JP2011183237A - Method of producing carried ruthenium oxide and method of producing chlorine - Google Patents

Method of producing carried ruthenium oxide and method of producing chlorine Download PDF

Info

Publication number
JP2011183237A
JP2011183237A JP2010047750A JP2010047750A JP2011183237A JP 2011183237 A JP2011183237 A JP 2011183237A JP 2010047750 A JP2010047750 A JP 2010047750A JP 2010047750 A JP2010047750 A JP 2010047750A JP 2011183237 A JP2011183237 A JP 2011183237A
Authority
JP
Japan
Prior art keywords
ruthenium oxide
supported ruthenium
supported
titania
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010047750A
Other languages
Japanese (ja)
Other versions
JP5573237B2 (en
Inventor
Yohei Uchida
洋平 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010047750A priority Critical patent/JP5573237B2/en
Priority to PCT/JP2011/055021 priority patent/WO2011108683A1/en
Publication of JP2011183237A publication Critical patent/JP2011183237A/en
Application granted granted Critical
Publication of JP5573237B2 publication Critical patent/JP5573237B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing carried ruthenium oxide with excellent thermal stability and catalyst service life, and a method of stably producing chlorine over a long period by using the carried ruthenium oxide obtained by the method. <P>SOLUTION: There is provided the method of producing carried ruthenium oxide catalyst, wherein a titania carrier is brought into contact with an acidic aqueous solution containing a ruthenium compound and a silica compound, and then fired in an acidic gas atmosphere. Chlorine is produced by using thus produced carried ruthenium oxide as a catalyst, and oxidizing hydrogen chloride with oxygen in the presence of the catalyst. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、酸化ルテニウムが担体に担持されてなる担持酸化ルテニウムを製造する方法に関する。また、本発明は、この方法により製造された担持酸化ルテニウムを触媒に用いて塩化水素を酸素で酸化することにより、塩素を製造する方法にも関係している。   The present invention relates to a method for producing supported ruthenium oxide in which ruthenium oxide is supported on a carrier. The present invention also relates to a method for producing chlorine by oxidizing hydrogen chloride with oxygen using the supported ruthenium oxide produced by this method as a catalyst.

担持酸化ルテニウムは、塩化水素を酸素で酸化して塩素を製造するための触媒として有用であり、その製造方法として、例えば、特許文献1及び2には、ルテニウム化合物を酸化チタン担体に担持した後、焼成し、次いでアルコキシシラン化合物やシロキサン化合物等のケイ素化合物を担持させ、その後、酸化する、具体的には空気中で焼成する方法が記載され、特許文献3には、ケイ素化合物のエタノール溶液を酸化チタンに含浸させた後、空気中で焼成することでシリカを酸化チタン担体に担持した後、次いでルテニウム化合物を担持させ、その後、空気中で焼成する方法が提案されている。   The supported ruthenium oxide is useful as a catalyst for producing chlorine by oxidizing hydrogen chloride with oxygen. For example, Patent Documents 1 and 2 disclose that a ruthenium compound is supported on a titanium oxide carrier. , And then a method of carrying a silicon compound such as an alkoxysilane compound or a siloxane compound and then oxidizing, specifically, firing in air is described. Patent Document 3 describes an ethanol solution of a silicon compound. A method has been proposed in which silica is supported on a titanium oxide support by impregnating with titanium oxide and then calcined in air, then a ruthenium compound is supported, and then calcined in air.

特開2002−292279号公報JP 2002-292279 A 特開2004−074073号公報Japanese Patent Laid-Open No. 2004-074073 特開2008−155199号公報JP 2008-155199 A

しかしながら、上記従来の製造方法により得られる担持酸化ルテニウムは、長時間酸化反応に用いられる等の熱負荷が掛かると、担体や担体に担持された酸化ルテニウムが焼結(シンタリング)する傾向があり、かかる焼結が起こると触媒活性が低下するため、触媒寿命の点で必ずしも満足のいくものではなかった。そこで、本発明の目的は、かかる焼結を抑制し、熱安定性や触媒寿命に優れた担持酸化ルテニウムを、製造工程において有機物の使用を低減し、より簡便で安定的に低コストで生産できる製造方法を提供することにある。また、この方法により得られた担持酸化ルテニウムを用いて、長時間にわたり安定して塩素を製造する方法を提供することにある。   However, the supported ruthenium oxide obtained by the conventional manufacturing method tends to sinter (sinter) the carrier and the ruthenium oxide supported on the carrier when subjected to a thermal load such as being used for an oxidation reaction for a long time. When such sintering occurs, the catalytic activity decreases, so that the catalyst life is not always satisfactory. Therefore, the object of the present invention is to suppress the sintering, and to support the supported ruthenium oxide excellent in thermal stability and catalyst life, and can reduce the use of organic substances in the production process, and can be produced more simply and stably at a low cost. It is to provide a manufacturing method. Another object of the present invention is to provide a method for producing chlorine stably over a long period of time using the supported ruthenium oxide obtained by this method.

本発明者は鋭意検討を行った結果、担持酸化ルテニウム触媒の製造において、チタニア担体をルテニウム化合物及びケイ素化合物を含む酸性水溶液と接触処理した後、酸化性ガス雰囲気下で焼成することにより、上記目的を達成しうることを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventor conducted the above-described object in the production of a supported ruthenium oxide catalyst by subjecting the titania support to an acidic aqueous solution containing a ruthenium compound and a silicon compound, followed by firing in an oxidizing gas atmosphere. The present invention has been completed.

すなわち、本発明は、チタニア担体をルテニウム化合物及びケイ素化合物を含む酸性水溶液と接触処理した後、酸化性ガス雰囲気下で焼成することを特徴とする担持酸化ルテニウムの製造方法を提供するものである。   That is, the present invention provides a method for producing supported ruthenium oxide, characterized in that a titania carrier is contact-treated with an acidic aqueous solution containing a ruthenium compound and a silicon compound and then fired in an oxidizing gas atmosphere.

また、本発明によれば、上記方法により製造された担持酸化ルテニウムの存在下で、塩化水素を酸素で酸化することにより、塩素を製造する方法も提供される。   The present invention also provides a method for producing chlorine by oxidizing hydrogen chloride with oxygen in the presence of the supported ruthenium oxide produced by the above method.

本発明によれば、熱安定性や触媒寿命に優れた担持酸化ルテニウムを安定的に低コストで製造することができ、こうして得られる担持酸化ルテニウムを触媒に用いて、塩化水素を酸素で酸化することにより、塩素を製造することができる。   According to the present invention, supported ruthenium oxide having excellent thermal stability and catalyst life can be stably produced at a low cost, and hydrogen chloride is oxidized with oxygen using the thus-supported ruthenium oxide as a catalyst. Thus, chlorine can be produced.

以下、本発明を詳細に説明する。本発明の担持酸化ルテニウムは、酸化ルテニウム及びシリカがチタニア担体に担持されてなる担持酸化ルテニウムである。かかるチタニア担体は、ルチル型チタニア(ルチル型の結晶構造を有するチタニア)やアナターゼ型チタニア(アナターゼ型の結晶構造を有するチタニア)、非晶質のチタニア等からなるものであることができ、また、これらの混合物からなるものであってもよい。本発明では、ルチル型チタニア及び/又はアナターゼ型チタニアからなるチタニア担体が好ましく、中でも、チタニア担体中のルチル型チタニア及びアナターゼ型チタニアに対するルチル型チタニアの比率(以下、ルチル型チタニア比率ということがある。)が20%以上のチタニア担体が好ましく、30%以上のチタニア担体がより好ましく、90%以上のチタニア担体がさらにより好ましい。ルチル型チタニア比率が高くなるほど、得られる担持酸化ルテニウムの触媒活性もより良好となる。上記ルチル型チタニア比率は、X線回折法(以下XRD法)により測定でき、以下の式(1)で示される。   Hereinafter, the present invention will be described in detail. The supported ruthenium oxide of the present invention is a supported ruthenium oxide in which ruthenium oxide and silica are supported on a titania carrier. Such titania carrier can be composed of rutile-type titania (titania having a rutile-type crystal structure), anatase-type titania (titania having an anatase-type crystal structure), amorphous titania, etc. You may consist of these mixtures. In the present invention, a titania carrier composed of rutile titania and / or anatase titania is preferable. Among them, the ratio of rutile titania to rutile titania and anatase titania in the titania carrier (hereinafter sometimes referred to as a rutile titania ratio). .) Is preferably 20% or more of a titania carrier, more preferably 30% or more of a titania carrier, and even more preferably 90% or more of a titania carrier. The higher the rutile-type titania ratio, the better the catalytic activity of the resulting supported ruthenium oxide. The rutile-type titania ratio can be measured by an X-ray diffraction method (hereinafter referred to as XRD method) and is represented by the following formula (1).

ルチル型チタニア比率[%]=〔I/(I+I)〕×100 (1) Rutile titania ratio [%] = [I R / (I A + I R) ] × 100 (1)

:ルチル型チタニア(110)面を示す回折線の強度
:アナターゼ型チタニア(101)面を示す回折線の強度
I R : Intensity of diffraction line showing rutile type titania (110) plane I A : Intensity of diffraction line showing anatase type titania (101) plane

尚、チタニア担体中にナトリウムやカルシウムが含まれていると、それらの含量が多いほど、得られる担持酸化ルテニウムの触媒活性が低くなる傾向があるので、ナトリウム含有量は200重量ppm以下であるのが好ましく、また、カルシウム含有量は200重量ppm以下であるのが好ましい。また、ナトリウム以外のアルカリ金属や、カルシウム以外のアルカリ土類金属も、得られる担持酸化ルテニウムの触媒活性に悪影響を及ぼしうるので、全アルカリ金属の含有量が200重量ppm以下であるのがより好ましく、また、全アルカリ土類金属の含有量が200重量ppm以下であるのがより好ましい。これらアルカリ金属やアルカリ土類金属の含有量は、例えば、誘導結合高周波プラズマ発光分光分析(以下、ICP分析ということがある。)、原子吸光分析、イオンクロマトグラフィー分析等で測定することができ、好ましくはICP分析で測定する。尚、チタニア担体の中にアルミナ、ジルコニア、酸化ニオブなどの酸化物が含まれていてもよい。   If the titania carrier contains sodium or calcium, the greater the content thereof, the lower the catalytic activity of the obtained supported ruthenium oxide, so the sodium content is 200 ppm by weight or less. The calcium content is preferably 200 ppm by weight or less. Further, since alkali metals other than sodium and alkaline earth metals other than calcium can adversely affect the catalytic activity of the obtained supported ruthenium oxide, the total alkali metal content is more preferably 200 ppm by weight or less. Moreover, it is more preferable that the content of the total alkaline earth metal is 200 ppm by weight or less. The content of these alkali metals and alkaline earth metals can be measured by, for example, inductively coupled plasma emission spectroscopy (hereinafter sometimes referred to as ICP analysis), atomic absorption analysis, ion chromatography analysis, etc. Preferably, it is measured by ICP analysis. The titania carrier may contain oxides such as alumina, zirconia and niobium oxide.

チタニア担体の比表面積は、窒素吸着法(BET法)で測定することができ、通常BET1点法で測定する。該測定により得られる比表面積は、通常5〜300m/gであり、好ましくは5〜50m/gである。比表面積が高すぎると、得られる担持酸化ルテニウムにおけるチタニアや酸化ルテニウムが焼結しやすくなり、熱安定性が低くなることがある。一方、比表面積が低すぎると、得られる担持酸化ルテニウムにおける酸化ルテニウムが分散しにくくなり、触媒活性が低くなることがある。 The specific surface area of the titania carrier can be measured by a nitrogen adsorption method (BET method), and is usually measured by a BET one-point method. The specific surface area obtained by the measurement is usually 5 to 300 m 2 / g, preferably 5 to 50 m 2 / g. When the specific surface area is too high, titania and ruthenium oxide in the obtained supported ruthenium oxide are easily sintered, and thermal stability may be lowered. On the other hand, if the specific surface area is too low, the ruthenium oxide in the obtained supported ruthenium oxide becomes difficult to disperse and the catalytic activity may be lowered.

チタニア担体には、粉末状やゾル状のチタニアを混練、成形し、次いで焼成したものを用いることができる。チタニア担体は、公知の方法に基づいて調製することができ、例えば、チタニア粉末やチタニアゾルを、有機バインダー等の成形助剤及び水と混練し、ヌードル状に押出成形した後、乾燥、破砕して成形体を得、次いで得られた成形体を空気等の酸化性ガス雰囲気下で焼成することで調製できる。   As the titania carrier, it is possible to use a powdered or sol-like titania kneaded and molded and then fired. The titania carrier can be prepared based on a known method. For example, titania powder or titania sol is kneaded with a molding aid such as an organic binder and water, extruded into a noodle shape, dried, crushed, and the like. It can be prepared by obtaining a shaped body and then firing the obtained shaped body in an oxidizing gas atmosphere such as air.

こうして得られるチタニア担体に酸化ルテニウム及びシリカを担持させる方法としては、チタニア担体にルテニウム化合物及びケイ素化合物を担持させた後、酸化性ガスの雰囲気下で焼成する方法が挙げられる。   Examples of the method of supporting the ruthenium oxide and silica on the titania support thus obtained include a method of supporting a ruthenium compound and a silicon compound on the titania support and then firing in an oxidizing gas atmosphere.

前記ルテニウム化合物としては、例えば、RuCl、RuBrの如きハロゲン化物、KRuCl、KRuClの如きハロゲノ酸塩、KRuOの如きオキソ酸塩、RuOCl、RuOCl、RuOClの如きオキシハロゲン化物、K[RuCl(HO)]、[RuCl(HO)]Cl、K[RuOCl10]、Cs[RuOCl]の如きハロゲノ錯体、[Ru(NHO]Cl、[Ru(NH3)Cl]Cl、[Ru(NH]Cl、[Ru(NH]Cl、[Ru(NH]Brの如きアンミン錯体、Ru(CO)、Ru(CO)12の如きカルボニル錯体、[RuO(OCOCH(HO)]OCOCH、[Ru(OCOR)]Cl(R=炭素数1〜3のアルキル基)の如きカルボキシラト錯体、K[RuCl(NO)]、[Ru(NH(NO)]Cl、[Ru(OH)(NH(NO)](NO、[Ru(NO)](NOの如きニトロシル錯体、ホスフィン錯体、アミン錯体、アセチルアセトナト錯体等が挙げられる。中でもハロゲン化物が好ましく用いられ、特に塩化物が好ましく用いられる。尚、ルテニウム化合物としては、必要に応じて、その水和物を使用してもよいし、また、それらの2種以上を使用してもよい。 As the ruthenium compound, for example, RuCl 3, such as halides RuBr 3, K 3 RuCl 6, K 2 RuCl such halogeno salt of 6, such as oxo acid salt of K 2 RuO 4, Ru 2 OCl 4, Ru 2 Oxyhalides such as OCl 5 and Ru 2 OCl 6 , K 2 [RuCl 5 (H 2 O) 4 ], [RuCl 2 (H 2 O) 4 ] Cl, K 2 [Ru 2 OCl 10 ], Cs 2 [ Halogeno complexes such as Ru 2 OCl 4 ], [Ru (NH 3 ) 5 H 2 O] Cl 2 , [Ru (NH 3) 5 Cl] Cl 2 , [Ru (NH 3 ) 6 ] Cl 2 , [Ru (NH 3) 6] Cl 3, [ Ru (NH 3) 6] such ammine complex of Br 3, Ru (CO) 5 , Ru 3 (CO) 12 , such as carbonyl complexes, [Ru 3 O (OCO H 3) 6 (H 2 O ) 3] OCOCH 3, [Ru 2 (OCOR) 4] Cl (R = alkyl group having 1 to 3 carbon atoms) such as carboxylato complexes, K 2 [RuCl 5 (NO )] , [Ru (NH 3 ) 5 (NO)] Cl 3 , [Ru (OH) (NH 3 ) 4 (NO)] (NO 3 ) 2 , [Ru (NO)] (NO 3 ) 3 Phosphine complex, amine complex, acetylacetonato complex, and the like. Of these, halides are preferably used, and chlorides are particularly preferably used. In addition, as a ruthenium compound, the hydrate may be used as needed, and those 2 or more types may be used.

ルテニウム化合物とチタニア担体の使用割合は、後述する焼成後に得られる担持酸化ルテニウム中の酸化ルテニウム/チタニア担体の重量比が、通常0.1/99.9〜20/80、好ましくは0.3/99.7〜10/85、より好ましくは0.5/99.5〜5/95となるように、適宜調整すればよい。酸化ルテニウムがあまり少ないと触媒活性が十分でないことがあり、あまり多いとコスト的に不利となる。加えて、チタニア担体に担持されたシリカ1モルに対し担持酸化ルテニウム中の酸化ルテニウムが0.1〜4モルとなるようにルテニウム化合物の使用量を調整するのが好ましく、0.3〜2モルとなるように調整するのがより好ましい。シリカ1モルに対する酸化ルテニウムのモル数が高すぎると、担持酸化ルテニウムの熱安定性が低くなることがあり、低すぎると、触媒活性が低くなることがある。   The use ratio of the ruthenium compound and the titania carrier is such that the weight ratio of the ruthenium oxide / titania carrier in the supported ruthenium oxide obtained after calcination described later is usually 0.1 / 99.9 to 20/80, preferably 0.3 / What is necessary is just to adjust suitably so that it may become 99.7-10 / 85, More preferably, it is 0.5 / 99.5-5 / 95. If there is too little ruthenium oxide, the catalytic activity may not be sufficient, and if it is too much, it will be disadvantageous in cost. In addition, the amount of ruthenium compound used is preferably adjusted so that the ruthenium oxide in the supported ruthenium oxide is 0.1 to 4 mol per mol of silica supported on the titania carrier, and 0.3 to 2 mol. It is more preferable to adjust so that. If the number of moles of ruthenium oxide relative to 1 mole of silica is too high, the thermal stability of the supported ruthenium oxide may be low, and if it is too low, the catalytic activity may be low.

前記ケイ素化合物としては、Si(OR)(以下、Rは炭素数1〜4のアルキル基を表す。)の如きケイ素アルコキシド化合物、塩化ケイ素(SiCl)、臭化ケイ素(SiBr)の如きハロゲン化ケイ素、SiCl(OR)、SiCl(OR)、SiCl(OR)の如きケイ素ハロゲン化物アルコキシド化合物、水酸化ケイ素化合物等が挙げられる。また、必要に応じて、その水和物を用いてもよいし、それらの2種以上を用いてもよい。本発明では、中でも、ケイ素アルコキシド化合物が好ましく、ケイ素テトラエトキシド、すなわちオルトケイ酸テトラエチル〔Si(OC〕がより好ましい。ケイ素化合物の使用量は、チタニア1モルに対し、通常0.001〜0.3モルであり、好ましくは0.002〜0.15モル、より好ましくは0.004〜0.03モルである。 Examples of the silicon compound include silicon alkoxide compounds such as Si (OR) 4 (hereinafter, R represents an alkyl group having 1 to 4 carbon atoms), silicon chloride (SiCl 4 ), and silicon bromide (SiBr 4 ). Examples thereof include silicon halides, silicon halide alkoxide compounds such as SiCl (OR) 3 , SiCl 2 (OR) 2 , SiCl 3 (OR), and silicon hydroxide compounds. Moreover, the hydrate may be used as needed and 2 or more types thereof may be used. In the present invention, among them, silicon alkoxide compounds are preferable, and silicon tetraethoxide, that is, tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] is more preferable. The usage-amount of a silicon compound is 0.001-0.3 mol normally with respect to 1 mol of titania, Preferably it is 0.002-0.15 mol, More preferably, it is 0.004-0.03 mol.

チタニア担体にルテニウム化合物及びケイ素化合物を担持させる方法としては、チタニア担体をルテニウム化合物及びケイ素化合物を含む酸性水溶液と接触処理する方法が挙げられる。接触処理において、処理時の温度は、通常0〜100℃、好ましくは0〜50℃であり、処理時の圧力は通常0.1〜1MPa、好ましくは大気圧である。また、かかる接触処理は、空気雰囲気下や、窒素、ヘリウム、アルゴン、二酸化酸素の如き不活性ガス雰囲気下で行うことができ、この際、水蒸気を含んでいてもよい。   Examples of the method for supporting the ruthenium compound and the silicon compound on the titania carrier include a method of contacting the titania carrier with an acidic aqueous solution containing the ruthenium compound and the silicon compound. In the contact treatment, the temperature during the treatment is usually 0 to 100 ° C., preferably 0 to 50 ° C., and the pressure during the treatment is usually 0.1 to 1 MPa, preferably atmospheric pressure. Such contact treatment can be performed in an air atmosphere or in an inert gas atmosphere such as nitrogen, helium, argon, oxygen dioxide, and may contain water vapor.

接触処理としては、含浸又は浸漬が挙げられる。前記酸性水溶液と接触処理する方法として、例えば、(A)チタニア担体にルテニウム化合物及びケイ素化合物を含む酸性水溶液を含浸させる、(B)チタニア担体をルテニウム化合物及びケイ素化合物を含む酸性水溶液に浸漬させる、(C)チタニア担体にケイ素化合物の酸性水溶液を含浸させた後に、ルテニウム化合物を含む水溶液を含浸させる、(D)チタニア担体をケイ素化合物の酸性水溶液に浸漬させた後に、ルテニウム化合物を含む水溶液に浸漬させる、(E)チタニア担体にケイ素化合物の酸性水溶液を含浸させた後、ルテニウム化合物を含む水溶液に浸漬させる、(F)チタニア担体をケイ素化合物の酸性水溶液に浸漬させた後、ルテニウム化合物を含む水溶液を含浸させる、(G)チタニア担体にルテニウム化合物を含む水溶液を含浸させた後、ケイ素化合物の酸性水溶液を含浸させる、(H)チタニア担体をルテニウム化合物を含む水溶液に浸漬させた後、ケイ素化合物の酸性水溶液に浸漬させる、(I)チタニア担体にルテニウム化合物を含む水溶液を含浸させた後、ケイ素化合物の酸性水溶液に浸漬させる、(H)チタニア担体をルテニウム化合物を含む水溶液に浸漬させた後、ケイ素化合物の酸性水溶液に含浸させる、等の方法が挙げられるが、(C)〜(H)の方法では、含浸及び/又は浸漬が2回実施されるのに対し、前記(A)又は(B)の方法では1回でよいため、コスト削減、生産管理の面で好ましい。特に、前記(A)の方法が好ましい。   Examples of the contact treatment include impregnation or immersion. Examples of the method for contact treatment with the acidic aqueous solution include (A) impregnating a titania carrier with an acidic aqueous solution containing a ruthenium compound and a silicon compound, and (B) immersing the titania carrier in an acidic aqueous solution containing a ruthenium compound and a silicon compound. (C) impregnating titania carrier with acidic aqueous solution of silicon compound and then impregnating aqueous solution containing ruthenium compound, (D) immersing titania carrier in acidic aqueous solution of silicon compound and then immersed in aqueous solution containing ruthenium compound (E) impregnating a titania carrier with an acidic aqueous solution of a silicon compound and then immersing it in an aqueous solution containing a ruthenium compound. (F) immersing the titania carrier in an acidic aqueous solution of a silicon compound and then containing an aqueous solution containing a ruthenium compound. (G) containing a ruthenium compound in a titania carrier After impregnating the solution, impregnating an acidic aqueous solution of the silicon compound, (H) immersing the titania carrier in an aqueous solution containing a ruthenium compound, and then immersing it in an acidic aqueous solution of the silicon compound. (I) ruthenium compound in the titania carrier. Impregnation with an aqueous solution containing silicon, soaking in an acidic aqueous solution of silicon compound, (H) soaking the titania carrier in an aqueous solution containing ruthenium compound, and then impregnating with an acidic aqueous solution of silicon compound. However, in the methods (C) to (H), impregnation and / or dipping is performed twice, whereas in the method (A) or (B), only one time is required. It is preferable in terms of In particular, the method (A) is preferred.

前記酸性水溶液において、ケイ素化合物として水への溶解度が低いケイ素アルコキシド化合物及び/又はケイ素ハロゲン化物アルコキシド化合物を使用する場合、それらのケイ素化合物は酸性水溶液中で加水分解されて溶解する。前記酸性水溶液を使用する際には、ケイ素化合物が酸性水溶液に溶解して均一な溶液となってから使用することが好ましい。但し、均一溶液になってからさらに攪拌を続けた場合や、長時間混合温度付近で放置した場合、前記酸性水溶液に不溶なシリカが生成することがある。このような液を使用してチタニア担体との接触処理を行うと、所定量のシリカをチタニア担体に担持できないといった問題や、担体上にシリカが不均一に担持される恐れがあり、その結果、担持酸化ルテニウム触媒の熱安定性が不十分となる。そのため、前記酸性水溶液が均一溶液になったのを確認した後は、すみやかに攪拌を止め、すみやかに前記接触処理に使用することが望ましい。前記酸性水溶液を保存する場合は凍らない程度に冷却して密閉保存することが望ましい。   In the acidic aqueous solution, when a silicon alkoxide compound and / or a silicon halide alkoxide compound having low solubility in water is used as the silicon compound, the silicon compound is hydrolyzed and dissolved in the acidic aqueous solution. When using the acidic aqueous solution, it is preferable to use it after the silicon compound is dissolved in the acidic aqueous solution to form a uniform solution. However, when stirring is continued after a uniform solution is obtained, or when the mixture is left for a long time near the mixing temperature, silica insoluble in the acidic aqueous solution may be generated. When the contact treatment with the titania support is performed using such a liquid, there is a problem that a predetermined amount of silica cannot be supported on the titania support, and the silica may be unevenly supported on the support. The thermal stability of the supported ruthenium oxide catalyst becomes insufficient. For this reason, after confirming that the acidic aqueous solution has become a homogeneous solution, it is desirable to immediately stop stirring and use it immediately for the contact treatment. When storing the acidic aqueous solution, it is desirable to store it in an airtight state by cooling it to the extent that it does not freeze.

また、前記酸性水溶液は、通常、ルテニウム化合物の存在により着色した水溶液となる。したがって、ケイ素化合物が溶解して溶液が均一になったかどうかや、溶液に不溶なシリカが生成していないかどうかを確認することが困難になることがあるので、まず、ケイ素化合物の酸性水溶液を調製し、1相の透明で均一な溶液となり、不溶なシリカが生成していないことを確認した後に、ルテニウム化合物を溶解させることが望ましい。ケイ素化合物の酸性水溶液が1相の透明で均一な溶液となっていることの確認は、目視によって行えば十分である。ケイ素化合物の酸性水溶液が1相の透明で均一な溶液となるまでの混合時間は、酸性水溶液に含まれる酸のケイ素化合物に対する使用量や、混合温度によって調整できる。酸のケイ素化合物に対する使用量が多すぎる場合や、混合温度が高すぎる場合には、混合液に不溶なシリカが生成して白濁し、目的の均一溶液を得ることができないことがある。後述する酸の適正使用量において、安定的に加水分解を進行させるためには、混合温度は60℃以下が好ましく、40℃以下がさらに好ましい。   The acidic aqueous solution is usually an aqueous solution colored by the presence of a ruthenium compound. Therefore, since it may be difficult to confirm whether the silicon compound is dissolved and the solution is uniform, or whether insoluble silica is not generated in the solution, first, an acidic aqueous solution of the silicon compound is added. It is desirable to dissolve the ruthenium compound after preparing and confirming that it is a one-phase transparent and uniform solution and that insoluble silica is not formed. It is sufficient to confirm that the acidic aqueous solution of the silicon compound is a one-phase transparent and uniform solution by visual inspection. The mixing time until the acidic aqueous solution of the silicon compound becomes a one-phase transparent and uniform solution can be adjusted by the amount of the acid contained in the acidic aqueous solution and the mixing temperature. When the amount of the acid used relative to the silicon compound is too large, or when the mixing temperature is too high, silica that is insoluble in the mixed solution is generated and becomes cloudy, and the desired uniform solution may not be obtained. The mixing temperature is preferably 60 ° C. or lower, and more preferably 40 ° C. or lower, in order to allow the hydrolysis to proceed stably in the appropriate amount of acid described below.

前記酸性水溶液に含まれる酸としては、塩化水素、硝酸等のように、一分子中に遊離可能な水素イオンを1個有する無機酸や、硫酸等のように、一分子中に遊離可能な水素イオンを2個有する無機酸や、リン酸等のように、一分子中に遊離可能な水素イオンを3個有する無機酸や、メタンスルホン酸、トリフルオロ酢酸等のように、一分子中に遊離可能な水素イオンを1個有する有機酸等を挙げることができ、水に可溶であることが必要である。また、酸が担持酸化ルテニウム触媒の表面上に残存していると活性の低下を引き起こす可能性があるため、後述する乾燥、焼成により、触媒上から酸は除去されることが好ましい。したがって、その際の除去が簡便に行える酸を使用することが望ましく、例えば、ルテニウム化合物及びケイ素化合物をチタニア担体に担持させた後に行う、後述する焼成時の焼成温度よりも沸点が低い酸を使用することが望ましい。但し、該焼成温度よりも沸点の高い酸を使用する場合でも、焼成後に適切に洗浄を行い、酸を除去できれば問題ないが、工程が増加、複雑化するため好ましくない。以上の点を考慮すると、前記酸としては、塩化水素が最も好ましい。   Examples of the acid contained in the acidic aqueous solution include inorganic acids having one hydrogen ion that can be liberated in one molecule such as hydrogen chloride and nitric acid, and hydrogen that can be liberated in one molecule such as sulfuric acid. Free in one molecule, such as inorganic acid having two ions, phosphoric acid, etc., inorganic acid having three free hydrogen ions in one molecule, methanesulfonic acid, trifluoroacetic acid, etc. The organic acid etc. which have one possible hydrogen ion can be mentioned, and it is necessary to be soluble in water. Further, if the acid remains on the surface of the supported ruthenium oxide catalyst, the activity may be lowered. Therefore, the acid is preferably removed from the catalyst by drying and firing described later. Therefore, it is desirable to use an acid that can be easily removed at that time. For example, an acid having a boiling point lower than the firing temperature at the time of firing described below, which is carried out after a ruthenium compound and a silicon compound are supported on a titania carrier, is used. It is desirable to do. However, even when an acid having a boiling point higher than the calcination temperature is used, there is no problem as long as the acid can be removed by appropriate washing after the calcination, but this is not preferable because the process is increased and complicated. Considering the above points, the acid is most preferably hydrogen chloride.

前記酸性水溶液に含まれる酸としては、装置の腐食を引き起こす可能性や酸性水溶液に不溶なシリカの生成を促進させる可能性を考慮すると、極力使用量が少ないことが望ましい。しかしながら、その使用量が少なすぎると、担持酸化ルテニウム触媒の性能が低下するといったことや、酸性水溶液が1相の透明で均一な溶液となるまでの混合時間が非常に長くなり効率が低下することがある。上記した40℃以下という混合温度条件において、ルテニウム化合物及びケイ素化合物の酸性水溶液に含まれる酸の使用量は、該水溶液の調製に使用されるケイ素化合物1モルに対して、酸から遊離可能な水素イオン量に換算して好ましくは0.0003〜3.5モルであり、さらに好ましくは0.003〜0.35モルである。酸から遊離可能な水素イオン量は、以下の式(2)で示される。   As the acid contained in the acidic aqueous solution, it is desirable that the amount used is as small as possible in consideration of the possibility of causing corrosion of the apparatus and the possibility of promoting the generation of silica insoluble in the acidic aqueous solution. However, if the amount used is too small, the performance of the supported ruthenium oxide catalyst is reduced, and the mixing time until the acidic aqueous solution becomes a one-phase transparent and uniform solution becomes very long and the efficiency is lowered. There is. Under the above mixed temperature condition of 40 ° C. or less, the amount of acid contained in the acidic aqueous solution of ruthenium compound and silicon compound is such that hydrogen that can be liberated from the acid with respect to 1 mol of the silicon compound used for the preparation of the aqueous solution. It is preferably 0.0003 to 3.5 mol, more preferably 0.003 to 0.35 mol in terms of ion amount. The amount of hydrogen ions that can be liberated from the acid is represented by the following formula (2).

酸から遊離可能な水素イオン量[モル]=酸の使用量[モル]×酸から遊離可能な水素イオンの数[−]×混合温度における酸の解離度[−] (2) Amount of hydrogen ion releasable from acid [mol] = Amount of acid used [mol] × number of hydrogen ions releasable from acid [−] × degree of dissociation of acid at mixing temperature [−] (2)

ルテニウム化合物及びケイ素化合物の酸性水溶液に含まれる水としては、蒸留水、イオン交換水、超純水などの純度の高い水が好ましい。使用する水に不純物が多く含まれると、かかる不純物が触媒に付着して、触媒の活性を低下させる場合がある。水の使用量は、前記酸性水溶液中のケイ素化合物1モルに対して、通常0.7〜5000モル、好ましくは1.5〜2500モル、より好ましくは7〜1500モルである。また、前記酸性水溶液中のルテニウム化合物1モルに対しては、通常1.5〜8000モル、好ましくは3〜2500モル、より好ましくは7〜1500モルである。チタニア担体にルテニウム化合物及びケイ素化合物を担持させるのに最低限必要な水の量は、使用するチタニア担体の総細孔容積から担持に使用する酸性水溶液に含まれるルテニウム化合物、ケイ素化合物及び酸の体積を除いた量である。   The water contained in the acidic aqueous solution of the ruthenium compound and silicon compound is preferably water with high purity such as distilled water, ion exchange water, or ultrapure water. If the water used contains a large amount of impurities, such impurities may adhere to the catalyst and reduce the activity of the catalyst. The usage-amount of water is 0.7-5000 mol normally with respect to 1 mol of silicon compounds in the said acidic aqueous solution, Preferably it is 1.5-2500 mol, More preferably, it is 7-1500 mol. Moreover, it is 1.5-8000 mol normally with respect to 1 mol of ruthenium compounds in the said acidic aqueous solution, Preferably it is 3-2500 mol, More preferably, it is 7-1500 mol. The minimum amount of water required to support the ruthenium compound and silicon compound on the titania support is from the total pore volume of the titania support used to the volume of the ruthenium compound, silicon compound and acid contained in the acidic aqueous solution used for the support. The amount excluding.

こうして、チタニア担体にルテニウム化合物及びケイ素化合物を担持させることができる。尚、ルテニウム化合物及びケイ素化合物の担持後は必要に応じて、例えば特開2000−229239号公報、特開2000−254502号公報、特開2000−281314号公報、特開2002−79093号公報等に記載される如く還元処理を行ってもよい。   Thus, the ruthenium compound and silicon compound can be supported on the titania carrier. In addition, after carrying | supporting a ruthenium compound and a silicon compound, for example in Unexamined-Japanese-Patent No. 2000-229239, Unexamined-Japanese-Patent No. 2000-254502, Unexamined-Japanese-Patent No. 2000-281314, Unexamined-Japanese-Patent No. 2002-79093 etc. Reduction processing may be performed as described.

前記チタニア担体にルテニウム化合物及びケイ素化合物を担持させた後、酸化性ガスの雰囲気下で焼成する。かかる焼成により、担持されたルテニウム化合物及びケイ素化合物は酸化ルテニウム及びシリカへと変換される。担持酸化ルテニウムを酸化反応触媒に使用する場合は、焼成後にケイ素化合物が全てシリカとなっている必要はなく、一部アルコキシド基や加水分解されたケイ素化合物が残存していても、該酸化反応の際にシリカに変換されるので問題は無い。酸化性ガスとは、酸化性物質を含むガスであり、例えば、酸素含有ガスが挙げられる。その酸素濃度は通常1〜30容量%程度である。この酸素源としては、通常、空気や純酸素が用いられ、必要に応じて不活性ガスで希釈される。酸化性ガスは、中でも、空気が好ましい。焼成温度は、通常100〜500℃、好ましくは200〜400℃である。   A ruthenium compound and a silicon compound are supported on the titania carrier, and then fired in an oxidizing gas atmosphere. By such firing, the supported ruthenium compound and silicon compound are converted into ruthenium oxide and silica. When the supported ruthenium oxide is used as an oxidation reaction catalyst, the silicon compound does not have to be all silica after calcination, and even if a part of the alkoxide group or the hydrolyzed silicon compound remains, the oxidation reaction can be performed. There is no problem because it is converted to silica. The oxidizing gas is a gas containing an oxidizing substance, and examples thereof include an oxygen-containing gas. The oxygen concentration is usually about 1 to 30% by volume. As the oxygen source, air or pure oxygen is usually used, and diluted with an inert gas as necessary. Of these, air is preferable as the oxidizing gas. A calcination temperature is 100-500 degreeC normally, Preferably it is 200-400 degreeC.

前記チタニア担体にルテニウム化合物及びケイ素化合物を担持させた後、乾燥し、次いで酸化性ガスの雰囲気下で焼成を行ってもよい。かかる乾燥方法としては、従来公知の方法を採用することができ、その温度は、通常、室温から100℃程度であり、その圧力は、通常0.001〜1MPa、好ましくは大気圧である。かかる乾燥は、空気雰囲気下や、窒素、ヘリウム、アルゴン、二酸化酸素の如き不活性ガス雰囲気下で行うことができ、この際、水蒸気を含んでいてもよい。   The titania carrier may be supported with a ruthenium compound and a silicon compound, dried, and then fired in an oxidizing gas atmosphere. As the drying method, a conventionally known method can be adopted, and the temperature is usually from room temperature to about 100 ° C., and the pressure is usually from 0.001 to 1 MPa, preferably atmospheric pressure. Such drying can be performed in an air atmosphere or an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide, and may contain water vapor.

前記焼成により、酸化ルテニウム及びシリカがチタニア担体に担持されてなる担持酸化ルテニウムを製造することができる。担持されている酸化ルテニウムにおけるルテニウムの酸化数は、通常+4であり、酸化ルテニウムとしては二酸化ルテニウム(RuO)であるが、他の酸化数のルテニウムないし他の形態の酸化ルテニウムが含まれていてもよい。 By the firing, a supported ruthenium oxide in which ruthenium oxide and silica are supported on a titania carrier can be produced. The ruthenium oxidation number in the supported ruthenium oxide is usually +4, and the ruthenium oxide is ruthenium dioxide (RuO 2 ), but other ruthenium oxides or other forms of ruthenium oxide are included. Also good.

本発明で製造される担持酸化ルテニウムにおいて、チタニア担体に担持されているシリカの被覆割合を、チタニア担体の比表面積に対するシリカの単分子被覆率θとして表すことができ、以下の式(3)で示される。   In the supported ruthenium oxide produced in the present invention, the coating ratio of the silica supported on the titania support can be expressed as the monomolecular coverage θ of the silica with respect to the specific surface area of the titania support. Indicated.

θ=am×A/S×100 (3)
θ:単分子被覆率[%]
S:チタニア担体の比表面積[m/g]
A:酸化ルテニウム及びシリカがチタニア担体に担持されてなる担持酸化ルテニウムにおける、チタニア担体1g当たりに担持されているシリカの分子数[個/g]
m:シリカの分子占有面積〔=0.139×10−18[m/個]〕
θ = a m × A / S × 100 (3)
θ: Monomolecular coverage [%]
S: Specific surface area of the titania carrier [m 2 / g]
A: Number of silica molecules supported per 1 g of titania support in supported ruthenium oxide in which ruthenium oxide and silica are supported on a titania support [pieces / g]
a m : molecular occupation area of silica [= 0.139 × 10 −18 [m 2 / piece]]

尚、上記シリカの分子占有面積amは、以下の式(4)から求められる値である。
m=1.091(M/(Nd))2/3 (4)
:シリカの分子量〔=60.07[g/mol]〕
N:アボガドロ数〔=6.02×1023[個]〕
d:シリカの真密度〔=2.2×10[g/m]〕
Incidentally, molecular area a m of the silica is a value calculated from the following equation (4).
a m = 1.091 (M w / (Nd)) 2/3 (4)
M w : Molecular weight of silica [= 60.07 [g / mol]]
N: Avogadro number [= 6.02 × 10 23 [pieces]]
d: True density of silica [= 2.2 × 10 6 [g / m 3 ]]

上記単分子被覆率θは、通常10〜200%であり、好ましくは10〜150%であり、さらに好ましくは40〜140%である。即ち、このような値となるように、チタニア担体調製時にケイ素化合物等の使用量を適宜調整する。かかる単分子被覆率θが低すぎると、焼成後に得られる担持酸化ルテニウムにおけるチタニアや酸化ルテニウムが焼結しやすくなり、熱安定性が低くなることがある。また、単分子被覆率θが高すぎると、ルテニウム化合物がチタニア上に担持されにくくなり、得られる担持酸化ルテニウムの触媒活性が低くなることがある。   The monomolecular coverage θ is usually 10 to 200%, preferably 10 to 150%, and more preferably 40 to 140%. That is, the amount of silicon compound and the like used is appropriately adjusted when preparing the titania carrier so as to have such a value. When the monomolecular coverage θ is too low, titania or ruthenium oxide in the supported ruthenium oxide obtained after firing is likely to sinter and thermal stability may be lowered. On the other hand, if the monomolecular coverage θ is too high, the ruthenium compound is hardly supported on titania, and the catalytic activity of the obtained supported ruthenium oxide may be lowered.

かくして製造される担持酸化ルテニウムを触媒に用い、この触媒の存在下で塩化水素を酸素で酸化することにより、塩素を効率的に製造することができる。反応方式としては、流動床、固定床、移動床等の反応方式が採用可能であり、断熱方式又は熱交換方式の固定床反応器が好ましい。断熱方式の固定床反応器を用いる場合には、単管式固定床反応器、多管式固定床反応器のいずれも使用することができるが、単管式固定床反応器を好ましく使用することができる。熱交換方式の固定床反応器を用いる場合には、単管式固定床反応器、多管式固定床反応器のいずれも使用することができるが、多管式固定床反応器を好ましく使用することができる。   The supported ruthenium oxide thus produced is used as a catalyst, and chlorine can be efficiently produced by oxidizing hydrogen chloride with oxygen in the presence of this catalyst. As the reaction method, a reaction method such as a fluidized bed, a fixed bed, or a moving bed can be adopted, and an adiabatic or heat exchange type fixed bed reactor is preferable. When an adiabatic fixed bed reactor is used, either a single tube fixed bed reactor or a multitubular fixed bed reactor can be used, but a single tube fixed bed reactor is preferably used. Can do. When a heat exchange type fixed bed reactor is used, either a single-tube fixed bed reactor or a multi-tube fixed bed reactor can be used, but a multi-tube fixed bed reactor is preferably used. be able to.

この酸化反応は平衡反応であり、あまり高温で行うと平衡転化率が下がるため、比較的低温で行うのが好ましく、反応温度は、通常100〜500℃、好ましくは200〜450℃である。また、反応圧力は、通常0.1〜5MPa程度である。酸素源としては、空気を使用してもよいし、純酸素を使用してもよい。塩化水素に対する酸素の理論モル量は1/4モルであるが、通常、この理論量の0.1〜10倍の酸素が使用される。また、塩化水素の供給速度は、触媒1Lあたりのガス供給速度(L/h;0℃、1気圧換算)、すなわちGHSVで表して、通常10〜20000h−1程度である。 This oxidation reaction is an equilibrium reaction, and if it is carried out at a very high temperature, the equilibrium conversion rate is lowered. Therefore, the oxidation reaction is preferably carried out at a relatively low temperature, and the reaction temperature is usually 100 to 500 ° C., preferably 200 to 450 ° C. The reaction pressure is usually about 0.1 to 5 MPa. As the oxygen source, air or pure oxygen may be used. The theoretical molar amount of oxygen with respect to hydrogen chloride is 1/4 mole, but usually 0.1 to 10 times the theoretical amount of oxygen is used. Further, the supply rate of hydrogen chloride is usually about 10 to 20000 h −1 in terms of gas supply rate per 1 L of catalyst (L / h; 0 ° C., converted to 1 atm), that is, GHSV.

以上、本発明の好ましい実施形態を説明したが、本発明はかかる実施形態に限定されるものではない。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to this embodiment.

以下に本発明の実施例を示すが、本発明はこれらによって限定されるものではない。   Examples of the present invention will be shown below, but the present invention is not limited thereto.

実施例1
(担体の調製)
チタニア粉末〔昭和タイタニウム(株)製のF−1R、ルチル型チタニア比率93%〕100部と有機バインダー2部〔ユケン工業(株)製のYB−152A〕とを混合し、次いで純水29部、チタニアゾル〔堺化学(株)製のCSB、チタニア含有量40%〕12.5部を加えて混練した。この混合物を直径3.0mmφのヌードル状に押出し、60℃で2時間乾燥した後、長さ3〜5mm程度に破砕した。得られた成形体を、空気中で室温から600℃まで1.7時間かけて昇温した後、同温度で3時間保持して焼成し、白色のチタニア担体(比表面積:16m/g)を得た。
Example 1
(Preparation of carrier)
100 parts of titania powder [Showa Titanium Co., Ltd. F-1R, rutile type titania ratio 93%] and 2 parts of organic binder [YB-152A made by Yuken Industry Co., Ltd.] were mixed, and then 29 parts of pure water 12.5 parts of titania sol [CSB manufactured by Sakai Chemical Co., Ltd., titania content 40%] was added and kneaded. This mixture was extruded into a noodle shape having a diameter of 3.0 mmφ, dried at 60 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm. The obtained molded body was heated in air from room temperature to 600 ° C. over 1.7 hours, then held at the same temperature for 3 hours and fired to obtain a white titania carrier (specific surface area: 16 m 2 / g). Got.

(担持酸化ルテニウムの製造)
50mlのガラス製サンプル瓶に0.10重量%塩酸10.39gとオルトケイ酸テトラエチル〔和光純薬工業(株)製のSi(OC〕1.71gを入れ溶液が透明で均一になるまで室温で攪拌を行った。尚、溶液が均一になるまでの時間は約2時間であった。得られた溶液を4.84g計りとり、そこに塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕0.486gを溶解させ、得られた溶液(塩化水素から遊離可能な水素イオン量/オルトケイ酸テトラエチル=0.033(モル比))を上記チタニア担体20.00gに含浸させた後、空気雰囲気下、室温で2日間乾燥し、21.36gの茶色の固体が得られた。得られた固体の内10.04gを、空気流通下、室温から300℃まで1.3時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が0.96重量%、酸化ルテニウムの含有量が1.25重量%である青灰色の担持酸化ルテニウム9.67gを得た。
(Production of supported ruthenium oxide)
In a 50 ml glass sample bottle, put 10.39 g of 0.10 wt% hydrochloric acid and 1.71 g of tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] manufactured by Wako Pure Chemical Industries, Ltd.] Stir at room temperature until complete. The time until the solution became uniform was about 2 hours. 4.84 g of the obtained solution was weighed, and 0.486 g of ruthenium chloride hydrate (RuCl 3 · nH 2 O manufactured by NE Chemcat Co., Ru content 40.0 wt%) was dissolved therein. 20.00 g of the titania support was impregnated with the obtained solution (hydrogen ion amount releasable from hydrogen chloride / tetraethyl orthosilicate = 0.033 (molar ratio)), and then dried for 2 days at room temperature in an air atmosphere. 21.36 g of a brown solid was obtained. Of the obtained solid, 10.04 g was heated from room temperature to 300 ° C. over 1.3 hours under air flow, then calcined by holding at that temperature for 2 hours, and the silica content was 0.96. 9.67 g of blue-gray-supported ruthenium oxide having a weight% of ruthenium oxide content of 1.25% by weight was obtained.

(担持酸化ルテニウムの熱安定性試験)
上記で得られた担持酸化ルテニウム1.2gを、石英製反応管(内径21mm)に充填した。この中に、塩化水素ガスを0.086mol/h(0℃、1気圧換算で1.9L/h)、及び酸素ガスを0.075mol/h(0℃、1気圧換算で1.7L/h)、塩素ガスを0.064mol/h(0℃、1気圧換算で1.4L/h)、水蒸気を0.064mol/h(0℃、1気圧換算で1.4L/h)の速度で常圧下に供給し、触媒層を435〜440℃に加熱して反応を行った。反応開始50時間後の時点で、反応を停止し、窒素ガスを0.214mol/h(0℃、1気圧換算で4.8L/h)の速度で供給しながら冷却した。
(Thermal stability test of supported ruthenium oxide)
A quartz reaction tube (21 mm inner diameter) was charged with 1.2 g of the supported ruthenium oxide obtained above. In this, 0.086 mol / h of hydrogen chloride gas (1.9 L / h in terms of 0 ° C. and 1 atm) and 0.075 mol / h of oxygen gas (1.7 L / h in terms of 1 atm at 0 ° C.) ), Chlorine gas at a rate of 0.064 mol / h (1.4 liter / h in terms of 1 atm at 0 ° C.) and water vapor at a rate of 0.064 mol / h (1.4 liter / h in terms of 1 atm at 0 ° C.) The reaction was carried out by supplying under pressure and heating the catalyst layer to 435 to 440 ° C. At 50 hours after the start of the reaction, the reaction was stopped, and cooling was performed while supplying nitrogen gas at a rate of 0.214 mol / h (0 ° C., 4.8 L / h in terms of 1 atm).

(熱安定性試験後の担持酸化ルテニウムの活性評価)
上記熱安定性試験に付された担持酸化ルテニウム1.2gのうち、1.0gを分取し、直径2mmのα−アルミナ球〔ニッカトー(株)製のSSA995〕12gで希釈し、ニッケル製反応管(内径14mm)に充填し、さらに反応管のガス入口側に上と同じα−アルミナ球12gを予熱層として充填した。この中に、塩化水素ガスを0.214mol/h(0℃、1気圧換算で4.8L/h)、及び酸素ガスを0.107mol/h(0℃、1気圧換算で2.4L/h)の速度で常圧下に供給し、触媒層を282〜283℃に加熱して反応を行った。反応開始1.5時間後の時点で、反応管出口のガスを30%ヨウ化カリウム水溶液に流通させることによりサンプリングを20分間行い、ヨウ素滴定法により塩素の生成量を測定し、塩素の生成速度(mol/h)を求めた。この塩素の生成速度と上記の塩化水素の供給速度から、下式より塩化水素の転化率を計算し、表1に示した。
(Activity evaluation of supported ruthenium oxide after thermal stability test)
Of 1.2 g of supported ruthenium oxide subjected to the above thermal stability test, 1.0 g was collected and diluted with 12 g of α-alumina sphere having a diameter of 2 mm [SSA995 manufactured by Nikkato Co., Ltd.] The tube (inner diameter 14 mm) was filled, and the same α-alumina sphere 12 g as above was filled as a preheating layer on the gas inlet side of the reaction tube. In this, 0.214 mol / h of hydrogen chloride gas (4.8 L / h in terms of 0 ° C. and 1 atm) and 0.107 mol / h of oxygen gas (2.4 L / h in terms of 0 atm and 1 atm) ) Under normal pressure and the catalyst layer was heated to 282 to 283 ° C. to carry out the reaction. At 1.5 hours after the start of the reaction, sampling was performed for 20 minutes by circulating the gas at the outlet of the reaction tube through a 30% aqueous solution of potassium iodide, the amount of chlorine produced was measured by iodine titration, and the chlorine production rate. (Mol / h) was determined. The conversion rate of hydrogen chloride was calculated from the following formula from the chlorine production rate and the above-mentioned hydrogen chloride supply rate, and is shown in Table 1.

塩化水素の転化率(%)=〔塩素の生成速度(mol/h)×2÷塩化水素の供給速度(mol/h)〕×100   Hydrogen chloride conversion rate (%) = [chlorine production rate (mol / h) × 2 ÷ hydrogen chloride supply rate (mol / h)] × 100

実施例2
(担体の調製、担持酸化ルテニウムの製造とその評価)
(担持酸化ルテニウムの製造)において含浸後の乾燥時間を1日間とした以外は、実施例1と同様の方法で担持酸化ルテニウムを製造した。含浸後の乾燥によって24.42gの茶色の固体が得られた。得られた固体10.52gを、空気流通下、室温から300℃まで1.3時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が0.96重量%、酸化ルテニウムの含有量が1.25重量%である青灰色の担持酸化ルテニウム8.96gを得た。得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
Example 2
(Preparation of carrier, production of supported ruthenium oxide and its evaluation)
A supported ruthenium oxide was produced in the same manner as in Example 1 except that the drying time after impregnation was 1 day in (Production of supported ruthenium oxide). Drying after impregnation gave 24.42 g of a brown solid. The obtained solid (10.52 g) was heated from room temperature to 300 ° C. over 1.3 hours under air flow, then calcined by holding at the same temperature for 2 hours, and the silica content was 0.96 wt% Thus, 8.96 g of blue-gray-supported ruthenium oxide having a ruthenium oxide content of 1.25% by weight was obtained. The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

実施例3
(担体の調製、担持酸化ルテニウムの製造とその評価)
(担持酸化ルテニウムの製造)において室温から300℃まで1.3時間かけて昇温したところを室温から250℃まで1.1時間かけて昇温した以外は、実施例1と同様の方法で、担持酸化ルテニウムを製造した。得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
Example 3
(Preparation of carrier, production of supported ruthenium oxide and its evaluation)
In the same manner as in Example 1 except that the temperature was raised from room temperature to 300 ° C. over 1.3 hours in (production of supported ruthenium oxide) over 1.1 hours from room temperature to 250 ° C. Supported ruthenium oxide was produced. The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

実施例4
(担体の調製、担持酸化ルテニウムの製造とその評価)
(担持酸化ルテニウムの製造)において室温から300℃まで1.3時間かけて昇温したところを室温から350℃まで1.5時間かけて昇温した以外は、実施例1と同様の方法で、担持酸化ルテニウムを製造した。得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
Example 4
(Preparation of carrier, production of supported ruthenium oxide and its evaluation)
In the same manner as in Example 1 except that the temperature was raised from room temperature to 300 ° C. over 1.3 hours in (production of supported ruthenium oxide) over 1.5 hours from room temperature to 350 ° C. Supported ruthenium oxide was produced. The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

実施例5
(担体の調製、担持酸化ルテニウムの製造とその評価)
(担持酸化ルテニウムの製造)において0.10重量%塩酸10.39gに代えて0.01重量%塩酸10.32gを使用した以外は、実施例1と同様の方法で、担持酸化ルテニウムを製造した。得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
Example 5
(Preparation of carrier, production of supported ruthenium oxide and its evaluation)
A supported ruthenium oxide was produced in the same manner as in Example 1 except that in the production of supported ruthenium oxide, 10.32 g of 0.01 wt% hydrochloric acid was used instead of 10.39 g of 0.10 wt% hydrochloric acid. . The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

実施例6
(担体の調製、担持酸化ルテニウムの製造とその評価)
(担持酸化ルテニウムの製造)において0.10重量%塩酸10.39gに代えて1.0重量%塩酸10.31gを使用した以外は、実施例1と同様の方法で、担持酸化ルテニウムを製造した。得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
Example 6
(Preparation of carrier, production of supported ruthenium oxide and its evaluation)
A supported ruthenium oxide was prepared in the same manner as in Example 1 except that 10.31 g of 1.0 wt% hydrochloric acid was used instead of 10.39 g of 0.10 wt% hydrochloric acid in (Production of supported ruthenium oxide). . The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

実施例7
(担体の調製)
実施例1と同様の方法で白色のチタニア担体を得た。
Example 7
(Preparation of carrier)
A white titania carrier was obtained in the same manner as in Example 1.

(担持酸化ルテニウムの製造)
50mlのガラス製サンプル瓶に0.10重量%塩酸22.54gとオルトケイ酸テトラエチル〔和光純薬工業(株)製のSi(OC〕1.77gを入れ溶液が透明で均一になるまで室温で攪拌を行った。尚、溶液が均一になるまでの時間は約1時間であった。得られた溶液を2.43g計りとり、そこに塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕0.242gを溶解させ、得られた溶液(塩化水素から遊離可能な水素イオン量/オルトケイ酸テトラエチル=0.073(モル比))を上記チタニア担体10.01gに含浸させた後、空気雰囲気下、室温で2日間乾燥し、10.67gの茶色の固体が得られた。得られた固体の内5.02gを、空気流通下、室温から250℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が0.50重量%、酸化ルテニウムの含有量が1.25重量%である青灰色の担持酸化ルテニウム4.83gを得た。
(Production of supported ruthenium oxide)
Put 50.25 g of 0.10 wt% hydrochloric acid and 1.77 g of tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] manufactured by Wako Pure Chemical Industries, Ltd.) in a 50 ml glass sample bottle. Stir at room temperature until complete. The time until the solution became uniform was about 1 hour. 2.43 g of the obtained solution was weighed, and 0.242 g of ruthenium chloride hydrate (Nu Chemcat Co., Ltd. RuCl 3 · nH 2 O, Ru content 40.0 wt%) was dissolved therein to obtain 10.01 g of the titania carrier was impregnated with the obtained solution (hydrogen ion amount releasable from hydrogen chloride / tetraethyl orthosilicate = 0.073 (molar ratio)), and then dried at room temperature for 2 days in an air atmosphere. 10.67 g of a brown solid was obtained. Of the obtained solid, 5.02 g of the solid was heated from room temperature to 250 ° C. over 1.1 hours under air flow, and then calcined by holding at that temperature for 2 hours, so that the silica content was 0.50. 4.83 g of blue-gray-supported ruthenium oxide having a weight% ruthenium oxide content of 1.25% by weight was obtained.

(担持酸化ルテニウムの評価)
得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
(Evaluation of supported ruthenium oxide)
The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

実施例8
(担体の調製)
実施例1と同様の方法で白色のチタニア担体を得た。
Example 8
(Preparation of carrier)
A white titania carrier was obtained in the same manner as in Example 1.

(担持酸化ルテニウムの製造)
30mlのガラス製サンプル瓶に0.10重量%塩酸9.78gとオルトケイ酸テトラエチル〔和光純薬工業(株)製のSi(OC〕2.23gを入れ溶液が透明で均一になるまで室温で攪拌を行った。尚、溶液が均一になるまでの時間は約0.5時間であった。得られた溶液を2.41g計りとり、そこに塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕0.244gを溶解させ、得られた溶液(塩化水素から遊離可能な水素イオン量/オルトケイ酸テトラエチル=0.025(モル比))を上記チタニア担体10.00gに含浸させた後、空気雰囲気下、室温で2日間乾燥し、10.87gの茶色の固体が得られた。得られた固体の内5.02gを、空気流通下、室温から250℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が1.26重量%、酸化ルテニウムの含有量が1.25重量%である青灰色の担持酸化ルテニウム4.79gを得た。
(Production of supported ruthenium oxide)
Into a 30 ml glass sample bottle, 9.78 g of 0.10% by weight hydrochloric acid and 2.23 g of tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] manufactured by Wako Pure Chemical Industries, Ltd.) were put into a transparent and uniform solution. Stir at room temperature until complete. The time until the solution became uniform was about 0.5 hours. 2.41 g of the obtained solution was weighed and 0.244 g of ruthenium chloride hydrate (RuCl 3 · nH 2 O manufactured by NE Chemcat Co., Ltd., Ru content 40.0 wt%) dissolved therein was obtained. 10.00 g of the titania support was impregnated with the resulting solution (the amount of hydrogen ions that can be liberated from hydrogen chloride / tetraethyl orthosilicate = 0.025 (molar ratio)), and then dried at room temperature for 2 days in an air atmosphere. 10.87 g of a brown solid was obtained. 5.02 g of the obtained solid was heated from room temperature to 250 ° C. over 1.1 hours under air flow, and then calcined by holding at the same temperature for 2 hours, so that the silica content was 1.26. 4.79 g of blue-gray-supported ruthenium oxide having a weight% ruthenium oxide content of 1.25% by weight was obtained.

(担持酸化ルテニウムの評価)
得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
(Evaluation of supported ruthenium oxide)
The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

実施例9
(担体の調製)
実施例1と同様の方法で白色のチタニア担体を得た。
Example 9
(Preparation of carrier)
A white titania carrier was obtained in the same manner as in Example 1.

(担持酸化ルテニウムの製造)
30mlのガラス製サンプル瓶に0.10重量%塩酸9.34gとオルトケイ酸テトラエチル〔和光純薬工業(株)製のSi(OC〕2.68gを入れ溶液が透明で均一になるまで室温で攪拌を行った。尚、溶液が均一になるまでの時間は約0.5時間であった。得られた溶液を2.40g計りとり、そこに塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕0.245gを溶解させ、得られた溶液(塩化水素から遊離可能な水素イオン量/オルトケイ酸テトラエチル=0.020(モル比))を上記チタニア担体10.01gに含浸させた後、空気雰囲気下、室温で2日間乾燥し、11.06gの茶色の固体が得られた。得られた固体の内5.04gを、空気流通下、室温から250℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が1.50重量%、酸化ルテニウムの含有量が1.25重量%である青灰色の担持酸化ルテニウム4.76gを得た。
(Production of supported ruthenium oxide)
Into a 30 ml glass sample bottle, 9.34 g of 0.10 wt% hydrochloric acid and 2.68 g of tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] manufactured by Wako Pure Chemical Industries, Ltd.) are placed in a transparent and uniform solution. Stir at room temperature until complete. The time until the solution became uniform was about 0.5 hours. 2.40 g of the obtained solution was weighed, and 0.245 g of ruthenium chloride hydrate (Ne Chemcat Co., Ltd. RuCl 3 .nH 2 O, Ru content 40.0 wt%) was dissolved therein. The obtained solution (the amount of hydrogen ions that can be liberated from hydrogen chloride / tetraethyl orthosilicate = 0.020 (molar ratio)) was impregnated in 10.01 g of the titania support, and then dried at room temperature for 2 days in an air atmosphere. 11.06 g of a brown solid was obtained. Of the obtained solid, 5.04 g of the solid was heated from room temperature to 250 ° C. over 1.1 hours under air flow, then held at the same temperature for 2 hours and fired, and the silica content was 1.50. 4.76 g of blue-gray-supported ruthenium oxide having a weight% of ruthenium oxide content of 1.25% by weight was obtained.

(担持酸化ルテニウムの評価)
得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
(Evaluation of supported ruthenium oxide)
The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

実施例10
(担体の調製)
実施例1と同様の方法で白色のチタニア担体を得た。
Example 10
(Preparation of carrier)
A white titania carrier was obtained in the same manner as in Example 1.

(担持酸化ルテニウムの製造)
30mlのガラス製サンプル瓶に0.10重量%塩酸9.27gとオルトケイ酸テトラエチル〔和光純薬工業(株)製のSi(OC〕1.61gを入れ溶液が透明で均一になるまで室温で攪拌を行った。尚、溶液が均一になるまでの時間は約1時間であった。得られた溶液を2.42g計りとり、そこに塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕0.392gを溶解させ、得られた溶液(塩化水素から遊離可能な水素イオン量/オルトケイ酸テトラエチル=0.033(モル比))を上記チタニア担体10.01gに含浸させた後、空気雰囲気下、室温で2日間乾燥し、10.94gの茶色の固体が得られた。得られた固体の内5.01gを、空気流通下、室温から250℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が1.00重量%、酸化ルテニウムの含有量が2.0重量%である青灰色の担持酸化ルテニウム4.87gを得た。
(担持酸化ルテニウムの評価)
得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
(Production of supported ruthenium oxide)
Into a 30 ml glass sample bottle, 9.27 g of 0.10 wt% hydrochloric acid and 1.61 g of tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] manufactured by Wako Pure Chemical Industries, Ltd.) are placed in a transparent and uniform solution. Stir at room temperature until complete. The time until the solution became uniform was about 1 hour. 2.42 g of the obtained solution was weighed, and 0.392 g of ruthenium chloride hydrate (RuCl 3 · nH 2 O manufactured by NE Chemcat Co., Ltd., Ru content 40.0 wt%) was dissolved therein. 10.01 g of the titania support was impregnated with the obtained solution (hydrogen ion amount releasable from hydrogen chloride / tetraethyl orthosilicate = 0.033 (molar ratio)), and then dried for 2 days at room temperature in an air atmosphere. 10.94 g of a brown solid was obtained. 5.01 g of the obtained solid was heated from room temperature to 250 ° C. over 1.1 hours under air flow, then held at the same temperature for 2 hours and calcined, and the silica content was 1.00. 4.87 g of blue-gray-supported ruthenium oxide having a weight% of ruthenium oxide content of 2.0% by weight was obtained.
(Evaluation of supported ruthenium oxide)
The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

比較例1
(担体の調製)
実施例1と同様の方法で白色のチタニア担体を得た。
Comparative Example 1
(Preparation of carrier)
A white titania carrier was obtained in the same manner as in Example 1.

(担持酸化ルテニウムの製造)
上記で得られたチタニア担体10.00gに、オルトケイ酸テトラエチル〔和光純薬工業(株)製のSi(OC〕0.357gをエタノール1.65gに溶解して調製した溶液を含浸させ、空気雰囲気下、室温で1日間乾燥した。得られた固体10.08gを、空気流通下、室温から300℃まで1.3時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が1.02重量%である白色のシリカ担持チタニア10.05gを得た。得られたシリカ担持チタニアに、塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕0.243gを純水2.25gに溶解して調製した水溶液を含浸させ、空気雰囲気下、24℃で1日間乾燥した。得られた固体10.53gを、空気流通下、室温から250℃まで1.3時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が1.01重量%、酸化ルテニウムの含有量が1.25重量%である青灰色の担持酸化ルテニウム10.14gを得た。
(Production of supported ruthenium oxide)
A solution prepared by dissolving 0.357 g of tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] manufactured by Wako Pure Chemical Industries, Ltd.) in 1.65 g of ethanol in 10.00 g of the titania carrier obtained above. Impregnation and drying for 1 day at room temperature under air atmosphere. The obtained solid (10.08 g) was heated from room temperature to 300 ° C. over 1.3 hours under air flow, then calcined by holding at the same temperature for 2 hours, and the silica content was 1.02% by weight. As a result, 10.05 g of white silica-supported titania was obtained. In the obtained silica-supported titania, 0.243 g of ruthenium chloride hydrate (Ne Chemcat Co., Ltd. RuCl 3 · nH 2 O, Ru content 40.0 wt%) was dissolved in 2.25 g of pure water. The prepared aqueous solution was impregnated and dried at 24 ° C. for 1 day in an air atmosphere. The obtained solid (10.53 g) was heated from room temperature to 250 ° C. over 1.3 hours under air flow, then calcined by holding at the same temperature for 2 hours, and the silica content was 1.01 wt% Thus, 10.14 g of blue-gray-supported ruthenium oxide having a ruthenium oxide content of 1.25% by weight was obtained.

(担持酸化ルテニウムの評価)
得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
(Evaluation of supported ruthenium oxide)
The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

比較例2
(担体の調製)
実施例1と同様の方法で白色のチタニア担体を得た。
Comparative Example 2
(Preparation of carrier)
A white titania carrier was obtained in the same manner as in Example 1.

(担持酸化ルテニウムの製造)
上記で得られたチタニア担体20.01gに、塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕0.487gを純水4.29gに溶解して調製した水溶液を含浸させ、空気雰囲気下、室温で2日間乾燥した。得られた固体の内10.02gを、空気流通下、室温から250℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成し、酸化ルテニウムの含有量が1.27重量%である青灰色の酸化ルテニウム担持チタニア9.83gを得た。得られた酸化ルテニウム担持チタニアに、オルトケイ酸テトラエチル〔和光純薬工業(株)製のSi(OC〕0.355gをエタノール1.62gに溶解して調製した溶液を含浸させ、空気雰囲気下、室温で1日間乾燥した。得られた固体を、空気流通下、室温から300℃まで1.3時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が1.00重量%、酸化ルテニウムの含有量が1.25重量%である青灰色の担持酸化ルテニウム9.50gを得た。
(Production of supported ruthenium oxide)
0.487 g of ruthenium chloride hydrate (Ne Chemcat Co., Ltd. RuCl 3 · nH 2 O, Ru content 40.0 wt%) was added to 20.01 g of the titania carrier obtained above. An aqueous solution prepared by dissolving in water was impregnated and dried in an air atmosphere at room temperature for 2 days. In the obtained solid, 10.02 g was heated from room temperature to 250 ° C. over 1.1 hours under air flow, and then calcined by holding at the same temperature for 2 hours, so that the content of ruthenium oxide was 1. As a result, 9.83 g of a blue-gray ruthenium oxide-supporting titania of 27% by weight was obtained. The obtained ruthenium oxide-supporting titania was impregnated with a solution prepared by dissolving 0.355 g of tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 ] manufactured by Wako Pure Chemical Industries, Ltd. in 1.62 g of ethanol, The film was dried at room temperature for 1 day in an air atmosphere. The obtained solid was heated from room temperature to 300 ° C. over 1.3 hours under air flow, then held at the same temperature for 2 hours and calcined, and the silica content was 1.00% by weight, ruthenium oxide As a result, 9.50 g of blue-gray-supported ruthenium oxide having a content of 1.25% by weight was obtained.

(担持酸化ルテニウムの評価)
得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
(Evaluation of supported ruthenium oxide)
The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

比較例3
(担体の調製)
実施例1と同様の方法で白色のチタニア担体を得た。
Comparative Example 3
(Preparation of carrier)
A white titania carrier was obtained in the same manner as in Example 1.

(担持酸化ルテニウムの製造)
上記で得られたチタニア担体チタニア担体10.00gに、塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕0.243g及びオルトケイ酸テトラエチル〔和光純薬工業(株)製のSi(OC〕0.360gをエタノール1.62gに溶解して調整した溶液を含浸させ、空気雰囲気下、室温で2日間乾燥し、10.54gの茶色の固体が得られた。得られた固体の内2.51gを、空気流通下、室温から250℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成し、シリカの含有量が1.01重量%、酸化ルテニウムの含有量が1.25重量%である青灰色の担持酸化ルテニウム2.47gを得た。
(Production of supported ruthenium oxide)
To 10.00 g of the titania carrier titania carrier obtained above, 0.243 g of ruthenium chloride hydrate [Nu Chemcat Co., Ltd. RuCl 3 · nH 2 O, Ru content 40.0 wt%] and tetraethyl orthosilicate [Si (OC 2 H 5 ) 4 manufactured by Wako Pure Chemical Industries, Ltd.] impregnated with a solution prepared by dissolving 0.360 g in 1.62 g of ethanol, dried at room temperature for 2 days in an air atmosphere, 10 .54 g of a brown solid was obtained. 2.51 g of the obtained solid was heated from room temperature to 250 ° C. over 1.1 hours under air flow, and then calcined by holding at the same temperature for 2 hours, so that the silica content was 1.01. There were obtained 2.47 g of blue-gray-supported ruthenium oxide having a weight% ruthenium oxide content of 1.25% by weight.

(担持酸化ルテニウムの評価)
得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
(Evaluation of supported ruthenium oxide)
The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

比較例4
(担体の調製、担持酸化ルテニウムの製造とその評価)
(担持酸化ルテニウムの製造)において室温から250℃まで1.1時間かけて昇温したところを室温から300℃まで1.3時間かけて昇温した以外は、比較例3と同様の方法で、担持酸化ルテニウムを製造した。得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
Comparative Example 4
(Preparation of carrier, production of supported ruthenium oxide and its evaluation)
In the same manner as in Comparative Example 3, except that the temperature was raised from room temperature to 250 ° C. over 1.1 hours in (production of supported ruthenium oxide) over 1.3 hours from room temperature to 300 ° C. Supported ruthenium oxide was produced. The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

比較例5
(担体の調製、担持酸化ルテニウムの製造とその評価)
(担持酸化ルテニウムの製造)において室温から250℃まで1.1時間かけて昇温したところを室温から350℃まで1.5時間かけて昇温した以外は、比較例3と同様の方法で、担持酸化ルテニウムを製造した。得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
Comparative Example 5
(Preparation of carrier, production of supported ruthenium oxide and its evaluation)
In the same manner as in Comparative Example 3, except that the temperature was raised from room temperature to 250 ° C. over 1.1 hours in (production of supported ruthenium oxide) over 1.5 hours from room temperature to 350 ° C. Supported ruthenium oxide was produced. The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

比較例6
(担体の調製)
実施例1と同様の方法で白色のチタニア担体を得た。
Comparative Example 6
(Preparation of carrier)
A white titania carrier was obtained in the same manner as in Example 1.

(担持酸化ルテニウムの製造)
50mlのガラス製サンプル瓶に0.10重量%塩酸2.17gを入れ、そこに塩化ルテニウム水和物〔NEケムキャット(株)製のRuCl・nHO、Ru含有量40.0重量%〕0.240gを溶解させ、得られた溶液を上記チタニア担体10.01gに含浸させた後、空気雰囲気下、室温で2日間乾燥し、10.22gの茶色の固体が得られた。得られた固体の内5.00gを、空気流通下、室温から250℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成し、酸化ルテニウムの含有量が1.25重量%である青灰色の担持酸化ルテニウム4.87gを得た。
(Production of supported ruthenium oxide)
2.17 g of 0.10 wt% hydrochloric acid is put into a 50 ml glass sample bottle, and ruthenium chloride hydrate (RuCl 3 · nH 2 O manufactured by NE Chemcat Co., Ltd., Ru content 40.0 wt%) is added thereto. 0.240 g was dissolved, and the obtained solution was impregnated in 10.1 g of the titania carrier, and then dried for 2 days at room temperature in an air atmosphere to obtain 10.22 g of a brown solid. 5.00 g of the obtained solid was heated from room temperature to 250 ° C. over 1.1 hours under air flow, and then calcined by holding at the same temperature for 2 hours, whereby the ruthenium oxide content was 1. This gave 4.87 g of blue-gray-supported ruthenium oxide which was 25% by weight.

(担持酸化ルテニウムの評価)
得られた担持酸化ルテニウムに対して、実施例1と同様に、熱安定性試験、該試験後の活性評価を行った。結果を表1に示した。
(Evaluation of supported ruthenium oxide)
The obtained supported ruthenium oxide was subjected to a thermal stability test and an activity evaluation after the test in the same manner as in Example 1. The results are shown in Table 1.

Figure 2011183237
Figure 2011183237

TEOS:オルトケイ酸テトラエチル TEOS: Tetraethyl orthosilicate

Claims (8)

酸化ルテニウム及びシリカがチタニア担体に担持されてなる担持酸化ルテニウムの製造方法であって、チタニア担体をルテニウム化合物及びケイ素化合物を含む酸性水溶液と接触処理した後、酸化性ガス雰囲気下で焼成することを特徴とする担持酸化ルテニウムの製造方法。   A method for producing a supported ruthenium oxide in which ruthenium oxide and silica are supported on a titania support, wherein the titania support is subjected to a contact treatment with an acidic aqueous solution containing a ruthenium compound and a silicon compound and then fired in an oxidizing gas atmosphere. A method for producing a supported ruthenium oxide. 前記酸性水溶液に含まれる酸の使用量が、前記ケイ素化合物1モルに対して、該酸から遊離可能な水素イオン量に換算して0.0003〜3.5モルである請求項1に記載の担持酸化ルテニウムの製造方法。   The amount of the acid contained in the acidic aqueous solution is 0.0003 to 3.5 mol in terms of the amount of hydrogen ions that can be liberated from the acid with respect to 1 mol of the silicon compound. Method for producing supported ruthenium oxide. 前記酸性水溶液に含まれる酸の沸点以上であり、かつ200〜400℃の温度で焼成を行う請求項1又は2に記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to claim 1 or 2, wherein firing is performed at a temperature of 200 to 400 ° C which is equal to or higher than a boiling point of the acid contained in the acidic aqueous solution. 前記酸性水溶液に含まれる酸が塩化水素である請求項1〜3のいずれかに記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to any one of claims 1 to 3, wherein the acid contained in the acidic aqueous solution is hydrogen chloride. 前記ケイ素化合物がケイ素アルコキシド化合物である請求項1〜4のいずれかに記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to any one of claims 1 to 4, wherein the silicon compound is a silicon alkoxide compound. 前記ケイ素アルコキシド化合物がオルトケイ酸テトラエチルである請求項5に記載の担持酸化ルテニウムの製造方法。   6. The method for producing supported ruthenium oxide according to claim 5, wherein the silicon alkoxide compound is tetraethyl orthosilicate. 前記担持酸化ルテニウムにおけるシリカの単分子被覆率がチタニア担体の比表面積に対して10〜150%である請求項1〜6のいずれかに記載の担持酸化ルテニウムの製造方法。   The method for producing supported ruthenium oxide according to any one of claims 1 to 6, wherein a monomolecular coverage of silica in the supported ruthenium oxide is 10 to 150% with respect to a specific surface area of the titania support. 請求項1〜7のいずれかに記載の方法により製造された担持酸化ルテニウムの存在下で、塩化水素を酸素で酸化することを特徴とする塩素の製造方法。   A method for producing chlorine, comprising oxidizing hydrogen chloride with oxygen in the presence of the supported ruthenium oxide produced by the method according to claim 1.
JP2010047750A 2010-03-04 2010-03-04 Method for producing supported ruthenium oxide and method for producing chlorine Expired - Fee Related JP5573237B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010047750A JP5573237B2 (en) 2010-03-04 2010-03-04 Method for producing supported ruthenium oxide and method for producing chlorine
PCT/JP2011/055021 WO2011108683A1 (en) 2010-03-04 2011-03-04 Method for manufacturing supported ruthenium oxide and method for manufacturing chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047750A JP5573237B2 (en) 2010-03-04 2010-03-04 Method for producing supported ruthenium oxide and method for producing chlorine

Publications (2)

Publication Number Publication Date
JP2011183237A true JP2011183237A (en) 2011-09-22
JP5573237B2 JP5573237B2 (en) 2014-08-20

Family

ID=44542328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047750A Expired - Fee Related JP5573237B2 (en) 2010-03-04 2010-03-04 Method for producing supported ruthenium oxide and method for producing chlorine

Country Status (2)

Country Link
JP (1) JP5573237B2 (en)
WO (1) WO2011108683A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161644A (en) * 1984-09-03 1986-03-29 Agency Of Ind Science & Technol Preparation of porous and highly dispersed metallic catalyst using silica as carrier
JPH01159054A (en) * 1987-12-15 1989-06-22 Tonen Sekiyukagaku Kk Preparation of porous high-dispersion metallic catalyst
JPH05261284A (en) * 1992-03-18 1993-10-12 Sanden Corp Catalyst for water treatment and its production
JP4069619B2 (en) * 2001-01-29 2008-04-02 住友化学株式会社 Supported ruthenium oxide catalyst and method for producing chlorine
JP2008155199A (en) * 2006-11-27 2008-07-10 Sumitomo Chemical Co Ltd Method for manufacturing support ruthenium oxide, and method for manufacturing chlorine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161644A (en) * 1984-09-03 1986-03-29 Agency Of Ind Science & Technol Preparation of porous and highly dispersed metallic catalyst using silica as carrier
JPH01159054A (en) * 1987-12-15 1989-06-22 Tonen Sekiyukagaku Kk Preparation of porous high-dispersion metallic catalyst
JPH05261284A (en) * 1992-03-18 1993-10-12 Sanden Corp Catalyst for water treatment and its production
JP4069619B2 (en) * 2001-01-29 2008-04-02 住友化学株式会社 Supported ruthenium oxide catalyst and method for producing chlorine
JP2008155199A (en) * 2006-11-27 2008-07-10 Sumitomo Chemical Co Ltd Method for manufacturing support ruthenium oxide, and method for manufacturing chlorine

Also Published As

Publication number Publication date
WO2011108683A1 (en) 2011-09-09
JP5573237B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5382100B2 (en) Chlorine production method
US9186652B2 (en) Process for producing supported ruthenium on silica modified titania and process for producing chlorine
JP2014105128A (en) Method for producing chlorine
JP4839661B2 (en) Chlorine production method
JP2011110509A (en) Method for manufacturing carried ruthenium oxide, and method for manufacturing chlorine
JP5573237B2 (en) Method for producing supported ruthenium oxide and method for producing chlorine
JP2012161716A (en) Method for producing supported ruthenium oxide, and method for producing chlorine
JP2011183238A (en) Method of producing carried ruthenium oxide and method of producing chlorine
JP2012161717A (en) Method for producing supported ruthenium oxide, and method for producing chlorine
JP5833467B2 (en) Method for producing supported ruthenium oxide and method for producing chlorine
JP4432876B2 (en) Catalyst for chlorine production and method for producing chlorine
JP4250969B2 (en) Method for producing supported ruthenium oxide catalyst and method for producing chlorine
JP2013146720A (en) Method for producing supported ruthenium oxide, and method for production of chlorine
JP4172223B2 (en) Chlorine production method
JP5333413B2 (en) Method for producing supported ruthenium oxide and method for producing chlorine
JP2010029786A (en) Oxide and method for producing the same, and method for producing chlorine
JP2012135722A (en) Method for manufacturing carried ruthenium oxide and method for manufacturing chlorine
JP2013169517A (en) Method for producing supported ruthenium oxide and method for producing chlorine
JP2019181332A (en) Catalyst for decomposing hydrogen iodide
JP5736219B2 (en) Method for producing supported ruthenium and method for producing chlorine
JP2012183479A (en) Method of manufacturing supported ruthenium oxide and method of manufacturing chlorine
JP2011241122A (en) Method for producing synthesis gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

LAPS Cancellation because of no payment of annual fees