JP2011182731A - Automatic apparatus for measuring growth yield of algae - Google Patents

Automatic apparatus for measuring growth yield of algae Download PDF

Info

Publication number
JP2011182731A
JP2011182731A JP2010052972A JP2010052972A JP2011182731A JP 2011182731 A JP2011182731 A JP 2011182731A JP 2010052972 A JP2010052972 A JP 2010052972A JP 2010052972 A JP2010052972 A JP 2010052972A JP 2011182731 A JP2011182731 A JP 2011182731A
Authority
JP
Japan
Prior art keywords
culture
measurement
light
rgb
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010052972A
Other languages
Japanese (ja)
Inventor
Tokuo Iwami
徳雄 岩見
Tomoaki Itayama
朋聡 板山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Gakuen
Original Assignee
Meisei Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Gakuen filed Critical Meisei Gakuen
Priority to JP2010052972A priority Critical patent/JP2011182731A/en
Publication of JP2011182731A publication Critical patent/JP2011182731A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analytical Chemistry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new automatic apparatus for measuring the growth yield of algae in which a plurality of samples can simply be cultured under uniform conditions for the algae, and the growth yield of each sample with time can automatically be monitored. <P>SOLUTION: The automatic apparatus for measuring the growth yield of the algae includes: a plurality of culture vessels; circulating and transferring means for circulating and transferring the culture vessels; RGB spectrophotometric measuring means disposed on a transfer path of the circulating and transferring means; a culture light source; and ventilating means for ventilating and stirring a culture liquid in the culture vessels. The RGB spectrophotometric measuring means includes: a measuring light source for irradiating the successively transferred culture vessels with measuring light; an RGB component detecting part for detecting the measuring light which transmits through the culture vessels; and a light detection signal output part for outputting a light detection signal for each RGB component of the detected measuring light. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、藻類の培養装置に関し、より詳細には、藻類の経時的な増殖量を自動的に測定する装置に関する。   The present invention relates to an algae culture apparatus, and more particularly to an apparatus for automatically measuring the amount of algal growth over time.

富栄養化した湖沼やダム湖においては、夏期に入るとアオコが大量発生することがある。アオコの多くはミクロキスティス属などの毒産生藍藻やフォルミディウム属などのカビ臭産生藍藻から構成されており、水域環境を著しく悪化させる。この点につき、特開2009−66549号公報(特許文献1)は、藻類の増殖を抑制するために、重金属キレートを水域に添加して増殖の制限要因を排除する技術を開示する。しかしながら、このような技術を適用する前段階において、対象水域における有害藍藻の発生を事前に予測する技術が必要となる。   In eutrophic lakes and dam lakes, large numbers of blue sea bream may occur during the summer. Most of the sea lions are composed of poisonous cyanobacteria such as Microkistis and moldy odor producing cyanobacteria such as Formidium, which significantly deteriorate the water environment. In this regard, Japanese Patent Application Laid-Open No. 2009-66549 (Patent Document 1) discloses a technique of adding a heavy metal chelate to a water area to eliminate growth limiting factors in order to suppress the growth of algae. However, prior to the application of such a technique, a technique for predicting the occurrence of harmful cyanobacteria in the target water area in advance is required.

藍藻の発生予測は、その水域環境の持つ藻類生産の潜在能力を測定することによって行うことができる。このような藻類生産の潜在能力(Algal Growth
Potential)を測定する試験としては、米国において標準法が制定されている生物検定法の一種である、AGP試験が知られている。AGP試験では、自然水や排水などの試水に特定の藻類を接種し、光・温度等の物理的条件を最適化して培養した藻類の最大増殖量(乾燥重量:mg/mL)を測定し、これを藻類生産力の指標とする。さらに、AGP試験によれば、試水に対して、リン、窒素、鉄などの異なる栄養物質を添加した複数の培養系を用意し、各系についてAGP測定を実施することによって、その水域における藍藻増殖の制限要因を突き止めることができる。
The generation of cyanobacteria can be predicted by measuring the algae production potential of the aquatic environment. The potential of such algae production (Algal Growth
As a test for measuring (Potential), an AGP test, which is a kind of bioassay method for which a standard method has been established in the United States, is known. In the AGP test, a specific algae is inoculated into natural water or drainage water, and the maximum growth (dry weight: mg / mL) of the cultured algae is measured by optimizing physical conditions such as light and temperature. This is used as an index of algae productivity. Furthermore, according to the AGP test, a plurality of culture systems in which different nutrient substances such as phosphorus, nitrogen, iron and the like are added to the test water are prepared, and AGP measurement is performed on each system, whereby cyanobacteria in the water area is prepared. Identify growth limiting factors.

しかしながら、複数の培養条件についてAGP試験を実施する場合、統計的有意性を担保するためには、相当の数の培養が必要になり、これを三角フラスコで行うとなると大きなスペースが必要となる。また、培養容器の数が増えるにつれ、光の照射条件を均一にすることも難しくなる上、全ての培養容器を定期的に撹拌する必要があり、適切な培養環境を維持するために多大な労力を要する。   However, when the AGP test is performed for a plurality of culture conditions, a considerable number of cultures are required to ensure statistical significance, and a large space is required if this is performed in an Erlenmeyer flask. In addition, as the number of culture vessels increases, it becomes difficult to make the light irradiation conditions uniform, and all the culture vessels need to be stirred regularly, and a great deal of effort is required to maintain an appropriate culture environment. Cost.

また、AGP測定においては、藻類が最大増殖量に至ったことを知るために、その増殖量を経時的にモニタリングする必要がある。また、さらに、最大増殖量のみでは藍藻の発生予測を正確に行うことはできず、増殖量の経時的モニタリングに基づき、藍藻の比増殖速度を測定することが重要であるが、従来、このモニタリングは、培養容器から一定量の培養液を取り出し、その中に含まれる細胞数を直接計数することによって行われていたため、数多くの培養系を正確にモニタリングすることは容易ではなかった。   In addition, in the AGP measurement, it is necessary to monitor the amount of growth over time in order to know that the algae has reached the maximum amount of growth. Furthermore, it is not possible to accurately predict the occurrence of cyanobacteria only with the maximum growth amount, and it is important to measure the specific growth rate of cyanobacteria based on the time-dependent monitoring of the growth amount. Since it was performed by taking out a certain amount of culture solution from the culture vessel and directly counting the number of cells contained therein, it was not easy to accurately monitor many culture systems.

特開2009−66549号公報JP 2009-66549 A

本発明は、上記従来技術における課題に鑑みてなされたものであり、本発明は、藻類について、多数のサンプルを均一な条件下で簡便に培養することができ、且つ、各サンプルの経時的な増殖量を自動的にモニタリングすることができる新規な装置を提供することを目的とする。   The present invention has been made in view of the above-described problems in the prior art, and the present invention can easily culture a large number of samples under uniform conditions with respect to algae, and the time course of each sample. An object of the present invention is to provide a novel apparatus capable of automatically monitoring the amount of growth.

本発明者らは、藻類について、多数のサンプルを均一な条件下で簡便に培養することができ、且つ、各サンプルの経時的な増殖量を自動的にモニタリングすることができる装置につき鋭意検討した結果、複数の培養容器を循環移送するとともに、その移送経路上にRGB吸光光度測定手段を配置し、順次移送される培養容器について吸光度を測定する構成を見出し、本発明に至ったのである。   The present inventors diligently investigated a device that can easily culture a large number of samples under uniform conditions and can automatically monitor the amount of growth of each sample over time for algae. As a result, the inventors have circulated and transferred a plurality of culture vessels, arranged RGB absorbance measuring means on the transfer path, and have found a configuration for measuring the absorbance of the sequentially transferred culture vessels, thereby achieving the present invention.

すなわち、本発明によれば、藻類の増殖量を自動的に測定するための装置であって、複数の培養容器と、前記培養容器を循環移送するための循環移送手段と、前記循環移送手段の移送経路上に配置されるRGB吸光光度測定手段と、培養光源と、前記培養容器内の培養液を通気撹拌するための通気手段を含み、前記RGB吸光光度測定手段は、順次移送される前記培養容器に測定光を照射するための測定光源と、該培養容器を透過した前記測定光を検出するためのRGB成分検出部と、検出した前記測定光のRGB成分毎に光検出信号を出力する光検出信号出力部とを含む、藻類増殖量自動測定装置が提供される。本発明者においては、前記測定光源を、前記培養光源とは異なる周波数で駆動し、前記光検出信号出力部は、検出した前記測定光を前記測定光源の駆動信号を参照信号として位相検波する位相検波手段を含むことができる。また、本発明者においては、前記循環移送手段を、回転駆動される回転軸を中心に放射状の延び、先端部に前記培養容器を固定するための固定部が同一円周上に並んで形成された複数の支持体を含むものとすることができ、前記培養光源を、前記回転軸に対して軸対称となるように配置することができる。さらに、本発明者においては、前記培養容器を、前記測定光が透過する壁面が互いに平行になるように構成することができ、前記培養容器を下端へ向かって窄まった中空部を備え、容器の断面が直角三角形の形状を有するように構成することができる。また、本発明者においては前記RGB吸光光度測定手段を、前記培養光源からの外乱光を遮蔽するための筐体を備えるものとして構成することができる。さらに、本発明によれば、上記藻類増殖量自動測定装置と、該藻類増殖量自動測定装置から入力される前記光検出信号に基づいて演算処理を実行し、前記培養容器毎の細胞密度を経時的に取得する手段を備える情報処理装置とを含む、藻類増殖量自動測定システムが提供される。   That is, according to the present invention, there is provided an apparatus for automatically measuring the growth amount of algae, comprising a plurality of culture containers, a circulation transfer means for circulating and transferring the culture containers, and the circulation and transfer means. RGB absorptiometry means disposed on the transfer path, a culture light source, and aeration means for agitating and agitating the culture solution in the culture vessel, wherein the RGB absorptiometry means is sequentially transferred to the culture A measurement light source for irradiating the container with measurement light, an RGB component detection unit for detecting the measurement light transmitted through the culture container, and light for outputting a light detection signal for each of the detected RGB components of the measurement light An algal growth amount automatic measuring device including a detection signal output unit is provided. In the present inventor, the measurement light source is driven at a frequency different from that of the culture light source, and the light detection signal output unit performs phase detection on the detected measurement light using the drive signal of the measurement light source as a reference signal. Detection means can be included. Further, in the present inventor, the circulating transfer means extends radially around a rotationally driven rotary shaft, and a fixing portion for fixing the culture vessel to the tip is formed side by side on the same circumference. The culture light source can be arranged so as to be axially symmetric with respect to the rotation axis. Further, in the present inventor, the culture vessel can be configured such that the walls through which the measurement light passes are parallel to each other, and the culture vessel is provided with a hollow portion constricted toward the lower end. The cross section can be configured to have a right triangle shape. Moreover, in this inventor, the said RGB absorptiometry means can be comprised as a thing provided with the housing | casing for shielding the disturbance light from the said culture light source. Further, according to the present invention, the algal growth amount automatic measurement device and the light detection signal input from the algae growth amount automatic measurement device are subjected to arithmetic processing, and the cell density for each culture vessel is determined over time. An algal growth amount automatic measurement system is provided that includes an information processing device including a means for automatically acquiring the information.

上述したように、本発明によれば、藻類について、多数のサンプルを均一な条件下で簡便に培養することができ、且つ、各サンプルの経時的な増殖量を自動的にモニタリングすることができる新規な測定装置が提供される。   As described above, according to the present invention, for algae, a large number of samples can be easily cultured under uniform conditions, and the amount of growth of each sample over time can be automatically monitored. A novel measuring device is provided.

本実施形態の藻類増殖量自動測定システムを示す図。The figure which shows the algal growth amount automatic measurement system of this embodiment. 本実施形態の藻類増殖量自動測定装置における通気手段を示す図。The figure which shows the ventilation means in the algal growth amount automatic measuring apparatus of this embodiment. 本実施形態藻類増殖量自動測定装置における培養容器を示す図。The figure which shows the culture container in the algal growth amount automatic measuring apparatus of this embodiment. 本実施形態の藻類増殖量自動測定装置におけるRGB吸光光度測定手段を示す図。The figure which shows the RGB absorptiometry means in the algal growth amount automatic measuring apparatus of this embodiment. 本実施形態の藻類増殖量自動測定装置の動作を説明するための概念図。The conceptual diagram for demonstrating operation | movement of the algal growth amount automatic measuring apparatus of this embodiment. 本実施形態の藻類増殖量自動測定システムの機能ブロック図。The functional block diagram of the algal growth amount automatic measurement system of this embodiment. RGB成分毎の位相検波出力を示す図。The figure which shows the phase detection output for every RGB component. 細胞密度(cell/mL)とRGB成分毎の吸光度(O.D.)の関係を示す図。The figure which shows the relationship between a cell density (cell / mL) and the light absorbency (O.D.) for every RGB component.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜、その説明を省略するものとする。   Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings. In the drawings referred to below, the same reference numerals are used for common elements, and the description thereof is omitted as appropriate.

図1は、本発明の実施形態である藻類増殖量自動測定システム100を示す。藻類増殖量自動測定システム100は、藻類増殖量自動測定装置10とパーソナル・コンピュータなどで構成される情報処理装置50(以下、PC50として参照する)とを含んで構成される。藻類増殖量自動測定装置10は、複数の培養容器20と、培養容器20を循環移送するための循環移送手段30と、RGB吸光光度測定手段40とを含み、これらの要素が滅菌空間を形成する筐体12の中に配設されて構成されている。   FIG. 1 shows an algal growth amount automatic measurement system 100 according to an embodiment of the present invention. The algae growth amount automatic measurement system 100 includes an algae growth amount automatic measurement device 10 and an information processing device 50 (hereinafter referred to as a PC 50) configured by a personal computer or the like. The algal growth amount automatic measuring apparatus 10 includes a plurality of culture containers 20, a circulation transfer means 30 for circulating and transferring the culture containers 20, and an RGB absorbance measurement means 40, and these elements form a sterilization space. It is arranged in the housing 12.

循環移送手段30は、回転モータ32などによって構成される回転駆動手段32(以下、回転モータ32として参照する)によって回転駆動される回転軸34を中心に放射状の延びた複数の支持体36を含んで構成されている。支持体36は、回転軸34を中心とした円周C(破線で示す)を等分割するように放射状に延びており、各支持体36の先端近傍には、培養容器20を固定するための培養容器固定部(図示せず)が同一円周上に形成されている。その結果、各培養容器固定部に固定された複数の培養容器20は、同一円周上に等間隔に並んで配置されることになる。この状態において、回転軸34が回転駆動され、各培養容器20が図中の矢印の方向に循環移送される。なお、本発明者における循環移送手段は、図1に示した態様に限定されるものではなく、循環する移送経路を実現しうる構成であればどのような手段であってもよい。   The circulatory transfer means 30 includes a plurality of supports 36 that extend radially around a rotation shaft 34 that is rotationally driven by a rotation drive means 32 (hereinafter referred to as the rotation motor 32) constituted by a rotation motor 32 or the like. It consists of The support 36 extends radially so as to equally divide a circumference C (shown by a broken line) around the rotation axis 34, and the culture vessel 20 is fixed near the tip of each support 36. A culture vessel fixing part (not shown) is formed on the same circumference. As a result, the plurality of culture containers 20 fixed to each culture container fixing portion are arranged side by side at equal intervals on the same circumference. In this state, the rotating shaft 34 is rotationally driven, and each culture vessel 20 is circulated and transferred in the direction of the arrow in the figure. In addition, the circulation transfer means in this inventor is not limited to the aspect shown in FIG. 1, What kind of means may be sufficient if it is the structure which can implement | achieve the transfer path | route which circulates.

一方、RGB吸光光度測定手段40は、培養容器20に光を照射し、その透過光を検出するための手段である。RGB吸光光度測定手段40は、複数の培養容器20が並ぶ円周上(すなわち、培養容器20の移送経路上)の適切な位置に配置されており、その結果、循環移送される各培養容器20は、RGB吸光光度測定手段40の測定光の光路を遮る位置に順次置かれることになる。RGB吸光光度測定手段40は、培養液の細胞密度に相関する光検出信号を生成しPC50に送信する。PC50は、当該光検出信号を使用して藻類の経時的な増殖量を演算する処理を実行する。   On the other hand, the RGB absorbance measuring means 40 is a means for irradiating the culture vessel 20 with light and detecting the transmitted light. The RGB absorptiometry means 40 is arranged at an appropriate position on the circumference where a plurality of culture vessels 20 are arranged (that is, on the transfer path of the culture vessels 20), and as a result, each culture vessel 20 that is circulated and transferred. Are sequentially placed at positions that block the optical path of the measurement light of the RGB absorbance measurement means 40. The RGB absorptiometry means 40 generates a light detection signal that correlates with the cell density of the culture solution and transmits it to the PC 50. The PC 50 executes processing for calculating the algae growth amount over time using the light detection signal.

藻類増殖量自動測定装置10の筐体12内は、全ての培養容器20に対して、光照射条件および温度条件が均等になるように調整することが好ましい。図1に示す例においては、培養光源としての複数の蛍光灯14が、回転軸34を中心とした同一円周上であって、複数の培養容器20が並ぶ円周の内側に等間隔に配設されており、循環移送される全ての培養容器20が、常に、同じ光照射条件下に置かれるように構成されている。なお、全ての培養容器20に対して常に同じ光照射条件を維持するためには、複数の培養光源を、その位置が回転軸34に対して軸対称となるように配置してもよく、また、単一の培養光源を回転軸34上の適切な位置に配置してもよい。   The inside of the housing 12 of the algal growth amount automatic measuring apparatus 10 is preferably adjusted so that the light irradiation conditions and the temperature conditions are uniform for all the culture vessels 20. In the example shown in FIG. 1, a plurality of fluorescent lamps 14 as culture light sources are arranged at equal intervals on the same circumference around the rotation axis 34 and inside the circumference where the plurality of culture vessels 20 are arranged. All the culture vessels 20 that are installed and circulated are always placed under the same light irradiation conditions. In order to always maintain the same light irradiation condition for all the culture vessels 20, a plurality of culture light sources may be arranged so that their positions are symmetric with respect to the rotation axis 34. A single culture light source may be disposed at an appropriate position on the rotation axis 34.

さらに、本実施形態の藻類増殖量自動測定装置10は、各培養容器20内の培養液を通気するための通気手段を備える。図2は、本実施形態の藻類増殖量自動測定装置10が備える通気手段60を示す図であり、図2(a)は、その側断面図を示し、図2(b)は、その上面図を示す。なお、図2(b)においては、紙面の都合上、二本の支持体36についてのみ示すものとする。   Furthermore, the algal growth amount automatic measuring apparatus 10 of the present embodiment includes a venting unit for ventilating the culture solution in each culture vessel 20. FIG. 2 is a view showing aeration means 60 provided in the algal growth amount automatic measuring device 10 of the present embodiment, FIG. 2 (a) shows a side sectional view thereof, and FIG. 2 (b) shows a top view thereof. Indicates. In FIG. 2 (b), only two supports 36 are shown for the sake of space.

通気手段60は、エアコンプレッサなどで構成される送気手段62と、送気手段62に通気管63を介して接続される通気カプラー64と、通気カプラー64に通気管65を介して接続される円環状通気管66と、支持体36ごとに用意される通気管68とを含んで構成されている。通気カプラー64は、回転モータ32側に固定されるカプラー固定部64aと、回転軸34とともに回転するカプラー回転部64bとから形成されており、回転軸34とカプラー固定部64aとの間、ならびに、カプラー固定部64aとカプラー回転部64bとの間は、それぞれメカニカルシールによって空気が漏れないように構成されている。また、円環状通気管66の上面には、コネクター67が支持体36に対応する数だけ並んで形成されており、コネクター67に通気管68が接続されている。通気管68は、支持体36の内部を貫通して延び、その端部は、培養容器固定部37に固定される培養容器20の内部に挿入されている。なお、通気管68には、通気量を制御するための可変バルブ69を設けることができる。上述した構成を備える通気手段60によれば、送気手段62から送られた空気は、通気管63、通気カプラー64、通気管65、円環状通気管66、および通気管68を介して培養容器20の内部に導入される。   The ventilation means 60 is connected to an air supply means 62 constituted by an air compressor, a ventilation coupler 64 connected to the air supply means 62 via a ventilation pipe 63, and connected to the ventilation coupler 64 via a ventilation pipe 65. An annular vent pipe 66 and a vent pipe 68 prepared for each support 36 are configured. The ventilation coupler 64 includes a coupler fixing portion 64a that is fixed to the rotary motor 32 side, and a coupler rotating portion 64b that rotates together with the rotating shaft 34. Between the rotating shaft 34 and the coupler fixing portion 64a, and Between the coupler fixing part 64a and the coupler rotation part 64b, it is comprised so that air may not leak by a mechanical seal, respectively. Further, on the upper surface of the annular vent pipe 66, a number of connectors 67 are formed side by side corresponding to the support 36, and the vent pipe 68 is connected to the connector 67. The aeration tube 68 extends through the inside of the support 36, and an end portion thereof is inserted into the culture vessel 20 fixed to the culture vessel fixing portion 37. The vent pipe 68 can be provided with a variable valve 69 for controlling the ventilation amount. According to the aeration means 60 having the above-described configuration, the air sent from the air supply means 62 passes through the aeration pipe 63, the aeration coupler 64, the aeration pipe 65, the annular aeration pipe 66, and the aeration pipe 68. 20 inside.

次に、本発明における培養容器について説明する。図3は、本発明における培養容器の好ましい実施形態である培養容器20を示す図であり、図3(a)はその正面断面図を示す。培養容器20は、高い光透過性を備える材料(たとえば、ガラス)で形成される容器22とポリカーボネート等で形成される蓋23を含んで構成され、ガラスやステンレス等で形成される通気管68が蓋23を貫通して内部に挿入されている。本実施形態における培養容器20は、A-A’断面図(破線で囲んで示す)に示されるように、その上部に直方体状の筒構造を備えており、RGB吸光光度測定手段40の測定光Pが透過する壁面22aおよび22bが互いに平行になるように構成されている。さらに、培養容器20は、当該筒構造から容器22の下端へ向かって窄まった中空部を備える。   Next, the culture container in the present invention will be described. FIG. 3 is a view showing a culture vessel 20 which is a preferred embodiment of the culture vessel in the present invention, and FIG. 3 (a) is a front sectional view thereof. The culture container 20 includes a container 22 formed of a material having high light transmittance (for example, glass) and a lid 23 formed of polycarbonate or the like, and an aeration tube 68 formed of glass, stainless steel, or the like. It penetrates the lid 23 and is inserted inside. The culture vessel 20 in the present embodiment has a rectangular parallelepiped cylindrical structure at the upper portion thereof as shown in the AA ′ cross-sectional view (shown by being surrounded by a broken line), and the measurement light of the RGB absorbance measuring means 40 is measured. Wall surfaces 22a and 22b through which P transmits are configured to be parallel to each other. Furthermore, the culture vessel 20 includes a hollow portion that is narrowed from the cylindrical structure toward the lower end of the vessel 22.

図3(b)は、培養容器20の側面断面図を示す。図3(b)に示されるように、培養容器20に挿入される通気管68は、その手前に微生物除去フィルタ72が設けられており、培養容器20内のコンタミネーションを防止している。さらに、培養容器20には蓋23を貫通して排気管74が設けられており、排気管74は、通気性のよい栓76(綿栓やシリコ栓など)によって封止された滅菌容器78に接続されている。なお、本実施形態においては、滅菌容器78を支持体36の適当な位置に固設することができる。   FIG. 3B shows a side sectional view of the culture vessel 20. As shown in FIG. 3 (b), the aeration tube 68 inserted into the culture vessel 20 is provided with a microorganism removal filter 72 in front of the ventilation tube 68 to prevent contamination in the culture vessel 20. Further, the culture container 20 is provided with an exhaust pipe 74 that penetrates the lid 23. The exhaust pipe 74 is provided in a sterilization container 78 that is sealed with a highly breathable stopper 76 (such as a cotton stopper or a silicone stopper). It is connected. In the present embodiment, the sterilization container 78 can be fixed at an appropriate position of the support 36.

また、本実施形態の培養容器20においては、図3(b)に示されるように、容器22の断面が直角三角形(長い方の隣辺が容器22の長手方向の壁面に平行な直角三角形)の形状に構成され、且つ、通気管68が当該直角三角形の長い方の隣辺に沿って挿入されて、その先端が容器22の窄まった中空部の底部近傍にまで到達している。その結果、底部から発生したバブリングの気泡によって容器22内を循環する安定した流れが形成される。また、図3(b)に破線で囲んだ拡大図に示されるように、窄まった中空部の底部Tが丸みを帯びるように形成されているため、底部Tに藻類の沈殿物が集積することが防止される。すなわち、本実施形態においては、上述した培養容器20および通気手段60を採用することによって、培養液が自動的に撹拌され、その濃度分布が常に均一に保たれる。なお、本実施形態においては、測定光Pの光路にバブリングの気泡がかからないように通気量を調整することが好ましい。   Moreover, in the culture container 20 of this embodiment, as shown in FIG. 3B, the cross section of the container 22 is a right triangle (the right triangle whose long side is parallel to the longitudinal wall of the container 22). The vent pipe 68 is inserted along the longer adjacent side of the right triangle, and the tip of the vent pipe reaches the vicinity of the bottom of the hollow portion where the container 22 is narrowed. As a result, a stable flow circulating in the container 22 is formed by bubbling bubbles generated from the bottom. Further, as shown in an enlarged view surrounded by a broken line in FIG. 3B, the bottom T of the constricted hollow portion is formed to be rounded, so that algae sediment accumulates on the bottom T. It is prevented. That is, in this embodiment, by employing the culture vessel 20 and the aeration means 60 described above, the culture solution is automatically stirred, and the concentration distribution is always kept uniform. In the present embodiment, it is preferable to adjust the air flow rate so that bubbles of bubbling do not enter the optical path of the measurement light P.

次に、本実施形態におけるRGB吸光光度測定手段40について、図4を参照して説明する。RGB吸光光度測定手段40は、測定光源42と、光学系43と、測定室44と、RGB成分検出部45と、光検出信号出力部49とを含んで構成される。測定光源42は、吸光度測定のための光源であり、RGBの全ての成分を放射できる白色LEDを用い、直進性を高めるために、凸レンズ系などを用いて平行光とすることが好ましい。測定室44は、培養光源(蛍光灯)からの外乱光を遮蔽するための筐体であって、培養容器20を収容可能なスペースを備えている。なお、測定室44の側面は、培養容器20の循環移送経路を確保するようにその一部(または全部)が欠かれており、また、その上面は、培養容器20の移送の障害にならないようにスリットの入ったゴムシート46などで構成されている。   Next, the RGB absorptiometry means 40 in this embodiment will be described with reference to FIG. The RGB absorbance measurement means 40 includes a measurement light source 42, an optical system 43, a measurement chamber 44, an RGB component detection unit 45, and a light detection signal output unit 49. The measurement light source 42 is a light source for measuring absorbance, and is preferably a white LED that can emit all components of RGB, and is preferably converted into parallel light using a convex lens system or the like in order to improve straightness. The measurement chamber 44 is a housing for shielding disturbance light from the culture light source (fluorescent lamp), and has a space in which the culture vessel 20 can be accommodated. Note that a part (or all) of the side surface of the measurement chamber 44 is missing so as to secure a circulation transfer path for the culture vessel 20, and the upper surface thereof does not hinder the transfer of the culture vessel 20. It is composed of a rubber sheet 46 with slits.

測定光源42から出射した光は、レンズ43aやスリット43bなどによって構成される適切な光学系43を経て直進性の測定光Pに整形されて、測定室44内に収容された培養容器20に照射され、これを透過した光線がRGB成分検出部45に到達する。RGB成分検出部45は、3CCDビデオカメラに用いられるものと同様のダイクロイックプリズム47と、3つのフォトダイオード48R、48G、48Bを含んで構成されている。培養容器20を透過した光線は、ダイクロイックプリズム47によってR成分、G成分、B成分に分割され、各成分は、それぞれ、フォトダイオード48R、48G、48Bによって検出される。光検出信号出力部49は、フォトダイオード48の検出信号からRGB成分毎に光検出信号を生成する。   The light emitted from the measurement light source 42 is shaped into straight measurement light P through an appropriate optical system 43 configured by a lens 43a, a slit 43b, and the like, and irradiates the culture vessel 20 accommodated in the measurement chamber 44. Then, the light beam that has passed through this reaches the RGB component detection unit 45. The RGB component detector 45 includes a dichroic prism 47 similar to that used in the 3CCD video camera, and three photodiodes 48R, 48G, and 48B. The light beam transmitted through the culture vessel 20 is divided into an R component, a G component, and a B component by the dichroic prism 47, and each component is detected by the photodiodes 48R, 48G, and 48B, respectively. The light detection signal output unit 49 generates a light detection signal for each RGB component from the detection signal of the photodiode 48.

なお、RGB吸光光度測定手段40の測定室44は、上述したように側面の一部(または全部)が培養容器20の循環移送経路を確保のために欠かれているため、その内部を完全に遮光することができないので、光検出信号出力部49は、培養光源(蛍光灯)からの外乱光の影響を排除するための構成を備えることが好ましい。この点につき、本実施形態においては、測定光を位相検波するための位相検波手段を備えることができる。本実施形態においては、測定光源42を所定周波数の正弦波でドライブして光強度を変調した上で、位相検波手段がフォトダイオード48(RGB)からの出力を増幅し、参照信号(変調波)に同期する成分のみを直流電圧信号として抽出する。この場合、測定光源42を変調する周波数は、培養光源の周波数から離れ、且つ、その整数倍でないことが好ましい。このような処理を施すことによって、培養光源(蛍光灯)からの外乱光の影響を完全に排除することができる。なお、上述した位相検波手段はロックインアンプなどによって構成することができる。フォトダイオード48によって検出され、位相検波手段を経たRGB成分毎の直流電圧信号は、図示しないA/D変換器によってRGB成分毎の光検出信号に変換され、PC50に送信される。以上、本実施形態の藻類増殖量自動測定装置10の基本構成について説明してきたが、次に、藻類増殖量自動測定装置10の具体的な動作について以下説明する。   Note that the measurement chamber 44 of the RGB absorptiometry means 40 has a part (or all) of the side surface thereof lacked in order to secure the circulation transfer path of the culture vessel 20 as described above, so that the inside thereof is completely removed. Since the light cannot be shielded, the light detection signal output unit 49 preferably has a configuration for eliminating the influence of disturbance light from the culture light source (fluorescent lamp). In this regard, in the present embodiment, a phase detection means for detecting the phase of the measurement light can be provided. In the present embodiment, the measurement light source 42 is driven by a sine wave of a predetermined frequency to modulate the light intensity, and then the phase detection means amplifies the output from the photodiode 48 (RGB), and the reference signal (modulated wave) Only the component that is synchronized with is extracted as a DC voltage signal. In this case, the frequency for modulating the measurement light source 42 is preferably separated from the frequency of the culture light source and not an integral multiple thereof. By performing such treatment, the influence of disturbance light from the culture light source (fluorescent lamp) can be completely eliminated. The above-described phase detection means can be configured by a lock-in amplifier or the like. The DC voltage signal for each RGB component detected by the photodiode 48 and passed through the phase detection means is converted to a light detection signal for each RGB component by an A / D converter (not shown) and transmitted to the PC 50. The basic configuration of the algal growth amount automatic measurement device 10 of the present embodiment has been described above. Next, the specific operation of the algal growth amount automatic measurement device 10 will be described below.

図5は、藻類増殖量自動測定装置10を上から見た図である。なお、図5は、8つの培養容器20a〜20hがセットされた態様を示し、培養光源14等については適宜省略している。本実施形態においては、循環移送手段30は、移送モードと測定モードの2種類の運転モードによって駆動される。移送モードにおいては、循環移送手段30は、図5(a)に示すように、一定の角速度で回転して培養容器20aを図中の矢印方向に移送する。移送された培養容器20aがRGB吸光光度測定手段40の測定室44に収容されると、図5(b)に示すように、循環移送手段30の運転モードは測定モードに切り替わり、所定時間(たとえば、1〜3分)停止する。その間、RGB吸光光度測定手段40の測定光源から光線が照射され、培養容器20aを透過した光がフォトダイオードによって検出されると、培養液の細胞密度に相関した大きさの光検出信号がPC50に送信される。   FIG. 5 is a view of the algal growth amount automatic measuring apparatus 10 as viewed from above. FIG. 5 shows a mode in which eight culture containers 20a to 20h are set, and the culture light source 14 and the like are omitted as appropriate. In the present embodiment, the circulating transfer means 30 is driven by two types of operation modes, a transfer mode and a measurement mode. In the transfer mode, as shown in FIG. 5A, the circulating transfer means 30 rotates at a constant angular velocity and transfers the culture vessel 20a in the direction of the arrow in the figure. When the transferred culture vessel 20a is accommodated in the measurement chamber 44 of the RGB absorbance measurement means 40, as shown in FIG. 5B, the operation mode of the circulation transfer means 30 is switched to the measurement mode, and a predetermined time (for example, , 1-3 minutes). Meanwhile, when light is irradiated from the measurement light source of the RGB absorbance measurement means 40 and light transmitted through the culture vessel 20a is detected by the photodiode, a light detection signal having a magnitude correlated with the cell density of the culture solution is sent to the PC 50. Sent.

所定時間が経過すると、図5(c)に示すように、循環移送手段30が再び一定の角速度で回転し、測定室44から培養容器20aが送出される。同様の手順で、培養容器20b〜20hが順次、測定室44に収容され、各培養容器20内の細胞密度に相関した大きさの光検出信号がPC50に送信されることが繰り返される。上述した循環移送手段30の運転モードの切り替え、ならびに、RGB吸光光度測定手段40の測定光源の駆動は、PC50によって一括制御することができる。なお、本実施形態においては、循環移送手段30の各支持体36に識別子を付与し、PC50側でこれを管理することによって、測定室44に収容されている培養容器20を特定することができるように構成されている。   When the predetermined time has elapsed, as shown in FIG. 5C, the circulation transfer means 30 rotates again at a constant angular velocity, and the culture vessel 20 a is delivered from the measurement chamber 44. In the same procedure, the culture containers 20b to 20h are sequentially accommodated in the measurement chamber 44, and the light detection signal having a magnitude correlated with the cell density in each culture container 20 is repeatedly transmitted to the PC 50. Switching of the operation mode of the circulating transfer means 30 and driving of the measurement light source of the RGB absorbance measuring means 40 can be collectively controlled by the PC 50. In the present embodiment, the culture vessel 20 accommodated in the measurement chamber 44 can be specified by assigning an identifier to each support 36 of the circulation transfer means 30 and managing it on the PC 50 side. It is configured as follows.

次に、本実施形態における藻類増殖量自動測定システム100が実行する処理について、図6に示す機能ブロック図を参照して以下説明する。RGB吸光光度測定手段40においては、測定光源42から照射され培養容器20を透過した測定光PがRGB成分検出部45に検出され、光検出信号出力部49は、当該検出信号からRGB成分毎に光検出信号を生成してPC50に送信する。   Next, processing executed by the algal growth amount automatic measurement system 100 in the present embodiment will be described below with reference to a functional block diagram shown in FIG. In the RGB absorptiometry means 40, the measurement light P irradiated from the measurement light source 42 and transmitted through the culture vessel 20 is detected by the RGB component detection unit 45, and the light detection signal output unit 49 detects each RGB component from the detection signal. A light detection signal is generated and transmitted to the PC 50.

RGB吸光光度測定手段40から送信されたRGB成分毎の光検出信号は、PC50の吸光度演算部51に入力される。一方、循環移送手段駆動制御部52は、循環移送手段30に設けた角度センサや測定室44に設けた赤外線センサからの出力を利用するなどして、循環移送手段30の運転モードの切り替えを含む駆動制御を実行するとともに、測定中の培養容器20を特定するための情報、すなわち、測定室44に収容されている培養容器20がセットされた支持体36の識別子を吸光度演算部51に通知する。なお、測定光源駆動制御部53は、循環移送手段駆動制御部52から通知されるタイミング信号に基づいて測定光源42の駆動を制御する。   The light detection signal for each RGB component transmitted from the RGB absorbance measurement means 40 is input to the absorbance calculation unit 51 of the PC 50. On the other hand, the circulation transfer means drive control unit 52 includes switching of the operation mode of the circulation transfer means 30 by using an output from an angle sensor provided in the circulation transfer means 30 or an infrared sensor provided in the measurement chamber 44. While performing the drive control, the information for specifying the culture vessel 20 being measured, that is, the identifier of the support 36 in which the culture vessel 20 accommodated in the measurement chamber 44 is set is notified to the absorbance calculation unit 51. . The measurement light source drive control unit 53 controls the drive of the measurement light source 42 based on the timing signal notified from the circulation transfer unit drive control unit 52.

吸光度演算部51には、細胞を含まない基準溶液について測定した光検出信号(入射光強度)が格納されており、吸光度演算部51は、当該光検出信号(入射光強度)とRGB吸光光度測定手段40から入力された光検出信号(透過光強度)とからRGB成分毎の吸光度を演算する。吸光度演算部51は、RGB成分毎に演算された吸光度を、循環移送手段駆動制御部52から通知された支持体36の識別子(すなわち、培養容器20)および測定時刻に対応付けて細胞密度演算部54に送る。   The absorbance calculation unit 51 stores a light detection signal (incident light intensity) measured for a reference solution that does not contain cells, and the absorbance calculation unit 51 measures the light detection signal (incident light intensity) and RGB absorbance measurement. The absorbance for each RGB component is calculated from the light detection signal (transmitted light intensity) input from the means 40. The absorbance calculation unit 51 associates the absorbance calculated for each RGB component with the identifier of the support 36 (that is, the culture vessel 20) and the measurement time notified from the circulation transfer means drive control unit 52, and the cell density calculation unit. 54.

細胞密度演算部54は、細胞密度算出式データベース55を検索して、測定対象となる藻類に対応する細胞密度算出式を取得する。細胞密度演算部54は、吸光度演算部51から与えられたRGB成分毎の吸光度の値を、細胞密度算出式データベース55から取得した細胞密度算出式に代入して細胞密度(cell/mL)を算出する。算出された細胞密度(cell/mL)は、支持体36の識別子(すなわち、培養容器20)および測定時刻に対応付けて細胞密度記憶部56に経時的に記録される。   The cell density calculation unit 54 searches the cell density calculation formula database 55 and acquires a cell density calculation formula corresponding to the algae to be measured. The cell density calculator 54 calculates the cell density (cell / mL) by substituting the absorbance value for each RGB component given from the absorbance calculator 51 into the cell density calculation formula obtained from the cell density calculation formula database 55. To do. The calculated cell density (cell / mL) is recorded over time in the cell density storage unit 56 in association with the identifier of the support 36 (ie, the culture vessel 20) and the measurement time.

なお、細胞密度算出式は、以下の手順で導出することができる。まず、基準となる藻類培養液を用意し、直接計数法などを使用して細胞密度を算出しておく。次に、この基準培養液を段階希釈した複数の試料の吸光度を測定し、RGB成分毎の吸光度(3つの説明変数)と細胞密度(目的変数)の間で多変量線形回帰分析を行うことによって、RGB成分毎の吸光度の関数として定義される細胞密度算出式が導出される。導出された細胞密度算出式は、測定対象となる藻類の種ごとに細胞密度算出式データベース55に蓄積・管理される。   The cell density calculation formula can be derived by the following procedure. First, a standard algae culture solution is prepared, and the cell density is calculated using a direct counting method or the like. Next, by measuring the absorbance of a plurality of samples obtained by serially diluting this reference culture solution, a multivariate linear regression analysis is performed between the absorbance (three explanatory variables) and cell density (target variable) for each RGB component. A cell density calculation formula defined as a function of absorbance for each RGB component is derived. The derived cell density calculation formula is accumulated and managed in the cell density calculation formula database 55 for each algae species to be measured.

測定結果生成部57は、細胞密度記憶部56に経時的に記録された細胞密度を使用して、細胞の増殖速度(cell/mL・h)や細胞増加率(%)などの情報をユーザの求めに応じて測定結果として生成する。生成された測定結果情報は、出力部58によって出力表示され、必要に応じてハードディスクなどの記録デバイスに記録される。   The measurement result generation unit 57 uses the cell density recorded in the cell density storage unit 56 over time to obtain information such as the cell growth rate (cell / mL · h) and the cell increase rate (%). Generated as a measurement result upon request. The generated measurement result information is output and displayed by the output unit 58 and recorded in a recording device such as a hard disk as necessary.

以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、当業者が推考しうる実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   As described above, the present invention has been described with the embodiment. However, the present invention is not limited to the above-described embodiment, and as long as the operations and effects of the present invention are exhibited within the scope of embodiments that can be considered by those skilled in the art. It is included in the scope of the present invention.

以下、本発明の藻類増殖量自動測定装置について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。   Hereinafter, although the algal growth amount automatic measuring apparatus of the present invention will be described more specifically using examples, the present invention is not limited to the examples described later.

本発明の藻類増殖量自動測定装置の測定性能を以下の手順で検証した。まず。図1〜4について説明したのと同様の藻類増殖量自動測定装置を作製した。なお、本実施例の藻類増殖量自動測定装置においては、測定光源としての白色LED光を1601Hzの正弦波で変調して位相検波した。また、循環移送手段30は、測定モード時間を8秒とし、移送モードにおける移動角速度を約0.0976 rad/sedに設定して、一周を16.9分で回転するように制御した。   The measurement performance of the algal growth amount automatic measurement apparatus of the present invention was verified by the following procedure. First. An algal growth amount automatic measuring device similar to that described with reference to FIGS. In the algal growth amount automatic measuring apparatus of this example, white LED light as a measurement light source was modulated with a 1601 Hz sine wave and phase-detected. Further, the circulating transfer means 30 was controlled to rotate in 16.9 minutes by setting the measurement mode time to 8 seconds and the moving angular velocity in the transfer mode to about 0.0976 rad / sed.

(供試藍藻)
供試藻類(藍藻:Microcystis Viridis)をM11培地で定常期になるまで増殖させ、当該培養液の細胞密度を算出した。なお、細胞密度は、TATAI計算盤を使用して目視で計数した細胞数から算出した。
(Test cyanobacteria)
Test algae (Microcystis Viridis) were grown in the M11 medium until the stationary phase was reached, and the cell density of the culture was calculated. The cell density was calculated from the number of cells visually counted using a TATAI calculator.

この藍藻培養液(5.86×105 cell/mL)をRO水(逆浸透膜水)で6段階(
1倍、2倍、4倍、8倍、16倍、32倍 )に希釈した6種類の希釈液とRO水を用意し、これら7つのサンプルを各々60mL入れた培養容器(ガラス製、セルの光路長:2.5cm )を藻類増殖量自動測定装置にセットして測定を行った。
This cyanobacteria culture solution (5.86 × 10 5 cell / mL) is prepared in 6 stages with RO water (reverse osmosis membrane water) (
Prepare 6 types of diluted solution diluted with 1x, 2x, 4x, 8x, 16x, 32x) and RO water, and culture vessels (made of glass, cell) containing 60mL each of these 7 samples. Measurement was performed by setting the optical path length: 2.5 cm 2) on an algal growth amount automatic measuring device.

図7は、各サンプルについて検出されたRGB成分毎の位相検波出力を示す図である。図7に示されるように、RGBのいずれ成分についても、希釈倍率が大きくなるに従って(すなわち、細胞密度が小さくなるに従って)、位相検波出力が大きくなっていった。   FIG. 7 is a diagram showing the phase detection output for each RGB component detected for each sample. As shown in FIG. 7, the phase detection output increased as the dilution factor increased (that is, as the cell density decreased) for any component of RGB.

ここで、希釈液サンプルにおけるRGB成分毎の出力電圧をそれぞれR、G、Bとし、RO水サンプルにおけるRGB成分毎の出力電圧をそれぞれR0、G0、B0とし、RGB成分毎の吸光度をそれぞれA,A,Aとすると、使用した培養容器のセルの光路長が2.5cmであるので、RGB成分毎の吸光度(A,A,A)は下記式1によって表すことができる。 Here, each output voltage for each RGB component in the diluent sample R V, G V, and B V, the output voltage of each of the RGB components and R0 V, G0 V, B0 V respectively in RO water sample, RGB components each When the absorbance of each a R, a G, and a B, the optical path length of the cell culture vessel used is a 2.5 cm, the absorbance of each component of RGB (a R, a G, a B) is of the formula 1 Can be represented by

次に、希釈倍率( 1倍、2倍、4倍、8倍、16倍、32倍 )から各サンプルの細胞密度(cell/mL)を算出するとともに、各サンプルの出力電圧を上記式に代入して使用して吸光度(A、A、A)を求めた。図8(a)(b)は、細胞密度(cell/mL)とRGB成分毎の吸光度(O.D.)の関係を示す図である。図8(b)に示されるように、細胞密度=約1.0×105
cell/mL(吸光度=0.4OD)までのレンジにおいては、吸光度と細胞密度との間に比例関係が成立することがわかった。そこで比例関係が成立するレンジにおいて、吸光度(A,A,A)を説明変数とし、細胞密度(cell/mL)を目的変数として多変量線形回帰分析を行った結果、下記式2に示す細胞密度算出式を導出することができた。
Next, the cell density (cell / mL) of each sample is calculated from the dilution factor (1 ×, 2 ×, 4 ×, 8 ×, 16 ×, 32 ×), and the output voltage of each sample is substituted into the above formula. The absorbance (A R , A G , A B ) was determined. 8A and 8B are diagrams showing the relationship between the cell density (cell / mL) and the absorbance (OD) for each RGB component. As shown in FIG. 8 (b), cell density = about 1.0 × 10 5
In the range up to cell / mL (absorbance = 0.4 OD), it was found that a proportional relationship was established between the absorbance and the cell density. Therefore, in the range where the proportional relationship is established, the results of multivariate linear regression analysis using the absorbance (A R , A G , A B ) as explanatory variables and the cell density (cell / mL) as the objective variable are as follows. The cell density calculation formula shown can be derived.

10…藻類増殖量自動測定装置
12…筐体
14…培養光源
20…培養容器
22…容器
23…蓋
30…循環移送手段
32…回転駆動手段
34…回転軸
36…支持体
37…培養容器固定部
40…RGB吸光光度測定手段
42…測定光源
43…光学系
44…測定室
45…RGB成分検出部
46…ゴムシート
47…ダイクロイックプリズム
48…フォトダイオード
49…光検出信号出力部
50…情報処理装置
51…吸光度演算部
52…循環移送手段駆動制御部
53…測定光源駆動制御部
54…細胞密度演算部
55…細胞密度算出式データベース
56…細胞密度記憶部
57…測定結果生成部
58…出力部
60…通気手段
62…送気手段
63,65,68…通気管
64…通気カプラー
66…円環状通気管
67…コネクター
69…可変バルブ
72…微生物除去フィルタ
74…排気管
76…栓
78…滅菌容器
100…藻類増殖量自動測定システム
DESCRIPTION OF SYMBOLS 10 ... Algae growth automatic measurement apparatus 12 ... Housing 14 ... Culture light source 20 ... Culture container 22 ... Container 23 ... Lid 30 ... Circulation transfer means 32 ... Rotation drive means 34 ... Rotating shaft 36 ... Support body 37 ... Culture container fixing | fixed part DESCRIPTION OF SYMBOLS 40 ... RGB absorptiometry means 42 ... Measurement light source 43 ... Optical system 44 ... Measurement room 45 ... RGB component detection part 46 ... Rubber sheet 47 ... Dichroic prism 48 ... Photodiode 49 ... Light detection signal output part 50 ... Information processing apparatus 51 ... absorbance calculation unit 52 ... circulation transfer means drive control unit 53 ... measurement light source drive control unit 54 ... cell density calculation unit 55 ... cell density calculation formula database 56 ... cell density storage unit 57 ... measurement result generation unit 58 ... output unit 60 ... Ventilation means 62 ... Air supply means 63, 65, 68 ... Ventilation pipe 64 ... Ventilation coupler 66 ... Annular ventilation pipe 67 ... Connector 69 ... Variable Valve 72 ... Microorganism removal filter 74 ... Exhaust pipe 76 ... Stopper 78 ... Sterilization container 100 ... Algae growth amount automatic measurement system

Claims (9)

藻類の増殖量を自動的に測定するための装置であって、
複数の培養容器と、
前記培養容器を循環移送するための循環移送手段と、
前記循環移送手段の移送経路上に配置されるRGB吸光光度測定手段と、
培養光源と、
前記培養容器内の培養液を通気撹拌するための通気手段を含み、
前記RGB吸光光度測定手段は、
順次移送される前記培養容器に測定光を照射するための測定光源と、該培養容器を透過した前記測定光を検出するためのRGB成分検出部と、検出した前記測定光のRGB成分毎に光検出信号を出力する光検出信号出力部とを含む、
藻類増殖量自動測定装置。
A device for automatically measuring the growth of algae,
A plurality of culture vessels;
Circulating and transferring means for circulating and transferring the culture container;
RGB absorptiometry means arranged on the transfer path of the circulation transfer means;
A culture light source;
Including aeration means for aeration and stirring of the culture solution in the culture vessel,
The RGB absorptiometry means is:
A measurement light source for irradiating measurement light to the culture containers that are sequentially transferred, an RGB component detection unit for detecting the measurement light transmitted through the culture container, and a light for each of the detected RGB components of the measurement light Including a light detection signal output unit that outputs a detection signal,
Algae growth automatic measurement device.
前記測定光源は、前記培養光源とは異なる周波数で駆動され、前記光検出信号出力部は、検出した前記測定光を前記測定光源の駆動信号を参照信号として位相検波する位相検波手段を含む、請求項1に記載の藻類増殖量自動測定装置。   The measurement light source is driven at a frequency different from that of the culture light source, and the light detection signal output unit includes phase detection means for phase-detecting the detected measurement light using a drive signal of the measurement light source as a reference signal. Item 2. The algal growth amount automatic measuring device according to item 1. 前記循環移送手段は、回転駆動される回転軸を中心に放射状の延び、先端部に前記培養容器を固定するための固定部が同一円周上に並んで形成された複数の支持体を含む、請求項1または2に記載の藻類増殖量自動測定装置。   The circulating transfer means includes a plurality of supports that extend radially around a rotation shaft that is rotationally driven, and a fixing portion for fixing the culture vessel at the tip is formed on the same circumference. The algal growth amount automatic measuring apparatus according to claim 1 or 2. 前記培養光源は、前記回転軸に対して軸対称となるように配置される、請求項3に記載の藻類増殖量自動測定装置。   The algal growth amount automatic measuring device according to claim 3, wherein the culture light source is arranged to be axially symmetric with respect to the rotation axis. 前記培養容器は、前記測定光が透過する壁面が互いに平行になるように構成される、請求項1〜4のいずれか1項に記載の藻類増殖量自動測定装置。   The algal growth amount automatic measuring device according to any one of claims 1 to 4, wherein the culture container is configured such that walls through which the measurement light passes are parallel to each other. 前記培養容器は、下端へ向かって窄まった中空部を備える、請求項5に記載の藻類増殖量自動測定装置。   The algal growth amount automatic measuring device according to claim 5, wherein the culture container includes a hollow portion that narrows toward a lower end. 前記培養容器は、容器の断面が直角三角形の形状に構成される、請求項6に記載の藻類増殖量自動測定装置。   The algal growth amount automatic measuring device according to claim 6, wherein the culture container has a cross-sectional shape of a right triangle. 前記RGB吸光光度測定手段は、前記培養光源からの外乱光を遮蔽するための筐体を備える、請求項1〜7のいずれか1項に記載の藻類増殖量自動測定装置。   The algae growth amount automatic measurement device according to any one of claims 1 to 7, wherein the RGB absorptiometry means includes a housing for shielding disturbance light from the culture light source. 請求項1〜8のいずれか1項に記載の藻類増殖量自動測定装置と、該藻類増殖量自動測定装置から入力される前記光検出信号に基づいて演算処理を実行し、前記培養容器毎の細胞密度を経時的に取得する手段を備える情報処理装置とを含む、藻類増殖量自動測定システム。   An algal growth amount automatic measurement apparatus according to any one of claims 1 to 8 and an arithmetic processing based on the light detection signal input from the algae growth amount automatic measurement apparatus, An algal growth amount automatic measurement system including an information processing device including means for acquiring cell density over time.
JP2010052972A 2010-03-10 2010-03-10 Automatic apparatus for measuring growth yield of algae Pending JP2011182731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010052972A JP2011182731A (en) 2010-03-10 2010-03-10 Automatic apparatus for measuring growth yield of algae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010052972A JP2011182731A (en) 2010-03-10 2010-03-10 Automatic apparatus for measuring growth yield of algae

Publications (1)

Publication Number Publication Date
JP2011182731A true JP2011182731A (en) 2011-09-22

Family

ID=44789760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010052972A Pending JP2011182731A (en) 2010-03-10 2010-03-10 Automatic apparatus for measuring growth yield of algae

Country Status (1)

Country Link
JP (1) JP2011182731A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361266A (en) * 2013-07-12 2013-10-23 昆山爱达斯工业设计有限公司 Rapid multi-parameter microorganism detector
JP2014200211A (en) * 2013-04-08 2014-10-27 日本電信電話株式会社 Culture method and culture controller of microalgae
JP2014202649A (en) * 2013-04-08 2014-10-27 日本電信電話株式会社 Micro alga concentration determination method, device and program
KR20160061128A (en) * 2014-11-21 2016-05-31 주식회사 지디이 Culturing apparatus of light agitation type
ES2685220R1 (en) * 2017-03-30 2018-11-14 Universidade De Vigo Method for estimating microalgal growth
CN110029057A (en) * 2019-04-19 2019-07-19 烟台职业学院 A kind of biotechnology cell culture apparatus
CN114507596A (en) * 2022-04-20 2022-05-17 广东环凯生物科技有限公司 Biological culture and detection system and method based on enzyme substrate method
CN116024093A (en) * 2023-03-27 2023-04-28 中国科学院海洋研究所 Light supply method in dunaliella salina culture process and application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200211A (en) * 2013-04-08 2014-10-27 日本電信電話株式会社 Culture method and culture controller of microalgae
JP2014202649A (en) * 2013-04-08 2014-10-27 日本電信電話株式会社 Micro alga concentration determination method, device and program
CN103361266A (en) * 2013-07-12 2013-10-23 昆山爱达斯工业设计有限公司 Rapid multi-parameter microorganism detector
KR20160061128A (en) * 2014-11-21 2016-05-31 주식회사 지디이 Culturing apparatus of light agitation type
KR101640672B1 (en) 2014-11-21 2016-07-22 주식회사 지디이 Culturing apparatus of light agitation type
ES2685220R1 (en) * 2017-03-30 2018-11-14 Universidade De Vigo Method for estimating microalgal growth
CN110029057A (en) * 2019-04-19 2019-07-19 烟台职业学院 A kind of biotechnology cell culture apparatus
CN114507596A (en) * 2022-04-20 2022-05-17 广东环凯生物科技有限公司 Biological culture and detection system and method based on enzyme substrate method
CN116024093A (en) * 2023-03-27 2023-04-28 中国科学院海洋研究所 Light supply method in dunaliella salina culture process and application

Similar Documents

Publication Publication Date Title
JP2011182731A (en) Automatic apparatus for measuring growth yield of algae
JP2018510333A (en) System, device and method using integrating sphere concentrator
CA2607086C (en) System for rapid analysis of microbiological materials in liquid samples
JP2007166983A (en) Culture container lid and biological sample culture system
EP3121262B1 (en) Examination apparatus
US20170191020A1 (en) Thermochromic sensing devices, systems, and methods
JP5570913B2 (en) Biological cell culture container and culture apparatus
JPH0115811B2 (en)
JP2016517009A (en) Optical system and method for real-time analysis of liquid samples
JP6608423B2 (en) Culture and detection equipment
BR112015031047B1 (en) detection system comprising a detection device to detect the presence of at least one microorganism in the contents of a container and its use
WO2019198669A1 (en) Incubator device, cell culture environment control system, and cell culture environment control method
JP2022118044A (en) Cell detection device
JP2024502568A (en) Image analysis and non-invasive data collection from cell culture devices
JP2006000057A (en) Culture vessel and biological sample observation system
JP2020130000A (en) Cell detection device and cell detection method
RU123166U1 (en) SPATIAL MONITORING OF SPATIAL BLOOD COAGING AND ITS COMPONENTS
US8535937B2 (en) Detection of microorganisms with a fluorescence-based device
US6232091B1 (en) Electrooptical apparatus and method for monitoring cell growth in microbiological culture
JP2004357523A (en) Cell-culturing and detecting apparatus
Stumpp et al. Measurement of feeding rates, respiration, and pH regulatory processes in the light of ocean acidification research
JP6755504B2 (en) Turbidity measuring device
WO2024193113A1 (en) Continuous-culture turbidostat and use thereof in measuring bacterial growth and bacterial cell cycle
RU2759907C1 (en) Mobile unit for determining the influence of strains of black sea algal viruses and viral lysis of phytoplankton species on the optical and physical properties of seawater in the remote access mode
RU150184U1 (en) DEVICE FOR ANALYSIS OF LUMINESCENCE OF SOLUTIONS AND / OR SUSPENSIONS OF Luminous MICROORGANISMS