JP2011184800A - Surface-treating agent comprising crystalline layered inorganic compound dispersed in nanosheet form - Google Patents

Surface-treating agent comprising crystalline layered inorganic compound dispersed in nanosheet form Download PDF

Info

Publication number
JP2011184800A
JP2011184800A JP2011103551A JP2011103551A JP2011184800A JP 2011184800 A JP2011184800 A JP 2011184800A JP 2011103551 A JP2011103551 A JP 2011103551A JP 2011103551 A JP2011103551 A JP 2011103551A JP 2011184800 A JP2011184800 A JP 2011184800A
Authority
JP
Japan
Prior art keywords
film
polyfunctional
inorganic compound
crystalline layered
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011103551A
Other languages
Japanese (ja)
Inventor
Kenjun Ko
建順 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2011103551A priority Critical patent/JP2011184800A/en
Publication of JP2011184800A publication Critical patent/JP2011184800A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/372Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nanosheet-dispersed sol-type non-chromate surface-treating agent which shows excellent corrosion resistance and coating-adhesiveness at a processed part and can form a stiff film even used in the manufacture of a precoated metal plate which is applicable to an electric appliance, an automotive product or the like which is required to have a strictly machined shape. <P>SOLUTION: Disclosed is a surface-treating agent comprising a crystalline layered inorganic compound formed with an organic amine or an organic ammonium into a nanosheet, wherein the organic amine or organic ammonium is a polyfunctional organic amine or polyfunctional organic ammonium. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、結晶性層状無機化合物がナノシート分散した、耐食性及び塗装密着性に優れた表面皮膜を形成可能な表面処理剤に関する。より具体的には、例えば、金属材料に対して用いられる一時防錆や塗装下地等としてのノンクロム表面処理剤、この表面処理剤を用いた表面処理方法、更にはこの表面処理剤で処理された金属材及び金属製品に関する。   The present invention relates to a surface treatment agent capable of forming a surface film excellent in corrosion resistance and paint adhesion, in which a crystalline layered inorganic compound is dispersed in a nanosheet. More specifically, for example, a non-chromium surface treatment agent as a temporary rust prevention or coating base used for a metal material, a surface treatment method using this surface treatment agent, and further treated with this surface treatment agent It relates to metal materials and metal products.

最近、構造的・機能的に格段に優れた材料を作り出すために、材料表面界面のナノ構造制御が精力的に推進されている。このような状況下、層状結晶金属化合物に所定の処理を施すことにより得られる、当該層状結晶金属化合物の微小結晶薄片が分散したナノシート分散ゾルを得る手法が提案されている(特許文献1〜3)。例えば、層状チタン酸HxTi2-x/4O4をアミン又はアンモニウム化合物(剥離剤及び分散剤として機能)の水溶液と混合し攪拌させることにより層間で剥離させ、酸化チタン(TiO2)の微小結晶薄片が分散したゾル溶液を調製する方法が既知である。しかしながら、従来のナノシート分散ゾルを表面処理剤として用いても、強固な膜(耐食性及び密着性に優れた皮膜)が形成されないという問題があり、表面処理剤として実用レベルに至っていないのが実情である。 Recently, in order to create a material that is structurally and functionally superior, nanostructure control of the material surface interface has been vigorously promoted. Under such circumstances, there has been proposed a technique for obtaining a nanosheet-dispersed sol in which fine crystal flakes of the layered crystal metal compound are dispersed, which is obtained by subjecting the layered crystal metal compound to a predetermined treatment (Patent Documents 1 to 3). ). For example, layered titanate H x Ti 2-x / 4 O 4 is mixed with an aqueous solution of an amine or ammonium compound (functioning as a release agent and a dispersant) and stirred to peel off the layer, and titanium oxide (TiO 2 ) A method for preparing a sol solution in which fine crystal flakes are dispersed is known. However, even if conventional nanosheet dispersion sol is used as a surface treatment agent, there is a problem that a strong film (a film excellent in corrosion resistance and adhesion) is not formed, and the actual situation is that the surface treatment agent has not reached a practical level. is there.

一方、鉄鋼、家電、建材、自動車等の各分野において、各種の金属材の耐食性及び塗膜密着性を向上させるためクロメート処理が広く採用されてきた。しかし、クロメート処理は、6価クロムの毒性問題や排水処理設備が必要といったように、公害対策に伴う環境関連的な問題を大きく抱えていることから、最近ではクロメート処理に代わるノンクロム処理が進んでいる。例えば、加工形状の厳しい家電や自動車用途等の製品に適用するプレコート金属板を作製した場合には、各種のノンクロム表面処理剤及び処理方法が提案されてきた(特許文献4〜6)。しかしながら、加工部での耐食性と塗装密着性が確保できないという問題点が残っている。   On the other hand, chromate treatment has been widely adopted in various fields such as steel, home appliances, building materials and automobiles in order to improve the corrosion resistance and coating film adhesion of various metal materials. However, the chromate treatment has a lot of environment-related problems associated with pollution measures, such as the toxicity of hexavalent chromium and the need for wastewater treatment facilities. Yes. For example, when producing a pre-coated metal plate to be applied to products such as home appliances and automobiles with severe processing shapes, various non-chromium surface treatment agents and treatment methods have been proposed (Patent Documents 4 to 6). However, there remains a problem that the corrosion resistance and paint adhesion at the processed part cannot be ensured.

したがって、本発明は、例えば、加工形状の厳しい家電や自動車用途等の製品に適用するプレコート金属板を作製した場合でも、加工部での耐食性と塗装密着性に優れた、強固な膜を形成し得るナノシート分散ゾル型のノンクロム表面処理剤を提供することを目的とする。
特開2005−220001号公報 特開2005−290369号公報 特開2004−315347号公報 特開昭53−9238号公報 特開昭59−116381号公報 特開2002−363764号公報
Therefore, the present invention forms a strong film excellent in corrosion resistance and paint adhesion at the processed part even when, for example, a pre-coated metal plate to be applied to products with severely processed shapes such as home appliances and automobiles is produced. An object of the present invention is to provide a nanosheet-dispersed sol-type non-chromium surface treatment agent to be obtained.
Japanese Patent Laid-Open No. 2005-220001 JP 2005-290369 A JP 2004-315347 A JP-A-53-9238 JP 59-116381 A JP 2002-36364 A

本発明者は、前記課題を解決するために鋭意研究の結果、従来のナノシート分散ゾル型の組成物においては、層間剥離剤及びナノシート分散剤として機能するアルキルアミン又はアルキルアンモニウム塩が架橋・固定されないまま、塗布・乾燥した膜に残存して造膜性に悪影響を与えることを見出し、本発明を完成させたものである。   As a result of diligent research to solve the above problems, the present inventor does not crosslink and fix alkylamine or alkylammonium salt that functions as a delamination agent and nanosheet dispersant in a conventional nanosheet-dispersed sol type composition. The present invention has been completed by finding that it remains in the coated and dried film and adversely affects the film-forming property.

本発明(1)は、結晶性層状無機化合物を有機アミン又は有機アンモニウムでナノシート化した表面処理剤であって、前記有機アミン又は有機アンモニウムが、多官能性有機アミン又は多官能性有機アンモニウムであることを特徴とする表面処理剤である。   The present invention (1) is a surface treatment agent obtained by nano-sheeting a crystalline layered inorganic compound with an organic amine or organic ammonium, wherein the organic amine or organic ammonium is a polyfunctional organic amine or a polyfunctional organic ammonium. It is a surface treating agent characterized by this.

本発明(2)は、前記多官能性有機アミン又は多官能性有機アンモニウムが、多価アミン化合物、アミノ酸、アミノシラン、キトサン、多官能性アミノポリマーである、前記発明(1)の表面処理剤である。   This invention (2) is the surface treating agent of the said invention (1) whose said polyfunctional organic amine or polyfunctional organic ammonium is a polyvalent amine compound, an amino acid, aminosilane, chitosan, and a polyfunctional amino polymer. is there.

本発明(3)は、前記結晶性層状無機化合物が、ジルコニウム、チタニウム、バナジウム、ケイ素又はアルミニウムのリン酸塩又は酸化物である、前記発明(1)又は(2)の表面処理剤である。   The present invention (3) is the surface treatment agent according to the invention (1) or (2), wherein the crystalline layered inorganic compound is a phosphate or oxide of zirconium, titanium, vanadium, silicon or aluminum.

本発明(4)は、前記結晶性層状無機化合物に対する前記多官能性有機アミン又は多官能性有機アンモニウムの比率が、モル比で、結晶性層状無機化合物1モルに対して0.1〜2モルである、前記発明(1)〜(3)のいずれか一つの表面処理剤である。   In the present invention (4), the ratio of the polyfunctional organic amine or polyfunctional organic ammonium to the crystalline layered inorganic compound is 0.1 to 2 moles per mole of the crystalline layered inorganic compound. The surface treatment agent according to any one of the inventions (1) to (3).

本発明(5)は、前記結晶性層状無機化合物(固形分)量は、表面処理剤の全固形分量に対して5〜95wt%である、前記発明(1)〜(4)のいずれか一つの表面処理剤である。   The invention (5) is any one of the inventions (1) to (4), wherein the amount of the crystalline layered inorganic compound (solid content) is 5 to 95 wt% with respect to the total solid content of the surface treatment agent. One surface treatment agent.

本発明(6)は、更に、ケイ素、セリウム、リチウム、亜鉛、マグネシウム、カルシウム及びマンガンからなる群より選択される無機成分と水溶性高分子とからなる群より選択される少なくとも1種の成分を含有する、前記発明(1)〜(5)のいずれか一つの表面処理剤である。   The present invention (6) further comprises at least one component selected from the group consisting of an inorganic component selected from the group consisting of silicon, cerium, lithium, zinc, magnesium, calcium and manganese and a water-soluble polymer. It is a surface treatment agent according to any one of the inventions (1) to (5).

本発明(7)は、前記発明(1)〜(6)のいずれか一つの表面処理剤を金属材表面に塗布・乾燥することにより皮膜を形成する工程を含むことを特徴とする、金属材の表面処理方法である。   This invention (7) includes the process of forming a film | membrane by apply | coating and drying any one surface treating agent of said invention (1)-(6) on the metal material surface, The metal material characterized by the above-mentioned. This is a surface treatment method.

本発明(8)は、前記皮膜が、無機ナノシートを含有する無機・有機ナノハイブリッド皮膜である、前記発明(7)の方法である。   The present invention (8) is the method according to the invention (7), wherein the film is an inorganic / organic nanohybrid film containing an inorganic nanosheet.

本発明(9)は、前記皮膜の皮膜質量が、0.01〜5g/mである、前記発明(7)又は(8)の方法である。 This invention (9) is the method of the said invention (7) or (8) whose film | membrane mass of the said film | membrane is 0.01-5 g / m < 2 >.

本発明(10)は、前記発明(1)〜(6)のいずれか一つの表面処理剤を金属材表面に塗布・乾燥することにより当該金属材表面に形成された、皮膜質量0.01〜5g/mの皮膜を有することを特徴とする表面処理金属材である。 As for this invention (10), the coating-film mass 0.01- formed in the said metal material surface by apply | coating and drying any one surface treatment agent of said invention (1)-(6) on the metal material surface. It is a surface-treated metal material characterized by having a film of 5 g / m 2 .

本発明(11)は、前記金属材が、鉄系基材、亜鉛系基材及びアルミ系基材から選ばれる少なくとも1種である、前記発明(10)の表面処理金属材である。   The present invention (11) is the surface-treated metal material according to the invention (10), wherein the metal material is at least one selected from an iron-based substrate, a zinc-based substrate, and an aluminum-based substrate.

本発明によれば、層間剥離剤及びナノシート分散剤として機能する有機アミン又は有機アンモニウムを架橋・固定した状態で膜に残存させるので、従来のアルキルアミン又はアルキルアンモニウム塩を用いたときのように膜の耐水性に悪影響を与えることがないことに加え、耐食性や塗膜密着性を飛躍的に向上させることができるという効果を奏する。   According to the present invention, the organic amine or organic ammonium functioning as a delamination agent and nanosheet dispersant is left in the film in a cross-linked and fixed state, so that the film is as in the case of using a conventional alkyl amine or alkyl ammonium salt. In addition to having no adverse effect on the water resistance, there is an effect that the corrosion resistance and coating film adhesion can be dramatically improved.

以下、本発明の最良形態について説明する。但し、以下の記載は、あくまでも最良形態であり当該記載に限定されるものではない。例えば、数値範囲の上限や下限を好適範囲として記載しているが、当該上限や下限を超えた場合であっても、本発明の構成要件を充足する限り、本発明の技術的範囲内である。   The best mode of the present invention will be described below. However, the following description is only the best mode and is not limited to the description. For example, although the upper limit and lower limit of the numerical range are described as preferred ranges, even if the upper limit and lower limit are exceeded, as long as the constituent requirements of the present invention are satisfied, they are within the technical scope of the present invention. .

はじめに、本最良形態に係るナノシート分散ゾル型表面処理剤を説明する。ここで、本表面処理剤は、使用時には水溶液の形態であるが、使用時に水で希釈する濃縮タイプも本表面処理剤の概念に包含される。以下では、液状の塗布型表面処理剤(処理液)を例にとり説明する。ここで、「塗布型」とは、液状の表面処理剤を金属材料に塗布した後、乾燥させることにより皮膜を形成させるタイプを指す。   First, the nanosheet-dispersed sol type surface treating agent according to the best mode will be described. Here, the surface treatment agent is in the form of an aqueous solution at the time of use, but a concentrated type that is diluted with water at the time of use is also included in the concept of the surface treatment agent. Hereinafter, a liquid coating type surface treatment agent (treatment liquid) will be described as an example. Here, the “coating type” refers to a type in which a liquid surface treatment agent is applied to a metal material and then dried to form a film.

本表面処理剤は、結晶性層状無機化合物を有機アミン又は有機アンモニウムでナノシート化した表面処理剤において、前記有機アミン又は有機アンモニウムが、多官能性有機アミン又は多官能性有機アンモニウムであることを特徴とする。以下、まず、本表面処理剤の各成分について詳述する。   The surface treatment agent is a surface treatment agent obtained by nano-sheeting a crystalline layered inorganic compound with an organic amine or organic ammonium, wherein the organic amine or organic ammonium is a polyfunctional organic amine or a polyfunctional organic ammonium. And Hereinafter, first, each component of this surface treating agent is explained in full detail.

まず、原料として使用される「結晶性層状無機化合物」は、例えばカチオン交換性の結晶性層状無機化合物であり、例えば、ジルコニウム、チタニウム、バナジウム、ケイ素又はアルミニウムのリン酸塩又は酸化物である(以下、「成分A」)。ここで、「リン酸」とは、リン酸、ポリリン酸、次亜リン酸、トリポリリン酸、ヘキサメタリン酸、第一リン酸、第二リン酸、第三リン酸、ポリメタリン酸、重リン酸、有機ホスホン酸等を意味する。具体的には、結晶性層状リン酸塩としては、リン酸ジルコニウム、ホスホン酸ジルコニウム、リン酸チタン、リン酸バナジウム、トリポリリン酸二水素アルミニウム等を挙げることができる。また、結晶性層状酸化物としては、二酸化ケイ素、酸化チタン、チタン酸セシウム、チタン酸カリウム、五酸化バナジウム、バナジウム酸化物{M・nHO(ここで、Mは、アルカリ金属又はアルカリ土類金属である)}等を挙げることができる。ここで、層状リン酸塩や層状酸化物の層状構造は、通常は、厚さ1nm程度のシートが重ね合わさった無機化合物であり、粉末X線回折法による回折パターンから確認することができる。例えば、層状リン酸ジルコニウムα-Zr(O3POH)2・nH2O(α-ZrP)は、Zrが平面正方型をユニットとしてシートを形成し、その上下に正四面体のHPO 2-基が交互に配位して、層状構造を形成している。リン原子に結合している四つの酸素のうち三つはZrと結合し、他の一つは水素と結合している。全体としては[Zr(PO)2n]2-のようなポリマクロアニオンを形成しており、酸素イオンがプロトンで中和されてPOH基となる。このプロトンは、イオン交換点及び酸性点として、前者はインターカレーションに寄与し、後者は固体酸触媒として機能する。このリン酸ジルコニウムはリン酸(O3POH)の代わりにホスホン酸(O3PR R=官能基)を用いることで、ZrP層間に様々な官能基を導入することができるという特徴を持つ。これらの層間剥離からなるナノシートの厚みは、母結晶の単一層の厚みに相当し、例えば、リン酸ジルコニウムは0.76nm、リン酸チタンは0.76nm、トリポリリン酸二水素アルミニウムは0.79nm、酸化チタンは0.75nmである。一方、横サイズは、剥離前の層状結晶の大きさに基本的に依存する。一般的には200nmから100μmであるが、処理液の分散や膜の焼成を考慮すると、1μm以下のナノシートの使用が適当である。これらの層状リン酸塩及び層状酸化物としては、公知の方法で製造されたものを用いることができる。例えば、層状リン酸塩であるリン酸ジルコニウムやリン酸チタンの製造方法としては、水熱沈殿法、フッ化錯体法、還流法、オートクレーブ法等が知られているが、例えば、特開平3−150214号公報の記載に基づいて水蒸気の存在下で容易に製造することができる。 First, the “crystalline layered inorganic compound” used as a raw material is a cation exchangeable crystalline layered inorganic compound, for example, a phosphate or an oxide of zirconium, titanium, vanadium, silicon or aluminum ( Hereinafter, “component A”). Here, “phosphoric acid” means phosphoric acid, polyphosphoric acid, hypophosphorous acid, tripolyphosphoric acid, hexametaphosphoric acid, primary phosphoric acid, secondary phosphoric acid, tertiary phosphoric acid, polymetaphosphoric acid, heavy phosphoric acid, organic It means phosphonic acid and the like. Specifically, examples of the crystalline layered phosphate include zirconium phosphate, zirconium phosphonate, titanium phosphate, vanadium phosphate, and aluminum dihydrogen triphosphate. Examples of the crystalline layered oxide include silicon dioxide, titanium oxide, cesium titanate, potassium titanate, vanadium pentoxide, vanadium oxide {M x V y O z · nH 2 O (where M is an alkali A metal or an alkaline earth metal)}. Here, the layered structure of the layered phosphate and the layered oxide is usually an inorganic compound in which sheets having a thickness of about 1 nm are superimposed, and can be confirmed from a diffraction pattern by a powder X-ray diffraction method. For example, layered zirconium phosphate α-Zr (O 3 POH) 2 · nH 2 O (α-ZrP) forms a sheet with Zr being a plane square type unit, and tetragonal HPO 4 2- Groups are coordinated alternately to form a layered structure. Of the four oxygen atoms bonded to the phosphorus atom, three are bonded to Zr and the other is bonded to hydrogen. As a whole, a polymacroanion such as [Zr (PO 4 ) 2n ] 2− is formed, and oxygen ions are neutralized with protons to form POH groups. The proton serves as an ion exchange point and an acid point, the former contributes to intercalation, and the latter functions as a solid acid catalyst. This zirconium phosphate has a feature that various functional groups can be introduced between ZrP layers by using phosphonic acid (O 3 PR R = functional group) instead of phosphoric acid (O 3 POH). The thickness of the nanosheet consisting of these delaminations corresponds to the thickness of the single layer of the mother crystal, for example, zirconium phosphate 0.76 nm, titanium phosphate 0.76 nm, tripolyaluminum dihydrogen phosphate 0.79 nm, Titanium oxide is 0.75 nm. On the other hand, the lateral size basically depends on the size of the layered crystal before peeling. In general, the thickness is from 200 nm to 100 μm, but considering the dispersion of the treatment liquid and the baking of the film, it is appropriate to use a nanosheet of 1 μm or less. As these layered phosphate and layered oxide, those produced by a known method can be used. For example, a hydrothermal precipitation method, a fluoride complex method, a reflux method, an autoclave method, and the like are known as methods for producing a layered phosphate such as zirconium phosphate and titanium phosphate. It can be easily produced in the presence of water vapor based on the description in Japanese Patent No. 150214.

次に、前記結晶性層状無機化合物の層間に入り込み(インターカレーション)、層間剥離を行うと共に分散剤としても機能する「有機アミン又は有機アンモニウム」は、多官能性有機アミン又は多官能性有機アンモニウムである(以下、「成分B」)。ここで、「多官能性」とは、アミン基(例えば、アミノ基やアンモニウム基、イミノ基)以外に一つ以上の反応基を有することを意味し、当該反応基としては、例えば、アミノ基、カルボキシル基、水酸基等を挙げることができる。ここで、当該反応基は、他の官能基と反応して化学架橋し得るよう機能する。したがって、適切な反応基は、当該架橋に係る相手側との関係で決定される(例えば、ナノシートと架橋させる場合には、ナノシートが有する官能基と架橋し得る反応基;後述する他の添加剤が有する官能基と架橋させる場合には、当該添加剤が有する官能基と架橋し得る反応基;架橋剤を添加する場合には、当該架橋剤と反応し得る反応基;有機アミン又は有機アンモニウム同士で架橋させる場合には、当該有機アミン等が有する他の官能基と架橋し得る反応基)。   Next, the “organic amine or organic ammonium” that penetrates between the layers of the crystalline layered inorganic compound (intercalation) and performs delamination and also functions as a dispersant is a polyfunctional organic amine or polyfunctional organic ammonium. (Hereinafter, “component B”). Here, “polyfunctionality” means having one or more reactive groups in addition to an amine group (for example, an amino group, an ammonium group, or an imino group). , Carboxyl group, hydroxyl group and the like. Here, the reactive group functions so as to react with other functional groups to be chemically crosslinked. Accordingly, an appropriate reactive group is determined in relation to the other side of the cross-linking (for example, when cross-linking with the nanosheet, a reactive group capable of cross-linking with the functional group of the nanosheet; other additives described later) When cross-linking with a functional group possessed by the additive, a reactive group capable of cross-linking with the functional group possessed by the additive; when a cross-linking agent is added, a reactive group capable of reacting with the cross-linking agent; In the case of crosslinking with a reactive group, a reactive group capable of crosslinking with another functional group of the organic amine or the like).

ここで、図1を参照しながら、カチオン交換性の結晶性層状無機化合物と多官能性有機アミン又は多官能性有機アンモニウムとを用いることによる、強固皮膜形成メカニズムを説明する。但し、以下の説明は発明の理解の容易化を主目的としたものであり、本発明は当該メカニズム・架橋構造・結合形態等に何ら限定されるものではない。以下、一般式:NHR(NH)COOHで示される構造を有する多官能性アミンを例に採る(例えばアスパラギン)。尚、当該図では、理解の容易上、カチオン交換基であるOH基が交互に置換された例を挙げるが、これに何ら限定されない。また、説明の便宜上、三官能性アミンを用いた場合を説明するが、官能基の数はこれに限定されるものではない。 Here, a mechanism for forming a strong film by using a cation-exchangeable crystalline layered inorganic compound and a polyfunctional organic amine or polyfunctional organic ammonium will be described with reference to FIG. However, the following description is mainly aimed at facilitating understanding of the invention, and the present invention is not limited to the mechanism, the cross-linked structure, the bonding form, and the like. Hereinafter, a polyfunctional amine having a structure represented by the general formula: NH 2 R (NH 2 ) COOH is taken as an example (for example, asparagine). In the figure, for the sake of easy understanding, an example in which OH groups that are cation exchange groups are alternately substituted is shown, but the present invention is not limited thereto. For convenience of explanation, the case where a trifunctional amine is used will be described, but the number of functional groups is not limited thereto.

まず、図1(a)は、乾燥前(水が存在した状態)における、金属化合物層表面のカチオン交換基に多官能性アミンのアミン基が結合した様子を示したものである。水存在下では、カチオン交換基であるOH基のプロトンが、正の電荷を帯びた、多官能性アミンのアミン基とイオン交換する結果、当該図に示すように、カチオン交換基のOと−NH とが電気的に結合する。尚、図示しないが、当該多官能性アミンのもう一つの−NH は、当該多官能性アミンが結合している金属化合物層とは異なる金属化合物層の、空いているカチオン交換基(OH基)に接近した場合には、当該空いているカチオン交換基と電気的に結合することになる。 First, FIG. 1 (a) shows a state in which an amine group of a polyfunctional amine is bonded to a cation exchange group on the surface of a metal compound layer before drying (in a state where water is present). In the presence of water, a proton of the OH groups are cation exchange groups, positively charged amine group and the results for ion exchange multifunctional amine, as shown in the figure, the cation exchange group O - and —NH 3 + is electrically coupled. Although not shown, another —NH 3 + of the polyfunctional amine is an vacant cation exchange group (OH) of a metal compound layer different from the metal compound layer to which the polyfunctional amine is bonded. When the group is approached, it is electrically bound to the vacant cation exchange group.

次に、図1(b)及び図1(c)は、乾燥後(特に加熱工程後)における、両金属化合物層が当該多官能性有機アミン又は有機アンモニウムを介して強固に結合した様子を示したものである。まず、図1(b)は、一つの多官能性有機アミン等が両金属化合物層を架橋した例である。ここで、一つ目のポイントは、乾燥の際に、金属化合物層表面のカチオン交換基と多官能性アミンのアミン基との間で脱水縮合反応が起きる結果、図1(b)の点線囲みAに示すように、−NH−という共有結合が形成される点である。そして、二つ目のポイントは、金属化合物層表面のカチオン交換基(OH基)に近接した位置に、当該多官能性有機アミンの、金属化合物層と結合していない官能基(例えば−COOH)が存在している場合、当該カチオン交換基と当該官能基との間でも脱水縮合反応が起きる結果、図1(b)の点線囲みBに示すように、−COO−という共有結合が形成される点である。次に、図1(c)は、二つ(又はそれ以上)の多官能性有機アミン等が両金属化合物層を架橋した例である。ここで、一つ目のポイントは、図1(b)と同様、乾燥の際に、金属化合物層表面のカチオン交換基と多官能性アミンのアミン基との間で脱水縮合反応が起きる結果、図1(c)の点線囲みAに示すように、−NH−という共有結合が形成される点である。そして、二つ目のポイントは、乾燥の際に、一方の金属化合物層に結合した多官能性有機アミンのフリーの官能基(例えば−NH)に、他方の金属化合物層に結合した多官能性有機アミンのフリーの官能基(例えば−COOH)が近接している場合、両官能基間でも脱水縮合反応が起きる結果、図1(c)の点線囲みCに示すように、−COO−という共有結合が形成される点である。 Next, FIG.1 (b) and FIG.1 (c) show a mode that both metal compound layers were couple | bonded firmly via the said polyfunctional organic amine or organic ammonium after drying (especially after a heating process). It is a thing. First, FIG. 1B is an example in which one polyfunctional organic amine or the like crosslinks both metal compound layers. Here, the first point is that a dehydration condensation reaction occurs between the cation exchange group on the surface of the metal compound layer and the amine group of the polyfunctional amine during drying, and as a result, the dotted box in FIG. As shown in A, a covalent bond of —NH— is formed. The second point is that a functional group (for example, —COOH) of the polyfunctional organic amine that is not bonded to the metal compound layer at a position close to the cation exchange group (OH group) on the surface of the metal compound layer. Is present, as a result of a dehydration condensation reaction between the cation exchange group and the functional group, a covalent bond of —COO— is formed as shown by a dotted box B in FIG. Is a point. Next, FIG. 1C is an example in which two (or more) polyfunctional organic amines and the like cross-link both metal compound layers. Here, as in FIG. 1B, the first point is that a dehydration condensation reaction occurs between the cation exchange group on the surface of the metal compound layer and the amine group of the polyfunctional amine during drying. As indicated by a dotted box A in FIG. 1 (c), a covalent bond of —NH— is formed. The second point is that the polyfunctional organic amine bonded to one metal compound layer has a free functional group (for example, —NH 2 ) bonded to the other metal compound layer during drying. When a free functional group (for example, —COOH) of the organic organic amine is close, a dehydration condensation reaction occurs between both functional groups. As a result, as shown by a dotted line C in FIG. A covalent bond is formed.

尚、アミン基以外の官能基の種類は、図1(b)に示すように金属化合物層のカチオン交換基と結合し得るものであっても、図1(c)に示すように他の有機アミン又は有機アンモニウムの官能基と結合し得るものであっても、これらの両方と結合し得るものであってもよい。また、官能基の種類や数を適宜選択することにより、より複雑な架橋構造を採ることが可能になる結果、より強固な膜を形成することができる。   The functional group other than the amine group may be bonded to the cation exchange group of the metal compound layer as shown in FIG. 1 (b), but other organic groups as shown in FIG. 1 (c). It may be bonded to an amine or organic ammonium functional group, or may be bonded to both of them. In addition, by selecting the type and number of functional groups as appropriate, a more complicated cross-linked structure can be adopted, and as a result, a stronger film can be formed.

尚、「成分B」の存在形態は、多官能性有機アミン又は多官能性有機アンモニウムのモノマーでも、多官能性有機アミノポリマーであってもこれらの混合であってもよい。また、層状金属化合物の層間に、重合可能な有機モノマー、又は、低分子のポリマーを先に取り入れ、この層間空間を反応場として重合により高分子化を行うこともできる。ポリマーの高分子化とともに、層間距離が拡張し、層の剥離が行い、ナノシート化にも役に立つ。具体例としては、多官能性有機アミンとしてのポリアニリンの層間合成を挙げることができる。モノマーであるアニリン塩酸塩と層状リン酸ジルコニウムを用いて、酸化重合剤として用いた過硫酸アンモニウムを加えることで、リン酸ジルコニウム/ポリアニリンのハイブリットを生成することができる。   The existence form of “component B” may be a polyfunctional organic amine or polyfunctional organic ammonium monomer, a polyfunctional organic amino polymer, or a mixture thereof. Alternatively, a polymerizable organic monomer or a low molecular weight polymer may be first introduced between the layers of the layered metal compound, and polymerization may be performed by polymerization using this interlayer space as a reaction field. As the polymer becomes more polymerized, the distance between layers expands and the layers are peeled off. Specific examples include interlayer synthesis of polyaniline as a polyfunctional organic amine. A zirconium phosphate / polyaniline hybrid can be generated by adding ammonium persulfate used as an oxidative polymerization agent using aniline hydrochloride and layered zirconium phosphate as monomers.

ここで、「成分B」の具体例としては、例えば、多価アミン化合物、アミノ酸、アミノシラン(加水分解により水酸基を生み出す)、キトサン化合物、多官能性アミノポリマー等を挙げることができる。ここで、多価アミン化合物としては、例えば、アルキレンジアミン、例えば、エチレンジアミン、オクタメチレンジアミン、m−キシリレンジアミン、ヘキサメチレンテトラミン、ポリアリルアミン、メラミン等を挙げることができる。尚、上記中、アルキレンジアミンの炭素数は、特に限定されないが、2〜20が好適である。炭素数が多すぎると層間に取り込むことが難しく、逆に小さすぎると層間剥離が起こり遅くなるからである。また、アミノ酸としては、例えば、バリン、ロイシン、イソロイシン、アラニン、アルギニン、グルタミン、リジン、アスパラギン酸、スレオニン、メチオニン、ヒスチジン、フェニルアラニン、グリシン等を挙げることができる。また、アミノシラン化合物としては、例えば、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン、N,N−ビス〔3−(トリメトキシシリル)プロピル〕エチレンジアミン等を挙げることができる。また、キトサン化合物としては、例えば、キトサン、キトサンPCA、キトサンサクシンアミド、カルボキシメチルキチン、ヒトロキシエチルキトサン、カルボキシメチルキトサンサクシナミド等を挙げることができる。多官能性アミノポリマーとしては、ポリアリルアミン、ポリアニリン、ナイロン、メラミン樹脂、アミノ変性水系フェノール樹脂、カチオン性水系ウレタン樹脂、カチオン性水系エポキシ樹脂等を挙げることができる。多官能性有機アンモニウムとしては、水酸化テトラメチルアンモニウムを挙げることができる。   Here, specific examples of “Component B” include, for example, polyvalent amine compounds, amino acids, aminosilanes (which generate hydroxyl groups by hydrolysis), chitosan compounds, polyfunctional amino polymers, and the like. Examples of the polyvalent amine compound include alkylene diamines such as ethylene diamine, octamethylene diamine, m-xylylenediamine, hexamethylenetetramine, polyallylamine, and melamine. In addition, among the above, the carbon number of the alkylene diamine is not particularly limited, but 2 to 20 is preferable. This is because if the carbon number is too large, it is difficult to incorporate between layers, and if it is too small, delamination occurs and slows. Examples of amino acids include valine, leucine, isoleucine, alanine, arginine, glutamine, lysine, aspartic acid, threonine, methionine, histidine, phenylalanine, glycine and the like. Examples of the aminosilane compound include N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, and N-2 (aminoethyl) 3-aminopropyl. Triethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N- (vinylbenzyl) -2-amino Examples thereof include ethyl-3-aminopropyltrimethoxysilane and N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine. Examples of the chitosan compound include chitosan, chitosan PCA, chitosan succinamide, carboxymethyl chitin, humanoxyethyl chitosan, carboxymethyl chitosan succinamide, and the like. Examples of the polyfunctional amino polymer include polyallylamine, polyaniline, nylon, melamine resin, amino-modified aqueous phenol resin, cationic aqueous urethane resin, and cationic aqueous epoxy resin. Examples of the polyfunctional organic ammonium include tetramethylammonium hydroxide.

次に、本最良形態に係る表面処理剤は、更に、ケイ素、セリウム、リチウム、亜鉛、マグネシウム、カルシウム及びマンガンからなる群より選択される少なくとも一種の無機成分(以下、「成分C」という)及び水溶性高分子(以下、「成分D」という)からなる群より選択される、少なくとも一種の成分を含有することが好適である。これらの成分を含有することにより、より耐食性や塗膜蜜着性を向上させることができる。また、成分C及び成分Dの存在形態は、イオン状態でも微粒子分散状態であってもこれらの混合であってもよい。   Next, the surface treatment agent according to the best mode further includes at least one inorganic component selected from the group consisting of silicon, cerium, lithium, zinc, magnesium, calcium and manganese (hereinafter referred to as “component C”) and It is preferable to contain at least one component selected from the group consisting of water-soluble polymers (hereinafter referred to as “component D”). By containing these components, corrosion resistance and coating adhesion can be further improved. Further, the existence form of the component C and the component D may be an ionic state, a fine particle dispersed state, or a mixture thereof.

ここで、「成分C」の供給源となる上記無機成分としては特に限定されず、例えば、水分散酸化物、水酸化物、リン酸塩、炭酸塩、ケイ酸塩を挙げることができる。具体的には、例えばケイ素化合物に関しては、水分散性シリカ等のシリカ、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム等の水溶性ケイ酸塩化合物、ケイ酸エステル類、ジエチルシリケート等のアルキルシリケート類、結晶層状構造である粘土鉱物モンモリロナイト等のシリケート及びシランカップリング剤等を挙げることができる。上記水分散性シリカとしては特に限定されず、例えば、「スノーテックス」系(いずれも日産化学工業株式会社製)のコロイダルシリカや、「アエロジル」(日本アエロジ株式会社製)等のヒュームドシリカ等を挙げることができる。上記結晶層状構造であるシリケートとしては特に限定されず、例えば、「ベンゲル」シリーズ(株式会社ホージュン製)の粘土鉱物モンモリロナイトを主成分とした精製ベントナイトを挙げることができる。例えばマグネシウム化合物に関しては、酸化マグネシウム、水酸化マグネシウム、リン酸マグネシウム、ケイ酸マグネシウム等を挙げることができる。また、「成分D」である上記水溶性高分子は、特に限定されず、例えば、水溶性又は水分散性の各種水系樹脂を挙げることができる。中でも、ポリアクリル酸系ポリマー、水溶性フェノール樹脂、水溶性ウレタン樹脂、水溶性エポキシ樹脂等が好適である。尚、成分Dを成分Aと成分Bに添加する場合には、成分Aと成分Bを特殊な分散顔料(添加剤)として、成分Dを有機バインダーとして添加する形であってもよい。   Here, the inorganic component serving as a supply source of “component C” is not particularly limited, and examples thereof include water-dispersed oxides, hydroxides, phosphates, carbonates, and silicates. Specifically, for example, for silicon compounds, silica such as water-dispersible silica, water-soluble silicate compounds such as sodium silicate, potassium silicate, and lithium silicate, silicate esters, alkyl silicates such as diethyl silicate Examples thereof include silicates such as clay mineral montmorillonite having a crystalline layered structure and silane coupling agents. The water-dispersible silica is not particularly limited, and examples thereof include “Snowtex” type (all manufactured by Nissan Chemical Industries, Ltd.), fumed silica such as “Aerosil” (manufactured by Nippon Aerogi Co., Ltd.), and the like. Can be mentioned. The silicate having the crystal layer structure is not particularly limited, and examples thereof include purified bentonite mainly composed of clay mineral montmorillonite of “Bengel” series (manufactured by Hojun Co., Ltd.). For example, regarding a magnesium compound, magnesium oxide, magnesium hydroxide, magnesium phosphate, magnesium silicate, etc. can be mentioned. Further, the water-soluble polymer as “component D” is not particularly limited, and examples thereof include various water-soluble or water-soluble resins. Of these, polyacrylic acid polymers, water-soluble phenol resins, water-soluble urethane resins, water-soluble epoxy resins, and the like are suitable. When component D is added to component A and component B, component A and component B may be added as a special dispersion pigment (additive) and component D may be added as an organic binder.

層状無機化合物を利用することによって、二つの効果が期待できる。一つ目は、剥離ナノシート又は無機・有機ナノハイブリッド膜のバリアー性及び柔軟性、並びにこれらの特性を生かしての優れた加工性と耐食性、即ち、欠陥が出にくいことである。二つ目は、層状無機化合物の層間空間及びインターカレーションによっての「貯蓄性と徐放性」、並びにこれらの特性を利用しての機能性防食効果、即ち、欠陥が出てもpH緩和や自己補修により腐食の発生・進行を抑制できることである。具体的には、例えば、層状リン酸ジルコニウムのプロトンイオン交換点に対して、有機アミン又は有機アンモニウムのように金属カチオンのインターカレーション(カチオンのイオン交換)が可能である。このインターカレーションは、母体の層状リン酸ジルコニウムの層間でのインターカレーションに留まり、層の剥離まではいかない。例えば、有機アミン又は有機アンモニウムにより剥離したナノシートが、成膜後再び重なり新たな層間空間を形成し、場合により処理液中に存在する金属カチオン(例えばLi等のアルカリ金属イオン)を層間に取り込む(インターカレーション)。このように、当該金属カチオンが層状リン酸ジルコニウムの層間にインターカレーションされることにより、プロトンイオンの代わりに当該金属カチオンが(非常に狭い)層間空間の中に「貯蓄」されることとなる。当該「貯蓄」されたアルカリ金属イオンは、(狭い)層間空間の中から徐々に放出し、周囲のプロトンイオンと再び交換することにより周囲の酸性を中和する(pH緩和)。金属腐食は基本的にはアノード(酸性)とカソード(アルカリ性)の分極により発生・進行するので、pH緩和、即ちアノード側の酸性又はカソード側のアルカリ性を抑えることが、腐食の発生・進行を抑えることに繋がる。また、アルカリ金属イオンの代わりに、酸化力を持つ多価金属イオン(例えば、V、Ce、Mn)を層間空間にインターカレーションさせることにより、「貯蓄性と徐放性」を生かして酸化力を長く保つことが期待できる。従来のクロメート処理のようにCr6+の「自己補修機能」を発揮することも可能である。このように、「成分C」は、結晶性層状無機化合物(成分A)の層間にインターカレーションし、層間空間を利用しての貯蓄性と徐放性を持たせることが可能である。 Two effects can be expected by using a layered inorganic compound. The first is barrier properties and flexibility of the peeled nanosheet or inorganic / organic nanohybrid film, and excellent workability and corrosion resistance by taking advantage of these characteristics, that is, defects are not easily generated. The second is the “storing and sustained release” due to the interlayer space and intercalation of the layered inorganic compound, and the functional anticorrosive effect using these characteristics, that is, pH reduction and Self-repair can suppress the occurrence and progression of corrosion. Specifically, for example, intercalation of metal cations (cation ion exchange) such as organic amine or organic ammonium is possible with respect to the proton ion exchange point of layered zirconium phosphate. This intercalation remains in the intercalation between the layers of the parent layered zirconium phosphate, and does not go through the delamination. For example, nanosheets peeled off by organic amine or organic ammonium overlap again after film formation to form a new interlayer space, and in some cases, metal cations (for example, alkali metal ions such as Li) present in the treatment liquid are taken in between layers ( Intercalation). In this way, the metal cation is intercalated between layers of layered zirconium phosphate, so that the metal cation is “stored” in a (very narrow) interlayer space instead of proton ions. . The “stored” alkali metal ions are gradually released from the (narrow) interlayer space and neutralize the surrounding acidity by exchanging with the surrounding proton ions again (pH relaxation). Since metal corrosion basically occurs and progresses due to the polarization of the anode (acidic) and cathode (alkaline), reducing the pH, that is, suppressing the acidity on the anode side or alkalinity on the cathode side, suppresses the occurrence and progression of corrosion. It leads to. In addition, instead of alkali metal ions, polyvalent metal ions with oxidizing power (eg, V, Ce, Mn) are intercalated into the interlayer space, making use of the “storing and sustained release” oxidizing power Can be expected to keep long. It is also possible to demonstrate the “self-repair function” of Cr 6+ like conventional chromate treatment. Thus, “component C” can intercalate between the layers of the crystalline layered inorganic compound (component A), and can have storage properties and sustained release properties using the interlayer space.

尚、本表面処理剤は、必要に応じて、濡れ剤、レベリング剤、消泡剤、増粘剤等の公知の各種添加剤を添加し得る。   In addition, this surface treating agent can add well-known various additives, such as a wetting agent, a leveling agent, an antifoamer, and a thickener, as needed.

次に、本最良形態に係る表面処理剤における各成分の含有量について説明する。まず、結晶性層状無機化合物(成分A)と有機アミン又は有機アンモニウム(成分B)との比率は、モル比で、結晶性層状無機化合物(成分A)1モルに対して、有機アミン又は有機アンモニウム(成分B)が0.1〜2モルであることが好適であり、0.3〜1.5モルであることがより好適である。結晶性層状無機化合物(成分A)1モルに対して有機アミン又は有機アンモニウム(成分B)が0.1モルより少ないときには、層間剥離しなかったり安定に分散しない場合がある。他方、結晶性層状無機化合物(成分A)1モルに対して有機アミン又は有機アンモニウム(成分B)が2モルより多いときには、層間にインターカレートされない過剰の有機アミン又は有機アンモニウム(成分B)が残存して、造膜性が低下し、層状リン酸塩や層状酸化物との複合化の特徴が生かせなくなる場合がある。   Next, the content of each component in the surface treatment agent according to the best mode will be described. First, the ratio between the crystalline layered inorganic compound (component A) and the organic amine or organic ammonium (component B) is a molar ratio, and the organic amine or organic ammonium is 1 mol of the crystalline layered inorganic compound (component A). (Component B) is preferably from 0.1 to 2 mol, more preferably from 0.3 to 1.5 mol. When the amount of organic amine or organic ammonium (component B) is less than 0.1 mol relative to 1 mol of the crystalline layered inorganic compound (component A), delamination may not occur or stable dispersion may not occur. On the other hand, when there are more than 2 moles of organic amine or organic ammonium (component B) per mole of crystalline layered inorganic compound (component A), excess organic amine or organic ammonium (component B) that is not intercalated between layers is present. In some cases, the film-forming property is lowered, and the composite characteristics with the layered phosphate and the layered oxide cannot be utilized.

次に、結晶性層状無機化合物(成分A)量(固形分)は、表面処理剤の全固形分量に対して0.5〜95wt%であることが好適である。これは、添加量が0.5wt%未満では、金属化合物の防錆効果が少ない為、耐食性と塗装後の密着性が不十分となる場合があり、95wt%超では、層間剥離及びナノシート分散が不十分となり、処理液の安定性が低下すると共に膜の性能が達成できない場合があるからである。ここで、下限値に関しては、5wt%以上がより好適であり、30wt%以上が特に好適である。上限値に関しては、70wt%以下がより好適であり、50wt%以下が特に好適である。   Next, the amount (solid content) of the crystalline layered inorganic compound (component A) is preferably 0.5 to 95 wt% with respect to the total solid content of the surface treatment agent. This is because if the addition amount is less than 0.5 wt%, the corrosion resistance of the metal compound is small and the adhesion after coating may be insufficient, and if it exceeds 95 wt%, delamination and nanosheet dispersion may occur. This is because it becomes insufficient, the stability of the treatment liquid is lowered, and the performance of the film may not be achieved. Here, regarding a lower limit, 5 wt% or more is more suitable, and 30 wt% or more is especially suitable. Regarding the upper limit value, 70 wt% or less is more preferable, and 50 wt% or less is particularly preferable.

次に、成分Cの添加量は、成分Aの供給源となる結晶性層状無機化合物(固形分)100重量部に対して5〜9900重量部であることが好適である。ここで、下限値に関しては、50重量部以上がより好適であり、100重量部以上が特に好適である。上限値に関しては、5000重量部以下がより好適であり、2500重量部以下が特に好適である。また、成分Dの添加量は、成分Aの供給源となる結晶性層状無機化合物(固形分)100重量部に対して5〜9900重量部であることが好適である。ここで、下限値に関しては、50重量部以上がより好適であり、100重量部以上が特に好適である。上限値に関しては、5000重量部以下がより好適であり、2500重量部以下の場合が特に好適である。   Next, the addition amount of Component C is preferably 5 to 9900 parts by weight with respect to 100 parts by weight of the crystalline layered inorganic compound (solid content) serving as the supply source of Component A. Here, regarding a lower limit, 50 weight part or more is more suitable, and 100 weight part or more is especially suitable. With respect to the upper limit, 5000 parts by weight or less is more preferable, and 2500 parts by weight or less is particularly preferable. Moreover, it is suitable that the addition amount of the component D is 5-9900 weight part with respect to 100 weight part of crystalline layered inorganic compounds (solid content) used as the supply source of the component A. Here, regarding a lower limit, 50 weight part or more is more suitable, and 100 weight part or more is especially suitable. The upper limit is more preferably 5000 parts by weight or less, and particularly preferably 2500 parts by weight or less.

本表面処理剤の物性に関しては特に限定されない。カチオン系ポリマーを含有する酸性処理液でも、アニオン系ポリマーを含有するアルカリ性処理液でも製薬できる。   The physical properties of the surface treatment agent are not particularly limited. Either an acidic treatment liquid containing a cationic polymer or an alkaline treatment liquid containing an anionic polymer can be used for pharmaceutical preparation.

次に、本最良形態に係る表面処理剤の製造方法について説明する。まず、本表面処理剤の液体媒体は、例えば、水のような無機極性媒体や、ジメチルホルムアミドやアルコールのような有機極性溶媒、例えば、ジメチルスルホキシド、アセトニトリル、メチルアルコール、エチルアルコール等が好適である。主に使用される液体媒体は、水のような無機極性媒体や、水の中に少量のアルコール等の有機極性溶媒を添加して使用したものである。そして、本表面処理剤は、例えば、当該液体媒体中に、層状結晶金属化合物(成分A:例えば、酸化チタンの場合には、四チタン酸塩KTi、五チタン酸塩CsTi11、レピドクロサイト型チタン酸塩Cs0.7Ti1.825、K0.8Ti1.73Li0.27等)を添加した後、酸処理を施して層間のアルカリ金属イオンを水素イオンに置き換えた水素型物質を一旦合成した後、「剥離剤」及び「分散剤」として機能する多官能性有機アミン又は多官能性有機アンモニウム(成分B)を更に添加し、その後、例えば剪断力を印加する等、反応条件を適切に制御することにより得ることができる。当該処理を施すことにより、層状無機化合物が剥離しホスト層1枚1枚にまでばらばらになったり、数枚又は数十枚で重なってなったりする結果(ナノシート化)、当該ナノシートが液体媒体中に分散したコロイド溶液が形成される。尚、剪断力の印加は、超音波処理や加熱処理やスターラーを用いる攪拌や振動等で実行される。この中では、超音波処理や加熱処理が、反応時間を短縮できるので特に好ましい。 Next, the manufacturing method of the surface treating agent which concerns on this best form is demonstrated. First, the liquid medium of the surface treatment agent is preferably an inorganic polar medium such as water, or an organic polar solvent such as dimethylformamide or alcohol, such as dimethyl sulfoxide, acetonitrile, methyl alcohol, or ethyl alcohol. . The liquid medium mainly used is an inorganic polar medium such as water, or an organic polar solvent such as a small amount of alcohol added to water. And this surface treating agent is, for example, a layered crystalline metal compound (component A: for example, in the case of titanium oxide, tetratitanate K 2 Ti 4 O 9 , pentatitanate Cs 2 in the liquid medium. Ti 5 O 11 , lipidocrocite-type titanate Cs 0.7 Ti 1.825 O 4 , K 0.8 Ti 1.73 Li 0.27 O 4, etc.) are added, and then an acid treatment is applied to the interlayer. After once synthesizing a hydrogen-type substance in which the alkali metal ions in the above are replaced with hydrogen ions, a polyfunctional organic amine or polyfunctional organic ammonium (component B) that functions as a “stripping agent” and “dispersing agent” is further added. Thereafter, it can be obtained by appropriately controlling the reaction conditions, for example, by applying a shearing force. As a result of performing the treatment, the layered inorganic compound is peeled off to be separated into one host layer or overlapped by several or several tens of sheets (nanosheet formation). As a result, the nanosheet is in a liquid medium. A colloidal solution dispersed in is formed. The application of the shearing force is performed by ultrasonic treatment, heat treatment, stirring using a stirrer, vibration, or the like. Among these, ultrasonic treatment and heat treatment are particularly preferable because the reaction time can be shortened.

次に、本表面処理剤の使用方法(金属材の表面処理方法)について説明する。当該方法は、金属表面に塗布する工程と、塗布後に乾燥する工程を含む。尚、一般的には、当該方法は、前記塗布工程の前に、脱脂工程と水洗工程を含む。   Next, the usage method (surface treatment method of a metal material) of this surface treating agent is demonstrated. The said method includes the process of apply | coating to a metal surface, and the process of drying after application | coating. In general, the method includes a degreasing step and a water washing step before the coating step.

そこで、まず塗布工程について説明する。塗布方法としては、従来の方法がそのまま適用でき、例えば、ロールコート、カーテンフローコート、エアースプレー、エアーレススプレー、浸漬、バーコート、刷毛塗り等で行うことができる。   First, the coating process will be described. As a coating method, a conventional method can be applied as it is, and for example, roll coating, curtain flow coating, air spray, airless spray, dipping, bar coating, brush coating, and the like can be performed.

次に、乾燥工程について説明する。まず、乾燥方法としては、従来の方法がそのまま適用でき、例えば、加熱乾燥や風乾を挙げることができる。そこで、処理乾燥温度(最高到達板温度、PMT)は、60〜300℃が好適であり、100〜250℃がより好適である。水分を揮発乾燥できる範囲であれば特に限定するものではない。但し、100℃〜250で乾燥させるのが、本発明の目的とする耐食性及び密着性等の点で特に好ましい。   Next, the drying process will be described. First, as a drying method, a conventional method can be applied as it is, and examples thereof include heat drying and air drying. Therefore, the processing drying temperature (maximum reached plate temperature, PMT) is preferably 60 to 300 ° C, and more preferably 100 to 250 ° C. There is no particular limitation as long as moisture can be evaporated and dried. However, drying at 100 ° C. to 250 is particularly preferable from the viewpoints of the corrosion resistance and adhesion, which are the objects of the present invention.

また、対象となる金属材は、冷延鋼板、熱延鋼板、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板、溶融合金化亜鉛メッキ鋼板、アルミニウムメッキ鋼板、アルミ−亜鉛合金化メッキ鋼板、ステンレス鋼板、アルミニウム板、銅板、チタン板、マグネシウム板等、一般に公知の金属材やメッキ板に適用できる。更には、復数種の素材の混在処理にも対応できる。これらの金属板は、処理前に湯洗、アルカリ脱脂などの通常の処理を行っても構わない。   The target metal materials are cold-rolled steel sheet, hot-rolled steel sheet, hot-dip galvanized steel sheet, electrogalvanized steel sheet, hot-dip galvanized steel sheet, aluminized steel sheet, aluminum-zinc alloyed steel sheet, stainless steel sheet, aluminum It can be applied to generally known metal materials and plated plates such as plates, copper plates, titanium plates, magnesium plates and the like. Furthermore, it is possible to deal with mixed processing of multiple kinds of materials. These metal plates may be subjected to ordinary treatments such as hot water washing and alkaline degreasing before treatment.

次に、前記表面処理により皮膜が形成された金属材について説明する。まず、形成される皮膜の皮膜質量は、0.01〜5g/m(乾燥質量)であることが好適である。皮膜質量が0.01g/m未満では、皮膜質量が少ない為、耐食性が不十分となる場合がある。逆に、5g/m超では、造膜性が悪くなる場合がある。更には、密着性が不十分であったり、コスト面で不利になる。尚、より好適範囲は0.05g/m以上、1.5g/m以下である。 Next, the metal material on which a film is formed by the surface treatment will be described. First, the film mass of the formed film is preferably 0.01 to 5 g / m 2 (dry mass). If the coating mass is less than 0.01 g / m 2 , the corrosion resistance may be insufficient because the coating mass is small. Conversely, if it exceeds 5 g / m 2 , the film-forming property may be deteriorated. Furthermore, the adhesiveness is insufficient and the cost is disadvantageous. A more preferable range is 0.05 g / m 2 or more and 1.5 g / m 2 or less.

ここで、形成される皮膜は、リン酸塩又は酸化物の無機ナノシートと多官能性有機アミン又は多官能性有機アンモニウムとのナノスケールでのハイブリッド皮膜であると推定される。具体的には、当該ハイブリッド被膜は、処理膜の乾燥(焼付)中、例えば、結晶層(ナノシート)の水酸基との反応による架橋化(ナノシートと多官能性有機アミン又は多官能性有機アンモニウムとの架橋)や、多官能性有機アミン又は多官能性有機アンモニウム自身の高分子化・架橋化等により形成される。このハイブリッド被膜は、極微細な構造を有する極めて強固な膜である故、優れた耐食性及び密着性をもたらすと推定される。   Here, it is presumed that the film to be formed is a nano-scale hybrid film of an inorganic nanosheet of phosphate or oxide and a polyfunctional organic amine or polyfunctional organic ammonium. Specifically, during the drying (baking) of the treated film, the hybrid coating is, for example, crosslinked by reaction with a hydroxyl group of the crystal layer (nanosheet) (nanosheet and polyfunctional organic amine or polyfunctional organic ammonium). Cross-linking), polyfunctional organic amines, or polyfunctional organic ammonium itself. Since this hybrid film is an extremely strong film having a very fine structure, it is estimated that it provides excellent corrosion resistance and adhesion.

次に、本表面処理剤により皮膜が形成された金属材の利用方法(用途)について説明する。まず、当該金属材を所望の形状に加工することにより、各種金属製品を得ることができる。当該金属製品としては、例えば、家電向けに耐指紋用亜鉛メッキ鋼板、建築向けに住宅用プレコート鋼板、エアコン向けアルミフィン材、自動車向け各種金属部品等を挙げることができる。また、当該皮膜上に設ける上塗り皮膜は、特に限定されず、例えば、上塗り皮膜としては、電着塗装、溶剤塗装、粉体塗装、及び特殊皮膜、例えば、親水性皮膜、潤滑有機皮膜、防黴防菌性皮膜等を挙げることができる。また、防錆性レベルによっては、上塗り皮膜を設けなくてもよい(例えば一時防錆)。   Next, the utilization method (use) of the metal material in which the film was formed with this surface treating agent will be described. First, various metal products can be obtained by processing the metal material into a desired shape. Examples of the metal product include fingerprint-resistant galvanized steel sheets for home appliances, pre-coated steel sheets for residential use for buildings, aluminum fin materials for air conditioners, and various metal parts for automobiles. In addition, the topcoat film provided on the film is not particularly limited, and examples of the topcoat film include electrodeposition coating, solvent coating, powder coating, and special coatings such as hydrophilic coatings, lubricating organic coatings, and antifouling coatings. Examples thereof include antibacterial films. Further, depending on the level of rust prevention, it is not necessary to provide a top coat (for example, temporary rust prevention).

以下、具体的な実施例を挙げて本発明を説明する。尚、本発明はこれらの実施例によって何ら制約を受けるものではない。   Hereinafter, the present invention will be described with specific examples. The present invention is not limited by these examples.

1.試験板の作製
冷間圧延鋼板(SPCC−SD)
合金化溶融亜鉛メッキ鋼板(GA)メッキ付着量片面当たり45g/m(両面メッキ)
電気亜鉛メッキ鋼板(EG) 亜鉛付着量片面当たり40g/m(両面メッキ)
溶融亜鉛メッキ鋼板(GI) 亜鉛付着量片面当たり60g/m(両面メッキ)
55%アルミ亜鉛メッキ鋼板(GL) 亜鉛付着量片面当たり60g/m(両面メッキ)
アルミニウム板(Al)
各供試材の寸法 70mm×150mm×0.8mm
1. Preparation of test plate Cold rolled steel plate (SPCC-SD)
Alloyed hot-dip galvanized steel sheet (GA) plating coverage 45g / m 2 per side (double-sided plating)
Electrogalvanized steel sheet (EG) Zinc adhesion amount 40g / m 2 per side (double-sided plating)
Hot-dip galvanized steel sheet (GI) Zinc adhesion amount 60 g / m 2 per side (double-sided plating)
55% aluminum galvanized steel sheet (GL) Zinc adhesion amount 60g / m 2 per side (double-sided plating)
Aluminum plate (Al)
Dimensions of each test material 70mm x 150mm x 0.8mm

2.前処理
供試材をアルカリ脱脂剤のパルクリンN364S(日本パ−カライジング社製)を用いて、濃度20g/L、温度60℃の水溶液中に10秒間浸漬し、純水で水洗した後、乾燥した。
2. Pretreatment The test material was immersed in an aqueous solution having a concentration of 20 g / L and a temperature of 60 ° C. for 10 seconds using an alkaline degreasing agent Parculin N364S (manufactured by Nippon Parkerizing Co., Ltd.), washed with pure water and then dried. did.

3.表面処理
<実施例1〜69、比較例1〜24>
SPCC材、GA材、EG材、GI材、GL材又はAl材に対して、一時防錆用の裸板(塗装前)及び/又は一般塗装板の下地処理膜、プレコート板の下地処理膜として、表1に示す組成の表面処理剤を用いてバーコート法により所定の膜厚となるよう塗布し、乾燥炉で最高到達板温度(PMT)120℃まで乾燥した。また、Al材に対して親水塗装板の下地処理膜として、表1に示す組成の表面処理剤を用いてバーコート法により所定の膜厚となるよう塗布し、乾燥炉でPMT180℃まで乾燥した。ここで、本実施例及び比較例で使用した結晶性層状無機化合物の製造例を、結晶性層状リン酸ジルコニウム〔Zr(HPO4 2・H2O〕を例に挙げて具体的に説明する。尚、他の結晶性金属化合物は、当該例に準じて製造可能である。
水溶性のジルコニウム塩であるZrOCl2を23.5g純水500mlに溶解し、その中に75%リン酸52.25g(P2 5 /ZrO2 のモル比1.5)を攪拌しながら徐々に滴下した。その結果、白色のゲル状沈殿が得られたので、これを遠心分離した後、更に75%リン酸を34g加え、混合した後、ルツボごと130℃に温度設定された電気炉中に入れ、130℃に加熱した水蒸気を吹き込み、水蒸気の存在下で130℃4時間反応させた。得られた反応生成物は白色を呈していた。この反応生成物を水洗、脱水、乾燥した後、粉砕した。この粉砕物はX線回折測定の結果、リン酸ジルコニウム〔Zr(HPO42 ・H2O〕であると判明した。また、このリン酸ジルコニウムの層間距離は7.6Å(76nm)であった。
3. surface treatment
<Examples 1 to 69, Comparative Examples 1 to 24>
For SPCC materials, GA materials, EG materials, GI materials, GL materials, or Al materials, as a bare rust-preventing bare plate (before painting) and / or as a ground-treating film for general-painted plates, and as a ground-treating film for pre-coated plates The surface treatment agent having the composition shown in Table 1 was applied by a bar coating method so as to have a predetermined film thickness, and dried in a drying furnace to a maximum plate temperature (PMT) of 120 ° C. Moreover, it apply | coated so that it might become a predetermined film thickness by the bar-coat method using the surface treating agent of the composition shown in Table 1 as a base-treatment film | membrane of a hydrophilic coating board with respect to Al material, and it dried to PMT180 degreeC with the drying furnace. . Here, a production example of the crystalline layered inorganic compound used in this example and the comparative example will be specifically described by taking crystalline layered zirconium phosphate [Zr (HPO 4 ) 2 .H 2 O] as an example. . Other crystalline metal compounds can be produced according to the example.
ZrOCl 2 , which is a water-soluble zirconium salt, was dissolved in 500 ml of 23.5 g of pure water, and 52.25 g of 75% phosphoric acid (P 2 O 5 / ZrO 2 molar ratio 1.5) was gradually added thereto while stirring. It was dripped in. As a result, a white gel-like precipitate was obtained. After centrifuging this, 34 g of 75% phosphoric acid was further added, mixed, and then placed in an electric furnace whose temperature was set to 130 ° C. together with the crucible. Steam heated to 0 ° C. was blown in and reacted at 130 ° C. for 4 hours in the presence of steam. The obtained reaction product was white. The reaction product was washed with water, dehydrated, dried and then pulverized. As a result of X-ray diffraction measurement, this pulverized product was found to be zirconium phosphate [Zr (HPO 4 ) 2 .H 2 O]. The interlayer distance of the zirconium phosphate was 7.6 mm (76 nm).

<比較例25〜28(塗布クロメート処理)>
EG材、GI材、GL材又はAl材を使用し、塗布クロメート薬剤としてジンクロム1300AN(日本パ−カライジング社製)を用いて、ロールコート法により、付着量が40mg/mとなるよう塗布し、熱風乾燥炉でPMT80℃となるように乾燥した。
<Comparative Examples 25 to 28 (coating chromate treatment)>
Using EG material, GI material, GL material or Al material, using Zinchrome 1300AN (manufactured by Nihon Parkerizing Co., Ltd.) as the coating chromate agent, it is applied by the roll coating method so that the amount of adhesion is 40 mg / m 2. And dried in a hot air drying oven to a PMT of 80 ° C.

4.上塗塗装
下記条件で一般塗装を行った(SPCC材、GA材、EG材、GI材、GL材又はAl材)。
塗料: アミラック#1000(関西ベイント社製)
塗装方法:バーコート法 焼き付け:PMT200℃ 膜厚:20μm
下記条件でプレコート塗装(プライマー+トップ)を行った(EG材、GI材、GL材又はAl材)。
プライマー:TQ88(日本油脂社製)
塗装方法:バーコート法 焼き付け:PMT200℃ 膜厚:7μm
トップ: SRF−05(日本油脂社製)
塗装方法:バーコート法 焼き付け:PMT225℃ 膜厚:17μm
下記条件で親水塗装を行った(Al材)。
塗料:パーレン5013(日本パ−カライジング社製親水性塗料)
塗装方法:バーコート法 焼き付け:PMT 200℃ 皮膜量:0.8g/m
4). Top coating General coating was performed under the following conditions (SPCC material, GA material, EG material, GI material, GL material, or Al material).
Paint: Amirac # 1000 (manufactured by Kansai Bainto)
Coating method: Bar coating method Baking: PMT 200 ° C. Film thickness: 20 μm
Pre-coating (primer + top) was performed under the following conditions (EG material, GI material, GL material or Al material).
Primer: TQ88 (manufactured by NOF Corporation)
Coating method: Bar coating method Baking: PMT 200 ° C. Film thickness: 7 μm
Top: SRF-05 (Nippon Yushi Co., Ltd.)
Coating method: Bar coating method Baking: PMT 225 ° C. Film thickness: 17 μm
Hydrophilic coating was performed under the following conditions (Al material).
Paint: Palen 5013 (Nippon Parkerizing hydrophilic paint)
Coating method: Bar coating method Baking: PMT 200 ° C. Coating amount: 0.8 g / m 2

5.評価
[皮膜質量]
皮膜質量は蛍光X線分析装置(FXA)を用いて金属(Zr,Ti等)又はリンの付着量を測定し、処理剤中の配合量から換算して求めた。
[耐食性]
[SST]
平面部:EG材、GI材、GL材又はAl材の裸板(塗装前)、Alの親水塗装板について、JIS−Z2371に規定された塩水噴霧試験を240時間実施した。平面部の耐白錆性を目視にて測定し、評価した。
評価基準は以下の通りである。
◎:白錆発生率5%未満 ○:白錆発生率5%以上、10%未満 △:白錆発生率10%以上、50%未満 ×:白錆発生率50%以上
Xカット部:SPCC材、GA材、EG材、GI材、GL材又はAl材の一般塗装板、EG材、GI材、GL材又はAl材のプレコート塗装板について、JIS−Z2371に規定された塩水噴霧試験を480時間実施した。最大膨れ幅を測定し、評価した。
評価基準を以下に示す。
◎:膨れなし ○:6mm未満 △:6mm以上、10mm未満 ×:10mm以上
[塗膜密着性]
[一次密着性]
SPCC材、GA材、EG材、GI材、GL材又はAl材の一般塗装板を、塗装面に1mm角の基盤目をカッターライフで入れ、塗装面が凸となるようにエリクセン試験機で5mm押し出した後、テープ剥離試験を行った。基盤目の入れ方、エリクセンの押し出し方法、テープ剥離の方法については、JIS−K5400.8.2及びJIS−K5400.8.5記載の方法に準じて実施した。評価は塗膜剥離個数にて行った。
評価基準を以下に示す。
◎:剥離なし ○:剥離個数1個以上、10個未満 △:剥離個数11個以上、50個未満 ×:剥離個数51個以上
また、EG材、GI材、GL材又はAl材のプレコート塗装板を、折り曲げ試験(2T)を実施し、テープ剥離後で塗膜剥離面積にて行った。
評価基準を以下に示す。
◎:剥離なし ○:剥離面積10%未満 △:剥離面積10%以上、50%未満 ×:剥離面積50%以上
また、Al材の親水塗装板の表面に脱イオン水を少量付着させ、ガーゼで20回強く摩擦した後の表面状態を外観観察した。
評価基準を以下に示す。
◎:被験部位の1%未満で素地が露出 ○:被験部位の1%以上5%未満で素地が露出 △:被験部位の5%以上50%未満で素地が露出 ×:被験部位の50%以上で素地が露出
[二次密着性]
SPCC材、GA材、EG材、GI材、GL材又はAl材の一般塗装板を沸騰水中に2時間浸漬した後、一次密着性と同様なテストを行い評価した。また、EG材、GI材、GL材又はAl材のプレコート塗装板を沸騰水中に2時間浸漬した後、取り出して24時間後一次密着性と同様なテストを行い評価した。
5. Evaluation [film mass]
The film mass was determined by measuring the amount of metal (Zr, Ti, etc.) or phosphorus deposited using a fluorescent X-ray analyzer (FXA) and converting from the blended amount in the treating agent.
[Corrosion resistance]
[SST]
Flat part: The salt spray test prescribed in JIS-Z2371 was carried out for 240 hours on a bare plate (before painting) of EG material, GI material, GL material or Al material, and a hydrophilic coated plate of Al. The white rust resistance of the flat portion was visually measured and evaluated.
The evaluation criteria are as follows.
◎: White rust occurrence rate of less than 5% ○: White rust occurrence rate of 5% or more and less than 10% △: White rust occurrence rate of 10% or more and less than 50% X: White rust occurrence rate of 50% or more X cut part: SPCC material 480 hours of salt spray test stipulated in JIS-Z2371 for general coating plate of GA material, EG material, GI material, GL material or Al material, EG material, GI material, GL material or Al material pre-coated paint plate Carried out. The maximum swollen width was measured and evaluated.
The evaluation criteria are shown below.
◎: No swelling ○: Less than 6 mm △: 6 mm or more, less than 10 mm ×: 10 mm or more [Coating film adhesion]
[Primary adhesion]
SPCC material, GA material, EG material, GI material, GL material or Al material general coated plate is put on the painted surface with a 1mm square base with cutter life, and 5mm with Erichsen tester so that the painted surface becomes convex After extrusion, a tape peel test was performed. About the method of putting a base | substrate eye, the extrusion method of Erichsen, and the method of tape peeling, it implemented according to the method of JIS-K5400.88.2 and JIS-K5400.88.5. Evaluation was performed by the number of coating film peeling.
The evaluation criteria are shown below.
◎: No peeling ○: Number of peeled 1 or more, less than 10 △: Number of peeled 11 or more, less than 50 ×: Number of peeled 51 or more In addition, EG material, GI material, GL material or Al material pre-coated plate Was subjected to a bending test (2T), and was performed at the coating film peeling area after tape peeling.
The evaluation criteria are shown below.
◎: No peeling ○: Peeling area less than 10% △: Peeling area of 10% or more and less than 50% ×: Peeling area of 50% or more In addition, a small amount of deionized water is attached to the surface of an Al material hydrophilic coated plate. The appearance of the surface after rubbed strongly 20 times was observed.
The evaluation criteria are shown below.
◎: The substrate is exposed in less than 1% of the test site. ○: The substrate is exposed in 1% to less than 5% of the test site. △: The substrate is exposed in 5% to less than 50% of the test site. X: 50% or more of the test site. The substrate is exposed [secondary adhesion]
A general coated plate of SPCC material, GA material, EG material, GI material, GL material or Al material was immersed in boiling water for 2 hours, and then the same test as the primary adhesion was performed and evaluated. Moreover, after immersing the precoat coating board of EG material, GI material, GL material, or Al material for 2 hours in boiling water, it took out and evaluated by performing a test similar to the primary adhesion after 24 hours.

上記の結果を表2に示す。表2の結果から明らかな通り、本発明の塗装下地処理剤を用いた実施例は、良好な塗装密着性、耐食性が得られた。   The results are shown in Table 2. As is clear from the results in Table 2, in Examples using the coating surface treatment agent of the present invention, good coating adhesion and corrosion resistance were obtained.

Figure 2011184800
Figure 2011184800

Figure 2011184800
Figure 2011184800

Figure 2011184800
Figure 2011184800

図1は、カチオン交換性の結晶性層状無機化合物と多官能性有機アミン又は多官能性有機アンモニウムとを用いることによる、強固皮膜形成メカニズムの概念図である。FIG. 1 is a conceptual diagram of a mechanism for forming a strong film by using a cation-exchangeable crystalline layered inorganic compound and a polyfunctional organic amine or polyfunctional organic ammonium.

Claims (11)

結晶性層状無機化合物を有機アミン又は有機アンモニウムでナノシート化した表面処理剤であって、前記有機アミン又は有機アンモニウムが、多官能性有機アミン又は多官能性有機アンモニウムであることを特徴とする表面処理剤。   A surface treatment agent obtained by nano-sheeting a crystalline layered inorganic compound with an organic amine or organic ammonium, wherein the organic amine or organic ammonium is a polyfunctional organic amine or a polyfunctional organic ammonium. Agent. 前記多官能性有機アミン又は多官能性有機アンモニウムが、多価アミン化合物、アミノ酸、アミノシラン、キトサン、多官能性アミノポリマーである、請求項1記載の表面処理剤。   The surface treatment agent according to claim 1, wherein the polyfunctional organic amine or polyfunctional organic ammonium is a polyvalent amine compound, an amino acid, an aminosilane, chitosan, or a polyfunctional amino polymer. 前記結晶性層状無機化合物が、ジルコニウム、チタニウム、バナジウム、ケイ素又はアルミニウムのリン酸塩又は酸化物である、請求項1又は2記載の表面処理剤。   The surface treating agent according to claim 1 or 2, wherein the crystalline layered inorganic compound is a phosphate or oxide of zirconium, titanium, vanadium, silicon, or aluminum. 前記結晶性層状無機化合物に対する前記多官能性有機アミン又は多官能性有機アンモニウムの比率が、モル比で、結晶性層状無機化合物1モルに対して0.1〜2モルである、請求項1〜3のいずれか一項記載の表面処理剤。   The ratio of the polyfunctional organic amine or polyfunctional organic ammonium to the crystalline layered inorganic compound is 0.1 to 2 moles per mole of the crystalline layered inorganic compound. The surface treating agent according to any one of 3. 前記結晶性層状無機化合物(固形分)量は、表面処理剤の全固形分量に対して5〜95wt%である、請求項1〜4のいずれか一項記載の表面処理剤。   The surface treatment agent according to any one of claims 1 to 4, wherein the amount of the crystalline layered inorganic compound (solid content) is 5 to 95 wt% with respect to the total solid content of the surface treatment agent. 更に、ケイ素、セリウム、リチウム、亜鉛、マグネシウム、カルシウム及びマンガンからなる群より選択される無機成分と水溶性高分子とからなる群より選択される少なくとも1種の成分を含有する、請求項1〜5のいずれか一項記載の表面処理剤。   Furthermore, it contains at least one component selected from the group consisting of an inorganic component selected from the group consisting of silicon, cerium, lithium, zinc, magnesium, calcium and manganese and a water-soluble polymer. The surface treating agent according to any one of 5. 請求項1〜6のいずれか一項記載の表面処理剤を金属材表面に塗布・乾燥することにより皮膜を形成する工程を含むことを特徴とする、金属材の表面処理方法。   A surface treatment method for a metal material, comprising a step of forming a film by applying and drying the surface treatment agent according to any one of claims 1 to 6 on the surface of the metal material. 前記皮膜が、無機ナノシートを含有する無機・有機ナノハイブリッド皮膜である、請求項7記載の方法。   The method according to claim 7, wherein the coating is an inorganic / organic nanohybrid coating containing inorganic nanosheets. 前記皮膜の皮膜質量が、0.01〜5g/mである、請求項7又は8記載の方法。 The method of Claim 7 or 8 whose film | membrane mass of the said film | membrane is 0.01-5 g / m < 2 >. 請求項1〜6のいずれか一項記載の表面処理剤を金属材表面に塗布・乾燥することにより当該金属材表面に形成された、皮膜質量0.01〜5g/mの皮膜を有することを特徴とする表面処理金属材。 It has a film | membrane with a film | membrane mass of 0.01-5 g / m < 2 > formed on the said metal material surface by apply | coating and drying the surface treating agent as described in any one of Claims 1-6 on the metal material surface. A surface-treated metal material characterized by 前記金属材が、鉄系基材、亜鉛系基材及びアルミ系基材から選ばれる少なくとも1種である、請求項10記載の表面処理金属材。   The surface-treated metal material according to claim 10, wherein the metal material is at least one selected from an iron-based substrate, a zinc-based substrate, and an aluminum-based substrate.
JP2011103551A 2006-01-24 2011-05-06 Surface-treating agent comprising crystalline layered inorganic compound dispersed in nanosheet form Pending JP2011184800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011103551A JP2011184800A (en) 2006-01-24 2011-05-06 Surface-treating agent comprising crystalline layered inorganic compound dispersed in nanosheet form

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006015296 2006-01-24
JP2006015296 2006-01-24
JP2011103551A JP2011184800A (en) 2006-01-24 2011-05-06 Surface-treating agent comprising crystalline layered inorganic compound dispersed in nanosheet form

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007555951A Division JP4767972B2 (en) 2006-01-24 2007-01-23 Surface treatment agent in which crystalline layered inorganic compound is dispersed in nanosheets

Publications (1)

Publication Number Publication Date
JP2011184800A true JP2011184800A (en) 2011-09-22

Family

ID=38309173

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007555951A Expired - Fee Related JP4767972B2 (en) 2006-01-24 2007-01-23 Surface treatment agent in which crystalline layered inorganic compound is dispersed in nanosheets
JP2011103551A Pending JP2011184800A (en) 2006-01-24 2011-05-06 Surface-treating agent comprising crystalline layered inorganic compound dispersed in nanosheet form

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007555951A Expired - Fee Related JP4767972B2 (en) 2006-01-24 2007-01-23 Surface treatment agent in which crystalline layered inorganic compound is dispersed in nanosheets

Country Status (4)

Country Link
JP (2) JP4767972B2 (en)
KR (1) KR101040821B1 (en)
CN (1) CN101370964B (en)
WO (1) WO2007086383A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537481A (en) * 2013-09-11 2016-12-01 ピーアールシー−デソト インターナショナル,インコーポレイティド Composition comprising magnesium oxide and an amino acid

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363838A (en) * 1989-08-02 1991-03-19 Nec Corp Software program inspection system
JP5515512B2 (en) * 2009-08-24 2014-06-11 Jfeスチール株式会社 Anticorrosion coated steel
JP5672726B2 (en) * 2010-03-11 2015-02-18 独立行政法人物質・材料研究機構 Organic solvent dispersion blended with flaky perovskite oxide particles, method for producing the same, perovskite oxide thin film using the same, and method for producing the same
JP2017168410A (en) * 2016-03-18 2017-09-21 矢崎総業株式会社 Electric wire with terminal, method of manufacturing the same, and wiring harness
JP6848411B2 (en) * 2016-12-15 2021-03-24 日本製鉄株式会社 Slip bearing structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099943A (en) * 2002-09-06 2004-04-02 Tayca Corp Rust preventive composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986962B2 (en) * 1991-05-20 1999-12-06 テイカ株式会社 Rust preventive pigment composition and paint containing the same
JP3513589B2 (en) * 2000-03-24 2004-03-31 独立行政法人物質・材料研究機構 Ultra thin titania film and method for producing the same
TW200540216A (en) * 2004-01-16 2005-12-16 Otsuka Chemical Co Ltd Flame retardant agent and flame retardant resin composition
JP2005220001A (en) * 2004-02-09 2005-08-18 Patent Technology Development Inc Coating liquid for forming metal oxide thin film
JP4995428B2 (en) * 2004-03-10 2012-08-08 東海旅客鉄道株式会社 Titanium oxide coating formation method
JP2005298694A (en) * 2004-04-13 2005-10-27 Kansai Paint Co Ltd Coating composition for pre-coated steel plate and pre-coated steel plate using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099943A (en) * 2002-09-06 2004-04-02 Tayca Corp Rust preventive composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537481A (en) * 2013-09-11 2016-12-01 ピーアールシー−デソト インターナショナル,インコーポレイティド Composition comprising magnesium oxide and an amino acid

Also Published As

Publication number Publication date
WO2007086383A1 (en) 2007-08-02
CN101370964A (en) 2009-02-18
JPWO2007086383A1 (en) 2009-06-18
CN101370964B (en) 2011-05-25
JP4767972B2 (en) 2011-09-07
KR101040821B1 (en) 2011-06-14
KR20080096790A (en) 2008-11-03

Similar Documents

Publication Publication Date Title
RU2592895C2 (en) Metal sheet with coating for use in cars with excellent suitability for contact welding, corrosion resistance and formability
KR101319310B1 (en) Composition for metal surface treatment, metal surface treatment method, and metal material
TWI261610B (en) Coating composition for forming titanium oxide film, method of forming titanium oxide film and metal substrate coated with titanium oxide film
CN109804102B (en) Surface treatment solution composition, galvanized steel sheet surface-treated with the composition, and method for producing the same
JP4767972B2 (en) Surface treatment agent in which crystalline layered inorganic compound is dispersed in nanosheets
JPH11106945A (en) Surface treating agent composition for metallic material and treating method
RU2504601C2 (en) Bonding paint layer with polyvinyl amines in polymer-containing aqueous acidic anticorrosion media
JP2792324B2 (en) Multi-layer galvanized steel sheet
JP2006213958A (en) Composition for surface treatment of metallic material, and treatment method
TW201816185A (en) Aqueous rust preventive surface treatment composition and surface coated metal member
KR20130112703A (en) Inorganic chromium-free metal surface treatment agent
KR20170102468A (en) Passivation composition comprising a silane-modified silicate compound
JP6169087B2 (en) Method for producing anticorrosion coating
US20030152704A1 (en) Coating material for forming titanium oxide film, method for forming titanium oxide film and use of said coating material
JP4970773B2 (en) Metal surface treatment agent, metal material surface treatment method and surface treatment metal material
KR100742903B1 (en) Chrome-free composition for treating a metal surface having excellent workability and corrosion resistance after processing and a metal sheet using the same
KR100679659B1 (en) Chrome-free composition for treating a metal surface and a metal sheet using the same
KR101586840B1 (en) Coating Composition for Mg-Containing Alloy-Plated Steel Sheet havind improved corrosion resistant and anti-black patin and Steel Sheet comprising the same
CN108350578B (en) Aqueous surface treatment agent for galvanized steel material or zinc-based alloy-plated steel material, coating method, and coated steel material
JP4509425B2 (en) Paint surface treatment agent, surface treatment method, metal material, processing method, and metal product
JP5492121B2 (en) Metal surface treatment agent, metal surface treatment method and surface treated steel plate
KR100956081B1 (en) Surface Treating Composition of Metal and Method of Manufacturing the Same
JPH029067B2 (en)
JP4719546B2 (en) Anodic electrolysis treatment liquid, electrolysis treatment method and electrolysis metal material
KR100586454B1 (en) Anti-corrosion coating composition and zinc-coated steel coated with the composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709