JP2011184729A - Vapor deposition material, and method for producing the same - Google Patents

Vapor deposition material, and method for producing the same Download PDF

Info

Publication number
JP2011184729A
JP2011184729A JP2010050336A JP2010050336A JP2011184729A JP 2011184729 A JP2011184729 A JP 2011184729A JP 2010050336 A JP2010050336 A JP 2010050336A JP 2010050336 A JP2010050336 A JP 2010050336A JP 2011184729 A JP2011184729 A JP 2011184729A
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition material
firing
powder
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010050336A
Other languages
Japanese (ja)
Other versions
JP5533049B2 (en
Inventor
Yusuke Kuwagata
友輔 鍬形
Toshiaki Yoshihara
俊昭 吉原
Ayano Machida
綾野 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010050336A priority Critical patent/JP5533049B2/en
Publication of JP2011184729A publication Critical patent/JP2011184729A/en
Application granted granted Critical
Publication of JP5533049B2 publication Critical patent/JP5533049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor deposition material capable of suppressing generation of a splash phenomenon and molded by using water and to provide a method for producing the same. <P>SOLUTION: The vapor deposition material molded by using water and containing silicon monoxide powders has ≤1% weight change ratio in ignition loss (a mass reduced amount when a substance is strongly heated (at 600±25°C for 2 h)). In the method for producing the vapor deposition material, a sintering condition in a step for sintering the molded body is an air atmosphere and a sintering temperature is 200 to 700°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、食品や医薬品等の包装材料として有用な、ガスバリア性ケイ素酸化物蒸着層を有する包装材料を製造する際に使用する蒸着材料およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a vapor deposition material used when producing a packaging material having a gas barrier silicon oxide vapor deposition layer, which is useful as a packaging material for foods and pharmaceuticals, and a method for producing the vapor deposition material.

食品や医薬品等の包装材料に対しては、内容物の変質を防止することが求められている。例えば、食品用包装材料に対しては、タンパク質や油脂等の酸化や変質を抑制し、更に風味や鮮度を保持できることが求められ、また、無菌状態での取扱が必要とされる医薬品用包装材料に対しては、内容物の有効成分の変質を抑制し、その効能を保持できることが求められている。   For packaging materials such as foods and pharmaceuticals, it is required to prevent the contents from being altered. For example, for food packaging materials, pharmaceutical packaging materials that are required to suppress oxidation and alteration of proteins, fats and oils, and to maintain flavor and freshness, and that require handling in aseptic conditions. Therefore, it is required to suppress the alteration of the active ingredient in the contents and to maintain its efficacy.

ところで、このような内容物の変質は、包装材料を透過する酸素や水蒸気あるいは内容物と反応するような他のガスにより主として引き起こされている。   By the way, such alteration of the contents is mainly caused by oxygen or water vapor that permeates the packaging material or other gas that reacts with the contents.

従って、食品や医薬品等の包装材料に対しては、酸素や水蒸気などのガスを透過させない性質(ガスバリア性)を備えていることが求められており、そのような性質を有する包装材料として、アルミニウムなどの金属、一酸化ケイ素(SiO)、ケイ素酸化物(SiOx)、酸化アルミニウム、酸化マグネシウム等の金属酸化物あるいはこれらの複合酸化物、更には金属フッ化物などのガスバリア性物質を高分子フィルム基材に蒸着させたガスバリア性フィルム材料が知られているが、中でも高分子フィルム基材に一酸化ケイ素が蒸着された材料が、高い透明性と高いガスバリア性の点とから注目されている。   Accordingly, packaging materials such as foods and pharmaceuticals are required to have a property (gas barrier property) that does not allow permeation of gases such as oxygen and water vapor. As a packaging material having such properties, aluminum is required. Polymer film bases such as metals such as silicon monoxide (SiO), silicon oxide (SiOx), metal oxides such as aluminum oxide and magnesium oxide or composite oxides thereof, and further metal fluorides A gas barrier film material deposited on a material is known, and among them, a material obtained by depositing silicon monoxide on a polymer film substrate has attracted attention because of its high transparency and high gas barrier property.

このような一酸化ケイ素が蒸着されたフィルム材料は、蒸着材料である一酸化ケイ素を抵抗加熱法により高分子フィルムに真空蒸着させることにより製造されているが、ここで用いられている蒸着材料の一酸化ケイ素等のケイ素酸化物は、SiとSiO2とを原料として真空蒸着法により製造されているために、以下に示すような欠点を有している。   Such a film material on which silicon monoxide is deposited is manufactured by vacuum-depositing silicon monoxide, which is a deposition material, on a polymer film by a resistance heating method. Since silicon oxides such as silicon monoxide are produced by vacuum deposition using Si and SiO2 as raw materials, they have the following drawbacks.

真空蒸着法により製造された一酸化ケイ素等の蒸着材料は真密度に非常に近い密度を有し、非常に緻密な構造となっている。このため、この蒸着材料を蒸着させてフィルム材料を製造した場合には、蒸着の際の加熱による熱衝撃や内部から発生するガスの圧力などにより、気化していない蒸着材料が、高温の微細な粒のまま飛散する現象(スプラッシュ現象)が生じやすいという問題がある。このような高温の微細粒が蒸着基材である高分子フィルムに衝突した場合には、一酸化ケイ素などの蒸着材料の蒸着により形成した薄膜にピンホールが生じてガスバリア性が低下するという問題や、蒸着材料の蒸着により形成した薄膜を有する包装材料をロールに巻き取る際に、その微細粒が包装材料の間に巻取られ、最終的に製品中に混入するという問題もある。また、場合により高分子フィルム基材に貫通孔を生じさせるという問題も生じる。   A vapor deposition material such as silicon monoxide manufactured by a vacuum vapor deposition method has a density very close to the true density and has a very dense structure. For this reason, when a film material is manufactured by vapor deposition of this vapor deposition material, the vaporized vapor deposition material that has not been vaporized due to the thermal shock caused by heating during vapor deposition or the pressure of gas generated from the inside becomes a high-temperature fine structure. There is a problem that the phenomenon of splashing in the form of grains (splash phenomenon) is likely to occur. When such high-temperature fine particles collide with a polymer film that is a vapor deposition base material, pinholes are generated in a thin film formed by vapor deposition of a vapor deposition material such as silicon monoxide and the gas barrier property is lowered. Further, when a packaging material having a thin film formed by vapor deposition of a vapor deposition material is wound on a roll, the fine particles are wound between the packaging materials and finally mixed into the product. Moreover, the problem that a through-hole is produced in a polymer film base material also arises by the case.

また、近年では、坩堝や加熱ヒーターなどを使用する従来の抵抗加熱蒸着法に代えて、蒸着材料を局部的且つ急速に加熱でき、しかも包装材料の生産性を高めるために蒸着材料の堆積速度を速めて巻取蒸着加工速度を向上させることのできる電子ビーム加熱蒸着法が採用される傾向があるが、この電子ビーム加熱蒸着法の場合、抵抗加熱蒸着法の場合に比べ、蒸着材料が受ける熱衝撃のレベルが格段と高くなるので、上記の問題がいっそう顕著に現れるようになる。   In recent years, instead of the conventional resistance heating vapor deposition method using a crucible or a heater, the vapor deposition material can be heated locally and rapidly, and the deposition rate of the vapor deposition material is increased in order to increase the productivity of the packaging material. There is a tendency to adopt an electron beam heating vapor deposition method that can speed up and improve the winding vapor deposition processing speed, but in this electron beam heating vapor deposition method, the heat received by the vapor deposition material is higher than in the resistance heating vapor deposition method. Since the level of impact is significantly higher, the above problem becomes more prominent.

そこで、従来、このような問題を解決するために、例えば、一酸化ケイ素を高分子フィルム基材に蒸着させる場合、蒸着材料(SiO)を真空蒸着法により予めSiとSiOとから製造しておくのではなく、SiとSiOとを乾式で混合して加圧成形し焼結したものを蒸着材料とすることが提案されている(特許文献1)。 Therefore, conventionally, in order to solve such a problem, for example, when silicon monoxide is deposited on a polymer film substrate, a deposition material (SiO) is previously produced from Si and SiO 2 by a vacuum deposition method. Instead, it is proposed that Si and SiO 2 are mixed in a dry manner, pressure-molded and sintered to be a deposition material (Patent Document 1).

この方法によれば、焼結法を利用しているために比較的低コストで製造できるが、生産性を向上させる目的で電子ビームの出力レベルを従来以上にあげた場合、十分な程度にまでスプラッシュ現象を抑制することができないという問題があった。   According to this method, since the sintering method is used, it can be manufactured at a relatively low cost. However, when the output level of the electron beam is increased more than before for the purpose of improving the productivity, it is sufficiently high. There was a problem that the splash phenomenon could not be suppressed.

そこで、Si粉末とSiO粉末とを含有するスラリーを湿式成形し、その成形の際にゲル化させ、得られた成形体を乾燥し、焼成する多孔質蒸着材料が提案されている(特許文献2)。 Therefore, a porous vapor deposition material has been proposed in which a slurry containing Si powder and SiO 2 powder is wet-molded, gelled during the molding, and the resulting molded body is dried and fired (patent document). 2).

焼成温度が低すぎると成型体にOH基が多く残り、その残存OH基がスプラッシュの一因となると考えられる。   If the firing temperature is too low, it is considered that many OH groups remain in the molded body, and the residual OH groups contribute to splash.

特開昭63−310961号公報JP-A-63-310961 特開平9−143689号公報Japanese Patent Laid-Open No. 9-143689

本発明の目的は、スプラッシュの発生を顕著に抑制できる、水を用いて成型した蒸着材料及びその製造方法を提供することにある。   The objective of this invention is providing the vapor deposition material shape | molded using water which can suppress generation | occurrence | production of a splash remarkably, and its manufacturing method.

本発明者は、焼成条件を最適化することにより製造された蒸着材料が、上述の目的を達成できることを見出し、本発明を完成させるに至った。   The present inventor has found that the vapor deposition material produced by optimizing the firing conditions can achieve the above-described object, and has completed the present invention.

すなわち、本発明は、水を用いて成型した、一酸化ケイ素粉末を含有する蒸着材料において、焼成条件を最適化することにより、強熱減量(物質を強熱(600±25℃2時間)したときの質量の減少量)での重量変化率が1%以下である蒸着材料を提供する。   That is, according to the present invention, a vapor loss material containing silicon monoxide powder molded with water is used to reduce the ignition loss (substance is ignited (600 ± 25 ° C. for 2 hours) by optimizing the firing conditions. And a deposition material having a weight change rate of 1% or less.

また、本発明は、成型体を焼成する工程での焼成条件が大気雰囲気であり、かつ焼成温度が200℃以上700℃以下である蒸着材料の製造方法を提供する。   Moreover, this invention provides the manufacturing method of the vapor deposition material whose baking conditions in the process of baking a molded object are air | atmosphere atmosphere, and whose baking temperature is 200 degreeC or more and 700 degrees C or less.

本発明の蒸着材料は、強熱減量(物質を強熱(600±25℃2時間)したときの質量の減少量)での重量変化率が1%以下であることにより、スプラッシュの発生を顕著に抑制できる。   In the vapor deposition material of the present invention, the occurrence of splash is noticeable when the weight change rate is 1% or less at the loss on ignition (the amount of decrease in mass when the substance is heated at high temperature (600 ± 25 ° C. for 2 hours)). Can be suppressed.

本発明の蒸着材料の製造方法は、焼成条件を最適化することにより、強熱減量(物質を強熱(600±25℃2時間)したときの質量の減少量)での重量変化率が1%以下である蒸着材料を製造でき、これによりスプラッシュの発生を顕著に抑制できる。   In the method for producing a vapor deposition material according to the present invention, the weight change rate at a loss on ignition (a reduction in mass when a substance is ignited (600 ± 25 ° C. for 2 hours)) is 1 by optimizing the firing conditions. % Or less of vapor deposition material can be produced, and the occurrence of splash can be remarkably suppressed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の蒸着材料は一酸化ケイ素を主体とする蒸着材料で、水を用いて成型される。水を用いて成型した蒸着材料は、そのままでは材料内部に残存するOH基によりスプラッシュ現象が生じる。そこで、焼成による脱OH化を検討した。十分に焼成が行われると残存OH基はなくなるため、強熱減量(物質を強熱(600±25℃2時間)したときの質量の減少量)での重量変化率が1%以下となり、スプラッシュ現象が抑制されたものとなる。   The vapor deposition material of the present invention is a vapor deposition material mainly composed of silicon monoxide, and is molded using water. A vapor deposition material molded using water causes a splash phenomenon due to OH groups remaining in the material as it is. Therefore, deOHization by firing was examined. Since residual OH groups disappear after sufficient firing, the weight change rate with a loss on ignition (a decrease in mass when the substance is ignited (600 ± 25 ° C. for 2 hours)) is 1% or less, and splash. The phenomenon is suppressed.

また、本発明の蒸着材料の成型体を焼成する工程において、材料の酸化による膨張率は、1%以上3%以下である。材料の酸化による膨張率が1%未満であると、材料が十分に酸化されないために、蒸着に際して適度な溶融相が生成されず、スプラッシュの原因になるおそれがある。材料の酸化による膨張率が3%を超えると、膨張しすぎるために、材料にひび割れが生じるなど、使用性に支障をきたすおそれがある。   Further, in the step of firing the molded body of the vapor deposition material of the present invention, the expansion coefficient due to the oxidation of the material is 1% or more and 3% or less. If the expansion coefficient due to the oxidation of the material is less than 1%, the material is not sufficiently oxidized, so that an appropriate molten phase is not generated during vapor deposition, which may cause splash. If the expansion rate due to the oxidation of the material exceeds 3%, the material expands too much, and the material may be cracked.

本発明の蒸着材料を構成する物質(原料)としては、一酸化ケイ素又は金属ケイ素、二酸化ケイ素を使用することができる。なかでも、金属ケイ素と二酸化ケイ素とを原料として構成されたものが、ガスバリア性に優れたSiO膜を形成できるので好ましい。   As a substance (raw material) constituting the vapor deposition material of the present invention, silicon monoxide, silicon metal, or silicon dioxide can be used. Among these, those composed of metal silicon and silicon dioxide as raw materials are preferable because an SiO film having excellent gas barrier properties can be formed.

なお、これらの一酸化ケイ素又は金属ケイ素、二酸化ケイ素は、粉末状で使用することが好ましく、平均粒径は一般に1μm以上20μm以下のものが好ましい。1μmよりも細かい粒子や、20μmよりも大きい粒子では、材料が作りづらく、スプラッシュが多くなるので好ましくない。また、一酸化ケイ素粉末の平均粒径は5μm以上10μm以下、金属ケイ素粉末の平均粒径は5μm以上15μm以下、二酸化ケイ素粉末の平均粒径は3μm以上10μm以下のものが特に好ましい。主として、一酸化ケイ素粉末を使用するが、金属ケイ素粉末と二酸化ケイ素粉末のいずれか又は両方を原料として使用することもできる。その場合の混合比率は、重量%で30%以上の一酸化ケイ素粉末を使用し、金属ケイ素粉末と二酸化ケイ素粉末をモル比で1:1から1:5に混合したものがスプラッシュを抑制できるので好ましい。より好ましくは、金属ケイ素粉末と二酸化ケイ素粉末をモル比で1:1.5に混合したものが特に好ましい。   In addition, it is preferable to use these silicon monoxide or metal silicon, and silicon dioxide in a powder form, and generally an average particle diameter of 1 micrometer or more and 20 micrometers or less is preferable. Particles finer than 1 μm and particles larger than 20 μm are not preferable because the material is difficult to make and the splash increases. The average particle size of the silicon monoxide powder is 5 μm to 10 μm, the average particle size of the metal silicon powder is 5 μm to 15 μm, and the average particle size of the silicon dioxide powder is particularly preferably 3 μm to 10 μm. Although silicon monoxide powder is mainly used, either or both of metal silicon powder and silicon dioxide powder can be used as a raw material. In this case, the mixture ratio is 30% or more by weight%, and a mixture of metal silicon powder and silicon dioxide powder in a molar ratio of 1: 1 to 1: 5 can suppress splash. preferable. More preferably, a metal silicon powder and a silicon dioxide powder are mixed in a molar ratio of 1: 1.5.

本発明の蒸着材料は、一酸化ケイ素の粉末を含有するスラリーを湿式成形し、その成形の際にゲル化させ、得られた成形物を乾燥し焼成することを特徴とする蒸着材料の製造方法により製造することができる。   The vapor deposition material of the present invention is a method for producing a vapor deposition material, characterized in that a slurry containing silicon monoxide powder is wet-molded, gelled during the molding, and the resulting molded product is dried and fired. Can be manufactured.

本発明の製造方法においては、まず、上述のような一酸化ケイ素の粉末を含有するスラリーを常法に従って調製する。ここで、スラリー化する際に使用する媒体としては、水、アルコールあるいはこれらの混合媒体を使用することができる。   In the production method of the present invention, first, a slurry containing the above-mentioned silicon monoxide powder is prepared according to a conventional method. Here, water, alcohol, or a mixed medium thereof can be used as a medium used for slurrying.

次に、得られたスラリーを湿式成形法により成形するが、この成形の際にスラリーをゲル化させることが必要である。なお、スラリーの調整に際しては、原料粒子の大きさ、使用量、媒体の量と種類、ゲル化時間等を適宜調整して、形成される蒸着材料の嵩密度を調整することが好ましい。   Next, although the obtained slurry is shape | molded by the wet shaping | molding method, it is necessary to gelatinize a slurry in the case of this shaping | molding. When adjusting the slurry, it is preferable to adjust the bulk density of the vapor deposition material to be formed by appropriately adjusting the size of the raw material particles, the amount used, the amount and type of the medium, the gelation time, and the like.

また、スラリーのゲル化を行う際に、無機バインダーを使用することができるが、シリカゾルやテトラエトキシシランなどを使用することが特に好ましい。これにより、塩基性アルカリ金属化合物を使用することなく低温下で原料粉末を十分に結合させることができる。特に、金属ケイ素粉末を使用した場合には、それらのバインダーが金属の表面を保護する機能を有するので、大気雰囲気中での焼成も可能となり、より製造コストを下げることができる。   In addition, an inorganic binder can be used when gelling the slurry, but it is particularly preferable to use silica sol or tetraethoxysilane. Thereby, raw material powder can be fully combined under low temperature, without using a basic alkali metal compound. In particular, when metal silicon powder is used, since these binders have a function of protecting the metal surface, firing in an air atmosphere is also possible, and the manufacturing cost can be further reduced.

なお、シリカゾルによるゲル化は、スラリーに塩酸などの酸を添加してゾルを不安定化することにより行うことができる。また、テトラエトキシシランによるゲル化は、テトラエトキシシランの加水分解と競争的に生じる重縮合がポリシロキサンを形成することにより行うことができる。   Gelation with silica sol can be performed by adding an acid such as hydrochloric acid to the slurry to destabilize the sol. Further, the gelation with tetraethoxysilane can be carried out by forming polysiloxane by polycondensation that occurs competitively with the hydrolysis of tetraethoxysilane.

次に、ゲル化した成形物を乾燥し、大気雰囲気で200℃以上700℃以下程度の温度で焼成する。なお、大気雰囲気以外の焼成では、適度な酸化状態が得られず、スプラッシュが発生するので好ましくない。これにより、本発明の蒸着材料が得られる。   Next, the gelled molded product is dried and fired at a temperature of about 200 ° C. to 700 ° C. in an air atmosphere. Note that firing in an atmosphere other than the air atmosphere is not preferable because a proper oxidation state cannot be obtained and splash is generated. Thereby, the vapor deposition material of this invention is obtained.

このようにして得られる本発明の蒸着材料は、従来の蒸着材料と同様に真空蒸着法に適用することができるが、特に従来の蒸着材料に対してスプラッシュ現象を抑制することが困難であった電子ビーム加熱蒸着法に対しても、スプラッシュ現象を生じさせることなく適用することができる。   The vapor deposition material of the present invention thus obtained can be applied to the vacuum vapor deposition method in the same manner as the conventional vapor deposition material, but it has been difficult to suppress the splash phenomenon particularly with respect to the conventional vapor deposition material. The present invention can also be applied to the electron beam heating vapor deposition method without causing a splash phenomenon.

以下、本発明の蒸着材料及びその製造方法の有効性を比較材料と対比することにより具体的に説明する。   Hereinafter, the effectiveness of the vapor deposition material of the present invention and the manufacturing method thereof will be specifically described by comparing with comparative materials.

[ 実施例1・2 ]
主として、平均粒径が7μmの一酸化ケイ素粉末を重量%で30%以上使用し、さらに、平均粒径が10μmの金属ケイ素粉末、平均粒径が6μmの二酸化ケイ素粉末を、O/Si比が1.12となるように混合し(実施例1)、またはO/Si比が1.14となるように混合し(実施例2)、水を用いてスラリーを調製し、シリカゾルと塩酸を加えた。
[Examples 1 and 2]
Mainly, a silicon monoxide powder having an average particle diameter of 7 μm is used in an amount of 30% or more by weight, and further, a metal silicon powder having an average particle diameter of 10 μm and a silicon dioxide powder having an average particle diameter of 6 μm are used. Mix so as to be 1.12. (Example 1) or mix so that the O / Si ratio is 1.14 (Example 2), prepare a slurry using water, add silica sol and hydrochloric acid. It was.

次に、このスラリーを型に流し込み、数時間放置して十分にゲル化した。このゲル化物を乾燥した後、10℃/分の速度で600℃まで昇温し、600℃で1時間焼成することにより実施例1及び2の蒸着材料を得た。得られた蒸着材料の嵩密度をアルキメデス法にて測定した。また、JIS Z 2246に準拠してショアー硬さを測定した。また、エスアイアイ・ナノテクノロジー(株)製TG/DTA6200示差熱熱重量同時測定装置を用いて重量変化率を測定した。示差熱熱重量同時測定とは、熱重量測定と示差熱分析とを組み合わせて、単一の装置で同時に測定する方法である。具体的には、105±5℃で2時間乾燥し、材料吸着水を取り除いた後、600±25℃で2時間、窒素雰囲気下で行い、強熱減量(物質を強熱(600±25℃2時間)したときの質量の減少量)での重量変化率を求めた。その結果を表1に示す。   Next, this slurry was poured into a mold and allowed to stand for several hours to sufficiently gel. After the gelled product was dried, the temperature was raised to 600 ° C. at a rate of 10 ° C./min, and baked at 600 ° C. for 1 hour to obtain the vapor deposition materials of Examples 1 and 2. The bulk density of the obtained vapor deposition material was measured by the Archimedes method. Moreover, Shore hardness was measured based on JISZ2246. Further, the weight change rate was measured using a TG / DTA6200 differential thermogravimetric simultaneous measurement device manufactured by SII Nano Technology. The differential thermothermal gravimetric simultaneous measurement is a method in which thermogravimetry and differential thermal analysis are combined and measured simultaneously with a single device. Specifically, after drying at 105 ± 5 ° C. for 2 hours and removing the material adsorbed water, it was performed at 600 ± 25 ° C. for 2 hours in a nitrogen atmosphere, and the ignition loss (substance was ignited (600 ± 25 ° C. The weight change rate at the time of 2 hours) was determined. The results are shown in Table 1.

[ 比較例1 ]
焼成温度が120℃であること以外は実施例1と同様にスラリーを調製し、比較例1の材料を得た。得られた蒸着材料の嵩密度をアルキメデス法にて測定した。また、JIS Z 2246に準拠してショアー硬さを測定した。また、エスアイアイ・ナノテクノロジー(株)製TG/DTA6200示差熱熱重量同時測定装置を用いて重量変化率を測定した。示差熱熱重量同時測定とは、熱重量測定と示差熱分析とを組み合わせて、単一の装置で同時に測定する方法である。具体的には、105±5℃で2時間乾燥し、材料吸着水を取り除いた後、600±25℃で2時間、窒素雰囲気下で行い、強熱減量(物質を強熱(600±25℃2時間)したときの質量の減少量)での重量変化率を求めた。その結果を表1に示す。
[Comparative Example 1]
A slurry was prepared in the same manner as in Example 1 except that the firing temperature was 120 ° C., and the material of Comparative Example 1 was obtained. The bulk density of the obtained vapor deposition material was measured by the Archimedes method. Moreover, Shore hardness was measured based on JISZ2246. Further, the weight change rate was measured using a TG / DTA6200 differential thermogravimetric simultaneous measurement device manufactured by SII Nano Technology. The differential thermothermal gravimetric simultaneous measurement is a method in which thermogravimetry and differential thermal analysis are combined and measured simultaneously with a single device. Specifically, after drying at 105 ± 5 ° C. for 2 hours and removing the material adsorbed water, it was performed at 600 ± 25 ° C. for 2 hours in a nitrogen atmosphere, and the ignition loss (substance was ignited (600 ± 25 ° C. The weight change rate at the time of 2 hours) was determined. The results are shown in Table 1.

[ 比較例2〜4 ]
また、焼成温度が800℃であること以外は実施例2と同様にスラリーを調製し、比較例2の材料を得た。また、焼成温度が1000℃であること以外は実施例2と同様にスラリーを調製し、比較例3の材料を得た。また、焼成温度が1500℃であること以外は実施例2と同様にスラリーを調製し、比較例4の材料を得た。得られた蒸着材料の嵩密度をアルキメデス法にて測定した。また、JIS Z 2246に準拠してショアー硬さを測定した。また、エスアイアイ・ナノテクノロジー(株)製TG/DTA6200示差熱熱重量同時測定装置を用いて重量変化率を測定した。示差熱熱重量同時測定とは、熱重量測定と示差熱分析とを組み合わせて、単一の装置で同時に測定する方法である。具体的には、105±5℃で2時間乾燥し、材料吸着水を取り除いた後、600±25℃で2時間、窒素雰囲気下で行い、強熱減量(物質を強熱(600±25℃2時間)したときの質量の減少量)での重量変化率を求めた。その結果を表1に示す。
[Comparative Examples 2 to 4]
A slurry was prepared in the same manner as in Example 2 except that the firing temperature was 800 ° C., and the material of Comparative Example 2 was obtained. A slurry was prepared in the same manner as in Example 2 except that the firing temperature was 1000 ° C., and the material of Comparative Example 3 was obtained. A slurry was prepared in the same manner as in Example 2 except that the firing temperature was 1500 ° C., and the material of Comparative Example 4 was obtained. The bulk density of the obtained vapor deposition material was measured by the Archimedes method. Moreover, Shore hardness was measured based on JISZ2246. Further, the weight change rate was measured using a TG / DTA6200 differential thermogravimetric simultaneous measurement device manufactured by SII Nano Technology. The differential thermothermal gravimetric simultaneous measurement is a method in which thermogravimetry and differential thermal analysis are combined and measured simultaneously with a single device. Specifically, after drying at 105 ± 5 ° C. for 2 hours and removing the material adsorbed water, it was performed at 600 ± 25 ° C. for 2 hours in a nitrogen atmosphere, and the ignition loss (substance was ignited (600 ± 25 ° C. The weight change rate at the time of 2 hours) was determined. The results are shown in Table 1.

[ 評価 ]
電子ビーム加熱方式のバッチ式蒸着装置を用いて、実施例1・2及び比較例1〜4の蒸着材料を真空蒸着した。これらの蒸着材料を蒸着した際のスプラッシュ現象の有無を、目視にて観察し、表1に示した評価基準に従って評価した。その結果を表1に示す。
[Evaluation]
The deposition materials of Examples 1 and 2 and Comparative Examples 1 to 4 were vacuum deposited using an electron beam heating batch deposition apparatus. The presence or absence of a splash phenomenon when these vapor deposition materials were vapor-deposited was visually observed and evaluated according to the evaluation criteria shown in Table 1. The results are shown in Table 1.

Figure 2011184729
Figure 2011184729

表1から、実施例1・2の蒸着材料は、非常に高い蒸発速度(電子ビームの出力レベルが高い場合)で蒸着された場合でも、スプラッシュ現象は観察されなかった。   From Table 1, no splash phenomenon was observed even when the deposition materials of Examples 1 and 2 were deposited at a very high evaporation rate (when the output level of the electron beam was high).

一方、比較例1の蒸着材料は、焼成温度が低すぎるために、強熱減量での重量変化率が1%を超え、残存OH基が多量に存在するため、スプラッシュ現象が観察された。さらに、材料が十分に酸化されず、蒸着に際して適度な溶融相が生成されなかったため、スプラッシュ現象が観察された。   On the other hand, in the vapor deposition material of Comparative Example 1, since the firing temperature was too low, the weight change rate with loss on ignition exceeded 1%, and a large amount of residual OH groups were present, so a splash phenomenon was observed. In addition, a splash phenomenon was observed because the material was not fully oxidized and an adequate melt phase was not produced during deposition.

比較例2の蒸着材料は、焼成温度が高いために、材料が過剰に酸化され、蒸着に際して適度な溶融相が生成されなかったため、スプラッシュ現象がわずかに観察された。比較例3及び4の蒸着材料は、焼成温度が高すぎるために、焼成前後の膨張率が3%を越え、材料が過剰に酸化され、蒸着に際して適度な溶融相が生成されなかったため、スプラッシュ現象が観察された。   In the vapor deposition material of Comparative Example 2, since the firing temperature was high, the material was excessively oxidized, and an appropriate melt phase was not generated during the vapor deposition, so a splash phenomenon was slightly observed. Since the vapor deposition materials of Comparative Examples 3 and 4 have a firing temperature that is too high, the expansion coefficient before and after firing exceeds 3%, the material is excessively oxidized, and an appropriate melt phase is not generated during vapor deposition. Was observed.

本発明は、食品や医薬品等の包装材料として有用な、ガスバリア性ケイ素酸化物蒸着層を有する包装材料を製造する際に使用する蒸着材料およびその製造方法として利用できる。   INDUSTRIAL APPLICATION This invention can be utilized as a vapor deposition material used when manufacturing the packaging material which has a gas barrier property silicon oxide vapor deposition layer useful as packaging materials, such as a foodstuff and a pharmaceutical, and its manufacturing method.

Claims (4)

水を用いて成型した一酸化ケイ素粉末を含有する蒸着材料において、強熱減量(物質を強熱(600±25℃2時間)したときの質量の減少量)での重量変化率が1%以下であることを特徴とする電子ビーム加熱蒸着用の蒸着材料。   In a vapor deposition material containing silicon monoxide powder molded using water, the rate of change in weight with a loss on ignition (amount of decrease in mass when the substance is ignited (600 ± 25 ° C. for 2 hours)) is 1% or less An evaporation material for electron beam heating evaporation, which is characterized by the following. 請求項1に記載の蒸着材料について、さらに平均粒径5μm以上15μm以下の金属ケイ素粉末、平均粒径3μm以上10μm以下の二酸化ケイ素粉末のいずれかまたは両方を含有する蒸着材料。   The vapor deposition material according to claim 1, further comprising one or both of a metal silicon powder having an average particle size of 5 μm to 15 μm and a silicon dioxide powder having an average particle size of 3 μm to 10 μm. 一酸化ケイ素粉末を含有する蒸着材料を製造する際に、水を用いて成型する工程と、成型体を乾燥する工程と、成型体を焼成する工程とを含み、成型体を焼成する工程での焼成条件が大気雰囲気であり、かつ焼成温度が200℃以上700℃以下であることを特徴とする蒸着材料の製造方法。   In manufacturing a vapor deposition material containing silicon monoxide powder, the method includes a step of molding using water, a step of drying the molded body, and a step of firing the molded body, and the step of firing the molded body. A method for producing a vapor deposition material, characterized in that the firing condition is an air atmosphere and the firing temperature is 200 ° C. or higher and 700 ° C. or lower. 請求項3に記載の蒸着材料の製造方法について、成型体を焼成する工程において、材料の酸化による膨張率が1%以上3%以下であることを特徴とする蒸着材料の製造方法。   4. The method for producing a vapor deposition material according to claim 3, wherein, in the step of firing the molded body, an expansion coefficient due to oxidation of the material is 1% or more and 3% or less.
JP2010050336A 2010-03-08 2010-03-08 Vapor deposition material and method for producing the same Expired - Fee Related JP5533049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010050336A JP5533049B2 (en) 2010-03-08 2010-03-08 Vapor deposition material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050336A JP5533049B2 (en) 2010-03-08 2010-03-08 Vapor deposition material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011184729A true JP2011184729A (en) 2011-09-22
JP5533049B2 JP5533049B2 (en) 2014-06-25

Family

ID=44791363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050336A Expired - Fee Related JP5533049B2 (en) 2010-03-08 2010-03-08 Vapor deposition material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5533049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281188B1 (en) * 2012-11-26 2013-09-04 有限会社 ナプラ Insulating paste, electronic device, and insulating part forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657417A (en) * 1992-08-06 1994-03-01 Toyobo Co Ltd Vapor-deposition material and its production
JP2006342022A (en) * 2005-06-09 2006-12-21 Sumitomo Heavy Ind Ltd MANUFACTURING METHOD OF SiO TABLET, AND SiO TABLET
JP2006348348A (en) * 2005-06-16 2006-12-28 Sumitomo Titanium Corp Silicon monoxide-based vapor deposition material, and its manufacturing method
JP2009179819A (en) * 2008-01-29 2009-08-13 Toppan Printing Co Ltd Manufacturing method of transparent film with gas barrier property
JP2009215125A (en) * 2008-03-12 2009-09-24 Shin Etsu Chem Co Ltd Silicon oxide sintered compact for film vapor deposition, method for producing the same, and method for producing silicon oxide vapor deposition film
JP2010018445A (en) * 2008-07-08 2010-01-28 Shin-Etsu Chemical Co Ltd Pellet body for film vapor deposition, method for producing the same, and method for producing silicon oxide vapor-deposited film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657417A (en) * 1992-08-06 1994-03-01 Toyobo Co Ltd Vapor-deposition material and its production
JP2006342022A (en) * 2005-06-09 2006-12-21 Sumitomo Heavy Ind Ltd MANUFACTURING METHOD OF SiO TABLET, AND SiO TABLET
JP2006348348A (en) * 2005-06-16 2006-12-28 Sumitomo Titanium Corp Silicon monoxide-based vapor deposition material, and its manufacturing method
JP2009179819A (en) * 2008-01-29 2009-08-13 Toppan Printing Co Ltd Manufacturing method of transparent film with gas barrier property
JP2009215125A (en) * 2008-03-12 2009-09-24 Shin Etsu Chem Co Ltd Silicon oxide sintered compact for film vapor deposition, method for producing the same, and method for producing silicon oxide vapor deposition film
JP2010018445A (en) * 2008-07-08 2010-01-28 Shin-Etsu Chemical Co Ltd Pellet body for film vapor deposition, method for producing the same, and method for producing silicon oxide vapor-deposited film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281188B1 (en) * 2012-11-26 2013-09-04 有限会社 ナプラ Insulating paste, electronic device, and insulating part forming method
CN103839866A (en) * 2012-11-26 2014-06-04 纳普拉有限公司 Insulating paste, electronic device and method for forming insulator
TWI452095B (en) * 2012-11-26 2014-09-11 Napra Co Ltd Insulating paste, electronic device and method for forming insulator
KR101466513B1 (en) * 2012-11-26 2014-11-27 유겐가이샤 나프라 Insulating paste, electronic device and method for forming insulator
CN103839866B (en) * 2012-11-26 2016-03-09 纳普拉有限公司 Insulating properties paste, electronic device and insulation division formation method
US9691519B2 (en) 2012-11-26 2017-06-27 Napra Co., Ltd. Insulating paste, electronic device and method for forming insulator

Also Published As

Publication number Publication date
JP5533049B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
TWI237011B (en) Process for preparing aluminum-titanate-based sintered body
JP2010047457A (en) Production method of powdery alumina precursor
JP3747498B2 (en) Porous vapor deposition material and method for producing the same
EP3024799A1 (en) Product having a high alumina content
JP2014525384A5 (en)
JP2011502100A5 (en)
JP2017210403A5 (en)
JP2017210403A (en) Production method of opaque quartz glass containing pore
JP6228461B2 (en) Inorganic fiber and method for producing the same
JPH09143689A (en) Porous vapor depositing material and its production
JP5533049B2 (en) Vapor deposition material and method for producing the same
JP3725200B2 (en) Vapor deposition material and method for producing molded article thereof
JP5050879B2 (en) Method for producing transparent gas barrier film
JP5353592B2 (en) Vapor deposition material
JP4666184B2 (en) Method for producing silicon oxide sintered body for film deposition, and method for producing silicon oxide deposited film
JP5272656B2 (en) Silicon oxide-based porous molded body and method for producing the same
JP5928694B2 (en) Alumina sintered body and manufacturing method thereof
JP5510248B2 (en) Vapor deposition material
JP4858723B2 (en) Process for producing pellets for film deposition
JP2007261848A (en) Ceramic green sheet and its manufacturing method
JP2010235966A (en) SiOx MOLDED BODY AND GAS BARRIER FILM
JP2007261849A (en) Manufacturing method of sheet-like dense cordierite sintered body
JP2002316870A (en) Member for heat treatment consisting of zirconia sintered compact
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP2004010381A (en) Surface-coated silicon nitride sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5533049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees