+...+I<SB>dcN</SB>×V<SB>dcN</SB>). (2) The allocation correction α<SB>n</SB>of each stage is determined from the deviation in the direct current of each stage. (3) The quantity of control of each stage is determined from Q and α<SB>n</SB>and Q+α<SB>n</SB>or Q×(1+α<SB>n</SB>) is taken as the quantity of control of the nth stage. The deviation in the overall active power P is inputted to a PI controller and its output Q is corrected with the output α<SB>n</SB>of the PI controller of the direct control system of each stage. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は蓄電池充放電制御装置及び方法に関し、より詳細には、複数の蓄電池モジュールを直列多段に接続した交直変換装置(PCS)における直流側充放電電流を各段個別に制御する蓄電池充放電制御装置及び方法に関する。   TECHNICAL FIELD The present invention relates to a storage battery charge / discharge control device and method, and more specifically, a storage battery charge / discharge control that individually controls a DC side charge / discharge current in an AC / DC converter (PCS) in which a plurality of storage battery modules are connected in series in multiple stages. The present invention relates to an apparatus and a method.

ニッケル水素電池や鉛蓄電池では過充電が品質低下の原因となることが少ないが、NAS電池などの金属食塩電池及びリチウム電池などは、過充電した場合に活物質が分解されて腐食性ガスを発生し、品質低下が生ずる。そのため、充電末期には過電圧による過充電を防止するため、電圧を絞りながら充電するなどの精緻な制御が必要となる。   In nickel-metal hydride batteries and lead-acid batteries, overcharging rarely causes quality degradation. However, in metal salt batteries such as NAS batteries and lithium batteries, the active material decomposes and generates corrosive gas when overcharged. However, quality degradation occurs. Therefore, in order to prevent overcharging due to overvoltage at the end of charging, precise control such as charging while reducing the voltage is required.

さらには蓄電池モジュールを直列接続した場合は、各段で個別の電流・電圧制御が必要となる。   Furthermore, when storage battery modules are connected in series, individual current / voltage control is required at each stage.

蓄電池モジュールを直列接続した場合の各段個別の充電率(SOC)制御を可能とする従来の充電制御システムでは、長時間をかけて全てのSOCを一定にすることができるが、比例積分制御ができないため、短期期間で充電を行う場合、制御目標値との偏差が大きくなって残留偏差が生じる可能性がある(非特許文献1参照)。   In a conventional charge control system that enables individual stage charging rate (SOC) control when storage battery modules are connected in series, all SOCs can be made constant over a long period of time. Therefore, when charging is performed in a short period, the deviation from the control target value may increase and a residual deviation may occur (see Non-Patent Document 1).

また、リチウムセルを直列に接続したシステムで、セル毎に充電の終了を正確に制御する別の方法では、セル毎に充電を制御するレギュレータを装備する必要があり、高コストとなる可能性がある(特許文献1参照)。   In addition, in a system in which lithium cells are connected in series, another method for accurately controlling the end of charging for each cell requires the provision of a regulator for controlling charging for each cell, which may be expensive. Yes (see Patent Document 1).

そこで、追加のハードウェアを必要とせず、制御ソフトの変更のみで各段個別のSOC制御を実現することを考える。先ず図1の(a)に、直流側電流制御として一般的に用いられる主回路構成を示し、(b)に、インバータを制御するための制御回路構成を示す。直流電流の測定値Idcとその目標値(Idc *)の偏差をPI制御器に入力し、PI制御器の出力に正弦波を乗じた値から交流側電流is、交流電圧vsをそれぞれ減算、加算する。 Therefore, it is considered that the SOC control for each stage is realized only by changing the control software without requiring additional hardware. First, FIG. 1A shows a main circuit configuration that is generally used as DC side current control, and FIG. 1B shows a control circuit configuration for controlling an inverter. The deviation between the measured value I dc of DC current and its target value (I dc * ) is input to the PI controller, and the AC side current i s and AC voltage v s are obtained from the value obtained by multiplying the output of the PI controller by a sine wave. Subtract and add respectively.

図2の(a)に、従来の直流側電流制御を蓄電池モジュール多重化PCSに応用した主回路構成を示し、(b)に、2つのインバータをそれぞれ独立に制御する制御回路構成を示す。各段はそれぞれ独立に制御され、1段目はIdc1のみを制御量とし、2段目はIdc2のみを制御量としてPI制御している。本願明細書では、この制御方法を直接制御と呼ぶ。 FIG. 2 (a) shows a main circuit configuration in which conventional DC side current control is applied to a storage battery module multiplexed PCS, and FIG. 2 (b) shows a control circuit configuration for controlling two inverters independently. Each stage is controlled independently, and the first stage performs PI control using only I dc1 as the controlled variable and the second stage uses only I dc2 as the controlled variable . In this specification, this control method is called direct control.

特開2001−178010号公報JP 2001-178010 A

「カスケードPWM変換器と二次電池を利用した6.6kVトランスレス電力貯蔵システム」、電学論D、129第1号、2009年"6.6kV transformerless power storage system using cascaded PWM converter and secondary battery", D. 129, No. 1, 2009

しかしながら、このような各段を独立に制御する直接制御を用いると、放電動作は制御可能であるが、充電動作を制御できないという課題があった。   However, when such direct control that controls each stage independently is used, the discharge operation can be controlled, but the charging operation cannot be controlled.

図3に、蓄電池モジュール多重化PCSの2つのインバータをそれぞれ独立に直接制御した場合のシミュレーション結果を示す。図3(a)、(b)が充電時の状態を示し、図3(c)、(d)が放電時の状態を示している。放電側は正しく目標値に追従して安定に制御できているが、充電側は振動して不安定で、目標値に追従できていない。   FIG. 3 shows a simulation result when the two inverters of the storage battery module multiplexed PCS are directly and independently controlled. FIGS. 3A and 3B show the state during charging, and FIGS. 3C and 3D show the state during discharging. The discharge side can follow the target value correctly and can be controlled stably, but the charging side vibrates and is unstable and cannot follow the target value.

図4(a)にIdc1 *=1A、Idc2 *=1Aとして制御した場合の直流電流とPI制御器直前での制御偏差のシミュレーション結果を示し、(b)は、Idc1 *=1A、Idc2 *=1.5Aとして制御した場合の直流電流とPI制御器直前での制御偏差のシミュレーション結果を示す。また、図5にIdc1 *=−1A、Idc2 *=−1Aとして制御した場合の直流電流とPI制御器直前での制御偏差のシミュレーション結果を示し、(b)は、Idc1 *=−1A、Idc2 *=−1.5Aとして制御した場合の直流電流とPI制御器直前での制御偏差のシミュレーション結果を示す。 Figure 4 (a) I dc1 * = 1A , I dc2 * = control deviation at direct current and PI controller just before the case of controlling the 1A shows simulation results, (b) is, I dc1 * = 1A, A simulation result of the direct current and the control deviation immediately before the PI controller when controlled with I dc2 * = 1.5 A is shown. FIG. 5 shows a simulation result of the direct current and the control deviation immediately before the PI controller when I dc1 * = − 1 A and I dc2 * = − 1 A. FIG. 5B shows I dc1 * = −. A simulation result of a direct current and a control deviation immediately before the PI controller when controlled as 1 A, I dc2 * = − 1.5 A is shown.

図4に示す放電動作時は、制御偏差は零に収束している。一方、図5に示す充電動作時は、制御偏差は零に収束せず不安定となっている。   During the discharge operation shown in FIG. 4, the control deviation converges to zero. On the other hand, during the charging operation shown in FIG. 5, the control deviation does not converge to zero and is unstable.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、複数の蓄電池モジュールを直列接続した多重化PCSにおいて、制御ソフトの変更のみで、各段個別に充放電電流を瞬時的に安定に制御するための安価な制御方法及び制御装置を提供することである。   The present invention has been made in view of such a problem, and an object of the present invention is to individually charge / discharge current in each stage by changing control software in a multiplexed PCS in which a plurality of storage battery modules are connected in series. It is to provide an inexpensive control method and control device for instantaneously and stably controlling the control.

上記の課題を解決するために、請求項1に記載の発明は、N個の蓄電池モジュールを直列多段に接続した交直変換装置(PCS)において直流側充放電電流を各段個別に制御する蓄電池充放電制御装置であって、i段目(1≦i≦N)の前記蓄電池モジュールのインバータは、少なくとも充電時には、複数の前記蓄電池モジュール全体の直流側有効電力を帰還制御するための制御量Qで、前記i段目の蓄電池モジュールの直流電流を帰還制御するための制御量αiを補正した制御量Qiに基づいて制御されていることを特徴とする。 In order to solve the above-mentioned problem, the invention according to claim 1 is a battery charge control that individually controls the DC side charge / discharge current in each AC / DC converter (PCS) in which N storage battery modules are connected in series in multiple stages. In the discharge control device, the inverter of the storage battery module of the i-th stage (1 ≦ i ≦ N) has a control amount Q for performing feedback control on the DC side active power of the plurality of storage battery modules as a whole at least during charging. The i-th storage battery module is controlled based on a control amount Q i obtained by correcting a control amount α i for feedback control of a direct current of the storage battery module.

請求項2に記載の発明は、N個の蓄電池モジュールを直列多段に接続した交直変換装置(PCS)において直流側充放電電流を各段個別に制御する蓄電池充放電制御装置であって、i段目(1≦i≦N)の前記蓄電池モジュールのインバータは、少なくとも充電時には、他の段の蓄電池モジュールの直流電流を帰還制御するための制御量αj(1≦j≦N)を少なくとも1つ含む制御量Qで、前記i段目の蓄電池モジュールの直流電流を帰還制御するための制御量αiを補正した制御量Qiに基づいて制御されていることを特徴とする。 The invention according to claim 2 is a storage battery charge / discharge control device that individually controls the DC side charge / discharge current in each stage in an AC / DC converter (PCS) in which N storage battery modules are connected in series in multiple stages. The inverter of the storage battery module of the first (1 ≦ i ≦ N) has at least one control amount α j (1 ≦ j ≦ N) for performing feedback control of the direct current of the storage battery module at the other stage at least during charging. The control amount Q is controlled based on the control amount Q i obtained by correcting the control amount α i for feedback control of the direct current of the i-th storage battery module.

請求項3に記載の発明は、請求項1又は2に記載の蓄電池充放電制御装置において、前記補正した制御量Qiは、Qi=Q+αiと定義されることを特徴とする。 According to a third aspect of the present invention, in the storage battery charge / discharge control device according to the first or second aspect, the corrected control amount Q i is defined as Q i = Q + α i .

請求項4に記載の発明は、請求項1又は2に記載の蓄電池充放電制御装置において、前記補正した制御量Qiは、Qi=Q(1+αi)と定義されることを特徴とする。 According to a fourth aspect of the present invention, in the storage battery charge / discharge control device according to the first or second aspect, the corrected control amount Q i is defined as Q i = Q (1 + α i ). .

請求項5に記載の発明は、請求項1乃至4のいずれかに記載の蓄電池充放電制御装置において、前記制御量Q、αiは、それぞれPI制御されたものであることを特徴とする。 According to a fifth aspect of the present invention, in the storage battery charge / discharge control device according to any of the first to fourth aspects, the control amounts Q and α i are each PI-controlled.

請求項6に記載の発明は、N個の蓄電池モジュールを直列多段に接続した交直変換装置(PCS)において直流側充放電電流を各段個別に制御する蓄電池充放電制御方法であって、i段目(1≦i≦N)の前記蓄電池モジュールのインバータは、少なくとも充電時には、複数の前記蓄電池モジュール全体の直流側有効電力を帰還制御するための制御量Qで、前記i段目の蓄電池モジュールの直流電流を帰還制御するための制御量αiを補正した制御量Qiに基づいて制御されていることを特徴とする。 The invention according to claim 6 is a storage battery charge / discharge control method for individually controlling the DC side charge / discharge current in each stage in an AC / DC converter (PCS) in which N storage battery modules are connected in series in multiple stages. The inverter of the storage battery module of the first (1 ≦ i ≦ N) has a control amount Q for feedback control of the DC side active power of the whole of the plurality of storage battery modules at least during charging, and the inverter of the i-th storage battery module Control is performed based on a control amount Q i obtained by correcting a control amount α i for feedback control of a direct current.

請求項7に記載の発明は、N個の蓄電池モジュールを直列多段に接続した交直変換装置(PCS)において直流側充放電電流を各段個別に制御する蓄電池充放電制御方法であって、i段目(1≦i≦N)の前記蓄電池モジュールのインバータは、少なくとも充電時には、他の段の蓄電池モジュールの直流電流を帰還制御するための制御量αj(1≦j≦N)を少なくとも1つ含む制御量Qで、前記i段目の蓄電池モジュールの直流電流を帰還制御するための制御量αiを補正した制御量Qiに基づいて制御されていることを特徴とする。 The invention described in claim 7 is a storage battery charge / discharge control method for individually controlling the DC side charge / discharge current in each stage in an AC / DC converter (PCS) in which N storage battery modules are connected in series in multiple stages. The inverter of the storage battery module of the first (1 ≦ i ≦ N) has at least one control amount α j (1 ≦ j ≦ N) for performing feedback control of the direct current of the storage battery module at the other stage at least during charging. The control amount Q is controlled based on the control amount Q i obtained by correcting the control amount α i for feedback control of the direct current of the i-th storage battery module.

請求項8に記載の発明は、請求項6又は7に記載の蓄電池充放電制御方法において、前記補正した制御量Qiは、Qi=Q+αiと定義されることを特徴とする。 The invention according to claim 8 is the storage battery charge / discharge control method according to claim 6 or 7, wherein the corrected control amount Q i is defined as Q i = Q + α i .

請求項9に記載の発明は、請求項6又は7に記載の蓄電池充放電制御方法において、前記補正した制御量Qiは、Qi=Q(1+αi)と定義されることを特徴とする。 The invention according to claim 9 is the storage battery charge / discharge control method according to claim 6 or 7, wherein the corrected control amount Q i is defined as Q i = Q (1 + α i ). .

請求項10に記載の発明は、請求項6乃至9のいずれかに記載の蓄電池充放電制御方法において、前記制御量Q、αiは、それぞれPI制御されたものであることを特徴とする。 A tenth aspect of the present invention is the storage battery charge / discharge control method according to any of the sixth to ninth aspects, wherein the control amounts Q and α i are each PI-controlled.

本発明は、複数の蓄電池モジュールを直列接続した多重化PCSにおいて、制御ソフトの変更のみで、各段個別に充放電電流を瞬時的に安定に制御可能にする効果を奏する。   INDUSTRIAL APPLICABILITY The present invention has an effect that in a multiplexed PCS in which a plurality of storage battery modules are connected in series, the charge / discharge current can be instantaneously and stably controlled for each stage only by changing control software.

(a)は、直流側電流制御として一般的に用いられる主回路構成を示す図であり、(b)インバータを制御するための制御回路構成を示す図である。(A) is a figure which shows the main circuit structure generally used as DC side current control, (b) is a figure which shows the control circuit structure for controlling an inverter. (a)は、従来の直流側電流制御を蓄電池モジュール多重化PCSに応用した主回路構成を示す図であり、(b)は、2つのインバータをそれぞれ独立に直接制御する制御回路構成を示す図である。(A) is a figure which shows the main circuit structure which applied the conventional direct current side current control to storage battery module multiplexing PCS, (b) is a figure which shows the control circuit structure which directly controls two inverters independently, respectively. It is. 蓄電池モジュール多重化PCSの2つのインバータをそれぞれ独立に直接制御した場合のシミュレーション結果を示す図であり、(a)はIdc1 *=1A、Idc2 *=1Aとして制御した場合のグラフであり、(b)はIdc1 *=1A、Idc2 *=1.5Aとして制御した場合のグラフであり、(c)はIdc1 *=−1A、Idc2 *=−1Aとして制御した場合のグラフであり、(d)はIdc1 *=−1A、Idc2 *=−1.5Aとして制御した場合のグラフである。It is a figure which shows the simulation result at the time of controlling directly two inverters of a storage battery module multiplexing PCS each independently, (a) is a graph at the time of controlling as Idc1 * = 1A, Idc2 * = 1A, (B) is a graph when controlling as I dc1 * = 1A and I dc2 * = 1.5 A, and (c) is a graph when controlling as I dc1 * = − 1A and I dc2 * = − 1A. Yes, (d) is a graph when control is performed with I dc1 * = − 1A and I dc2 * = − 1.5 A. (a)はIdc1 *=1A、Idc2 *=1Aとして制御した場合の直流電流とPI制御器直前での制御偏差のシミュレーション結果を示すグラフであり、(b)はIdc1 *=1A、Idc2 *=1.5Aとして制御した場合の直流電流とPI制御器直前での制御偏差のシミュレーション結果を示すグラフである。(A) is a graph showing a simulation result of direct current and control deviation immediately before the PI controller when I dc1 * = 1A and I dc2 * = 1A, and (b) is a graph showing I dc1 * = 1A, It is a graph which shows the simulation result of the control deviation just before a direct-current current and PI controller at the time of controlling by Idc2 * = 1.5A. (a)はIdc1 *=−1A、Idc2 *=−1Aとして制御した場合の直流電流とPI制御器直前での制御偏差のシミュレーション結果を示すグラフであり、(b)はIdc1 *=−1A、Idc2 *=−1.5Aとして制御した場合の直流電流とPI制御器直前での制御偏差のシミュレーション結果を示すグラフである。(A) is a graph showing a simulation result of a direct current and a control deviation immediately before the PI controller when I dc1 * = − 1A and I dc2 * = − 1 A, and (b) is a graph showing I dc1 * = -1A, is a graph showing a simulation result of the control deviation of the DC current and the PI controller just before the case of controlling the I dc2 * = -1.5A. 蓄電池モジュール多重化PCSの主回路の等価回路を示す図である。It is a figure which shows the equivalent circuit of the main circuit of storage battery module multiplexing PCS. 本願発明の実施形態1に係る蓄電池モジュール多重化PCSの第1の制御回路構成を示す図である。It is a figure which shows the 1st control circuit structure of the storage battery module multiplexing PCS which concerns on Embodiment 1 of this invention. 本願発明の実施形態1に係る蓄電池モジュール多重化PCSの第2の制御回路構成を示す図である。It is a figure which shows the 2nd control circuit structure of the storage battery module multiplexing PCS which concerns on Embodiment 1 of this invention. 本願発明の実施形態1に係る第1の制御方法によるシミュレーション結果を示す図である。It is a figure which shows the simulation result by the 1st control method which concerns on Embodiment 1 of this invention. 本願発明の実施形態1に係る第2の制御方法によるシミュレーション結果を示す図である。It is a figure which shows the simulation result by the 2nd control method which concerns on Embodiment 1 of this invention. 本願発明の実施形態1に係る第1の制御方法を用いた試作機による実験結果を示す。The experimental result by the prototype using the 1st control method concerning Embodiment 1 of this invention is shown. 本願発明の実施形態2に係る蓄電池モジュール多重化PCSの第3の制御回路構成を示す図である。It is a figure which shows the 3rd control circuit structure of the storage battery module multiplexing PCS which concerns on Embodiment 2 of this invention. 本願発明の実施形態2に係る蓄電池モジュール多重化PCSの第4の制御回路構成を示す図である。It is a figure which shows the 4th control circuit structure of the storage battery module multiplexing PCS which concerns on Embodiment 2 of this invention. 本願発明の実施形態2に係る第3の制御方法を用いた試作機による実験結果を示す。The experimental result by the prototype using the 3rd control method concerning Embodiment 2 of this invention is shown. 本願発明の実施形態2に係る第4の制御方法を用いた試作機による実験結果を示す。The experimental result by the prototype using the 4th control method concerning Embodiment 2 of this invention is shown.

発明が解決しようとする課題に述べた充電側での制御の不安定性の原因は以下の通りと考えられる。   The causes of control instability on the charging side described in the problem to be solved by the invention are considered as follows.

図6に、蓄電池モジュール多重化PCSの主回路の等価回路を示す。インバータ102aとそれに接続された直流電源とを含む第1段目を交流電源105aとし、インバータ102bとそれに接続された直流電源とを含む第2段目を交流電源105bとする。   FIG. 6 shows an equivalent circuit of the main circuit of the storage battery module multiplexed PCS. A first stage including the inverter 102a and a DC power source connected thereto is referred to as an AC power source 105a, and a second stage including the inverter 102b and a DC power source connected thereto is referred to as an AC power source 105b.

直接制御の制御回路は、放電時には下記の動作を行う。
|Idc1|が不足
→インバータ−102aからの有効電力の出力を増やすため|vc1|を増加
→|vs|に対し|vc1+vc2|が増加
→|is|が増加
→インバータ−102bからの有効電力の出力(|vc1|×|is|)が増加
→|Idc1|が増加
→|Idc1|の不足は解消
従って、放電の場合は負の帰還がかかり制御は安定する。
The direct control circuit performs the following operation during discharging.
Insufficient | I dc1 | → Increase | v c1 | → | v s | Increase | v c1 + v c2 | → | i s | Increase → Inverter− The output of the active power from 102b (| v c1 | × | i s |) increases → | I dc1 | increases → | I dc1 | deficiency is resolved. Therefore, in the case of discharge, negative feedback is applied and control is stable. To do.

一方、充電時には直接制御の制御回路は下記の動作を行う。
|Idc1|が不足
→インバータ−102aへの有効電力の入力を増やすため|vc1|を増加
→|vs|に対し|vc1+vc2|が増加
→|is|が減少
→インバータ−102bへの有効電力の入力(|vc1|×|is|)が減少
→|Idc1|が減少
→|Idc1|は更に不足
従って、この場合は正の帰還となり制御は不安定となると考えられる。また、|is|が減少する代わりに、|vc1|の増加分だけ|vc2|が減少する場合も考えられ、そのような場合は下記の動作を行う。
|Idc1|が不足
→インバータ−102aへの有効電力の入力を増やすため|vc1|を増加
→|vc1+vc2|が|vs|で一定なので|vc2|が減少
→|Idc2|が減少
→インバータ−102bへの有効電力の入力を増やすため|vc2|を増加
→|vc1+vc2|が|vs|で一定なので|vc1|が減少
→|Idc1|が減少
このように、Idc1を増加させようとすると、Idc2の減少を引き起こし、それがまたIdc1の減少を引き起こすという負のサイクルに陥って不安定な制御となるものと考えられる。
On the other hand, the control circuit for direct control performs the following operation during charging.
| I dc1 | is insufficient → in order to increase the input of active power to inverter 102a | v c1 | is increased → | v s | is increased | v c1 + v c2 | is increased → | i s | is decreased → inverter− The input of the active power (| v c1 | × | i s |) to 102b decreases → | I dc1 | decreases → | I dc1 | is further insufficient. Therefore, in this case, the feedback becomes positive and the control becomes unstable. Conceivable. Also, instead of decreasing | i s |, | v c2 | may be decreased by an increase of | v c1 |. In such a case, the following operation is performed.
| I dc1 | is insufficient → in order to increase the input of active power to inverter 102a | v c1 | is increased → | v c1 + v c2 | is constant at | v s |, so | v c2 | is decreased → | I dc2 | Decreases → In order to increase the input of active power to inverter 102b, | v c2 | increases → | v c1 + v c2 | is constant at | v s |, so | v c1 | decreases → | I dc1 | Thus, it is considered that an attempt to increase I dc1 causes a decrease in I dc2 , which also causes a negative cycle that causes a decrease in I dc1 , resulting in unstable control.

以上から、放電の場合はインバータ交流側電圧と直流電流とは増えると増える関係にあり、帰還制御としたときにPI制御で定常偏差を零にできるが、充電動作の場合は交流側電圧と直流電流との関係が増えると減る関係にあるため帰還制御をかけると偏差が拡大する方向に動作すると考えられる。また、Idc1とIdc2との間に相関があり、一方を増やす動作が他方を減らすように作用すると考えられる。 From the above, in the case of discharging, the inverter AC side voltage and the DC current increase as they increase, and the steady state deviation can be made zero by PI control when feedback control is performed, but in the case of charging operation, the AC side voltage and DC are increased. Since the relationship with the current decreases as the relationship with the current increases, it is thought that when feedback control is applied, the deviation increases. Further, there is a correlation between I dc1 and I dc2, and it is considered that the operation of increasing one acts to decrease the other.

従って、これらの現象が複合的に生じることにより、蓄電池モジュール多重化PCSにおいては、各段独立して直流電流制御を行った場合、充電動作時に制御が収束しなくなると考えられる。   Therefore, when these phenomena occur in combination, it is considered that in the storage battery module multiplexed PCS, when direct current control is performed independently at each stage, the control does not converge during the charging operation.

本発明は、この対策として蓄電池モジュール変換器を直列接続した変換器全体での充放電電力を帰還制御した上で、各段の蓄電池モジュール変換器については各段の直流電流を個別に帰還制御した値により補正して制御する方法を提供する。   As a countermeasure against this, the present invention feedback-controls the charge / discharge power of the entire converter in which storage battery module converters are connected in series, and then individually controls the DC current of each stage for the storage battery module converter of each stage. Provided is a method of correcting and controlling by value.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

この方法によれば、以下の手順により各段個別制御を可能とする。
(1)全体の有効電力P(=Idc1×Vdc1+Idc2×Vdc2+・・・+IdcN×VdcN)の偏差により全体の有効電力Pの制御を行うための制御量Qを決定する。
(2)各段の直流電流の偏差により各段の配分補正αnを決める。
(3)Qとαnにより各段の制御量を決定する。
(4)各段の制御量を決定する方法としては下記の方法がある。
(i)n段目の制御量=Q+αn ・・・制御方法1
(ii)n段目の制御量=Q×(1+αn) ・・・制御方法2
尚、ここで重要なのは、各段の直流電流の制御目標値が他の段においても制御目標値の1つとされることである。そのため、制御量Qは必ずしも全体の有効電力Pの制御を行うものでなくてもよく、他の段の制御目標値を含むものであればよい。
According to this method, individual control of each stage is possible by the following procedure.
(1) A control amount Q for controlling the overall active power P is determined by a deviation of the overall active power P (= I dc1 × V dc1 + I dc2 × V dc2 +... + I dcN × V dcN ). .
(2) The distribution correction α n of each stage is determined by the deviation of the DC current of each stage.
(3) The control amount of each stage is determined by Q and α n .
(4) As a method for determining the control amount of each stage, there are the following methods.
(I) n-th stage control amount = Q + α n ... Control method 1
(Ii) n-th stage control amount = Q × (1 + α n )... Control method 2
Here, it is important that the control target value of the direct current at each stage is set to one of the control target values at the other stages. For this reason, the control amount Q does not necessarily have to control the entire active power P, and may be any as long as it includes the control target value of another stage.

これらの方法には以下の特徴がある。制御対象は有効電力及び直流電流というスカラー量である。そのため帰還制御に比例積分動作を用いることが可能となり、直流電流の定常偏差を“0”にすることができる。   These methods have the following characteristics. The controlled object is a scalar quantity of active power and direct current. Therefore, it is possible to use a proportional integration operation for feedback control, and the steady-state deviation of the direct current can be set to “0”.

また、この方法は制御ソフトの変更だけで実現できるため、特別な補助的制御ユニットなどの追加ハードウェアは不要であるため、特段のコスト増加はない。   Further, since this method can be realized only by changing the control software, no additional hardware such as a special auxiliary control unit is required, so that there is no particular increase in cost.

(実施形態1)
図7に、本願発明の実施形態1に係る蓄電池モジュール多重化PCSの方法1に基づく制御回路構成を示す。図7に示す第1の制御方法では、全体の有効電力Pの偏差をPI制御器に入力し、その出力Qを各段の直接制御系のPI制御器の出力α1、α2にそれぞれ加算する。尚、この第1の制御方法では、制御目標値の正負によりオープンループ特性の傾きが反転するため、制御目標値の正負により、フィードバック値の符号を変換する必要がある。そのためIdc1、Idc2の制御偏差は、IP制御器に入力する前にIdc1 *、Idc2 *の符号に応じてそれぞれ正負を転換する。
(Embodiment 1)
FIG. 7 shows a control circuit configuration based on method 1 of the storage battery module multiplexed PCS according to the first embodiment of the present invention. In the first control method shown in FIG. 7, the deviation of the total active power P is input to the PI controller, and the output Q is added to the outputs α 1 and α 2 of the PI controllers of the direct control systems of the respective stages. To do. In the first control method, since the slope of the open loop characteristic is inverted depending on whether the control target value is positive or negative, it is necessary to convert the sign of the feedback value depending on whether the control target value is positive or negative. Therefore the control deviation I dc1, I dc2 is, I dc1 * Before entering the IP controller, to convert the positive and negative depending on the sign of the I dc2 *.

図8に、本願発明の実施形態1に係る蓄電池モジュール多重化PCSの方法2に基づく制御回路構成を示す。図8に示す第2の制御方法では、全体の有効電力Pの偏差をPI制御器に入力し、その出力Qを各段の直接制御系のPI制御器の出力α1、α2にそれぞれ乗算する。そして、その乗算した値に出力Qをさらに加算する。これにより、各インバータは、自身の段の直流電流を目標値に収束させ、同時に他の段の直流電流をも段毎の目標値に収束させるように振舞う。 FIG. 8 shows a control circuit configuration based on method 2 of the storage battery module multiplexed PCS according to the first embodiment of the present invention. In the second control method shown in FIG. 8, the deviation of the total active power P is input to the PI controller, and its output Q is multiplied by the outputs α 1 and α 2 of the PI controllers of the direct control systems of the respective stages. To do. Then, the output Q is further added to the multiplied value. As a result, each inverter behaves so as to converge the DC current of its own stage to the target value and simultaneously converge the DC current of other stages to the target value of each stage.

図9に、第1の制御方法によるシミュレーション結果を示し、図10に、第2の制御方法によるシミュレーション結果を示す。過渡応答の比較を目的として、直流電流の目標値を「Idc1 *=−1A、Idc2 *=−1.5A」とした場合の制御の応答性の比較を行った。いずれの制御方法でもオーバーシュートなど無い、安定した制御特性が得られている。 FIG. 9 shows a simulation result by the first control method, and FIG. 10 shows a simulation result by the second control method. For the purpose of comparing the transient response, the control responsiveness was compared when the target value of the direct current was “I dc1 * = − 1 A, I dc2 * = − 1.5 A”. In any control method, stable control characteristics without overshooting are obtained.

図11に、第1の制御方法を用いた試作機による実験結果を示す。Idc1、Idc2の制御目標値を一分ごとに変化して各段の追従性を実験により確認した。この実験結果から、Idc1、Idc2のそれぞれが安定的に制御目標値に追従制御できていることが確認できた。 FIG. 11 shows the results of experiments using a prototype using the first control method. The control target values of I dc1 and I dc2 were changed every minute, and the followability of each stage was confirmed by experiments. From this experimental result, it was confirmed that each of I dc1 and I dc2 was stably controlled to follow the control target value.

以上は2段構成の場合の例であるが、蓄電池モジュールをN段構成とした場合でも全体の有効電力制御としての制御量で、各段の直流電流の変化を基に各段の制御量を補正することにより同様の効果を発揮できる。   The above is an example in the case of a two-stage configuration. However, even when the storage battery module has an N-stage configuration, the control amount for each stage is based on the change in the direct current of each stage. By correcting, the same effect can be exhibited.

(実施形態2)
図12に、本願発明の実施形態2に係る蓄電池モジュール多重化PCSの方法1に基づく制御回路構成を示す。図12に示す第3の制御方法では、全体の有効電力PをPI制御した値により補正を行う代わりに、1段目のPI制御した値を2段目のPI制御した値に加算している。実施形態1と同様の理由から、Idc2の制御偏差をIP制御器に入力する前にIdc1 *の符号に応じて正負を転換する。
(Embodiment 2)
FIG. 12 shows a control circuit configuration based on method 1 of the storage battery module multiplexed PCS according to the second embodiment of the present invention. In the third control method shown in FIG. 12, instead of correcting the entire active power P by the value subjected to PI control, the value subjected to PI control in the first stage is added to the value subjected to PI control in the second stage. . For the same reason as in the first embodiment, before inputting the control deviation of I dc2 to the IP controller, the sign is changed according to the sign of I dc1 * .

図13に、本願発明の実施形態2に係る蓄電池モジュール多重化PCSの方法2に基づく制御回路構成を示す。図13に示す第4の制御方法では、全体の有効電力Pの偏差で補正を行う代わりに、1段目のPI制御した値を2段目の直流電流のPI制御した値に乗算し、その乗算した値と1段目のPI制御した値とを加算している。   In FIG. 13, the control circuit structure based on the method 2 of the storage battery module multiplexing PCS which concerns on Embodiment 2 of this invention is shown. In the fourth control method shown in FIG. 13, instead of performing correction based on the deviation of the overall active power P, the PI-controlled value of the second-stage DC current is multiplied by the PI-controlled value of the second-stage DC current. The multiplied value and the value subjected to PI control at the first stage are added.

本実施形態では、1段目は直接補正されないが、2段目の補正によって間接的に補正されることになる。   In the present embodiment, the first stage is not directly corrected, but is indirectly corrected by the second stage correction.

図14、第3の制御方法を用いた試作機による実験結果を示し、図15に、第4の制御方法を用いた試作機による実験結果を示す。いずれも各段個別に安定して充放電電流を制御できている。   FIG. 14 shows the experimental results of the prototype using the third control method, and FIG. 15 shows the experimental results of the prototype using the fourth control method. In either case, the charge / discharge current can be controlled stably at each stage.

本実施形態2では便宜的に蓄電池モジュールを2段構成としたが、ここで重要なのは、N段構成の蓄電池モジュールの内少なくとも1段の蓄電池モジュールのインバータは、他の段の直流電流の制御量で自身の段の直流電流の制御量を補正した制御量で制御されていることである。従って、蓄電池モジュールをN段構成とした場合も、同様の効果を発揮できる。   In the second embodiment, for convenience, the storage battery module has a two-stage configuration. What is important here is that the inverter of at least one of the N-stage storage battery modules has a control amount of the DC current of the other stage. In other words, the control is performed with a control amount obtained by correcting the control amount of the direct current in its own stage. Therefore, the same effect can be exhibited even when the storage battery module has an N-stage configuration.

101、105a、105b 交流電源
102、102a、102b インバータ
103 制御システム
104 直流電源
101, 105a, 105b AC power supply 102, 102a, 102b Inverter 103 Control system 104 DC power supply

Claims (10)

N個の蓄電池モジュールを直列多段に接続した交直変換装置(PCS)において直流側充放電電流を各段個別に制御する蓄電池充放電制御装置であって、
i段目(1≦i≦N)の前記蓄電池モジュールのインバータは、少なくとも充電時には、複数の前記蓄電池モジュール全体の直流側有効電力を帰還制御するための制御量Qで、前記i段目の蓄電池モジュールの直流電流を帰還制御するための制御量αiを補正した制御量Qiに基づいて制御されていることを特徴とする蓄電池充放電制御装置。
A storage battery charge / discharge control device that individually controls the DC side charge / discharge current in each AC / DC converter (PCS) in which N storage battery modules are connected in series in multiple stages,
The inverter of the i-th storage battery module of the i-th stage (1 ≦ i ≦ N) has a control amount Q for performing feedback control of the DC side active power of the whole of the plurality of storage battery modules at least during charging, and the i-th storage battery module A storage battery charge / discharge control apparatus, wherein the control is performed based on a control amount Q i obtained by correcting a control amount α i for feedback control of a direct current of the module.
N個の蓄電池モジュールを直列多段に接続した交直変換装置(PCS)において直流側充放電電流を各段個別に制御する蓄電池充放電制御装置であって、
i段目(1≦i≦N)の前記蓄電池モジュールのインバータは、少なくとも充電時には、他の段の蓄電池モジュールの直流電流を帰還制御するための制御量αj(1≦j≦N)を少なくとも1つ含む制御量Qで、前記i段目の蓄電池モジュールの直流電流を帰還制御するための制御量αiを補正した制御量Qiに基づいて制御されていることを特徴とする蓄電池充放電制御装置。
A storage battery charge / discharge control device that individually controls the DC side charge / discharge current in each AC / DC converter (PCS) in which N storage battery modules are connected in series in multiple stages,
The inverter of the storage battery module of the i-th stage (1 ≦ i ≦ N) has at least a control amount α j (1 ≦ j ≦ N) for performing feedback control of the direct current of the storage battery module of the other stage at least during charging. The storage battery charge / discharge is controlled based on a control amount Q i obtained by correcting a control amount α i for feedback control of a direct current of the i-th storage battery module with a control amount Q including one Control device.
前記補正した制御量Qiは、Qi=Q+αiと定義されることを特徴とする請求項1又は2に記載の蓄電池充放電制御装置。 The storage battery charge / discharge control device according to claim 1, wherein the corrected control amount Q i is defined as Q i = Q + α i . 前記補正した制御量Qiは、Qi=Q(1+αi)と定義されることを特徴とする請求項1又は2に記載の蓄電池充放電制御装置。 The storage battery charge / discharge control device according to claim 1, wherein the corrected control amount Q i is defined as Q i = Q (1 + α i ). 前記制御量Q、αiは、それぞれPI制御されたものであることを特徴とする請求項1乃至4のいずれかに記載の蓄電池充放電制御装置。 The storage battery charge / discharge control apparatus according to claim 1, wherein the control amounts Q and α i are each PI-controlled. N個の蓄電池モジュールを直列多段に接続した交直変換装置(PCS)において直流側充放電電流を各段個別に制御する蓄電池充放電制御方法であって、
i段目(1≦i≦N)の前記蓄電池モジュールのインバータは、少なくとも充電時には、複数の前記蓄電池モジュール全体の直流側有効電力を帰還制御するための制御量Qで、前記i段目の蓄電池モジュールの直流電流を帰還制御するための制御量αiを補正した制御量Qiに基づいて制御されていることを特徴とする蓄電池充放電制御方法。
In the AC / DC converter (PCS) in which N storage battery modules are connected in series in multiple stages, there is a storage battery charge / discharge control method for controlling the DC side charge / discharge current individually for each stage,
The inverter of the i-th storage battery module of the i-th stage (1 ≦ i ≦ N) has a control amount Q for performing feedback control of the DC side active power of the whole of the plurality of storage battery modules at least during charging, and the i-th storage battery module A storage battery charge / discharge control method, wherein control is performed based on a control amount Q i obtained by correcting a control amount α i for feedback control of a direct current of the module.
N個の蓄電池モジュールを直列多段に接続した交直変換装置(PCS)において直流側充放電電流を各段個別に制御する蓄電池充放電制御方法であって、
i段目(1≦i≦N)の前記蓄電池モジュールのインバータは、少なくとも充電時には、他の段の蓄電池モジュールの直流電流を帰還制御するための制御量αj(1≦j≦N)を少なくとも1つ含む制御量Qで、前記i段目の蓄電池モジュールの直流電流を帰還制御するための制御量αiを補正した制御量Qiに基づいて制御されていることを特徴とする蓄電池充放電制御方法。
In the AC / DC converter (PCS) in which N storage battery modules are connected in series in multiple stages, there is a storage battery charge / discharge control method for controlling the DC side charge / discharge current individually for each stage,
The inverter of the storage battery module of the i-th stage (1 ≦ i ≦ N) has at least a control amount α j (1 ≦ j ≦ N) for performing feedback control of the direct current of the storage battery module of the other stage at least during charging. The storage battery charge / discharge is controlled based on a control amount Q i obtained by correcting a control amount α i for feedback control of a direct current of the i-th storage battery module with a control amount Q including one Control method.
前記補正した制御量Qiは、Qi=Q+αiと定義されることを特徴とする請求項6又は7に記載の蓄電池充放電制御方法。 The storage battery charge / discharge control method according to claim 6 or 7, wherein the corrected control amount Q i is defined as Q i = Q + α i . 前記補正した制御量Qiは、Qi=Q(1+αi)と定義されることを特徴とする請求項6又は7に記載の蓄電池充放電制御方法。 The storage battery charge / discharge control method according to claim 6 or 7, wherein the corrected control amount Q i is defined as Q i = Q (1 + α i ). 前記制御量Q、αiは、それぞれPI制御されたものであることを特徴とする請求項6乃至9のいずれかに記載の蓄電池充放電制御方法。 The storage battery charge / discharge control method according to claim 6, wherein the control amounts Q and α i are each subjected to PI control.
JP2010048361A 2010-03-04 2010-03-04 Apparatus and method for controlling charging/discharging of storage battery Pending JP2011188556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010048361A JP2011188556A (en) 2010-03-04 2010-03-04 Apparatus and method for controlling charging/discharging of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048361A JP2011188556A (en) 2010-03-04 2010-03-04 Apparatus and method for controlling charging/discharging of storage battery

Publications (1)

Publication Number Publication Date
JP2011188556A true JP2011188556A (en) 2011-09-22

Family

ID=44794207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048361A Pending JP2011188556A (en) 2010-03-04 2010-03-04 Apparatus and method for controlling charging/discharging of storage battery

Country Status (1)

Country Link
JP (1) JP2011188556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111308913A (en) * 2020-03-18 2020-06-19 国网湖南省电力有限公司 Semi-physical simulation modeling method for high-capacity battery energy storage power station
KR102705531B1 (en) * 2024-05-31 2024-09-11 주식회사 민테크 Current control method and current control apparatus using trend line function based pid control gain mapping

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111308913A (en) * 2020-03-18 2020-06-19 国网湖南省电力有限公司 Semi-physical simulation modeling method for high-capacity battery energy storage power station
CN111308913B (en) * 2020-03-18 2023-06-09 国网湖南省电力有限公司 Semi-physical simulation modeling method for high-capacity battery energy storage power station
KR102705531B1 (en) * 2024-05-31 2024-09-11 주식회사 민테크 Current control method and current control apparatus using trend line function based pid control gain mapping

Similar Documents

Publication Publication Date Title
US11101742B2 (en) Buck-chopper and bi-directional chopper for multilevel cascaded H-bridge inverters
Thang et al. Flexible system architecture of stand-alone PV power generation with energy storage device
US10355487B2 (en) Photovoltaic system
WO2013140894A1 (en) Regulating device, battery assembly and regulating method
JP2010233287A (en) Charge and discharge control device, and method of controlling charge and discharge
CN105262096A (en) Voltage frequency adjustment method considering photovoltaic maximum power tracking for active power distribution network
JPWO2017169655A1 (en) Power supply system, control system, and power control method for power supply system
KR20170013772A (en) Energy storge system and metoh for operating thereof
JP2017051083A (en) Power generation system, power generation method and program
JP6113556B2 (en) Reactive power compensator
US8723359B2 (en) Method for controlling sodium-sulfur battery
WO2017037925A1 (en) Voltage-fluctuation suppression device and method
JP2015082954A (en) Autonomous operation system, autonomous operation controller, and storage battery system
KR101752888B1 (en) Battery system
JP5767895B2 (en) Output fluctuation suppressing device for distributed power supply and output fluctuation suppressing method for distributed power supply
US8598839B2 (en) Method for controlling sodium-sulfur battery
JP2011188556A (en) Apparatus and method for controlling charging/discharging of storage battery
US9876368B2 (en) Alternating current linked power converting apparatus
Vavilapalli et al. A buck-chopper based energy storage system for the cascaded H-bridge inverters in PV applications
US20200280184A1 (en) Power controller
WO2021205701A1 (en) Power conversion device
JP6162889B2 (en) Fuel cell system inverter and fuel cell output control method
TW201539930A (en) Micro-grid operation system with smart energy management
EP3869682B1 (en) A method and a control device for controlling a power converter
Makrygiorgou et al. Modeling and stability of autonomous dc microgrids with converter-controlled energy storage systems