JP2011185790A - Delamination detecting method of laminating material and embedding method of optical fiber sensor - Google Patents

Delamination detecting method of laminating material and embedding method of optical fiber sensor Download PDF

Info

Publication number
JP2011185790A
JP2011185790A JP2010052264A JP2010052264A JP2011185790A JP 2011185790 A JP2011185790 A JP 2011185790A JP 2010052264 A JP2010052264 A JP 2010052264A JP 2010052264 A JP2010052264 A JP 2010052264A JP 2011185790 A JP2011185790 A JP 2011185790A
Authority
JP
Japan
Prior art keywords
optical fiber
delamination
fiber sensor
material piece
embedding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010052264A
Other languages
Japanese (ja)
Inventor
Takaomi Inada
貴臣 稲田
Akira Kobiki
彰 古挽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010052264A priority Critical patent/JP2011185790A/en
Publication of JP2011185790A publication Critical patent/JP2011185790A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain delamination progress information of a laminating material. <P>SOLUTION: A plurality of optical fiber sensors 2a are arranged at one-dimensionally or two-dimensionally between layers a to c of the laminating material A in order to get information revealing progress stages of delamination based on a detection stage of each optical fiber sensor 2a. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、積層材料の層間剥離検出方法及び光ファイバセンサの埋込方法に関する。   The present invention relates to a method for detecting delamination of a laminated material and a method for embedding an optical fiber sensor.

下記特許文献1には、繊維強化プラスチック積層板の層間剥離検出方法が開示されている。この層間剥離検出方法は、繊維強化プラスチック(FRP)等の積層板を検出対象とするものであり、積層板の層間に光ファイバを予め埋め込み、層間に剥離が発生したときに光ファイバセンサの光透過率が変化することを利用するものである。   Patent Document 1 below discloses a method for detecting delamination of a fiber reinforced plastic laminate. This delamination detection method is intended for detection of laminated sheets of fiber reinforced plastic (FRP) or the like, and an optical fiber is embedded in the interlayer of the laminated sheet in advance, and the optical fiber sensor light is emitted when delamination occurs between the layers. This utilizes the change in transmittance.

特開平05−340867号公報JP 05-340867 A

ところで、上記従来技術は、層間剥離の発生を単純に検出するものであり、剥離のメカニズムを究明するために必要な剥離の進行状態を示す情報(以下、剥離進行情報という。)を提供するものではない。積層材料の機械的な特性を評価するためには、積層材料における剥離のメカニズムを究明する必要があり、剥離進行情報が不可欠である。繊維強化プラスチック積層板等の積層材料の技術分野では、剥離進行情報を取得する技術の開発が強く切望されている。   By the way, the above prior art simply detects the occurrence of delamination, and provides information (hereinafter referred to as peeling progress information) indicating the progress of peeling necessary for investigating the peeling mechanism. is not. In order to evaluate the mechanical properties of the laminated material, it is necessary to investigate the mechanism of peeling in the laminated material, and peeling progress information is indispensable. In the technical field of laminated materials such as fiber reinforced plastic laminated boards, development of a technique for acquiring peeling progress information is strongly desired.

本発明は、上述した事情に鑑みてなされたものであり、積層材料の剥離進行情報を取得することを目的とするものである。   This invention is made | formed in view of the situation mentioned above, and it aims at acquiring the peeling progress information of a laminated material.

上記目的を達成するために、本発明では、積層材料の層間剥離検出方法に係る第1の解決手段として、積層材料の層間に複数の光ファイバセンサを一次元状あるいは二次元状に配置し、各光ファイバセンサの検出状態に基づいて剥離の進行状態を示す情報を取得する、という手段を採用する。   In order to achieve the above object, in the present invention, as a first solving means related to the method for detecting delamination of a laminated material, a plurality of optical fiber sensors are arranged in a one-dimensional or two-dimensional manner between layers of the laminated material, A means is adopted in which information indicating the progress of peeling is acquired based on the detection state of each optical fiber sensor.

積層材料の層間剥離検出方法に係る第2の解決手段として、上記第1の解決手段において、剥離を検出している光ファイバセンサと剥離を検出していない光ファイバセンサとに基づいて剥離領域と非剥離領域との境界位置を剥離の進行状態を示す情報として取得する、という手段を採用する。   As a second solving means related to the delamination detection method of the laminated material, in the first solving means described above, based on the optical fiber sensor detecting the peeling and the optical fiber sensor not detecting the peeling, A means is adopted in which the boundary position with the non-peeling region is acquired as information indicating the progress of the peeling.

積層材料の層間剥離検出方法に係る第3の解決手段として、上記第1または第2の解決手段において、各光ファイバセンサの隔離検出時間に基づいて剥離の伝搬速度を剥離の進行状態を示す情報として取得する、という手段を採用する。   As the third solving means relating to the delamination detection method of the laminated material, in the above first or second solving means, information indicating the progress of peeling in the propagation speed of peeling based on the isolation detection time of each optical fiber sensor The method of acquiring as is adopted.

また、本発明では、光ファイバセンサの埋込方法に係る第1の解決手段として、上記第1〜第3のいずれかの解決手段に係る積層材料の層間剥離検出方法における光ファイバセンサの層間への埋め込み方法であって、第1の層を構成する第1の材料片上に第2の層を構成する第2の材料片を重ねる際に、第2の材料片を複数に分割した分割材料片で各光ファイバセンサが設けられた光ファイバを挟み込むように配置し、さらに第3の層を構成する第3の材料片を重ね、第1〜第3の材料片を接合する、という手段を採用する。   Further, in the present invention, as the first solving means related to the method of embedding the optical fiber sensor, the interlayer separation detection method of the laminated material according to any one of the first to third solving means described above, to the interlayer of the optical fiber sensor. In the method of embedding, a divided material piece obtained by dividing the second material piece into a plurality of parts when the second material piece constituting the second layer is superimposed on the first material piece constituting the first layer. In this method, the optical fibers provided with the optical fiber sensors are arranged so as to sandwich the optical fiber sensor, and the third material pieces constituting the third layer are further stacked to join the first to third material pieces. To do.

光ファイバセンサの埋込方法に係る第2の解決手段として、上記第1の解決手段において、第2の材料片の厚さは光ファイバの直径と同等である、という手段を採用する。   As a second solving means relating to the method of embedding the optical fiber sensor, a means is adopted in which the thickness of the second material piece is equal to the diameter of the optical fiber in the first solving means.

本発明によれば、積層材料の層間に複数の光ファイバセンサを一次元状あるいは二次元状に配置し、各光ファイバセンサの検出状態に基づいて剥離の進行状態を示す情報を取得するので、剥離のメカニズムを究明に必要な知見を得ることができる。   According to the present invention, a plurality of optical fiber sensors are arranged in a one-dimensional or two-dimensional manner between layers of the laminated material, and information indicating the progress of peeling is obtained based on the detection state of each optical fiber sensor. Knowledge necessary for investigating the mechanism of peeling can be obtained.

本発明の一実施形態に係る繊維強化プラスチック(積層材料)の層間剥離検出方法において、材料本体1に複数のFBGセンサ2aを有する光ファイバ2が埋め込まれた繊維強化プラスチックAを示す斜視図及び光ファイバ1の配線方向における断面図である。1 is a perspective view showing a fiber reinforced plastic A in which an optical fiber 2 having a plurality of FBG sensors 2a is embedded in a material main body 1 in a method for detecting delamination of fiber reinforced plastic (laminated material) according to an embodiment of the present invention; FIG. FIG. 3 is a cross-sectional view of the fiber 1 in the wiring direction. 本発明の一実施形態に係る繊維強化プラスチック(積層材料)の層間剥離検出方法において、繊維強化プラスチックAにて剥離が進展していく状態を示す模式図である。It is a schematic diagram which shows the state which peeling progresses in the fiber reinforced plastic A in the delamination detection method of the fiber reinforced plastic (laminated material) which concerns on one Embodiment of this invention. 本発明の一実施形態に係る繊維強化プラスチック(積層材料)の層間剥離検出方法において、各FBGセンサ1aの検出信号の変化を示す特性図である。FIG. 5 is a characteristic diagram showing a change in detection signal of each FBG sensor 1a in the delamination detection method for fiber reinforced plastic (laminated material) according to an embodiment of the present invention. 本発明の一実施形態に係る光ファイバセンサの埋込方法を示す模式図である。It is a schematic diagram which shows the embedding method of the optical fiber sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光ファイバセンサの埋込方法において、繊維強化プラスチックAの光ファイバ1の配線方向における断面図及び光ファイバ1の配線方向に直交する方向における断面図である。FIG. 4 is a cross-sectional view of the fiber reinforced plastic A in the wiring direction of the optical fiber 1 and a cross-sectional view in a direction orthogonal to the wiring direction of the optical fiber 1 in the method of embedding the optical fiber sensor according to one embodiment of the present invention. 本発明の一実施形態に係る光ファイバセンサの埋込方法において、繊維強化プラスチックAの光ファイバ1の配線方向に直交する方向の断面を示す写真である。It is a photograph which shows the cross section of the direction orthogonal to the wiring direction of the optical fiber 1 of the fiber reinforced plastic A in the embedding method of the optical fiber sensor which concerns on one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態について説明する。
最初に、本実施形態に係る繊維強化プラスチックA(積層材料)の層間剥離検出方法について、上記図1〜図3を参照して説明する。繊維強化プラスチックAは、図示するように材料本体1に複数のFBG(Fiber Bragg Grating)センサ2a(光ファイバセンサ)を有する光ファイバ2が埋め込まれたものである。材料本体1は、例えば第1〜第3の層a〜cからなる3層構造であり、光ファイバ2は、第2の層b内に直線状に埋め込まれている。第1〜第3の層a〜cは、強化繊維の配向方向が交互に直交する関係にある。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, a method for detecting delamination of fiber reinforced plastic A (laminated material) according to the present embodiment will be described with reference to FIGS. The fiber reinforced plastic A is obtained by embedding an optical fiber 2 having a plurality of FBG (Fiber Bragg Grating) sensors 2a (optical fiber sensors) in a material body 1 as shown in the figure. The material body 1 has, for example, a three-layer structure including first to third layers a to c, and the optical fiber 2 is embedded in a straight line in the second layer b. The first to third layers a to c are in a relationship in which the orientation directions of the reinforcing fibers are alternately orthogonal.

光ファイバ2には、一定間隔で複数のFBGセンサ2aが設けられている。なお、図2では、便宜的に3つのFBGセンサ2aが設けられた状態を示している。このような光ファイバ2の一端は、光計測装置3の出射・受光端に接続されている。FBGセンサ2aは、光ファイバ2の軸線に沿って形成された一次元の回折格子(ブラッグ回折格子)であり、ブラッグ回折格子の格子間隔に応じた波長(ブラッグ波長)の反射光を発生させる。このブラッグ波長は、層間剥離が発生して内部応力が変化すると格子間隔が変化するので、内部応力に依存して変移するものである。なお、光ファイバ2の一端は、反射が発生しないように無反射処理が施されている。   The optical fiber 2 is provided with a plurality of FBG sensors 2a at regular intervals. FIG. 2 shows a state in which three FBG sensors 2a are provided for convenience. One end of such an optical fiber 2 is connected to the emission / light reception end of the optical measurement device 3. The FBG sensor 2a is a one-dimensional diffraction grating (Bragg diffraction grating) formed along the axis of the optical fiber 2, and generates reflected light having a wavelength (Bragg wavelength) corresponding to the grating interval of the Bragg diffraction grating. This Bragg wavelength changes depending on the internal stress because the lattice spacing changes when delamination occurs and the internal stress changes. Note that one end of the optical fiber 2 is subjected to non-reflection treatment so that reflection does not occur.

本実施形態における複数のFBGセンサ2aは、各々に異なる格子間隔を有するものであり、よってブラッグ波長もそれぞれ異なる。材料本体1において層間剥離が発生して内部応力が変化すると、層間剥離の発生部位近傍のFBGセンサ2aのブラッグ波長は変移する。   The plurality of FBG sensors 2a in the present embodiment have different lattice spacings, and therefore have different Bragg wavelengths. When delamination occurs in the material body 1 and the internal stress changes, the Bragg wavelength of the FBG sensor 2a in the vicinity of the delamination site changes.

光計測装置3は、出射・受光端から光ファイバ2の一端に測定光(レーザ光または自然放射光(ASE光))を出射すると共に、FBGセンサ2aで反射して出射・受光端に戻ってきた反射光を受光してブラッグ波長を測定する。層間剥離によってブラッグ波長が変異しても各FBGセンサ2aのブラッグ波長が重なり合うことがないように、各FBGセンサ2aのブラッグ波長は十分に離間して設定されているので、光計測装置3は、ブラッグ波長の変異を各FBGセンサ2a毎に個別に測定することができる。このような光計測装置3は、各FBGセンサ2a毎にブラッグ波長を時系列データとして取得・記憶する。   The optical measuring device 3 emits measurement light (laser light or spontaneous emission light (ASE light)) from the emission / light-receiving end to one end of the optical fiber 2 and is reflected by the FBG sensor 2a to return to the emission / light-receiving end. The Bragg wavelength is measured by receiving the reflected light. Since the Bragg wavelength of each FBG sensor 2a is set sufficiently apart so that the Bragg wavelength of each FBG sensor 2a does not overlap even if the Bragg wavelength is changed due to delamination, the optical measuring device 3 The variation of the Bragg wavelength can be measured individually for each FBG sensor 2a. Such an optical measurement device 3 acquires and stores the Bragg wavelength as time-series data for each FBG sensor 2a.

以上説明したように、本実施形態における繊維強化プラスチックA(積層材料)は、材料本体1の第2の層b内に、一定間隔で設けられると共にブラッグ波長が互いに異なる複数のFBGセンサ2aが光ファイバ2が直線状に設けられたものである。したがって、光計測装置3によって光ファイバ2の一端から入射される反射光のブラッグ波長を測定することによって複数のFBGセンサ2aのうち、何れのFBGセンサ2aのブラッグ波長が変化し、また何れのFBGセンサ2aのブラッグ波長が変化していないかを容易に判定することができる。   As described above, the fiber reinforced plastic A (laminated material) in the present embodiment is provided in the second layer b of the material main body 1 at regular intervals and a plurality of FBG sensors 2a having different Bragg wavelengths are optically transmitted. The fiber 2 is provided in a straight line. Therefore, by measuring the Bragg wavelength of the reflected light incident from one end of the optical fiber 2 by the optical measurement device 3, the Bragg wavelength of any FBG sensor 2a among the plurality of FBG sensors 2a is changed, and any FBG is detected. It can be easily determined whether the Bragg wavelength of the sensor 2a has changed.

材料本体1に発生する層間剥離は、ある箇所を起点として周囲に伝搬してある面積を有する領域として発生するものと考えられる。例えば、図2に模式的に示すように、材料本体1の左端で発生した層間剥離が左側に向けて広がったと場合、FBG1〜FBG3で示す3つのFBGセンサ2aについて光計測装置3が取得するブラッグ波長の時系列データは、図3に示すように、順次時刻が遅れて層間剥離(つまり合材本体1のひずみ=ブラッグ波長の変移)を示すものとなる。すなわち、FBG1は時刻t1で層間剥離を検出し、FBG2は時刻t1よりも遅れた時刻t2で層間剥離を検出し、またFBG3は時刻t2よりも遅れた時刻t3で層間剥離を検出する。   The delamination that occurs in the material main body 1 is considered to occur as a region having an area that propagates around a certain point as a starting point. For example, as schematically shown in FIG. 2, when the delamination generated at the left end of the material body 1 spreads toward the left side, the Bragg acquired by the optical measurement device 3 for the three FBG sensors 2 a indicated by FBG <b> 1 to FBG <b> 3. As shown in FIG. 3, the time-series data of the wavelength indicates delamination (that is, distortion of the composite material body 1 = Bragg wavelength transition) with a lag in time. That is, FBG1 detects delamination at time t1, FBG2 detects delamination at time t2, which is later than time t1, and FBG3 detects delamination at time t3, which is later than time t2.

材料本体1において、ブラッグ波長が変化したFBGセンサ2aの近傍領域は層間剥離が発生した剥離領域であり、一方、ブラッグ波長が変化していないFBGセンサ2aの近傍領域は層間剥離が発生していない非剥離領域である。したがって、各FBGセンサ2aの層間剥離の検出/未検出は、剥離領域の境界位置や大きさを示す情報である。また、上記層間剥離の検出時刻t1、t2、t3は、各FBGセンサ2aの間隔が既知(固定値)なので、層間剥離の伝搬速度を与える情報である。   In the material main body 1, the region near the FBG sensor 2a in which the Bragg wavelength is changed is a separation region where delamination occurs, while the region near the FBG sensor 2a where the Bragg wavelength is not changed is not delaminated. It is a non-peeling area. Therefore, the detection / non-detection of delamination of each FBG sensor 2a is information indicating the boundary position and size of the peeling region. The delamination detection times t1, t2, and t3 are information that gives the propagation speed of delamination because the intervals between the FBG sensors 2a are known (fixed values).

次に、本実施形態に係る各光ファイバセンサ2aの埋込方法、つまり材料本体1に光ファイバ2が埋め込まれた繊維強化プラスチックAの製造方法について、図4〜図6を参照して説明する。なお、図5(b)における第2の層bは、断面構造が分かり易くなるように、便宜的に第1、第3の層a、cに対する大きさを誇張して示している。   Next, a method for embedding each optical fiber sensor 2a according to the present embodiment, that is, a method for manufacturing the fiber reinforced plastic A in which the optical fiber 2 is embedded in the material body 1 will be described with reference to FIGS. . Note that the size of the second layer b in FIG. 5B is exaggerated for convenience, so that the cross-sectional structure can be easily understood.

繊維強化プラスチックAは、上述したように3層構造の材料本体1に複数のFBG(Fiber Bragg Grating)センサ2a(光ファイバセンサ)を有する光ファイバ2が埋め込まれたものであるが、このような繊維強化プラスチックAは、第1の層aを構成する第1の材料片a1上に第2の層bを構成する2つの第2の材料片b1,b2を光ファイバ2を挟み込むように配置(載置)し、さらに第3の層cを構成する第3の材料片c1を重ねた状態に配置(載置)し、さらに第1〜第3の材料片a1,b1,b2,c1を全体として加熱して接合することによって製造される。   The fiber reinforced plastic A is obtained by embedding the optical fiber 2 having a plurality of FBG (Fiber Bragg Grating) sensors 2a (optical fiber sensors) in the material body 1 having a three-layer structure as described above. In the fiber reinforced plastic A, two second material pieces b1 and b2 constituting the second layer b are arranged so as to sandwich the optical fiber 2 on the first material piece a1 constituting the first layer a ( The third material piece c1 constituting the third layer c is placed (placed) in a stacked state, and the first to third material pieces a1, b1, b2, c1 are entirely disposed. It is manufactured by heating and joining.

ここで、第2の層bを構成する2つの第2の材料片b1,b2は、図5(b)に示されているように、第1の材料片a1の幅から光ファイバ2の直径を差し引いた寸法を2等分した幅の分割材料片であり、両側から光ファイバ2を挟み込んでいる。このような第2の材料片b1,b2と光ファイバ2とを第1の材料片a1上に(載置)する場合、図4、図5(a)に示すように、第1の材料片a1の両側にダム材D1,D2を載置して光ファイバ2の両端を支持することが好ましい。   Here, as shown in FIG. 5B, the two second material pieces b1 and b2 constituting the second layer b have a diameter of the optical fiber 2 from the width of the first material piece a1. Is a divided material piece having a width obtained by dividing the size of the optical fiber 2 into two equal parts, and the optical fiber 2 is sandwiched from both sides. When the second material pieces b1, b2 and the optical fiber 2 are placed (placed) on the first material piece a1, as shown in FIGS. 4 and 5A, the first material piece It is preferable to place dam materials D1 and D2 on both sides of a1 to support both ends of the optical fiber 2.

このようなダム材D1,D2が配置された状態で第2の材料片b1,b2及び光ファイバ2の上に第1の材料片a1と同一形状の第3の材料片c1を重ねる。上記ダム材D1,D2がない場合には、光ファイバ2の両端が垂れ下がることによって光ファイバ2が上下方向に湾曲して中央近傍が持ち上がるので、第3の材料片c1を密着状態に第2の材料片b1,b2上に配置(載置)することが困難である。   A third material piece c1 having the same shape as the first material piece a1 is stacked on the second material pieces b1 and b2 and the optical fiber 2 in a state where such dam materials D1 and D2 are arranged. When the dam materials D1 and D2 are not provided, both ends of the optical fiber 2 hang down, so that the optical fiber 2 is bent in the vertical direction and the vicinity of the center is lifted, so that the third material piece c1 is brought into a close contact state. It is difficult to place (place) on the material pieces b1 and b2.

なお、第1の材料片a1と第2の材料片b1,b2とは内装される強化繊維の配向方向(繊維方向)が互いに直交関係にあり、また第2の材料片b1,b2と第3の材料片c1とは、内装される強化繊維の配向方向(繊維方向)が互いに直交関係にある。すなわち、第2の材料片b1,b2における強化繊維の配向方向は、光ファイバ2の延在方向と同一であり、第1の材料片a1及び第3の材料片c1における強化繊維の配向方向は、光ファイバ2の延在方向に直交する方向である。   The first material piece a1 and the second material pieces b1, b2 are orthogonal to each other in the orientation direction (fiber direction) of the reinforcing fibers incorporated therein, and the second material pieces b1, b2 With the material piece c1, the orientation directions (fiber directions) of the reinforcing fibers to be incorporated are orthogonal to each other. That is, the orientation direction of the reinforcing fibers in the second material pieces b1, b2 is the same as the extending direction of the optical fiber 2, and the orientation direction of the reinforcing fibers in the first material piece a1 and the third material piece c1 is The direction perpendicular to the extending direction of the optical fiber 2.

このようにして第3の材料片c1の配置が完了すると、図5(a)に示すように、さらに光ファイバ2の両端をダム材D1,D2と一緒に挟み込むようにダム材D3,D4を配置する。そして、このような状態において、加熱炉で加熱することにより繊維強化プラスチックAを製造する。   When the arrangement of the third material piece c1 is completed in this way, as shown in FIG. 5 (a), the dam materials D3 and D4 are further inserted so that both ends of the optical fiber 2 are sandwiched together with the dam materials D1 and D2. Deploy. And in such a state, the fiber reinforced plastic A is manufactured by heating with a heating furnace.

このような各光ファイバセンサ2aの埋込方法によれば、図6(a)に示すように、光ファイバ2の周縁近傍に形成される樹脂リッチ部の面積が極めて小さい。従来では第1の材料片と同形の第2の材料片とによって光ファイバを単純に挟むことによって埋め込んでいるので、加熱する前の状態において光ファイバの周りに空隙が発生しており、この空隙に強化繊維よりも移動し易い樹脂が流れ込むことによって、図6(b)に示すような大きな樹脂リッチ部が形成されている。   According to such an embedding method of each optical fiber sensor 2a, the area of the resin rich portion formed in the vicinity of the periphery of the optical fiber 2 is extremely small as shown in FIG. Conventionally, since the optical fiber is simply sandwiched between the first material piece and the second material piece having the same shape, a gap is generated around the optical fiber in a state before heating. When a resin that is more easily moved than the reinforcing fibers flows into the resin, a large resin-rich portion as shown in FIG. 6B is formed.

これに対して、本実施形態に係る光ファイバセンサ2aの埋込方法によれば、樹脂リッチ部の面積を従来よりも大幅に縮小させることができるので、光ファイバセンサ2aの埋込に起因する繊維強化プラスチックAの強度低下を抑制することが可能であり、よって本来の強度に近い繊維強化プラスチックAについて層間剥離の進行状態を示す剥離進行情報を取得することができる。   On the other hand, according to the method for embedding the optical fiber sensor 2a according to the present embodiment, the area of the resin rich portion can be significantly reduced as compared with the conventional case, and this is caused by the embedding of the optical fiber sensor 2a. It is possible to suppress a decrease in strength of the fiber reinforced plastic A, and thus it is possible to acquire peeling progress information indicating the progress of delamination for the fiber reinforced plastic A close to the original strength.

なお、本発明は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、第2の層bを構成する第2の材料片b1,b2の繊維方向と同方向となるように光ファイバ2を一次元的に配線したが、本発明はこれに限定されない。光ファイバ2を2次元状、例えば光ファイバ2を第2の層b内における直交する2方向に配線したり、あるいは同心円状に複数配線しても良い。図6を見ても分かるように、光ファイバ2の直径は、現状では強化繊維の直径に比較してかなり大きい。しかしながら、光ファイバ2の直径を強化繊維の直径に近づけることにより、より多くの本数の光ファイバ2を材料本体1内に埋め込むことが可能となる。
In addition, this invention is not limited to the said embodiment, For example, the following modifications can be considered.
(1) In the above embodiment, the optical fiber 2 is wired one-dimensionally so as to be in the same direction as the fiber direction of the second material pieces b1 and b2 constituting the second layer b. It is not limited to. The optical fiber 2 may be wired two-dimensionally, for example, the optical fiber 2 may be wired in two orthogonal directions in the second layer b, or a plurality of concentric circles may be wired. As can be seen from FIG. 6, the diameter of the optical fiber 2 is considerably larger at present than the diameter of the reinforcing fiber. However, it is possible to embed a larger number of optical fibers 2 in the material body 1 by bringing the diameter of the optical fiber 2 closer to the diameter of the reinforcing fiber.

(2)上記実施形態では、FBGセンサ2a(光ファイバセンサ)を一定間隔で設けたが、本発明はこれに限定されない。FBGセンサ2aの間隔は、層間剥離の進行状態を高分解能で検出したい個所には密に配置し、比較的分解能で良い箇所には祖に配置しても良い。 (2) In the above embodiment, the FBG sensors 2a (optical fiber sensors) are provided at regular intervals, but the present invention is not limited to this. The intervals between the FBG sensors 2a may be densely arranged at locations where it is desired to detect the progress of delamination with high resolution, and may be arranged at the ancestors where relatively high resolution is required.

(3)上記実施形態では繊維強化プラスチックの層間剥離検出方法において説明したが、検出対象となる積層材料、繊維強化プラスチックに限定されない。また、上記実施形態では第1の材料片a1及び第3の材料片c1における強化繊維の配向方向を光ファイバ2の延在方向に直交する方向としたが、直交(90°)以外の角度であっても良い。 (3) In the above embodiment, the method for detecting delamination of fiber reinforced plastic has been described. However, the present invention is not limited to the laminated material and fiber reinforced plastic to be detected. Moreover, in the said embodiment, although the orientation direction of the reinforced fiber in the 1st material piece a1 and the 3rd material piece c1 was made into the direction orthogonal to the extension direction of the optical fiber 2, it was an angle other than orthogonal (90 degrees). There may be.

A…繊維強化プラスチック、1…材料本体、2…光ファイバ、2a…FBGセンサ(光ファイバセンサ)、3…光計測装置、a…第1の層、a1…第1の材料片、b…第2の層、b1,b2…第2の材料片、c…第3の層、c1…第3の材料片   DESCRIPTION OF SYMBOLS A ... Fiber reinforced plastic, 1 ... Material main body, 2 ... Optical fiber, 2a ... FBG sensor (optical fiber sensor), 3 ... Optical measuring device, a ... 1st layer, a1 ... 1st material piece, b ... 1st 2 layers, b1, b2 ... second material piece, c ... third layer, c1 ... third material piece

Claims (5)

積層材料の層間に複数の光ファイバセンサを一次元状あるいは二次元状に配置し、各光ファイバセンサの検出状態に基づいて剥離の進行状態を示す情報を取得することを特徴とする積層材料の層間剥離検出方法。   A plurality of optical fiber sensors are arranged in a one-dimensional or two-dimensional manner between layers of a laminated material, and information indicating a peeling progress state is obtained based on a detection state of each optical fiber sensor. Delamination detection method. 剥離を検出している光ファイバセンサと剥離を検出していない光ファイバセンサとに基づいて剥離領域と非剥離領域との境界位置を剥離の進行状態を示す情報として取得することを特徴とする請求項1記載の積層材料の層間剥離検出方法。   A boundary position between a separation region and a non-peeling region is acquired as information indicating a progressing state of separation based on an optical fiber sensor that detects separation and an optical fiber sensor that does not detect separation. Item 2. A method for detecting delamination of a laminated material according to Item 1. 各光ファイバセンサの隔離検出時間に基づいて剥離の伝搬速度を剥離の進行状態を示す情報として取得することを特徴とする請求項1または2記載の積層材料の層間剥離検出方法。   3. The method for detecting delamination of a laminated material according to claim 1, wherein the propagation speed of delamination is acquired as information indicating the delamination progress based on the isolation detection time of each optical fiber sensor. 請求項1〜3のいずれか一項に記載の積層材料の層間剥離検出方法における光ファイバセンサの層間への埋め込み方法であって、
第1の層を構成する第1の材料片上に第2の層を構成する第2の材料片を重ねる際に、第2の材料片を複数に分割した分割材料片で各光ファイバセンサが設けられた光ファイバを挟み込むように配置し、さらに第3の層を構成する第3の材料片を重ね、第1〜第3の材料片を接合することを特徴とする光ファイバセンサの埋込方法。
A method for embedding an optical fiber sensor between layers in a delamination detection method for a laminated material according to any one of claims 1 to 3,
When the second material piece constituting the second layer is overlaid on the first material piece constituting the first layer, each optical fiber sensor is provided with a divided material piece obtained by dividing the second material piece into a plurality of pieces. A method of embedding an optical fiber sensor, comprising: placing an optical fiber sandwiched between the layers; and stacking a third material piece constituting a third layer; and joining the first to third material pieces. .
第2の材料片の厚さは光ファイバの直径と同等であることを特徴とする請求項4記載の光ファイバセンサの埋込方法。
5. The method of embedding an optical fiber sensor according to claim 4, wherein the thickness of the second material piece is equal to the diameter of the optical fiber.
JP2010052264A 2010-03-09 2010-03-09 Delamination detecting method of laminating material and embedding method of optical fiber sensor Pending JP2011185790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010052264A JP2011185790A (en) 2010-03-09 2010-03-09 Delamination detecting method of laminating material and embedding method of optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010052264A JP2011185790A (en) 2010-03-09 2010-03-09 Delamination detecting method of laminating material and embedding method of optical fiber sensor

Publications (1)

Publication Number Publication Date
JP2011185790A true JP2011185790A (en) 2011-09-22

Family

ID=44792262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010052264A Pending JP2011185790A (en) 2010-03-09 2010-03-09 Delamination detecting method of laminating material and embedding method of optical fiber sensor

Country Status (1)

Country Link
JP (1) JP2011185790A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114194A1 (en) * 2015-01-15 2016-07-21 三菱重工業株式会社 Bonded structure, method for manufacturing same, and bonding state detection method
EP3001178A4 (en) * 2013-05-14 2017-01-11 Mitsubishi Heavy Industries, Ltd. Joined structure and method for detecting joined state

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208748A (en) * 1987-02-25 1988-08-30 Mitsubishi Heavy Ind Ltd Damage evaluating device for structure member
JP3848660B2 (en) * 2004-05-06 2006-11-22 川崎重工業株式会社 Damage detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208748A (en) * 1987-02-25 1988-08-30 Mitsubishi Heavy Ind Ltd Damage evaluating device for structure member
JP3848660B2 (en) * 2004-05-06 2006-11-22 川崎重工業株式会社 Damage detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3001178A4 (en) * 2013-05-14 2017-01-11 Mitsubishi Heavy Industries, Ltd. Joined structure and method for detecting joined state
US10145786B2 (en) 2013-05-14 2018-12-04 Mistubishi Heavy Industries, Ltd. Bonded structure and bonding-condition detecting method
WO2016114194A1 (en) * 2015-01-15 2016-07-21 三菱重工業株式会社 Bonded structure, method for manufacturing same, and bonding state detection method
US10345515B2 (en) 2015-01-15 2019-07-09 Mitsubishi Heavy Industries, Ltd. Bonded structure, method for manufacturing the same, and bonding state detection method

Similar Documents

Publication Publication Date Title
US10416121B2 (en) Composite material molding jig, composite material molding method, ultrasonic test system, ultrasonic test method and aircraft structural object
Kirkby et al. Impact localisation with FBG for a self-healing carbon fibre composite structure
JP5669262B2 (en) Sensor and adhesive for sensor
JP2013242179A5 (en)
JP2008139171A (en) Impact detection system
JP4216202B2 (en) Rib structure and method for manufacturing the structure
JP2008262205A (en) Nano wire grid polarizer and liquid crystal display device adopting the same
CN104704408B (en) Planar optical elements, sensor element and its manufacture method
Sulejmani et al. Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers
JP2012128153A5 (en)
JP2014052368A (en) Composite structure having embedded sensing system
JP2011185790A (en) Delamination detecting method of laminating material and embedding method of optical fiber sensor
JP2002202375A (en) Method for manufacturing detector array for detection of electromagnetic wave, and detector array
JPWO2016163261A1 (en) Defect inspection method for laminated optical film, defect inspection method for optical film, and method for producing laminated optical film
JP3492943B2 (en) Separation detection method using optical fiber sensor
WO2019172178A1 (en) Evaluating method and evaluation system
ITTO20130825A1 (en) DEVICE FOR DETECTION OF DEFORMATIONS AND TRANSMISSION OF DETECTED DATA AND METHOD FOR ITS REALIZATION
CN110988119A (en) Method for detecting layered damage of composite laminated plate by measuring equivalent pseudo load through laser
US8705019B2 (en) Structural material with embedded sensors
JP6174132B2 (en) Adhesive structure and adhesion state detection method
JP2005321223A (en) Structure and defect sensing device
KR20160147393A (en) Composites-stacked structure including optical fibers pre-impregnated sheet and methods of evaluating damages of structures using optical fibers pre-impregnated sheet
JPH11326149A (en) Method for verifying development of damage after reinforcement of concrete structure
KR101383799B1 (en) Multi-direction strain sensor with FBGs of tape type
JP2009051368A (en) Detecting method of crack occurring position

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20120117

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Effective date: 20131029

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20131219

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701