JP2011185570A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
JP2011185570A
JP2011185570A JP2010053428A JP2010053428A JP2011185570A JP 2011185570 A JP2011185570 A JP 2011185570A JP 2010053428 A JP2010053428 A JP 2010053428A JP 2010053428 A JP2010053428 A JP 2010053428A JP 2011185570 A JP2011185570 A JP 2011185570A
Authority
JP
Japan
Prior art keywords
heat
heat medium
medium
heating medium
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010053428A
Other languages
Japanese (ja)
Inventor
Shingo Yakushiji
新吾 薬師寺
Daiki Tanaka
大樹 田中
良胤 ▲高▼島
Yoshitsugu Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010053428A priority Critical patent/JP2011185570A/en
Publication of JP2011185570A publication Critical patent/JP2011185570A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery device capable of suppressing reduction in recovery heat quantity along with passage of time. <P>SOLUTION: The exhaust heat recovery device includes: a heating medium circulation passage 2 circulating a heating medium C via an exhaust heat generating device G, a heat recovery part R and an atmosphere opening type heating medium storage tank 1; and a heating medium circulation means 3 circulating the heating medium C through the heating medium circulation passage 2 to recover exhaust heat generated in the exhaust heat generating device G by the heat recovery part R via the heating medium C. The heating medium C includes water W and a freezing-point depressant for depressing the freezing point of the heating medium C. The exhaust heat recovery device further includes: a heating medium supply state control means A controlling the supply state of the heating medium C supplied to the heat recovery part R; a recovery heat quantity measuring means M measuring recovery heat quantity recovered from the heating medium C by the heat recovery part R; and a control means 7 controlling the operation of the heating medium supply state control means A so that the recovery heat quantity becomes target heat quantity based on the measurement information by the recovery heat quantity measuring means M. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排熱発生装置、熱回収部、大気開放型の熱媒貯留タンクを経由して熱媒を循環させる熱媒循環路と、前記排熱発生装置にて発生する排熱を前記熱回収部にて前記熱媒を介して回収すべく、前記熱媒循環路を通して熱媒を循環させる熱媒循環手段とが設けられ、前記熱媒は、水及び熱媒の凝固点を降下させるための凝固点降下剤を含むものである排熱回収装置に関する。   The present invention includes a heat medium circulating path through which a heat medium is circulated through an exhaust heat generator, a heat recovery unit, an open air type heat medium storage tank, and exhaust heat generated by the exhaust heat generator. A heat medium circulating means for circulating the heat medium through the heat medium circulation path is provided in order to recover the heat medium through the heat medium in the recovery unit, and the heat medium is used for lowering the freezing point of water and the heat medium. The present invention relates to an exhaust heat recovery apparatus including a freezing point depressant.

かかる排熱回収装置は、排熱発生装置にて発生する排熱を熱回収部にて回収して利用するものであり、排熱発生装置の一例としては、発電機を駆動するエンジン等が挙げられ、熱回収部は、例えば、回収した排熱により貯湯タンクの湯水を加熱するように構成される。
そして、熱媒循環路中の熱媒の凍結を防止するために、熱媒は、水及び熱媒の凝固点を降下させるための凝固点降下剤を含んだものが用いられる(例えば、特許文献1参照。)。
ちなみに、凝固点降下剤の一例としてエチレングリコールが用いられる。
Such an exhaust heat recovery device recovers and uses exhaust heat generated in the exhaust heat generation device in a heat recovery unit, and examples of the exhaust heat generation device include an engine that drives a generator. For example, the heat recovery unit is configured to heat the hot water in the hot water storage tank by the recovered exhaust heat.
And in order to prevent freezing of the heat medium in a heat-medium circulation path, what contains the freezing point depressant for lowering the freezing point of water and a heat medium is used for a heat medium (for example, refer patent document 1). .)
Incidentally, ethylene glycol is used as an example of a freezing point depressant.

このような排熱回収装置においては、従来、熱媒貯留タンクの熱媒の貯留量が下限になると、貯留量が上限になるまで熱媒貯留タンクに水を補給するように構成されていた。
又、上記特許文献1には明確に記載されていないが、排熱発生装置から送出される熱媒の温度を所定の温度に維持すべく熱媒循環路を通流する熱媒の流量を調整するように構成されていた。
In such an exhaust heat recovery device, conventionally, when the storage amount of the heat medium in the heat medium storage tank becomes the lower limit, the heat medium storage tank is replenished with water until the storage amount reaches the upper limit.
Although not clearly described in Patent Document 1, the flow rate of the heat medium flowing through the heat medium circulation path is adjusted to maintain the temperature of the heat medium sent from the exhaust heat generator at a predetermined temperature. Was configured to be.

特開2004−263940号公報JP 2004-263940 A

ところで、熱媒貯留タンクは大気開放型であるため、熱媒貯留タンクでは熱媒の成分が蒸発するが、水と凝固点降下剤とでは蒸気圧が異なるために、水と凝固点降下剤とで熱媒貯留タンクでの蒸発の程度が異なる。しかも、水と凝固点降下剤とでは、比熱も異なる。
例えば、凝固点降下剤としてエチレングリコールが用いられる場合では、水と凝固点降下剤とでは、水の方が蒸気圧が高く、比熱も大きい。
そして、例えば、このように水と凝固点降下剤とでは水の方が蒸気圧が高く、比熱も大きい場合は、熱媒貯留タンクでは水の方が蒸発し易いので、時間経過に伴って、熱媒中の凝固点降下剤の濃度が高くなって熱媒の比熱が小さくなる。
ちなみに、熱媒の比熱が小さくなると、熱媒循環路を通流する熱媒の温度が同じであっても、熱媒循環路を通流する熱媒により運ばれる熱量が少なくなる。
By the way, since the heat medium storage tank is open to the atmosphere, the components of the heat medium evaporate in the heat medium storage tank, but since the vapor pressure is different between water and the freezing point depressant, water and the freezing point depressant are heated. The degree of evaporation in the medium storage tank is different. Moreover, the specific heat is different between water and the freezing point depressant.
For example, when ethylene glycol is used as the freezing point depressant, water and the freezing point depressant have higher vapor pressure and higher specific heat.
And, for example, when water and the freezing point depressant have higher vapor pressure and higher specific heat, water is more likely to evaporate in the heat medium storage tank. The concentration of the freezing point depressant in the medium increases and the specific heat of the heat medium decreases.
Incidentally, when the specific heat of the heat medium is reduced, even if the temperature of the heat medium flowing through the heat medium circulation path is the same, the amount of heat carried by the heat medium flowing through the heat medium circulation path decreases.

しかしながら、従来の排熱回収装置のように、熱媒貯留タンクの熱媒の貯留量が下限になると上限になるまで水を補給する状態で、排熱発生装置から送出される熱媒の温度が一定になるように熱媒の流量を調整する構成では、時間経過に伴って、熱媒中の凝固点降下剤の濃度が高くなって熱媒の比熱が小さくなると、熱回収部にて熱媒から回収される回収熱量が減少することになるので、改善の余地があった。
又、熱回収部での回収熱量が減少すると、排熱発生装置の温度が過度に上昇する虞もあった。
However, the temperature of the heat medium sent from the exhaust heat generation device is such that water is replenished until the upper limit is reached when the amount of heat medium stored in the heat medium storage tank reaches the lower limit, as in a conventional exhaust heat recovery apparatus. In the configuration in which the flow rate of the heating medium is adjusted so as to be constant, as the concentration of the freezing point depressant in the heating medium increases and the specific heat of the heating medium decreases with time, the heat recovery unit removes the heating medium from the heating medium. There was room for improvement because the amount of recovered heat was reduced.
Further, when the amount of heat recovered at the heat recovery unit is reduced, there is a risk that the temperature of the exhaust heat generator rises excessively.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、時間経過に伴う回収熱量の減少を抑制し得る排熱回収装置を提供することにある。   This invention is made | formed in view of this situation, The objective is to provide the waste heat recovery apparatus which can suppress the reduction | decrease in the amount of recovered heat with time passage.

本発明の排熱回収装置は、排熱発生装置、熱回収部、大気開放型の熱媒貯留タンクを経由して熱媒を循環させる熱媒循環路と、前記排熱発生装置にて発生する排熱を前記熱回収部にて前記熱媒を介して回収すべく、前記熱媒循環路を通して熱媒を循環させる熱媒循環手段とが設けられ、前記熱媒は、水及び熱媒の凝固点を降下させるための凝固点降下剤を含むものであって、
第1特徴構成は、前記熱回収部に供給する熱媒の供給状態を調整自在な熱媒供給状態調整手段と、
前記熱回収部にて前記熱媒から回収される回収熱量を計測する回収熱量計測手段と、
その回収熱量計測手段の計測情報に基づいて、前記回収熱量が目標熱量になるように前記熱媒供給状態調整手段の作動を制御する制御手段とが設けられている点にある。
The exhaust heat recovery device of the present invention is generated by an exhaust heat generation device, a heat recovery unit, a heat medium circulation path for circulating a heat medium via an air release type heat medium storage tank, and the exhaust heat generation device. A heat medium circulating means for circulating the heat medium through the heat medium circulation path is provided in order to recover the exhaust heat through the heat medium in the heat recovery unit, and the heat medium is a freezing point of water and the heat medium. A freezing point depressant for lowering
The first characteristic configuration is a heat medium supply state adjusting means capable of adjusting a supply state of the heat medium supplied to the heat recovery unit, and
Recovered heat amount measuring means for measuring the recovered heat amount recovered from the heat medium in the heat recovery unit,
Control means for controlling the operation of the heating medium supply state adjusting means so that the recovered heat quantity becomes a target heat quantity based on the measurement information of the recovered heat quantity measuring means is provided.

上記特徴構成によれば、熱回収部にて熱媒から回収される回収熱量が目標熱量になるように、熱媒供給状態調整手段により、熱回収部に供給する熱媒の供給状態が調整される。
つまり、蒸気圧が異なるために水と凝固点降下剤とで熱媒貯留タンクでの蒸発の程度が異なり、しかも、水と凝固点降下剤とで比熱が異なっても、熱回収部に供給する熱媒の供給状態が調整されることにより、熱回収部での回収熱量そのものが目標熱量になるように調整されるので、時間経過に伴う回収熱量の減少を抑制することができる。
しかも、熱回収部での回収熱量の減少を抑制することができるようになることにより、排熱発生装置の過度な昇温を防止することができるようになった。
According to the above characteristic configuration, the supply state of the heat medium supplied to the heat recovery unit is adjusted by the heat medium supply state adjusting unit so that the recovered heat amount recovered from the heat medium in the heat recovery unit becomes the target heat amount. The
In other words, because the vapor pressures are different, the degree of evaporation in the heat medium storage tank differs between water and the freezing point depressant, and even if the specific heat differs between water and the freezing point depressant, the heat medium supplied to the heat recovery unit By adjusting the supply state, the amount of heat recovered in the heat recovery unit is adjusted so as to become the target amount of heat, so that a decrease in the amount of recovered heat with time can be suppressed.
In addition, since it is possible to suppress a decrease in the amount of recovered heat in the heat recovery section, it is possible to prevent an excessive increase in temperature of the exhaust heat generator.

第2特徴構成は、上記第1特徴構成に加えて、
前記熱媒供給状態調整手段が、前記熱媒循環路を通流する熱媒の流量を調整自在な熱媒流量調整手段にて構成されている点にある。
In addition to the first feature configuration, the second feature configuration is
The heating medium supply state adjusting means is constituted by a heating medium flow rate adjusting means capable of adjusting the flow rate of the heating medium flowing through the heating medium circulation path.

上記特徴構成によれば、回収熱量計測手段の計測情報に基づいて、回収熱量が目標熱量になるように、熱媒流量調整手段により、熱媒循環路を通流する熱媒の流量が熱回収部への熱媒の供給状態として調整される。
つまり、熱媒の比熱が小さくなっても、熱媒循環路を通流する熱媒の流量を増加させると、熱媒循環路を通流する熱媒により運ばれる熱量を増加させることができる。そこで、時間経過に伴って、熱媒中の凝固点降下剤の濃度の変化により熱媒の比熱が小さくなっても、熱媒循環路を通流する熱媒の流量を増加させることにより、熱回収部での回収熱量を目標熱量に調整することができるのである。
そして、熱媒循環路を通流する熱媒流量の変化は、速やかに熱回収部での回収熱量の変化に反映されるので、熱回収部での回収熱量が目標熱量から減少し始めても、熱媒循環路を通流する熱媒の流量を増加させることにより、回収熱量を速やかに目標熱量に調整することができる。
従って、時間経過に伴う回収熱量の減少をより的確に抑制することができるようになった。
According to the above characteristic configuration, the flow rate of the heat medium flowing through the heat medium circulation path is recovered by the heat medium flow rate adjusting unit so that the recovered heat amount becomes the target heat amount based on the measurement information of the recovered heat amount measuring unit. It is adjusted as the supply state of the heat medium to the part.
That is, even if the specific heat of the heat medium decreases, increasing the flow rate of the heat medium flowing through the heat medium circuit can increase the amount of heat carried by the heat medium flowing through the heat medium circuit. Therefore, heat recovery is achieved by increasing the flow rate of the heat medium flowing through the heat medium circulation path even if the specific heat of the heat medium decreases due to changes in the concentration of the freezing point depressant in the heat medium over time. The amount of heat recovered at the section can be adjusted to the target heat amount.
And since the change in the flow rate of the heat medium flowing through the heat medium circulation path is immediately reflected in the change in the amount of recovered heat in the heat recovery unit, even if the amount of recovered heat in the heat recovery unit starts to decrease from the target heat amount, By increasing the flow rate of the heat medium flowing through the heat medium circulation path, the recovered heat amount can be quickly adjusted to the target heat amount.
Therefore, it has become possible to more accurately suppress a decrease in the amount of recovered heat with time.

第3特徴構成は、上記第1又は第2特徴構成に加えて、
前記熱媒供給状態調整手段が、前記熱媒貯留タンクへの水又は凝固点降下剤の補給を断続自在な熱媒成分補給断続手段にて構成されている点にある。
In addition to the first or second feature configuration, the third feature configuration is
The heating medium supply state adjusting means is constituted by a heating medium component replenishment intermittent means capable of intermittently supplying water or a freezing point depressant to the heat medium storage tank.

上記特徴構成によれば、回収熱量計測手段の計測情報に基づいて、回収熱量が目標熱量になるように、熱媒成分補給断続手段により、熱媒貯留タンクへの水又は凝固点降下剤の補給が断続されることにより、熱媒中の凝固点降下剤の濃度が熱回収部への熱媒の供給状態として調整される。
つまり、蒸気圧が異なるために水と凝固点降下剤とで熱媒貯留タンクでの蒸発の程度が異なり、しかも、水と凝固点降下剤とで比熱が異なっても、水及び凝固点降下剤のうちで蒸発し易い方を熱媒貯留タンクへ補給することにより、回収熱量が目標熱量になるように、熱媒中の凝固点降下剤の濃度を調整して熱媒の比熱を調整することができるのである。
例えば、水と凝固点降下剤とでは水の方が蒸気圧が高く、比熱も大きい場合は、水の方が蒸発し易く、熱媒中の凝固点降下剤の濃度が高くなり易いが、熱媒成分補給断続手段により、熱媒貯留タンクへの水の補給を断続することにより、熱媒中の凝固点降下剤の濃度を回収熱量が目標熱量になるように調整することができるのである。
逆に、水と凝固点降下剤とでは凝固点降下剤の方が蒸気圧が高く、比熱も大きい場合は、凝固点降下剤の方が蒸発し易く、熱媒中の凝固点降下剤の濃度が低くなり易いが、熱媒成分補給断続手段により、熱媒貯留タンクへの凝固点降下剤の補給を断続することにより、熱媒中の凝固点降下剤の濃度を回収熱量が目標濃度になるように調整することができるのである。
According to the above characteristic configuration, water or a freezing point depressant is replenished to the heat medium storage tank by the heat medium component replenishment intermittent means so that the recovered heat quantity becomes the target heat quantity based on the measurement information of the recovered heat quantity measuring means. By being interrupted, the concentration of the freezing point depressant in the heat medium is adjusted as the supply state of the heat medium to the heat recovery unit.
That is, because the vapor pressure is different, the degree of evaporation in the heat medium storage tank differs between water and the freezing point depressant, and even if the specific heat differs between water and the freezing point depressant, By replenishing the heat medium storage tank with the more easily evaporated, the specific heat of the heat medium can be adjusted by adjusting the concentration of the freezing point depressant in the heat medium so that the recovered heat amount becomes the target heat amount. .
For example, when water and the freezing point depressant have higher vapor pressure and higher specific heat, water tends to evaporate and the concentration of the freezing point depressant in the heat medium tends to be higher. By intermittently replenishing water to the heat medium storage tank by the replenishment intermittent means, the concentration of the freezing point depressant in the heat medium can be adjusted so that the recovered heat amount becomes the target heat amount.
Conversely, with water and the freezing point depressant, if the freezing point depressant has a higher vapor pressure and a higher specific heat, the freezing point depressant tends to evaporate and the concentration of the freezing point depressant in the heating medium tends to be lower. However, it is possible to adjust the concentration of the freezing point depressant in the heating medium so that the recovered heat amount becomes the target concentration by intermittently supplying the freezing point depressant to the heating medium storage tank by the heating medium component replenishment intermittent means. It can be done.

そして、熱媒中の凝固点降下剤の濃度を調整するようにすることにより、熱媒循環路を通流する熱媒の流量を低い状態に維持しながら、熱回収部での回収熱量を目標熱量に調整することができるので、熱媒循環手段の駆動エネルギが増加するのを抑制することができる。
従って、排熱回収装置のエネルギ効率が低下するのを抑制しながら、時間経過に伴う回収熱量の減少を抑制することができるようになった。
Then, by adjusting the concentration of the freezing point depressant in the heat medium, the amount of heat recovered in the heat recovery unit is set to the target heat amount while maintaining the flow rate of the heat medium flowing through the heat medium circuit at a low level. Therefore, it is possible to suppress an increase in driving energy of the heat medium circulating means.
Accordingly, it is possible to suppress a decrease in the amount of recovered heat with the passage of time while suppressing a decrease in energy efficiency of the exhaust heat recovery apparatus.

第4特徴構成は、上記第1〜第3特徴構成のいずれか1つに加えて、
前記排熱発生装置が、発電機を駆動するエンジンである点にある。
The fourth feature configuration is in addition to any one of the first to third feature configurations,
The exhaust heat generator is an engine that drives a generator.

上記特徴構成によれば、発電機から電力が出力されると共に、エンジンの排熱が熱回収部で回収される。
そして、エンジンの排熱が熱回収部で回収されるに当たって、時間経過に伴う回収熱量の減少を抑制することができる。
つまり、コージェネレーションシステムにおいて、時間経過に伴う回収熱量の減少を抑制することができると共に、そのことにより、発電機を駆動するエンジンの過度な昇温を防止することができるようになった。
According to the above characteristic configuration, electric power is output from the generator, and exhaust heat of the engine is recovered by the heat recovery unit.
And when exhaust heat of an engine is collect | recovered by a heat recovery part, the fall of the collect | recovered heat amount accompanying time passage can be suppressed.
That is, in the cogeneration system, it is possible to suppress a decrease in the amount of recovered heat with the passage of time, thereby preventing an excessive increase in temperature of the engine that drives the generator.

コージェネレーションシステムの構成を示すブロック図Block diagram showing the configuration of the cogeneration system 熱媒循環路における熱媒の流量と熱媒中のエチレングリコールの濃度と回収熱量との関係を示す図The figure which shows the relationship between the flow volume of the heat medium in a heat medium circuit, the density | concentration of the ethylene glycol in a heat medium, and the amount of recovering heat

以下、図面に基づいて、本発明に係る排熱回収装置をコージェネレーションシステムに適用した場合の実施形態について説明する。
図1に示すように、コージェネレーションシステムは、排熱発生装置G、熱回収部R、大気開放型の熱媒貯留タンク1を経由して熱媒Cを循環させる熱媒循環路2と、排熱発生装置Gにて発生する排熱を熱回収部Rにて熱媒Cを介して回収すべく、熱媒循環路2を通して熱媒Cを循環させる熱媒循環手段としての熱媒循環ポンプ3と、このコージェネレーションシステムの運転を制御する運転制御部4とを備えて構成されている。
そして、熱媒Cは、水W及び熱媒Cの凝固点を降下させるための凝固点降下剤を含むものであり、この実施形態では、凝固点降下剤としてエチレングリコールが適用されている。
又、この実施形態では、排熱発生装置Gが、発電機5を駆動するエンジン6である。
Hereinafter, based on the drawings, an embodiment when the exhaust heat recovery apparatus according to the present invention is applied to a cogeneration system will be described.
As shown in FIG. 1, the cogeneration system includes a heat medium generator 2, a heat recovery unit R, a heat medium circulation path 2 that circulates the heat medium C via an air release type heat medium storage tank 1, an exhaust A heat medium circulating pump 3 as a heat medium circulating means for circulating the heat medium C through the heat medium circulation path 2 in order to recover the exhaust heat generated in the heat generating device G through the heat medium C in the heat recovery section R. And an operation control unit 4 that controls the operation of the cogeneration system.
And the heat medium C contains the freezing point depressant for lowering the freezing point of the water W and the heat medium C, and ethylene glycol is applied as the freezing point depressant in this embodiment.
In this embodiment, the exhaust heat generator G is the engine 6 that drives the generator 5.

本発明では、熱回収部Rに供給する熱媒Cの供給状態を調整自在な熱媒供給状態調整手段Aと、熱回収部Rにて熱媒Cから回収される回収熱量を計測する回収熱量計測手段Mと、その回収熱量計測手段Mの計測情報に基づいて、回収熱量が目標熱量になるように熱媒供給状態調整手段Aの作動を制御する制御手段7とが設けられ、この制御手段7が前記運転制御部4により構成されている。本例では、熱媒供給状態調整手段Aは、熱媒流量調整手段Vである熱媒循環ポンプ3と熱媒成分補給断続手段である水補給断続弁16から成っている。   In the present invention, the heat medium supply state adjusting means A capable of adjusting the supply state of the heat medium C supplied to the heat recovery unit R, and the recovered heat amount for measuring the recovered heat amount recovered from the heat medium C in the heat recovery unit R Based on the measurement information of the measuring means M and the recovered heat quantity measuring means M, there is provided a control means 7 for controlling the operation of the heat medium supply state adjusting means A so that the recovered heat quantity becomes the target heat quantity. 7 is configured by the operation control unit 4. In this example, the heat medium supply state adjusting means A includes the heat medium circulation pump 3 that is the heat medium flow rate adjusting means V and the water supply intermittent valve 16 that is the heat medium component supply intermittent means.

コージェネレーションシステムの各部について、説明を加える。
発電機5の出力側には、系統連系用のインバータ8が設けられ、そのインバータ8は、発電機5の出力電力を商用系統9から受電する受電電力と同じ電圧及び同じ周波数にするように構成されている。
商用系統9は受電電力供給ライン10を介して、テレビ、冷蔵庫、洗濯機などの電力負荷11に電気的に接続されている。
インバータ8は、発電電力供給ライン12を介して受電電力供給ライン10に電気的に接続され、発電機5の発電電力がインバータ8及び発電電力供給ライン12を介して電力負荷11に供給されるように構成されている。
A description of each part of the cogeneration system is added.
On the output side of the generator 5, an inverter 8 for grid connection is provided, and the inverter 8 is set so that the output power of the generator 5 has the same voltage and the same frequency as the received power received from the commercial system 9. It is configured.
The commercial system 9 is electrically connected to a power load 11 such as a television, a refrigerator, or a washing machine via a received power supply line 10.
The inverter 8 is electrically connected to the received power supply line 10 via the generated power supply line 12 so that the generated power of the generator 5 is supplied to the power load 11 via the inverter 8 and the generated power supply line 12. It is configured.

図示を省略するが、受電電力供給ライン10には、電力負荷11にて消費される電力(負荷電力)を計測する負荷電力計測手段が設けられ、この負荷電力計測手段は、受電電力供給ライン10を通して流れる電流に逆潮流が発生するか否かをも検出するように構成されている。
そして、逆潮流が生じないように、インバータ8により発電機5から受電電力供給ライン10に供給される電力が制御され、出力電力の余剰電力は、その余剰電力を熱に代えて回収する電気ヒータ13にて消費されるように構成されている。この電気ヒータ13は、詳細な説明及び図示を省略するが、消費電力を調整自在に構成されて、出力電力の余剰電力の大きさに応じて電気ヒータ13の消費電力を調整するように構成されている。
Although not shown, the received power supply line 10 is provided with load power measuring means for measuring the power consumed by the power load 11 (load power). The load power measuring means is connected to the received power supply line 10. It is also configured to detect whether or not a reverse power flow occurs in the current flowing through.
The electric power supplied from the generator 5 to the received power supply line 10 is controlled by the inverter 8 so that a reverse power flow does not occur, and the surplus power of the output power is recovered by replacing the surplus power with heat. 13 to be consumed. Although detailed explanation and illustration are omitted, the electric heater 13 is configured to be capable of adjusting power consumption, and is configured to adjust the power consumption of the electric heater 13 according to the amount of surplus power of the output power. ing.

この実施形態では、前記エンジン6として、ガス燃料(例えば天然ガス)を燃料とするガスエンジンが用いられている。前記熱媒循環路2は、エンジン6を冷却するエンジン冷却部6j(いわゆるエンジンジャケット)を通して熱媒Cをエンジン冷却水として通流させるように設けられ、熱媒循環ポンプ3は、熱媒貯留タンク1から吸い込んだ熱媒Cをエンジン冷却部6jに向けて吐出するように、熱媒循環路2における熱媒貯留タンク1よりも下流側の部分に設けられている。
エンジン6の排ガスEは、排ガス路14を通して排気され、前記熱回収部Rは、この排ガス路14を通流する排ガスEからも排熱を回収するように構成されている。
In this embodiment, a gas engine using gas fuel (for example, natural gas) as fuel is used as the engine 6. The heat medium circulation path 2 is provided to allow the heat medium C to flow as engine cooling water through an engine cooling unit 6j (so-called engine jacket) that cools the engine 6, and the heat medium circulation pump 3 includes a heat medium storage tank. The heat medium C sucked from 1 is provided at a portion downstream of the heat medium storage tank 1 in the heat medium circulation path 2 so as to be discharged toward the engine cooling unit 6j.
The exhaust gas E of the engine 6 is exhausted through the exhaust gas passage 14, and the heat recovery section R is configured to recover the exhaust heat from the exhaust gas E flowing through the exhaust gas passage 14.

熱媒貯留タンク1に水Wを補給する補給水路15には、熱媒貯留タンク1への水Wの補給を断続自在な熱媒成分補給断続手段としての水補給断続弁16が設けられている。
又、貯留タンク1には、その貯留タンク1の熱媒Cの貯留高さ(以下、水位と記載する場合がある)が下限水位よりも低いことを検出する下限水位センサ17、及び、貯留タンク1の水位が上限水位よりも高いことを検出する上限水位センサ18が設けられている。
The replenishment water channel 15 that replenishes the heat medium storage tank 1 with water W is provided with a water replenishment intermittent valve 16 as a heat medium component replenishment intermittent means that can intermittently replenish water W to the heat medium storage tank 1. .
Further, the storage tank 1 includes a lower limit water level sensor 17 that detects that the storage height of the heating medium C in the storage tank 1 (hereinafter sometimes referred to as a water level) is lower than the lower limit water level, and the storage tank. An upper limit water level sensor 18 for detecting that the water level of 1 is higher than the upper limit water level is provided.

前記熱回収部Rは、温度成層を形成する状態で湯水Hを貯留する貯湯タンク20、その貯湯タンク20の底部と頂部とに接続された湯水循環路21、その湯水循環路21を通して貯湯タンク20内の湯水Hを循環させる湯水循環ポンプ22、前記熱媒循環路2を通流する熱媒Cと湯水循環路21を通流する湯水Hとを熱交換させて熱媒Cから湯水Hに排熱を回収する熱媒用熱交換器23、前記排ガス路14を通流する排ガスEと湯水循環路21を通流する湯水Hとを熱交換させて排ガスEから湯水Hに排熱を回収する排ガス用熱交換器24等を備えて構成されている。   The heat recovery unit R includes a hot water storage tank 20 that stores hot water H in a state where temperature stratification is formed, a hot water circulation path 21 connected to the bottom and top of the hot water storage tank 20, and the hot water storage tank 20 through the hot water circulation path 21. The hot water circulating pump 22 for circulating the hot water H in the inside, the heat medium C flowing through the heating medium circulation path 2 and the hot water H flowing through the hot water circulation path 21 are subjected to heat exchange and discharged from the heating medium C to the hot water H. The heat exchanger 23 for recovering heat and the exhaust gas E flowing through the exhaust gas passage 14 and the hot water H flowing through the hot water circulation passage 21 are heat-exchanged to recover the exhaust heat from the exhaust gas E to the hot water H. An exhaust gas heat exchanger 24 and the like are provided.

湯水循環ポンプ22は、貯湯タンク20の底部から吸い込んだ湯水Hを貯湯タンク20の頂部に戻す形態で通流作用するように湯水循環路21に設けられ、その湯水循環路21における湯水循環ポンプ22よりも下流側の部分に、前記排ガス用熱交換器24、前記熱媒用熱交換器23が湯水通流方向上流側から順に並べて設けられている。尚、熱媒用熱交換器23は、熱媒循環路2においては、エンジン冷却部6jから吐出された熱媒Cが熱媒貯留タンク1に至る部分に設けられて、エンジン冷却部6jから送出されて熱媒貯留タンク1に流入する前の熱媒Cから排熱を回収するように構成されている。
前記電気ヒータ13は、湯水循環路21における熱媒用熱交換器23よりも下流側にて、湯水循環路21を通流する湯水Hを加熱可能なように設けられている。
そして、貯湯タンク20の底部から取り出した湯水Hを、排ガス用熱交換器24にて排ガスEから回収した熱により加熱し、続いて、熱媒用熱交換器23にて熱媒Cから回収した熱により加熱し、更に、発電機5の余剰電力を消費する電気ヒータ13にて加熱して貯湯タンク20の頂部に戻すことにより、貯湯タンク20に温度成層を形成する状態で湯水Hを貯留するように構成されている。
The hot water circulation pump 22 is provided in the hot water circulation path 21 so that the hot water H sucked from the bottom of the hot water storage tank 20 is returned to the top of the hot water storage tank 20, and the hot water circulation pump 22 in the hot water circulation path 21 is provided. Further, the exhaust gas heat exchanger 24 and the heat medium heat exchanger 23 are arranged in order from the upstream side in the hot water flow direction in the downstream side portion. In the heat medium circulation path 2, the heat exchanger 23 for the heat medium is provided in a portion where the heat medium C discharged from the engine cooling unit 6j reaches the heat medium storage tank 1, and is sent from the engine cooling unit 6j. The exhaust heat is recovered from the heat medium C before flowing into the heat medium storage tank 1.
The electric heater 13 is provided downstream of the heat medium heat exchanger 23 in the hot water circulation path 21 so as to heat the hot water H flowing through the hot water circulation path 21.
Then, the hot water H taken out from the bottom of the hot water storage tank 20 is heated by the heat recovered from the exhaust gas E by the exhaust gas heat exchanger 24, and subsequently recovered from the heat medium C by the heat medium heat exchanger 23. The hot water H is stored in a state where a temperature stratification is formed in the hot water storage tank 20 by heating with heat and further returning to the top of the hot water storage tank 20 by heating with the electric heater 13 that consumes surplus power of the generator 5. It is configured as follows.

熱媒循環路2には、この熱媒循環路2を通流する熱媒Cの流量を検出する熱媒流量センサ25、エンジン冷却部6jから熱媒用熱交換器23に供給される熱媒Cの温度を検出する熱媒往き温度センサ26、及び、熱媒用熱交換器23から熱媒貯留タンク1を経由したのちエンジン冷却部6jに戻る熱媒Cの温度を検出する熱媒戻り温度センサ27が設けられている。
つまり、熱媒流量センサ25、熱媒往き温度センサ26及び熱媒戻り温度センサ27夫々の検出情報に基づいて、熱媒用熱交換器23において熱媒循環路2を通流する熱媒Cから湯水循環路21を通流する湯水Hへ回収される回収熱量を求めることができ、これら熱媒流量センサ25、熱媒往き温度センサ26及び熱媒戻り温度センサ27により、前記回収熱量計測手段Mが構成されることになる。
In the heat medium circulation path 2, a heat medium flow sensor 25 for detecting the flow rate of the heat medium C flowing through the heat medium circulation path 2, and a heat medium supplied to the heat exchanger for heat medium 23 from the engine cooling unit 6j. Heat medium return temperature sensor 26 that detects the temperature of C, and heat medium return temperature that detects the temperature of the heat medium C that returns from the heat medium heat exchanger 23 to the engine cooling unit 6j after passing through the heat medium storage tank 1 A sensor 27 is provided.
That is, from the heat medium C flowing through the heat medium circulation path 2 in the heat medium heat exchanger 23 based on the detection information of the heat medium flow rate sensor 25, the heat medium return temperature sensor 26, and the heat medium return temperature sensor 27. The amount of recovered heat recovered in the hot water H flowing through the hot water circulation path 21 can be obtained, and the recovered heat amount measuring means M is obtained by the heat medium flow rate sensor 25, the heat medium return temperature sensor 26, and the heat medium return temperature sensor 27. Will be configured.

貯湯タンク20の頂部には、貯湯タンク20内の湯水Hを取り出して給湯先等の熱負荷28に給湯する給湯路29が接続され、貯湯タンク20の底部には、給湯路29から湯水が取り出されるのに伴って貯湯タンク20に給水する給水路30が接続されている。
図示を省略するが、熱負荷28に対して貯湯タンク20の湯水により供給される熱量では不足する熱量を補うように、給湯路29にはガス燃焼式等の補助加熱器が設けられている。
又、熱負荷28にて消費される熱量(負荷熱量)を計測する負荷熱量計測手段も設けられている。
A hot water supply passage 29 is connected to the top of the hot water storage tank 20 to extract hot water H in the hot water storage tank 20 and supply it to a heat load 28 such as a hot water supply destination. Hot water is extracted from the hot water supply passage 29 to the bottom of the hot water storage tank 20. Accordingly, a water supply passage 30 for supplying water to the hot water storage tank 20 is connected.
Although not shown in the figure, the hot water supply passage 29 is provided with an auxiliary heater such as a gas combustion type so as to compensate for the heat quantity that is insufficient with the heat quantity supplied by the hot water in the hot water storage tank 20 to the heat load 28.
Also, a load calorie measuring means for measuring the amount of heat consumed by the heat load 28 (load calorie) is provided.

運転制御部4の制御動作について説明する。
この運転制御部4は、マイクロコンピュータを用いて構成されて、所定のプログラムを実行することにより、このコージェネレーションシステムの運転を制御するように構成されている。
先ず、エンジン6を制御する制御動作について説明する。
運転制御部4は、電力負荷11にて消費される負荷電力の計測情報及び熱負荷28にて消費される負荷熱量の計測情報に基づいて、過去の時系列的な負荷電力データ及び時系列的な負荷熱量データを管理して、その管理データに基づいて、1日等の運転周期の時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データを求めるように構成されている。
そして、運転制御部4は、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データに基づいて、エネルギ削減量等の運転メリットが高くなるように運転周期における発電機5の運転計画を定めて、その運転計画にて発電機5を運転すべくエンジン6の作動を制御する計画運転を実行するように構成されている。ちなみに、発電機5の運転計画としては、例えば、発電機5の出力電力を時系列的な予測負荷電力データに追従させると仮定して、運転周期における発電機5の運転時間帯を定める。
The control operation of the operation control unit 4 will be described.
The operation control unit 4 is configured using a microcomputer, and is configured to control the operation of the cogeneration system by executing a predetermined program.
First, a control operation for controlling the engine 6 will be described.
Based on the measurement information of the load power consumed by the power load 11 and the measurement information of the load heat amount consumed by the thermal load 28, the operation control unit 4 performs the past time-series load power data and time-series data. It is configured to manage load heat quantity data and obtain time-series predicted load power data and time-series predicted load heat quantity data of an operation cycle such as one day based on the management data.
Then, the operation control unit 4 operates the operation plan of the generator 5 in the operation cycle so that the operation merit such as the energy reduction amount becomes high based on the time-series predicted load power data and the time-series predicted load heat amount data. And the planned operation for controlling the operation of the engine 6 to operate the generator 5 in the operation plan is executed. Incidentally, as an operation plan for the generator 5, for example, it is assumed that the output power of the generator 5 follows the time-series predicted load power data, and the operation time zone of the generator 5 in the operation cycle is determined.

次に、熱媒供給状態調整手段Aの作動を制御する制御動作について、説明する。
この実施形態では、熱媒供給状態調整手段Aが、熱媒循環路2を通流する熱媒Cの流量を調整自在な熱媒流量調整手段Vにて構成されている.
そして、この実施形態では、熱媒循環ポンプ3の回転速度が調整自在に構成され、その熱媒循環ポンプ3の回転速度を調整することにより熱媒循環路2を通流する熱媒Cの流量を調整自在に構成されて、熱媒循環ポンプ3が熱媒流量調整手段Vとして機能するように構成されている。
又、この実施形態では、熱媒供給状態調整手段Aが、熱媒貯留タンク1への水Wの補給を断続自在で熱媒成分補給断続手段である水補給断続弁16にても構成されている。
Next, a control operation for controlling the operation of the heat medium supply state adjusting means A will be described.
In this embodiment, the heating medium supply state adjusting means A is constituted by a heating medium flow rate adjusting means V that can adjust the flow rate of the heating medium C flowing through the heating medium circulation path 2.
In this embodiment, the rotation speed of the heat medium circulation pump 3 is configured to be adjustable, and the flow rate of the heat medium C flowing through the heat medium circulation path 2 by adjusting the rotation speed of the heat medium circulation pump 3. The heat medium circulation pump 3 is configured to function as the heat medium flow rate adjusting means V.
Further, in this embodiment, the heat medium supply state adjusting means A is also configured to be a water replenishment intermittent valve 16 that is a heat medium component replenishment intermittent means that can intermittently replenish water W to the heat medium storage tank 1. Yes.

前記目標熱量が予め設定されて、運転制御部4のメモリに記憶されている。又、熱媒循環ポンプ3により熱媒循環路2を通流する熱媒Cの流量を調整するに当たって、上限流量、及び、その上限流量よりも少ない希釈時調整流量が予め設定されて、運転制御部4のメモリに記憶されている。   The target heat amount is set in advance and stored in the memory of the operation control unit 4. In addition, when adjusting the flow rate of the heat medium C flowing through the heat medium circulation path 2 by the heat medium circulation pump 3, the upper limit flow rate and the adjustment flow rate during dilution less than the upper limit flow rate are set in advance to control the operation. It is stored in the memory of unit 4.

運転制御部4は、先ず、回収熱量計測手段Mにより計測される回収熱量が目標熱量になるように熱媒Cの流量を調整すべく、熱媒循環ポンプ3の回転速度を調整する流量調整による回収熱量制御を実行する。
この流量調整による回収熱量制御の実行中は、時間経過に伴って、熱媒C中のエチレングリコールの濃度が高くなって熱媒Cの比熱が小さくなり、単位流量当たりの熱媒により運ばれる熱量が減少するので、回収熱量が目標熱量になるように熱媒循環ポンプ3により調整される熱媒Cの流量は、時間経過に伴って増加する。
The operation control unit 4 first adjusts the flow rate of the heat medium circulating pump 3 so as to adjust the flow rate of the heat medium C so that the recovered heat amount measured by the recovered heat amount measuring means M becomes the target heat amount. Execute recovered heat control.
During the execution of the recovery heat amount control by this flow rate adjustment, with the passage of time, the concentration of ethylene glycol in the heating medium C increases, the specific heat of the heating medium C decreases, and the amount of heat carried by the heating medium per unit flow rate. Therefore, the flow rate of the heat medium C adjusted by the heat medium circulation pump 3 so that the recovered heat amount becomes the target heat amount increases with time.

そして、運転制御部4は、流量調整による回収熱量制御の実行中は熱媒流量センサ25にて検出される熱媒Cの流量を監視して、その検出流量が上限流量以上になると、熱媒流量センサ25にて検出される熱媒Cの流量が希釈時調整流量になるように熱媒循環ポンプ3の回転速度を減少調整すると共に、水補給断続弁16を開弁し、回収熱量計測手段Mにより計測される回収熱量が目標熱量になると水補給断続弁16を閉弁する濃度調整による回収熱量制御を実行する。   Then, the operation control unit 4 monitors the flow rate of the heat medium C detected by the heat medium flow sensor 25 during execution of the recovered heat amount control by adjusting the flow rate, and when the detected flow rate becomes equal to or higher than the upper limit flow rate, The rotational speed of the heat medium circulating pump 3 is decreased and adjusted so that the flow rate of the heat medium C detected by the flow rate sensor 25 becomes the adjustment flow rate at the time of dilution, and the water replenishment intermittent valve 16 is opened, and the recovered heat amount measuring means When the recovered heat amount measured by M reaches the target heat amount, the recovered heat amount control is executed by adjusting the concentration to close the water supply intermittent valve 16.

運転制御部4は、濃度調整による回収熱量制御を実行したのちは、再び流量調整による回収熱量制御に戻り、以降、この流量調整による回収熱量制御と濃度調整による回収熱量制御とを繰り返し実行する。
但し、運転制御部4は、流量調整による回収熱量制御の実行中に、下限水位センサ17により下限水位が検出されると、上限水位センサ18により上限水位が検出されるまで、水補給断続弁16を開弁して熱媒貯留タンク1に水Wを補給しながら、流量調整による回収熱量制御を実行する。
The operation controller 4 returns to the recovered heat amount control by the flow rate adjustment after executing the recovered heat amount control by the concentration adjustment, and thereafter repeatedly executes the recovered heat amount control by the flow rate adjustment and the recovered heat amount control by the concentration adjustment.
However, when the lower limit water level is detected by the lower limit water level sensor 17 during the execution of the recovered heat amount control by adjusting the flow rate, the operation control unit 4 does not supply the water supply intermittent valve 16 until the upper limit water level is detected by the upper limit water level sensor 18. The recovered heat amount control by adjusting the flow rate is executed while opening the valve and replenishing the heat medium storage tank 1 with water W.

以下、目標熱量、上限流量及び希釈時調整流量夫々の設定の仕方について、説明を加える。
エチレングリコールの濃度が熱媒Cの凍結を十分に抑制可能な設定初期濃度(例えば25%)になるように、熱媒Cが調製され、そのように調製された熱媒Cが、エンジン冷却部6j、熱媒用熱交換器23、熱媒貯留タンク1にわたるように熱媒循環路2により形成される熱媒循環経路の全域に満たされると共に、熱媒貯留タンク1に上限水位にて貯留される。
Hereinafter, explanation will be given on how to set the target heat amount, the upper limit flow rate, and the adjustment flow rate during dilution.
The heat medium C is prepared so that the concentration of ethylene glycol becomes a set initial concentration (for example, 25%) at which the freezing of the heat medium C can be sufficiently suppressed, and the heat medium C thus prepared is used as an engine cooling unit. 6j, the heat exchanger 23 for the heat medium, and the heat medium circulation path 2 formed by the heat medium circulation path 2 so as to cover the heat medium storage tank 1, and are stored in the heat medium storage tank 1 at the upper limit water level. The

ところで、水とエチレングリコールの蒸気圧を比較すると、水が23hPa(20℃)であるのに対してエチレングリコールは16Pa(25℃)であり、蒸気圧は水の方がエチレングリコールよりもかなり大きい。従って、水とエチレングリコールを含む熱媒Cでは、水の方がエチレングリコールよりもかなり蒸発し易い。
そして、大気開放の熱媒貯留タンク1においては、水は蒸発するがエチレングリコールはほとんど蒸発しないものであるとすると、時間経過と共に水の蒸発量が増加して、熱媒循環経路に存在する熱媒C中のエチレングリコールの濃度が高くなる。
そこで、水補給断続弁16を開弁して補給水路15を通して熱媒貯留タンク1に水を補給すると、熱媒循環経路に存在する熱媒C中のエチレングリコールの濃度を低くすることができる。
By the way, when comparing the vapor pressure of water and ethylene glycol, water is 23 hPa (20 ° C.), whereas ethylene glycol is 16 Pa (25 ° C.), and the vapor pressure of water is considerably larger than that of ethylene glycol. . Therefore, in the heat medium C containing water and ethylene glycol, water is much easier to evaporate than ethylene glycol.
In the heat medium storage tank 1 that is open to the atmosphere, assuming that water evaporates but ethylene glycol hardly evaporates, the amount of water evaporation increases with time, and the heat existing in the heat medium circulation path is increased. The concentration of ethylene glycol in the medium C increases.
Therefore, when the water supply intermittent valve 16 is opened and water is supplied to the heat medium storage tank 1 through the supply water path 15, the concentration of ethylene glycol in the heat medium C existing in the heat medium circulation path can be lowered.

又、水とエチレングリコールの比熱を比較すると、20℃において、エチレングリコールの比熱は2348.37J/kg・K(0.561cal/g・℃)であり、水の比熱は4186.05J/kg・K(1cal/g・℃)であり、比熱はエチレングリコールの方が水よりも小さい。
つまり、時間経過と共に熱媒循環経路に存在する熱媒C中のエチレングリコールの濃度が高くなり、それに伴って、熱媒Cの比熱が小さくなるので、熱媒用熱交換器23において目標熱量の熱量を回収するには、熱媒循環路2を通流する熱媒Cの流量を増加する必要がある。
又、熱媒貯留タンク1に水Wを補給することにより、熱媒Cを希釈してエチレングリコールの濃度を低くすると、熱媒Cの比熱が大きくなるので、熱媒用熱交換器23において目標熱量の熱量を回収するに当って、熱媒循環路2を通流する熱媒Cの流量を減少することができる。
Further, comparing the specific heat of water and ethylene glycol, at 20 ° C., the specific heat of ethylene glycol is 2348.37 J / kg · K (0.561 cal / g · ° C.), and the specific heat of water is 4186.05 J / kg · K (1 cal / g · ° C.) The specific heat of ethylene glycol is smaller than that of water.
That is, as the time passes, the concentration of ethylene glycol in the heating medium C existing in the heating medium circulation path increases, and the specific heat of the heating medium C decreases accordingly. In order to recover the amount of heat, it is necessary to increase the flow rate of the heat medium C flowing through the heat medium circuit 2.
In addition, when the heat medium C is diluted by reducing the concentration of ethylene glycol by replenishing the heat medium storage tank 1 with water W, the specific heat of the heat medium C increases. In collecting the amount of heat, the flow rate of the heat medium C flowing through the heat medium circuit 2 can be reduced.

図2に示すように、予め実験により、熱媒循環路2における熱媒Cの流量(リットル/min)と、熱媒C中のエチレングリコールの濃度(重量%)と、熱媒用熱交換器23にて熱媒Cから湯水Hに回収される回収熱量(W)との関係が求められている。
図2から、時間経過に伴って熱媒C中のエチレングリコールの濃度が高くなると、回収熱量を一定に維持するには、熱媒Cの流量を増加させる必要があることが分かる。
又、熱媒Cの流量が一定であると、熱媒C中のエチレングリコールの濃度が低くなるほど回収熱量が増加することが分かる。
As shown in FIG. 2, the flow rate (liter / min) of the heat medium C in the heat medium circuit 2, the ethylene glycol concentration (wt%) in the heat medium C, and the heat exchanger for the heat medium are shown by experiments in advance. 23, a relationship with the recovered heat quantity (W) recovered from the heat medium C into the hot water H is required.
As can be seen from FIG. 2, when the concentration of ethylene glycol in the heating medium C increases with time, the flow rate of the heating medium C needs to be increased in order to keep the recovered heat quantity constant.
It can also be seen that when the flow rate of the heat medium C is constant, the amount of recovered heat increases as the concentration of ethylene glycol in the heat medium C decreases.

そして、図2に示すように、目標熱量は、例えば、1200Wに設定されている。
又、上限流量は、熱媒循環ポンプ3の流量を調整可能な範囲内で、エチレングリコールの濃度が設定初期濃度よりもかなり高くなっても目標熱量の回収熱量が得られる流量、例えば、6.0リットル/minに設定されている。
又、希釈時調整流量は、設定初期濃度(例えば25%)よりも多少高いエチレングリコールの濃度の熱媒Cにより目標熱量が得られる流量、例えば、4.0リットル/minに設定される。
And as shown in FIG. 2, the target calorie | heat amount is set to 1200W, for example.
The upper limit flow rate is within a range in which the flow rate of the heat medium circulation pump 3 can be adjusted, and the flow rate at which the recovered heat amount of the target heat amount can be obtained even if the ethylene glycol concentration is considerably higher than the set initial concentration, for example, 6. It is set to 0 liter / min.
Further, the adjustment flow rate at the time of dilution is set to a flow rate at which the target heat amount can be obtained by the heat medium C having an ethylene glycol concentration slightly higher than the set initial concentration (for example, 25%), for example, 4.0 liter / min.

希釈時調整流量が上述のように設定されているので、濃度調整による回収熱量制御が実行されると、エチレングリコールの濃度が設定初期濃度に近い濃度になるまで、熱媒循環経路に存在する熱媒Cが希釈されることになる。
そして、熱媒貯留タンク1ではエチレングリコールはほとんど蒸発しないものとして、熱媒循環経路に存在するエチレングリコールの量はほとんど変化しないものとすると、下限水位センサ17により下限水位が検出されることや、濃度調整による回収熱量制御を実行されることにより、熱媒貯留タンク1に水Wが補給されても、熱媒循環経路に存在する熱媒C中のエチレングリコールの濃度は設定初期濃度よりも低くならないので、熱媒の凍結を抑制する能力はほとんど低下しない。
Since the adjustment flow rate at the time of dilution is set as described above, when the recovery heat amount control by concentration adjustment is executed, the heat existing in the heat medium circulation path until the ethylene glycol concentration becomes a concentration close to the set initial concentration. The medium C is diluted.
Then, assuming that ethylene glycol hardly evaporates in the heat medium storage tank 1, and that the amount of ethylene glycol present in the heat medium circulation path is hardly changed, the lower limit water level is detected by the lower limit water level sensor 17, Even if the heat medium storage tank 1 is replenished with water W by performing the recovered heat amount control by adjusting the concentration, the concentration of ethylene glycol in the heat medium C existing in the heat medium circulation path is lower than the set initial concentration. Therefore, the ability to suppress the freezing of the heat medium hardly decreases.

〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の実施形態では、熱媒供給状態調整手段Aを熱媒流量調整手段Vにて構成する形態と、熱媒供給状態調整手段Aを水補給断続弁16にて構成する形態の両方を採用したが、いずれか一方のみを採用するように構成しても良い。
熱媒供給状態調整手段Aを熱媒流量調整手段Vにて構成する形態のみを採用する場合は、熱媒流量センサ25にて検出される熱媒Cの流量が上限流量以上になると、上限水位センサ18により上限水位が検出されるまで水補給断続弁16を開弁する制御を実行しながら、流量調整による回収熱量制御を実行するように構成する。
あるいは、流量調整による回収熱量制御を実行すると共に、熱媒流量センサ25にて検出される熱媒Cの流量が上限流量以上になると警報を発するように構成することもできる。この場合、警報が発せられると、人為的に水補給断続弁16を開弁して、熱媒貯留タンク1に水Wを補給することになる。
又、熱媒供給状態調整手段Aを水補給断続弁16にて構成する形態のみを採用する場合は、熱媒循環路2の熱媒Cの流量が所定の流量になるように熱媒循環ポンプ3の作動を制御する状態で、回収熱量計測手段Mにより計測される回収熱量が目標熱量になるように、水補給断続弁16の開閉動作を制御して、熱媒C中のエチレングリコールの濃度を調整するように構成する。
[Another embodiment]
Next, another embodiment will be described.
(A) In the above embodiment, both the configuration in which the heating medium supply state adjusting means A is configured by the heating medium flow rate adjusting means V and the configuration in which the heating medium supply state adjusting means A is configured by the water replenishment intermittent valve 16. However, only one of them may be adopted.
When only the configuration in which the heating medium supply state adjusting unit A is configured by the heating medium flow rate adjusting unit V is adopted, when the flow rate of the heating medium C detected by the heating medium flow rate sensor 25 exceeds the upper limit flow rate, the upper limit water level is set. While performing the control to open the water supply intermittent valve 16 until the upper limit water level is detected by the sensor 18, the recovery heat amount control by the flow rate adjustment is executed.
Alternatively, it is possible to perform a recovery heat amount control by adjusting the flow rate, and to issue an alarm when the flow rate of the heat medium C detected by the heat medium flow rate sensor 25 exceeds the upper limit flow rate. In this case, when an alarm is issued, the water supply intermittent valve 16 is artificially opened to supply water W to the heat medium storage tank 1.
When only the configuration in which the heat medium supply state adjusting means A is constituted by the water replenishment intermittent valve 16 is adopted, the heat medium circulation pump so that the flow rate of the heat medium C in the heat medium circulation path 2 becomes a predetermined flow rate. 3, the concentration of ethylene glycol in the heating medium C is controlled by controlling the opening / closing operation of the water supply intermittent valve 16 so that the recovered heat amount measured by the recovered heat amount measuring means M becomes the target heat amount. Configure to adjust.

(ロ) 熱媒Cを構成する凝固点降下剤の具体例は、上記の実施形態にて例示したエチレングリコールに限定されるものではなく、種々のものを採用することができる。例えば、プロピレングリコール、セロソルブ類、カルビトール類、低級アルコール等を用いることができる。
又、熱媒Cに、水及び凝固点降下剤以外に、例えば、防錆剤等の他の成分を添加しても良い。
(B) Specific examples of the freezing point depressant constituting the heating medium C are not limited to the ethylene glycol exemplified in the above embodiment, and various types can be adopted. For example, propylene glycol, cellosolves, carbitols, lower alcohols and the like can be used.
In addition to water and a freezing point depressant, other components such as a rust inhibitor may be added to the heat medium C.

(ハ) 水及び凝固点降下剤夫々の特性を比較すると、上記の実施形態のように、水の方が蒸気圧が高く、比熱も大きい場合は、時間経過に伴って、熱媒C中の凝固点降下剤の濃度が高くなって熱媒Cの比熱が低下するので、熱媒成分補給断続手段としては、熱媒貯留タンク1への水の補給を断続自在なもの、例えば上記の実施形態のような水補給断続弁16にて構成することになる。
逆に、凝固点降下剤の方が蒸気圧が高く、比熱も大きい場合、時間経過に伴って、熱媒C中の凝固点降下剤の濃度が低くなって熱媒Cの比熱が低下するので、熱媒成分補給断続手段としては、熱媒貯留タンク1への凝固点降下剤の補給を断続自在なものにて構成することになる。
(C) Comparing the characteristics of water and the freezing point depressant, when the water has a higher vapor pressure and higher specific heat as in the above embodiment, the freezing point in the heating medium C is increased with time. Since the concentration of the depressant is increased and the specific heat of the heat medium C is lowered, the heat medium component replenishment intermittent means can freely replenish water to the heat medium storage tank 1, for example, as in the above embodiment. The water replenishment intermittent valve 16 is configured.
Conversely, when the freezing point depressant has a higher vapor pressure and larger specific heat, the concentration of the freezing point depressant in the heating medium C decreases with time and the specific heat of the heating medium C decreases. As the medium component replenishment intermittent means, the replenishment of the freezing point depressant to the heat medium storage tank 1 can be configured to be intermittent.

(ニ) 熱媒流量調整手段Vの具体構成は、上記の実施形態のように、回転速度を調整自在な熱媒循環ポンプ3により構成する場合に限定されるものではない。例えば、熱媒循環路2に、熱媒Cの通流量を調整自在な比例弁を設けて、熱媒流量調整手段をこの比例弁にて構成しても良い。 (D) The specific configuration of the heat medium flow rate adjusting means V is not limited to the case where the heat medium flow rate adjusting means V is configured by the heat medium circulation pump 3 whose rotation speed is adjustable as in the above embodiment. For example, a proportional valve capable of adjusting the flow rate of the heat medium C may be provided in the heat medium circulation path 2, and the heat medium flow rate adjusting means may be configured by this proportional valve.

(ホ) 熱回収部Rの具体構成は、上記の実施形態において例示した構成に限定されるものではない。
例えば、熱媒循環路2を通流する熱媒Cと床暖房装置や浴室暖房乾燥装置等の暖房端末に循環供給する熱媒とを熱交換する熱交換器を備えて構成して、排熱発生装置Gにて発生する排熱を暖房端末に循環供給する熱媒に直接回収するように構成しても良い。
(E) The specific configuration of the heat recovery unit R is not limited to the configuration illustrated in the above embodiment.
For example, a heat exchanger that exchanges heat between the heat medium C flowing through the heat medium circulation path 2 and a heat medium that is circulated and supplied to a heating terminal such as a floor heating device or a bathroom heating / drying device is provided to You may comprise so that the exhaust heat which generate | occur | produces in the generator G may be collect | recovered directly to the heat medium which circulates and supplies to a heating terminal.

(ヘ) 上記の実施形態のように、本発明をコージェネレーションシステムに適用する場合、排熱発生装置Gの具体例は、上記の実施形態において例示した発電機5を駆動するエンジン6に限定されるものではなく、例えば、燃料電池、発電機5を駆動するガスタービンでも良い。
又、本発明は、コージェネレーションシステム以外に、ヒートポンプを駆動するエンジン、各種燃焼装置等を排熱発生装置として備えた各種排熱回収装置に適用することができる。
(F) When the present invention is applied to a cogeneration system as in the above embodiment, the specific example of the exhaust heat generator G is limited to the engine 6 that drives the generator 5 illustrated in the above embodiment. For example, a fuel cell or a gas turbine that drives the generator 5 may be used.
In addition to the cogeneration system, the present invention can be applied to various exhaust heat recovery apparatuses including an engine that drives a heat pump, various combustion apparatuses, and the like as an exhaust heat generation apparatus.

以上説明したように、時間経過に伴う回収熱量の減少を抑制し得る排熱回収装置を提供することができる。   As described above, it is possible to provide an exhaust heat recovery device that can suppress a decrease in the amount of recovered heat over time.

1 熱媒貯留タンク
2 熱媒循環路
3 熱媒循環ポンプ(熱媒循環手段)
5 発電機
6 エンジン
7 制御手段
16 水補給断続弁(熱媒成分補給断続手段)
A 熱媒供給状態調整手段
C 熱媒
G 排熱発生装置
M 回収熱量計測手段
R 熱回収部
V 熱媒流量調整手段
W 水
1 Heat medium storage tank 2 Heat medium circulation path 3 Heat medium circulation pump (heat medium circulation means)
5 Generator 6 Engine 7 Control means 16 Water supply intermittent valve (heat medium component supply intermittent means)
A Heat medium supply state adjusting means C Heat medium G Waste heat generator M Recovered heat amount measuring means R Heat recovery section V Heat medium flow rate adjusting means W Water

Claims (4)

排熱発生装置、熱回収部、大気開放型の熱媒貯留タンクを経由して熱媒を循環させる熱媒循環路と、
前記排熱発生装置にて発生する排熱を前記熱回収部にて前記熱媒を介して回収すべく、前記熱媒循環路を通して熱媒を循環させる熱媒循環手段とが設けられ、
前記熱媒は、水及び熱媒の凝固点を降下させるための凝固点降下剤を含むものである排熱回収装置であって、
前記熱回収部に供給する熱媒の供給状態を調整自在な熱媒供給状態調整手段と、
前記熱回収部にて前記熱媒から回収される回収熱量を計測する回収熱量計測手段と、
その回収熱量計測手段の計測情報に基づいて、前記回収熱量が目標熱量になるように前記熱媒供給状態調整手段の作動を制御する制御手段とが設けられている排熱回収装置。
A heat medium circulation path that circulates the heat medium via an exhaust heat generator, a heat recovery unit, an open air type heat medium storage tank,
A heat medium circulating means for circulating the heat medium through the heat medium circulation path in order to recover the exhaust heat generated in the exhaust heat generator via the heat medium in the heat recovery unit;
The heat medium is an exhaust heat recovery device that includes water and a freezing point depressant for lowering the freezing point of the heat medium,
A heat medium supply state adjusting means capable of adjusting a supply state of the heat medium supplied to the heat recovery unit;
Recovered heat amount measuring means for measuring the recovered heat amount recovered from the heat medium in the heat recovery unit,
An exhaust heat recovery apparatus provided with control means for controlling the operation of the heating medium supply state adjusting means so that the recovered heat quantity becomes a target heat quantity based on the measurement information of the recovered heat quantity measuring means.
前記熱媒供給状態調整手段が、前記熱媒循環路を通流する熱媒の流量を調整自在な熱媒流量調整手段にて構成されている請求項1に記載の排熱回収装置。   The exhaust heat recovery apparatus according to claim 1, wherein the heat medium supply state adjusting unit includes a heat medium flow rate adjusting unit capable of adjusting a flow rate of the heat medium flowing through the heat medium circulation path. 前記熱媒供給状態調整手段が、前記熱媒貯留タンクへの水又は凝固点降下剤の補給を断続自在な熱媒成分補給断続手段にて構成されている請求項1又は2に記載の排熱回収装置。   The exhaust heat recovery according to claim 1 or 2, wherein the heating medium supply state adjusting means is constituted by a heating medium component replenishment intermittent means capable of intermittently supplying water or a freezing point depressant to the heat medium storage tank. apparatus. 前記排熱発生装置が、発電機を駆動するエンジンである請求項1〜3のいずれか1項に記載の排熱回収装置。   The exhaust heat recovery apparatus according to any one of claims 1 to 3, wherein the exhaust heat generation apparatus is an engine that drives a generator.
JP2010053428A 2010-03-10 2010-03-10 Exhaust heat recovery device Pending JP2011185570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010053428A JP2011185570A (en) 2010-03-10 2010-03-10 Exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010053428A JP2011185570A (en) 2010-03-10 2010-03-10 Exhaust heat recovery device

Publications (1)

Publication Number Publication Date
JP2011185570A true JP2011185570A (en) 2011-09-22

Family

ID=44792076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010053428A Pending JP2011185570A (en) 2010-03-10 2010-03-10 Exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JP2011185570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074758A (en) * 2011-09-28 2013-04-22 Kyocera Corp Power management system and power management apparatus
US10575410B2 (en) 2015-01-13 2020-02-25 Dexerials Corporation Anisotropic conductive film, manufacturing method thereof, and connection structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074758A (en) * 2011-09-28 2013-04-22 Kyocera Corp Power management system and power management apparatus
US9727038B2 (en) 2011-09-28 2017-08-08 Kyocera Corporation Fuel cell control using pseudo power consumption
US10575410B2 (en) 2015-01-13 2020-02-25 Dexerials Corporation Anisotropic conductive film, manufacturing method thereof, and connection structure

Similar Documents

Publication Publication Date Title
JP2008111650A (en) Photovoltaic power generation/heat collection composite utilization device
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
JP2006275478A (en) Cogeneration system
JP2011185570A (en) Exhaust heat recovery device
JP4208792B2 (en) Cogeneration system
WO2013129493A1 (en) Method for controlling and device for controlling cogeneration system
JP4833707B2 (en) Waste heat recovery device
JP7113725B2 (en) fuel cell system
JP2007280970A (en) Fuel cell system
JP2007263010A (en) Co-generation system
JP2011257130A (en) Apparatus for recovering exhaust heat
JP5792501B2 (en) Thermal storage device and method for preventing freezing thereof
JP2006064284A (en) Sunlight heat compound use system, operation control method therefor, program and recording medium
JP2007330009A (en) Power load controller and cogeneration system equipped therewith
JP2009216382A (en) Cogeneration system
JP5727270B2 (en) Hot water storage system, operation method thereof, and control device for hot water storage system
JP6709691B2 (en) Thermal equipment
JP2006179225A (en) Fuel cell system
JP4359248B2 (en) Cogeneration system
WO2010007759A1 (en) Fuel cell system
JP2012209173A (en) Power generation system
JP2011181424A (en) Fuel cell power generation system
JP4161527B2 (en) Fuel cell power generator
JP2017199463A (en) Fuel cell system
JP2006275418A (en) Hot-water storage type heat processing device