JP2011185256A - Six cycle engine exclusive for hydrogen - Google Patents

Six cycle engine exclusive for hydrogen Download PDF

Info

Publication number
JP2011185256A
JP2011185256A JP2010073538A JP2010073538A JP2011185256A JP 2011185256 A JP2011185256 A JP 2011185256A JP 2010073538 A JP2010073538 A JP 2010073538A JP 2010073538 A JP2010073538 A JP 2010073538A JP 2011185256 A JP2011185256 A JP 2011185256A
Authority
JP
Japan
Prior art keywords
hydrogen
engine
cycle engine
air
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010073538A
Other languages
Japanese (ja)
Inventor
Tomoki Yamazaki
知機 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SUISO KK
Original Assignee
NIPPON SUISO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SUISO KK filed Critical NIPPON SUISO KK
Priority to JP2010073538A priority Critical patent/JP2011185256A/en
Publication of JP2011185256A publication Critical patent/JP2011185256A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

<P>PROBLEM TO BE SOLVED: To make an engine system achieving high rotation and high output by a reciprocating engine using hydrogen as a fuel. <P>SOLUTION: Mixed air of hydrogen and air is compressed to a high pressure, and is supplied to a six cycle engine of a short stroke with a bore ratio smaller than or equal to 0.6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水素を燃料とするエンジンに関するものである。  The present invention relates to an engine using hydrogen as a fuel.

本発明は、従来技術においてバックファイアーやノッキングなどのために積極的に利用できなかったレシプロエンジンでの水素の利用を可能にするものである。  The present invention makes it possible to use hydrogen in a reciprocating engine that cannot be actively used for backfire or knocking in the prior art.

文献1.特許第4256602号 平成21年登録
文献2.特許第3885071号 平成18年登録
文献3.特許第3631891号 平成16年登録
文献4.特許第3332274号 平成14年登録
文献5.特許第2955274号 平成11年登録
文献6.特許第2886204号 平成11年登録
Reference 1. Patent No. 4256602 Registration document in 20092. Patent No. 3885071 Registered in 2006 3. Patent No. 3631891 2004 registration document 4. Patent No. 3332274 2002 registered documents5. Patent No. 2955274 Registration document in 19996. Patent No. 2886204 Registration in 1999

発明が解決しようとする課題Problems to be solved by the invention

水素の発熱量は、メタンの3分の1、プロパンの9分の1程度で極端に低い。したがって水素エンジンは、低出力で、実用にならないとされているが、これを自動車エンジンに利用できるように、出力を増強させることが、この発明の課題である。  The calorific value of hydrogen is extremely low at about 1/3 of methane and 1/9 of propane. Therefore, the hydrogen engine is said to have a low output and become unpractical, but it is an object of the present invention to increase the output so that it can be used for an automobile engine.

水素と空気との混合ガスは、極めて発火し易く、4行程エンジンのバルブ・オーバー・ラップ時における早期発火は、エンジンを停止させ、バック・ファイアーによってエンジンを破壊させる。レシプロエンジンで水素を燃料として安全にスムーズに高回転、高出力のエンジンをつくることが、この発明の課題である。  The gas mixture of hydrogen and air is very easy to ignite, and the early ignition at the time of valve over lap of the four-stroke engine stops the engine and causes the engine to be destroyed by the back fire. It is an object of the present invention to produce a high-speed and high-power engine safely and smoothly using hydrogen as a fuel in a reciprocating engine.

課題を解決するための手段Means for solving the problem

この発明は、水素エンジンの出力の増強のために、水素と空気の圧力を1〜5気圧に圧縮し、これを1対2.5に混合して、供給することによって出力の増強を計ることができることを見出した。In order to increase the output of the hydrogen engine, the present invention measures the increase of the output by compressing the pressure of hydrogen and air to 1 to 5 atm, mixing it in a ratio of 2.5 to 2.5, and supplying it. I found out that I can.

高圧の水素と空気の混合ガスをシリンダーに圧入した際におこるバックファイアー対策として、この発明では6サイクルエンジンを採用し、6行程のうち2行程を掃気吸入、掃気排気にあて、1〜5気圧の水素・空気混合ガスの吸入前にシリンダーを冷却する行程を設けることで、バックファイアーやノッキングなしに円滑な出力が確保できることを発見した。As a countermeasure for backfire that occurs when a mixed gas of high-pressure hydrogen and air is injected into the cylinder, this invention employs a 6-cycle engine, and 2 out of 6 strokes are used for scavenging intake and scavenging exhaust, and 1-5 atm. It was discovered that a smooth output could be secured without backfire or knocking by providing a process for cooling the cylinder before inhaling the hydrogen / air mixed gas.

水素エンジンのもう一つの問題点は、シリンダーのボアーとストロークの関係にあることが発見された。水素エンジンで使用される高圧の水素と空気の混合気体の燃焼速度は、ガソリンのそれと比べて高速である。そのため爆圧がピストンを動かす作用時間はガソリンの場合より極端に短かい。よって水素エンジンの場合はガソリン使用の場合と比べてショート・ストロークにするのが必須であることが見出された。よってこの発明者は、クランクシャフトを改造し、シリンダー、コンロッドアームを調整して、ボアー比を0.6以下に設定し、高速回転を得ることで、水素エンジンの小出力を大出力に解決しようとしている。  It was discovered that another problem with hydrogen engines is the relationship between cylinder bore and stroke. The combustion speed of the high-pressure hydrogen / air mixture used in hydrogen engines is faster than that of gasoline. Therefore, the operating time for the explosion pressure to move the piston is extremely shorter than that for gasoline. Therefore, it was found that a short stroke is essential for hydrogen engines compared to gasoline. Therefore, this inventor will modify the crankshaft, adjust the cylinder and connecting rod arm, set the bore ratio to 0.6 or less, and obtain high speed rotation to solve the small output of the hydrogen engine to the large output. It is said.

発明の効果The invention's effect

水素を1〜5気圧の高圧にして、それと同圧にした空気を1:2.5の比率で混合し、これをボアー比0.60の6サイクルエンジンに投入したところ、実施例の400c,c,単気筒エンジンは2,500rpmの高速を実現することができ、東京メーター(株)製内燃機関性能試験装置では軸出力12kwを記録することができた。  When hydrogen was set to a high pressure of 1 to 5 atm, and the air having the same pressure was mixed at a ratio of 1: 2.5, and this was put into a 6-cycle engine having a bore ratio of 0.60, the 400c, c. The single cylinder engine was able to realize a high speed of 2500 rpm, and the internal power engine performance test device manufactured by Tokyo Meter Co., Ltd. was able to record the shaft output of 12 kW.

この発明は、図1に示すように矢印15より高圧水素を矢印14より高圧空気を圧力調整器12と13において圧力1〜5気圧に変圧できるようにし、同時に流量調整器11で水素1に対して空気2.5の割合になるように流量を調節しながら、水素と空気を混合し、アクセル10で圧力を調整しながら混合ガスをインテークマニホールド8に圧入する。  In the present invention, as shown in FIG. 1, high-pressure hydrogen from arrow 15 and high-pressure air from arrow 14 can be transformed to pressures 1 to 5 at pressure regulators 12 and 13, and at the same time to hydrogen 1 by flow regulator 11. Then, hydrogen and air are mixed while adjusting the flow rate so that the ratio of air is 2.5, and the mixed gas is press-fitted into the intake manifold 8 while adjusting the pressure with the accelerator 10.

上記において圧入された混合ガスは、インテークバルブ6とバルブシート20の間から、シリンダー1に入る。ピストン2は下降し、混合ガスは充分にシリンダーのなかに圧入される。符号5は点火プラグ、符号3はコンロッド、符号4はクランクである。  The mixed gas injected in the above enters the cylinder 1 from between the intake valve 6 and the valve seat 20. The piston 2 is lowered and the mixed gas is sufficiently injected into the cylinder. Reference numeral 5 is a spark plug, reference numeral 3 is a connecting rod, and reference numeral 4 is a crank.

図2は、エンジン上蓋部16を示しており、中心部にある符号5は点火プラグ、符号20はインテークバルブシート、符号18と19はエクゾーストバルブシートであり、符号17は掃気インテークバルブシートである。  FIG. 2 shows the engine upper cover portion 16. Reference numeral 5 in the center is a spark plug, reference numeral 20 is an intake valve seat, reference numerals 18 and 19 are exhaust valve seats, and reference numeral 17 is a scavenging intake valve seat. .

図3は、クランク4が回転し、ピストン2が上昇して、シリンダー1に封じ込められた混合ガスを圧縮する。インテークバルブ6とエクゾーストバルブ7は閉じている。  In FIG. 3, the crank 4 rotates and the piston 2 moves up to compress the mixed gas confined in the cylinder 1. The intake valve 6 and the exhaust valve 7 are closed.

図4は、圧縮された混合ガスが点火プラグ5の点火によって爆発する図で符号21は水素と空気の混合ガスが爆発する火焔である。ピストンは下方に向かいクランクに動力が伝達される。FIG. 4 is a diagram in which the compressed mixed gas explodes when the spark plug 5 is ignited. Reference numeral 21 denotes a flame in which a mixed gas of hydrogen and air explodes. The piston moves downward and power is transmitted to the crank.

図5は、このエンジンの排気行程を示している。クランク4が回転し、コンロッド3により、ピストン2が押し上げられ、シリンダー1に滞留している熱排気ガスをエクゾーストバルブ7とエクゾーストバルブシート18の間から矢印22のようにエンジン外に排出する。この時、インテークバルブは閉じている。FIG. 5 shows the exhaust stroke of this engine. The crank 4 rotates, the piston 2 is pushed up by the connecting rod 3, and the hot exhaust gas staying in the cylinder 1 is discharged outside the engine from between the exhaust valve 7 and the exhaust valve seat 18 as indicated by an arrow 22. At this time, the intake valve is closed.

図6に示すようにエクゾーストバルブ27と7を閉じ、掃気インテークバルブ26が開き、エンジン外より掃気が矢印24のように、シリンダー1内に引き込まれ、エンジンシリンダー1内を掃気、冷却する。符号25は潤滑油インジェクターで、符号17は掃気用インテークバルブシートである。  As shown in FIG. 6, the exhaust valves 27 and 7 are closed, the scavenging intake valve 26 is opened, and scavenging air is drawn from the outside of the engine into the cylinder 1 as indicated by an arrow 24 to scavenge and cool the engine cylinder 1. Reference numeral 25 denotes a lubricant injector, and reference numeral 17 denotes a scavenging intake valve seat.

図7に示すように、クランク4の回転と共にピストン2は上昇する。エクゾーストバルブ27が開き、インテークバルブ26は閉じて、掃気は矢印28のようにエンジン外に排出される。  As shown in FIG. 7, the piston 2 rises with the rotation of the crank 4. The exhaust valve 27 is opened, the intake valve 26 is closed, and the scavenging air is discharged outside the engine as indicated by an arrow 28.

ホンダCB400(2001年製)の単気筒4サイクルOHC4バルブをボアストロークを92×58mm、ボアストローク比1:0.6とし、コンロッドを12mm長くし、クランクを切りそろえた。カムシャフトの回転をクランクシャフトの3分の1とし、4バルブのタイミングを上述のようにして6サイクルエンジンに改造し、キャブレーターを外し、そこから上記図1に示すように水素と空気の1対2.5の混合ガスを圧入し、運転状況を(株)東京メーター製の試験装置GWEー88/150Rでテストしたところ図8のような結果を得、最高回転2500r.p.m.12kwの軸出力を記録した。クランクのバランサーを軽くし、コンロッドを短く、ピストンの重さを軽減すれば、更なる成果も期待できる。  A single cylinder 4-cycle OHC4 valve of Honda CB400 (made in 2001) has a bore stroke of 92 × 58 mm and a bore stroke ratio of 1: 0.6, the connecting rod is lengthened by 12 mm, and the crank is trimmed. The camshaft rotation is set to one third of the crankshaft, the timing of the four valves is modified to a six-cycle engine as described above, the carburetor is removed, and from there, a pair of hydrogen and air as shown in FIG. A mixed gas of 2.5 was injected and the operating condition was tested with a test apparatus GWE-88 / 150R manufactured by Tokyo Meter Co., Ltd., and the result shown in FIG. p. m. A 12 kw shaft output was recorded. If the crank balancer is lightened, the connecting rod is shortened, and the weight of the piston is reduced, further results can be expected.

環境上、理想的燃料とされながら使い難い水素をトラブルなしに円滑に運転できるエンジンとして、自動車用のみならず、種々の産業的原動機として広く利用することができる。  As an engine that can be operated smoothly without trouble while being considered as an ideal fuel, it can be widely used not only for automobiles but also as various industrial prime movers.

この発明になる水素専用6サイクルエンジンの混合ガス吸入行程時の断面図と水素燃料供給の調圧式アクセル、水素・空気の混合器の全体的システム図Cross-sectional view of a 6-cycle engine dedicated to hydrogen according to the present invention during a mixed gas intake stroke, a pressure control accelerator for supplying hydrogen fuel, and an overall system diagram of a hydrogen / air mixer エンジン上蓋部の4バルブシートの配置図Arrangement of 4-valve seat on the engine top 混合ガスの圧縮行程の断面図Cross section of mixed gas compression process 高圧混合ガスの爆発行程の断面図Cross section of explosion process of high pressure gas mixture 排気行程の断面図Cross section of exhaust stroke 掃気吸入行程の断面図Cross section of scavenging and intake stroke 掃気排気行程の断面図Cross section of scavenging and exhaust stroke 実施例によるエンジン性能曲線図Engine performance curve by example

Claims (3)

水素と空気の1対2.5程度の混合気体を1〜5気圧に圧縮した状態で6サイクルエンジンに供給することを特徴とする水素専用6サイクルエンジン。A hydrogen-only 6-cycle engine, characterized in that a gas mixture of about 1 to 2.5 of hydrogen and air is supplied to a 6-cycle engine in a compressed state of 1 to 5 atm. エンジンの軸トルクを決定する燃料ガス供給アクセルは、水素と空気の燃焼当量である1対2.5の混合気体の圧力の調整をもってする水素専用6サイクルエンジン。The fuel gas supply accelerator that determines the shaft torque of the engine is a 6-cycle engine dedicated to hydrogen with adjustment of the pressure of the gas mixture of 1: 2.5 which is the combustion equivalent of hydrogen and air. シリンダーの口径対ストロークの比率が1対0.60以下のショート・ストロークのピストンをもち、圧力水素下での早い燃焼速度に対応した高速回転によって高い軸出力を出す水素専用6サイクルエンジンA 6-cycle engine dedicated to hydrogen that has a short stroke piston with a cylinder diameter to stroke ratio of 1 to 0.60 or less, and produces high shaft output by high-speed rotation corresponding to fast combustion speed under pressure hydrogen
JP2010073538A 2010-03-08 2010-03-08 Six cycle engine exclusive for hydrogen Pending JP2011185256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010073538A JP2011185256A (en) 2010-03-08 2010-03-08 Six cycle engine exclusive for hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010073538A JP2011185256A (en) 2010-03-08 2010-03-08 Six cycle engine exclusive for hydrogen

Publications (1)

Publication Number Publication Date
JP2011185256A true JP2011185256A (en) 2011-09-22

Family

ID=44791822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073538A Pending JP2011185256A (en) 2010-03-08 2010-03-08 Six cycle engine exclusive for hydrogen

Country Status (1)

Country Link
JP (1) JP2011185256A (en)

Similar Documents

Publication Publication Date Title
US4306526A (en) Internal combustion engine
Rottengruber et al. Direct-injection hydrogen SI-engine-operation strategy and power density potentials
WO2005084344A3 (en) Compression ignition engine by air injection from air-only cylinder to adjacent air-fuel cylinder
US20120330534A1 (en) Enhanced efficiency and pollutant control by multi-variable engine operation control
JP2020122483A (en) Large uniflow scavenging type two-cycle gaseous fuel engine, and method for operating large uniflow scavenging type two-cycle gaseous fuel engine
US20130247885A1 (en) Two-stroke engine and four-stroke engine
US20160341105A1 (en) System for scavenging pre-combustion chamber
CA2463791A1 (en) Method for injecting gaseous fuels into an internal combustion engine at high pressures
Shkolnik et al. Development of a small rotary SI/CI combustion engine
US20140109850A1 (en) Method and system for internal combustion engine
Mukhopadhyay et al. Direct injection compression ignition engine: cold start on gasoline and diesel
JP2006316777A (en) Internal combustion engine
US20030230258A1 (en) Two-stroke engines exhaust and scavenge control
Liu et al. An experimental investigation of the engine operating limit and combustion characteristics of the RI-CNG engine
KR102646089B1 (en) Internal combustion engine
JP2011185256A (en) Six cycle engine exclusive for hydrogen
SE542081C2 (en) Gas Engine, Method for Operating a Gas Engine and Generator Set
US20160032821A1 (en) Six Stroke Internal-Combustion Engine
KR20210008318A (en) Internal combustion engine
KR20160108813A (en) Method and control device for operating a dual-fuel engine
Singh et al. Current status of direct fuel injection in two stroke petrol engine-A review
JP6950037B2 (en) Internal combustion engine
DK181408B1 (en) Internal combustion engine and a method for starting up an internal combustion engine
Świątek et al. Tests of a prototype spark-ignited, direct-injection engine powered by JET-A1 fuel
Paul et al. Air assisted direct cylinder barrel injection of gasoline in a two-stroke SI engine