JP2011182256A - Optical communication switching system using duplex lines and method therefor - Google Patents
Optical communication switching system using duplex lines and method therefor Download PDFInfo
- Publication number
- JP2011182256A JP2011182256A JP2010045691A JP2010045691A JP2011182256A JP 2011182256 A JP2011182256 A JP 2011182256A JP 2010045691 A JP2010045691 A JP 2010045691A JP 2010045691 A JP2010045691 A JP 2010045691A JP 2011182256 A JP2011182256 A JP 2011182256A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- line
- communication
- optical communication
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Optical Communication System (AREA)
Abstract
Description
本発明は、光通信線路として第1の光通信線路(現用線路)および第2の光通信線路(迂回線路)による二重化線路を備える光通信切替システム及び方法に係り、通信光の二重化によって生じる通信信号品質の劣化を低減し、伝送論理リンクを継続させながら通信サービスを途絶させることなく現用線路の信号を迂回線路に移し替える技術に関する。 The present invention relates to an optical communication switching system and method including a duplex line by a first optical communication line (working line) and a second optical communication line (detour line) as an optical communication line, and communication caused by duplication of communication light. The present invention relates to a technique for reducing degradation of signal quality and transferring a signal on an active line to a detour line without interrupting a communication service while continuing a transmission logical link.
経済的な光通信システムを構築するため、一台の所内伝送装置によって複数の所外伝送終端装置を集約するPON(Passive Optical Network)システムが提案されたことで(例えば、特許文献1参照。)、通信設備のコストが大幅に削減され、光化の動きが本格化している。また、高密度波長多重や高密度時分割多重などの伝送容量の拡大により、映像や光電話等のようなリアルタイム性を要求されるサービスや付加価値の高いサービスも普及している。 In order to construct an economical optical communication system, a PON (Passive Optical Network) system in which a plurality of external transmission terminal devices are aggregated by a single in-house transmission device has been proposed (for example, see Patent Document 1). As a result, the cost of communication equipment has been greatly reduced, and the trend toward opticalization is in full swing. In addition, due to the expansion of transmission capacity such as high-density wavelength multiplexing and high-density time division multiplexing, services that require real-time properties and high value-added services such as video and optical telephones have become widespread.
従来、所外の光線路設備に対して、道路の拡幅工事や橋の架け替え工事、あるいは他の設備工事(電気や水道などの新設や修理)によって、通信ルートの変更を余儀なく強いられるケースがしばしば発生している(以後、支障移転工事と称する)。このような状況において、上記のようなサービスを支える通信設備に支障移転工事が発生した場合、一度に多くのトラフィックを停止させる工事となることから、多くのユーザヘの影響は計り知れない。その影響を小さくするために工事時期を分けたり、トラフィック量の小さい時間帯、例えば、深夜から早朝に切替工事を実施したりするなど、効率性に欠ける設備運用がなされてきた。 In the past, there have been cases in which communication routes have been forced to change due to road widening work, bridge replacement work, or other equipment work (new construction or repair of electricity, water, etc.) for off-site optical line equipment. It often occurs (hereinafter referred to as troubled relocation work). In such a situation, when trouble relocation work occurs in the communication equipment that supports the service as described above, it is a work to stop a lot of traffic at a time, so the influence on many users is immeasurable. In order to reduce the impact, facilities have been operated with inefficiencies, such as by dividing the construction period or performing switching work in a time zone with a small traffic volume, for example, from midnight to early morning.
このような状況の中、光線路の切替接続時間をできる限り短縮させ、通信復旧時間を短くするためのツールが商用化された(例えば、特許文献2参照。)。しかしながら、本システムをもってしても光線路の一時的な切り離しや、現用線路と迂回線路との線路長の違い(伝送信号の到達時間差)によって、伝送データの欠落や伝送論理リンクのミスマッチを回避することはできていない。 Under such circumstances, a tool for shortening the optical line switching connection time as much as possible and shortening the communication recovery time has been commercialized (for example, see Patent Document 2). However, even with this system, transmission data loss and transmission logical link mismatches are avoided due to temporary disconnection of the optical line and differences in the line length between the working line and the detour line (difference in arrival time of the transmission signal). I can't.
また、光線路設備構築時に伝達ルートを二重化し、伝送装置からこの2つのルートに対して現用信号を予め提供し、切替接続時間をほとんどゼロにした切替を実行しても、線路長の違いによって、伝送論理リンクのミスマッチを避けられないという問題があった(例えば、特許文献3、4参照。)。
Even if the transmission route is doubled at the time of construction of the optical line equipment, the working signal is provided in advance to the two routes from the transmission device, and switching with the switching connection time almost zero is performed, There is a problem that a mismatch in the transmission logical link is unavoidable (see, for example,
いずれにしても、このような媒体切替の技術的限界を考慮して、ユーザヘの影響(サービス劣化)を最小限に食い止めるように工事期間を分散させ、深夜作業をより一層長期化することは避けられない状況に変化はない。 In any case, in consideration of such technical limitations of medium switching, it is recommended that the construction period be distributed so that the influence on the user (service degradation) is kept to a minimum and the midnight work should be further prolonged. There is no change in the situation that cannot be done.
従来のケーブル切替工事では、サービスが一時的に停止するため、サービス利用者の意向を考慮した工事日時等の調整が行われてきた。しかしながら、PONシステムに代表されるように、支障移転工事によって一度に多くの利用者がサービス停止となるような通信方式では、工事日時の調整は非常に困難である。その結果、支障移転工事は計画性に欠け、工事期間の長期化を余儀なくさせられている。なお、SS網(single Star Network)システムのような単数のユーザであったとしてもサービス停止が、極めて困難な専用回線では、その状況はPONシステムと変わりはない。 In the conventional cable switching work, since the service is temporarily stopped, the construction date and time has been adjusted in consideration of the intention of the service user. However, as represented by the PON system, it is very difficult to adjust the construction date and time in a communication system in which many users are stopped at once due to troubled transfer work. As a result, troubled relocation work is lacking in planning and forced to extend the construction period. It should be noted that even if the user is a single user such as an SS network (single star network) system, the situation is the same as that of the PON system in a dedicated line that is extremely difficult to stop service.
上記の事情に鑑みて、線路長(光路長)の等しい二重化線路を作成し、伝送信号の位相を合わせることによってデータの欠落や伝送論理リンクのミスマッチを回避させている(例えば、特許文献5参照。)。これにより、サービスを停止させない支障移転工事を可能にしている。しかしながら、この方法では通信光を二重化する際に生じる光干渉雑音が通信品質を低下させるという問題がある。 In view of the above circumstances, duplicated lines having the same line length (optical path length) are created and the phase of the transmission signal is matched to avoid data loss and transmission logical link mismatch (see, for example, Patent Document 5). .) This makes it possible to carry out obstacle relocation work without stopping the service. However, this method has a problem that the optical interference noise generated when the communication light is duplicated deteriorates the communication quality.
本発明では、通信光の二重化時に生じる光干渉雑音を低減させる二重化線路による光通信切替システム及び方法を提供することを目的とする。 It is an object of the present invention to provide an optical communication switching system and method using a duplex line that reduces optical interference noise generated when the communication light is duplexed.
上記目的を達成するために、本発明は、第1の光伝送装置(送信機)と第2の光伝送装置(受信機)との間に信号伝達時間の等しい第1の光通信線路とは別の第2の光通信線路を接続して二重化線路を形成し、一時的に通信光を重畳しながら前記第1の光通信線路と前記第2の光通信線路のいずれかを選択していく光通信切替システムであって、前記第2の光通信線路の中に前記通信光の光周波数を変化させる光周波数変換器もしくは波長変換器を具備し、前記光周波数変換器もしくは波長変換器を用いて前記二重化線路の各々を伝播してくる前記通信光が合波されたときに生じるビート干渉の周波数成分を前記第2の光伝送装置の受信帯域外となる高周波側に移して通信信号の劣化を抑制することを特徴とするものである。 To achieve the above object, the present invention relates to a first optical communication line having the same signal transmission time between a first optical transmission device (transmitter) and a second optical transmission device (receiver). Another second optical communication line is connected to form a duplex line, and either the first optical communication line or the second optical communication line is selected while temporarily superimposing communication light. An optical communication switching system comprising an optical frequency converter or a wavelength converter for changing an optical frequency of the communication light in the second optical communication line, and using the optical frequency converter or the wavelength converter The frequency component of beat interference generated when the communication light propagating through each of the duplex lines is combined is shifted to the high frequency side outside the reception band of the second optical transmission device, thereby degrading the communication signal. It is characterized by suppressing.
本発明は、二重化線路の片方を伝播する通信光の光周波数を、もう片方を伝播する通信光の光周波数とは異なる成分に変換し、それらが合波したときに生じる光周波数差成分のビート干渉雑音を光伝送装置(受信機)が応答できない高周波域まで移すことによって、通信信号の符号誤りの劣化を抑制させている。これによって、信頼性の高い光通信線路の切替工事が期待できる。 The present invention converts the optical frequency of communication light propagating through one of the duplex lines into a component different from the optical frequency of communication light propagating through the other, and beats the optical frequency difference component generated when they are combined By shifting the interference noise to a high frequency range where the optical transmission device (receiver) cannot respond, deterioration of the code error of the communication signal is suppressed. As a result, a highly reliable optical communication line switching work can be expected.
以下、本発明の実施の形態について、詳細に説明する。
図1は本発明の実施形態に係る二重化線路による光通信切替システムを示す構成説明図である。図1において、1は例えば送信機等の第1の光伝送装置である所内伝送装置、2、2’は光カプラ、3は第1の光通信線路(現用線路)、4は第2の光通信線路(迂回線路)、5は光周波数変換器(もしくは波長変換器)、6は例えば受信機等の第2の光伝送装置である所外終端装置である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is an explanatory diagram showing a configuration of an optical communication switching system using a duplex line according to an embodiment of the present invention. In FIG. 1,
図1において、所内伝送装置(送信機)1の出力端は光カプラ2の入力端に接続され、光カプラ2の一方の出力端は第1の光通信線路(現用線路)3を介して光カプラ2′の一方の入力端に接続される。光カプラ2の他方の出力端は第2の光通信線路(迂回線路)4及び光周波数変換器(もしくは波長変換器)5を介して光カプラ2′の他方の入力端に接続され、光カプラ2′の出力端は所外終端装置(受信機)6の入力端に接続される。
In FIG. 1, an output end of a local transmission device (transmitter) 1 is connected to an input end of an
すなわち、所内伝送装置(送信機)1と所外終端装置(受信機)6との間に信号伝達時間の等しい第1の光通信線路(現用線路)3とは別の第2の光通信線路(迂回線路)4を接続して二重化線路を形成し、一時的に通信光を重畳しながら前記第1の光通信線路(現用線路)3と第2の光通信線路(迂回線路)4のいずれかを選択していく光通信切替システムにおいて、前記第2の光通信線路(迂回線路)4の中に前記通信光の光周波数を変化させる光周波数変換器(もしくは波長変換器)5を具備するものであって、前記光周波数変換器(もしくは波長変換器)5を用いて前記二重化線路の各々を伝播してくる前記通信光が合波されたときに生じるビート干渉の周波数成分を前記所外終端装置(受信機)6の受信帯域外となる高周波側に移して通信信号の劣化を抑制することを特徴とする。 That is, a second optical communication line different from the first optical communication line (working line) 3 having the same signal transmission time between the in-house transmission device (transmitter) 1 and the external termination device (receiver) 6. (Detour path) 4 is connected to form a duplex line, and either of the first optical communication line (working line) 3 and the second optical communication line (detour path) 4 while temporarily superimposing communication light. In the optical communication switching system for selecting the optical frequency, an optical frequency converter (or wavelength converter) 5 for changing the optical frequency of the communication light is provided in the second optical communication line (detour line) 4. A frequency component of beat interference generated when the communication light propagating through each of the duplex lines is combined using the optical frequency converter (or wavelength converter) 5 Move to the high-frequency side outside the receiving band of the terminating device (receiver) 6 Characterized in that to suppress deterioration of the communication signal Te.
所内伝送装置(送信機)1から送出された通信光が二重化線路で第1の光通信線路(現用線路)3と第2の光通信線路(迂回線路)4に分岐された後、再び合波されたとき、二重化線路の各々を伝播してきた通信光にはわずかながら到達時間に差をもって所外終端装置(受信機)6に入力されるため、通信光のもつ光周波数差がビート干渉雑音として発生する。 The communication light transmitted from the in-house transmission device (transmitter) 1 is branched into a first optical communication line (working line) 3 and a second optical communication line (detour line) 4 by a duplex line, and then multiplexed again. Then, since the communication light propagating through each of the duplex lines is input to the external termination device (receiver) 6 with a slight difference in arrival time, the optical frequency difference of the communication light becomes beat interference noise. appear.
そこで、前記第2の光通信線路(迂回線路)4の中に設置した光周波数変換器(もしくは波長変換器)5によって、当該第2の光通信線路(迂回線路)4を伝播する通信光の光周波数を前記第1の光通信線路(現用線路)3を伝播する通信光の光周波数とは異なる成分に変換し、それらが合波したときに生じる光周波数差成分のビート干渉雑音を所外終端装置(受信機)6が応答できない高周波域まで移して通信信号の劣化を抑制させている。 Thus, the optical frequency converter (or wavelength converter) 5 installed in the second optical communication line (detour path) 4 transmits communication light propagating through the second optical communication line (detour path) 4. The optical frequency is converted into a component different from the optical frequency of the communication light propagating through the first optical communication line (working line) 3, and beat interference noise of the optical frequency difference component generated when they are combined is excluded The termination device (receiver) 6 is moved to a high frequency range where it cannot respond, and the deterioration of the communication signal is suppressed.
次に、図1及び図2を用いて、二重化線路による光通信切替システムにおけるビート干渉雑音低減の考え方を説明する。 Next, the concept of beat interference noise reduction in an optical communication switching system using a duplex line will be described with reference to FIGS. 1 and 2.
図1に示すように、所内伝送装置(送信機)1から送出された通信光が、第1の光通信線路(現用線路)3と第2の光通信線路(迂回線路)4から構成されるマッハ・ツェンダ型の二重化線路を通過するとき、その光路長差ΔL(=Δt・c/n)に応じたビート干渉雑音を伴いながら受光される。これは、所内伝送装置(送信機)1からの通信光が直接強度変調されたビットパルスであり、当該通信光の光周波数がチャープしているためである。つまり、このチャープされた通信光が前記二重化線路を通過して合波されたとき、その光路長差ΔLが原因で異なる光周波数成分の通信光同士が重なるため、その差周波数成分Δωのビート干渉が発生するものである。 As shown in FIG. 1, the communication light transmitted from the in-house transmission device (transmitter) 1 is composed of a first optical communication line (working line) 3 and a second optical communication line (detour line) 4. When passing through a Mach-Zehnder type duplex line, light is received with beat interference noise corresponding to the optical path length difference ΔL (= Δt · c / n). This is because the communication light from the in-house transmission device (transmitter) 1 is a bit pulse whose intensity is directly modulated, and the optical frequency of the communication light is chirped. That is, when the chirped communication light passes through the duplex line and is multiplexed, the communication lights having different optical frequency components overlap due to the optical path length difference ΔL, so that the beat interference of the difference frequency component Δω. Will occur.
図2はその時の様子、即ち、二重化線路を伝播してきた各通信光ビットパルス(1ビット)のパワーと光周波数、およびビート干渉波形をイメージしたものである。図2において、7は現用側通信光のビットパルス、8は迂回側通信光のビットパルス、9は現用側通信光の周波数チャープ曲線、10は迂回側通信光の周波数チャープ曲線、11はビート干渉波形、12は光周波数差(Δω)である。 FIG. 2 illustrates the state at that time, that is, the power and optical frequency of each communication optical bit pulse (1 bit) that has propagated through the duplex line, and the beat interference waveform. In FIG. 2, 7 is a bit pulse of working-side communication light, 8 is a bit pulse of bypass-side communication light, 9 is a frequency chirp curve of working-side communication light, 10 is a frequency chirp curve of bypass-side communication light, and 11 is beat interference. The waveform, 12 is the optical frequency difference (Δω).
いま、光カプラ2によって分岐され、第1の光通信線路(現用線路)3を伝播する通信光φ1と、第2の光通信線路(迂回線路)4を伝播する通信光φ2とを各々平面波で近似すると、式(1)と式(2)によって表される。
φ1{L1,ω(L1)}=A・exp[−i{k0・n・L1−ω(L1)・t+φ0}]……………式(1)
φ2{L2,ω(L2)}=B・exp[−i{k0・n・L2−ω(L2)・t+φ0}]……………式(2)
Now, communication light φ 1 branched by the
φ 1 {L 1 , ω (L 1 )} = A · exp [−i {k 0 · n · L 1 −ω (L 1 ) · t + φ 0 }]... Equation (1)
φ 2 {L 2 , ω (L 2 )} = B · exp [−i {k 0 · n · L 2 −ω (L 2 ) · t + φ 0 }] (2)
L1とL2は第1の光通信線路(現用線路)3と第2の光通信線路(迂回線路)4の光路長、ω(L1)とω(L2)は光路長L1とL2における光周波数、AとBは振幅、k0は真空中の波数、nはコアの屈折率、φ0は初期位相である。 L 1 and L 2 are optical path lengths of the first optical communication line (working line) 3 and the second optical communication line (detour line) 4, and ω (L 1 ) and ω (L 2 ) are optical path lengths L 1 and L 1 . The optical frequency at L 2 , A and B are amplitudes, k 0 is the wave number in vacuum, n is the refractive index of the core, and φ 0 is the initial phase.
ここで、所外終端装置(受信機)6で測定される電流値Iは、上記通信光φ1とφ2を重ね合わせた干渉波の2乗に比例することから、式(3)により表される。但し、光−電気の変換効率を1とし、合波時の偏波結合効率もビート干渉が最も大きくなることを想定して1と仮定する。
I=|φ1+φ2 *|2……………式(3)
Here, since the current value I measured by the off-site termination device (receiver) 6 is proportional to the square of the interference wave obtained by superimposing the communication lights φ 1 and φ 2 , the current value I is expressed by Equation (3). Is done. However, it is assumed that the optical-electric conversion efficiency is 1, and the polarization coupling efficiency at the time of multiplexing is 1 assuming that the beat interference becomes the largest.
I = | φ 1 + φ 2 * | 2 …………… Formula (3)
*は複素共役を表す。式(1)と式(2)を式(3)に代入すると、次の式(4)が得られる。
I=|A|2+|B|2+2・|A|・|B|・cos(k0・n・ΔL−Δω・t)……式(4)
但し、ΔL=L1−L2、Δω=ω(L1)−ω(L2)である。
* Represents a complex conjugate. Substituting Equation (1) and Equation (2) into Equation (3) yields the following Equation (4).
I = | A | 2 + | B | 2 + 2 · | A | · | B | · cos (k 0 · n · ΔL−Δω · t) Equation (4)
However, ΔL = L 1 −L 2 and Δω = ω (L 1 ) −ω (L 2 ).
ここで、図2からわかるように光路長差がない場合(ΔL=0)、合波される通信光の周波数もまた一致し、光周波数差Δω=0となることから、式(4)の第3項のcos(cosine)部が“1”となり、電流値Iから交流成分がなくなる。つまり、電流値Iが一定値となることが期待される。 Here, as can be seen from FIG. 2, when there is no optical path length difference (ΔL = 0), the frequencies of the communication lights to be combined also coincide, and the optical frequency difference Δω = 0. The cos (cosine) part of the third term becomes “1”, and the alternating current component disappears from the current value I. That is, the current value I is expected to be a constant value.
しかしながら、通信線路の長さが周囲の温度環境によって伸縮することや、例え光路長差が完全に一致(ΔL=0)したとしても通信光源の周波数に揺らぎがあることを考えれば、式(4)から交流成分(ビート干渉項)がなくなることは、現実的にはあり得ない。従って、本発明の実施形態では光路長差ΔLなどの理由でビート干渉が発生することを前提に、その干渉雑音の低減対策を施している。 However, considering that the length of the communication line expands and contracts depending on the ambient temperature environment, and the frequency of the communication light source fluctuates even if the optical path length difference completely matches (ΔL = 0), the equation (4 It is practically impossible for the AC component (beat interference term) to disappear from). Therefore, in the embodiment of the present invention, on the premise that beat interference occurs due to an optical path length difference ΔL or the like, countermeasures for reducing the interference noise are taken.
式(4)から分かるように、ビート干渉を表わす第3項(cos部)の周波数を所外終端装置(受信機)6の受信帯域より大きくする、即ち、高周波状態に移すことによってビート干渉雑音度を低減せることが可能になる。 As can be seen from equation (4), beat interference noise is obtained by making the frequency of the third term (cos part) representing beat interference larger than the reception band of the external termination device (receiver) 6, that is, by shifting to a high frequency state. The degree can be reduced.
いま、図1に示すように第2の光通信線路(迂回線路)4の途中に光周波数変換器(もしくは波長変換器)5を設置し、前記通信光φ2の光周波数をΩだけシフトさせる。この時の通信光をφ3とすると、式(5)で表される。
φ3{L2,ω(L2)}=B・exp〔−i[k0’・n・L2−{ω(L2)+Ω}・t+φ0]〕……………式(5)
As shown in FIG. 1, an optical frequency converter (or wavelength converter) 5 is installed in the middle of the second optical communication line (detour line) 4 to shift the optical frequency of the communication light φ 2 by Ω. . When this time of the communication beam and phi 3, the formula (5).
φ 3 {L 2 , ω (L 2 )} = B · exp [−i [k 0 ′ · n · L 2 − {ω (L 2 ) + Ω} · t + φ 0 ]]]. )
k0’は光周波数をΩだけシフトさせた後の波数であり、次の式(6)で表される。
k0’=2πc/(cλ+λ2・Ω)……………式(6)
k 0 ′ is the wave number after the optical frequency is shifted by Ω, and is expressed by the following equation (6).
k 0 ′ = 2πc / (cλ + λ 2 Ω)... Equation (6)
λは通信光φ3の波長、cは光速である。式(1)、式(5)、式(6)を式(3)に代入すると、前記通信光φ1とφ3の重ね合わせによって生じる電流値Iは、次の式(7)で与えられる。
I=|A|2+|B|2+2・|A|・|B|・sin{(k0・L1−k0’・L2)・n−(Δω+Ω)・t}……………式(7)
λ is the wavelength of communication light φ 3 , and c is the speed of light. When Expression (1), Expression (5), and Expression (6) are substituted into Expression (3), the current value I generated by the superposition of the communication lights φ 1 and φ 3 is given by the following Expression (7). .
I = | A | 2 + | B | 2 + 2 · | A | · | B | · sin {(k 0 · L 1 −k 0 '· L 2 ) · n− (Δω + Ω) · t} ... Formula (7)
式(7)を用いて、第2の光通信線路(迂回線路)4を伝播する通信光φ2の光周波数をΩだけシフトする場合(φ3)としない場合(φ2)との合波通信光の電流値Iについて計算する。本計算では、図1における第1の光通信線路(現用線路)3と第2の光通信線路(迂回線路)4を伝播する通信光φ1とφ3の振幅が同じで(|A|=|B|=1)、光路長はほぼ一致したと仮定した(ΔL=2mmと設定)。 Using Expression (7), combining the optical frequency of the communication light φ 2 propagating through the second optical communication line (detour line) 4 by Ω (φ 3 ) and not (φ 2 ) The current value I of communication light is calculated. In this calculation, the amplitudes of the communication lights φ 1 and φ 3 propagating through the first optical communication line (working line) 3 and the second optical communication line (detour line) 4 in FIG. 1 are the same (| A | = | B | = 1), it was assumed that the optical path lengths were almost the same (ΔL = 2 mm).
また、1.25Gbpsの所内伝送装置(送信機)1から送出される通信光(ビットパルス)の光周波数のチャープ量は、一般的に伝送速度あたり数GHz程度であることから、2GHz/0.8ns(=2GHz/160mm)とし、上記光路長差ΔL=2mmで生じる光周波数差Δωには0.025GHzを用いた。 Further, since the chirp amount of the optical frequency of communication light (bit pulse) transmitted from the in-house transmission apparatus (transmitter) 1 of 1.25 Gbps is generally about several GHz per transmission speed, 2 GHz / 0.00. 8 ns (= 2 GHz / 160 mm), and 0.025 GHz was used for the optical frequency difference Δω generated when the optical path length difference ΔL = 2 mm.
その結果を図3に示す。図3(a)は、光周波数変換器(もしくは波長変換器)5によって通信光φ2の光周波数をシフトさせない場合(Ω=0GHz)、図3(b)は、4.25GHzだけシフトさせた場合の二重化通信光のレベル変動の様子を表している。図3(a),(b)からわかるように光周波数シフトの有無に係わらずビート干渉が発生し、最小レベルは、いずれもゼロである。但し、ビート干渉波形の周波数は、図3(a)では、Δω(=0.025GHz)による長周期のレベル変化であるのに対して、図3(b)は光周波数シフトΩ(=4.25GHz)が支配要因となり、短周期のレベル変化となっている。 The result is shown in FIG. 3A shows a case where the optical frequency of the communication light φ 2 is not shifted by the optical frequency converter (or wavelength converter) 5 (Ω = 0 GHz), and FIG. 3B shows a case where it is shifted by 4.25 GHz. The state of the level fluctuation of the duplex communication light in this case is shown. As can be seen from FIGS. 3A and 3B, beat interference occurs regardless of the presence or absence of optical frequency shift, and the minimum level is zero. However, the frequency of the beat interference waveform is a long-period level change due to Δω (= 0.025 GHz) in FIG. 3A, whereas in FIG. 3B, the optical frequency shift Ω (= 4. 25 GHz) is the dominant factor, and the level changes in a short period.
次に、上述のビート干渉波形を所外終端装置(受信機)6が約2GHzの帯域で受信する場合の電流値Iのレベル変動イメージを図4に示す。13は光周波数シフト(Ω=0GHz)前のビート干渉波形、14は光周波数シフト(Ω=4.25GHz)後のビート干渉波形である。 Next, FIG. 4 shows a level fluctuation image of the current value I when the external termination device (receiver) 6 receives the above-described beat interference waveform in a band of about 2 GHz. 13 is a beat interference waveform before the optical frequency shift (Ω = 0 GHz), and 14 is a beat interference waveform after the optical frequency shift (Ω = 4.25 GHz).
光周波数をシフトしないビート干渉波形13は(Δω=0.025GHz)、所外終端装置(受信機)6の受信帯域(2GHz)内にあることから、図3(a)のビート干渉波形をよく再現し、通信光の最低レベルはゼロのままである。
Since the
一方、光周波数をΩだけシフトしたビート干渉波形14は(Δω+Ω=4.28GHz)、所外終端装置(受信機)6の受信帯域(2GHz)から外れるため、即ち、当該所外終端装置(受信機)6の応答速度がビート干渉の周波数より遅いため、平均化された波形として測定される。従って、通信光の最低レベルがゼロとはならず、通信光φ1とφ3の振幅(|A|=|B|=1)の合計である2に近づいている。 On the other hand, the beat interference waveform 14 obtained by shifting the optical frequency by Ω (Δω + Ω = 4.28 GHz) is out of the reception band (2 GHz) of the external termination device (receiver) 6, that is, the external termination device. Since the response speed of the (receiver) 6 is slower than the frequency of beat interference, it is measured as an averaged waveform. Therefore, the lowest level of the communication light does not become zero, and approaches 2 which is the sum of the amplitudes (| A | = | B | = 1) of the communication lights φ 1 and φ 3 .
以上、二重化線路の片方に光周波数変換器もしくは波長変換器を設け、合波された通信光のビート干渉の周波数が所外終端装置(受信機)6の受信帯域を超えるように設計することによって、通信光のレベル変動(ビート干渉雑音)を低減できる。なお、図4のビート干渉波形14から明らかなように、光周波数変換器(もしくは波長変換器)5の光周波数シフト量を更に大きくすることで、通信光のレベル変動(ビート干渉雑音)が一層小さくなることは言うまでもない。 As described above, by providing an optical frequency converter or wavelength converter on one side of the duplex line and designing the frequency of beat interference of the combined communication light to exceed the reception band of the external termination device (receiver) 6 , Communication light level fluctuation (beat interference noise) can be reduced. As is clear from the beat interference waveform 14 in FIG. 4, the level fluctuation (beat interference noise) of the communication light is further increased by further increasing the optical frequency shift amount of the optical frequency converter (or wavelength converter) 5. Needless to say, it gets smaller.
図5は本発明における二重化線路による光通信切替システムの検証実験系である。図5中、図1と同一部分は同一符号を付して説明する。図5において、17はパルスパターン発生器、18は光レベル調整器、19は偏波制御器、20はO/E(光/電気)変換器、21はオシロスコープである。 FIG. 5 is a verification experiment system of an optical communication switching system using a duplex line in the present invention. In FIG. 5, the same parts as those in FIG. In FIG. 5, 17 is a pulse pattern generator, 18 is an optical level adjuster, 19 is a polarization controller, 20 is an O / E (optical / electrical) converter, and 21 is an oscilloscope.
すなわち、所内伝送装置(送信機)1から送出された通信光を光カプラ2によって、第1の光通信線路(現用線路)3と第2の光通信線路(迂回線路)4に分け、光カプラ2’で再び合波し、O/E変換器20で受光しオシロスコープ21で電圧値として測定する。
That is, the communication light transmitted from the on-site transmission device (transmitter) 1 is divided by the
この時、第2の光通信線路(迂回線路)4を伝播してくる通信光(φ2[L2,ω(t)])は、当該線路4の途上にある光周波数変換器(もしくは波長変換器)5によって光周波数をΩだけシフトさせられ(φ3[L2,ω(t)+Ω])、当該通信光φ3と第1の光通信線路(現用線路)3を伝播してくる通信光(φ1[L1,ω(t)])と合波させる。 At this time, the communication light (φ 2 [L 2 , ω (t)]) propagating through the second optical communication line (detour line) 4 is an optical frequency converter (or wavelength) on the line 4. The optical frequency is shifted by Ω by the converter 5 (φ 3 [L 2 , ω (t) + Ω]), and propagates through the communication light φ 3 and the first optical communication line (working line) 3. It is combined with communication light (φ 1 [L 1 , ω (t)]).
ここで、光レベル調整器18は第1の光通信線路(現用線路)3と第2の光通信線路(迂回線路)4を伝播する通信光のレベルを調節している。また、偏波制御器19は第1の光通信線路(現用線路)3の通信光(φ1[L1,ω(t) ])と第2の光通信線路(迂回線路)4の通信光(φ3[L2,ω(t)+Ω])の偏波面を一致させている。これらは、二重化された通信光のビート干渉(レベル変動)の振幅を最大にし、通信品質を最も低下させた状態にするために使用している。
Here, the
いま、第1の光通信線路(現用線路)3と第2の光通信線路(迂回線路)4の光路長差ΔLを2mm以内に一致させ、光レベル調整器18で各線路の通信光のレベル差を1dB以内に調整すると同時に、偏波制御器19によって各線路からの通信光の偏波面を一致させながら上記の二重化線路による光通信切替システムにおけるビート干渉雑音低減の考え方の効果を検証した。
Now, the optical path length difference ΔL between the first optical communication line (working line) 3 and the second optical communication line (detour line) 4 is matched within 2 mm, and the level of communication light of each line is adjusted by the
まず、図6は、第1の光通信線路(現用線路)3のみを伝播する二重化しない通信光(φ1[L1,ω(t)])のアイダイアグラムである。本アイダイアグラムは明瞭に、かつ、安定して開いており、所外終端装置(受信機)6では通信品質のよいディジタル信号として受信されることになる。 First, FIG. 6 is an eye diagram of communication light (φ 1 [L 1 , ω (t)]) that is not duplexed and propagates only through the first optical communication line (working line) 3. This eye diagram is clearly and stably opened, and is received as a digital signal with good communication quality by the external termination device (receiver) 6.
次に、図7(a)〜(d)は、本発明の実施形態の対策(光周波数変換)前の二重化通信光のアイダイアグラムの変化を示す。本図からわかるように、ディジタル信号の品質を表すアイダイアグラムの状態がレベル変動を引き起こし、図7(d)においてはアイダイアグラムの目が完全に塞がった状態、即ち、ディジタル信号が消失するまでに至っている。これは、ディジタル信号を構成する通信光φ1とφ2が合波後に大きなレベル変動(ビート雑音)が発生しているためで、周期的に図7(a)〜(d)のレベル変動を繰り返している。このようにレベル変動(ビート雑音)を含むディジタル信号は、所外終端装置(受信機)6でのディジタル信号受信時において、符号“1”と“0”を判定する閾値に対して誤りを引き起こすことになり、結果として通信品質が劣化する。 Next, FIGS. 7A to 7D show changes in the eye diagram of the duplex communication light before the countermeasure (optical frequency conversion) of the embodiment of the present invention. As can be seen from this figure, the state of the eye diagram representing the quality of the digital signal causes a level fluctuation. In FIG. 7D, the eye diagram is completely closed, that is, until the digital signal disappears. Has reached. This is because a large level fluctuation (beat noise) occurs after the communication lights φ 1 and φ 2 constituting the digital signal are combined, and the level fluctuations shown in FIGS. It is repeating. Thus, the digital signal including the level fluctuation (beat noise) causes an error with respect to the threshold value for determining the codes “1” and “0” when the digital signal is received by the external termination device (receiver) 6. As a result, the communication quality deteriorates.
一方、図8は本発明の実施形態の対策(光周波数変換)後の二重化通信光のアイダイアグラムである。この場合、本発明の実施形態の対策前に確認された二重化通信光のレベル変動は全く消失し、アイダイアグラムの目を塞ぐことはなかった。なお、二重化通信光の上部にはO/E変換器20の受信帯域(2GHz程度)に検知されるビート干渉がいくらか現れているが、二重化しない通信光のアイダイアグラム(図6)の形状を維持していることが分かる。これにより、所外終端装置(受信機)6でのディジタル信号受信時において、符号“1”と“0”判定に誤りがなくなり、結果として良好な通信品質を維持することができる。
On the other hand, FIG. 8 is an eye diagram of duplex communication light after the countermeasure (optical frequency conversion) of the embodiment of the present invention. In this case, the level fluctuation of the duplex communication light confirmed before the countermeasure of the embodiment of the present invention disappeared completely, and the eye diagram was not blocked. Note that some beat interference detected in the reception band (about 2 GHz) of the O /
なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
1…所内伝送装置、2、2’…光カプラ、3…第1の光通信線路(現用線路)、4…第2の光通信線路(迂回線路)、5…光周波数変換器(もしくは波長変換器)、6…所外終端装置、17…パルスパターン発生器、18…光レベル調整器、19…偏波制御器、20…O/E(光/電気)変換器、21…オシロスコープ。
DESCRIPTION OF
Claims (2)
前記第2の光通信線路の中に前記通信光の光周波数を変化させる光周波数変換器もしくは波長変換器を具備し、
前記光周波数変換器もしくは波長変換器を用いて前記二重化線路の各々を伝播してくる前記通信光が合波されたときに生じるビート干渉の周波数成分を前記第2の光伝送装置の受信帯域外となる高周波側に移すことを特徴とする二重化線路による光通信切替システム。 The first optical communication line and the second optical communication line are connected between the first optical transmission device and the second optical transmission device to form a duplex line, and the communication light is temporarily superimposed while the communication light is superimposed In the optical communication switching system that selects either the first optical communication line or the second optical communication line,
An optical frequency converter or a wavelength converter for changing an optical frequency of the communication light in the second optical communication line;
The frequency component of beat interference generated when the communication light propagating through each of the duplex lines using the optical frequency converter or wavelength converter is combined is out of the reception band of the second optical transmission device. An optical communication switching system using a duplex line characterized by shifting to the high frequency side.
前記第2の光通信線路の中に設けた前記通信光の光周波数を変化させる光周波数変換器もしくは波長変換器を用いて前記二重化線路の各々を伝播してくる前記通信光が合波されたときに生じるビート干渉の周波数成分を前記第2の光伝送装置の受信帯域外となる高周波側に移して通信信号の劣化を抑制することを特徴とする二重化線路による光通信切替方法。 A duplexed line is formed by connecting a first optical communication line and a second optical communication line having the same signal transmission time between the first optical transmission apparatus and the second optical transmission apparatus, and temporarily transmits communication light. In the optical communication switching method of selecting either the first optical communication line or the second optical communication line while superimposing
The communication light propagating through each of the duplex lines is multiplexed using an optical frequency converter or a wavelength converter that changes the optical frequency of the communication light provided in the second optical communication line. An optical communication switching method using a duplex line, wherein a frequency component of beat interference that occurs sometimes is shifted to a high frequency side outside the reception band of the second optical transmission device to suppress deterioration of a communication signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010045691A JP5271934B2 (en) | 2010-03-02 | 2010-03-02 | Optical communication switching system and method using duplex line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010045691A JP5271934B2 (en) | 2010-03-02 | 2010-03-02 | Optical communication switching system and method using duplex line |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011182256A true JP2011182256A (en) | 2011-09-15 |
JP5271934B2 JP5271934B2 (en) | 2013-08-21 |
Family
ID=44693286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010045691A Active JP5271934B2 (en) | 2010-03-02 | 2010-03-02 | Optical communication switching system and method using duplex line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5271934B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014045410A (en) * | 2012-08-28 | 2014-03-13 | Nippon Telegr & Teleph Corp <Ntt> | Method of detecting optical path length difference of duplex optical transmission line and detector of the same |
JP2014216662A (en) * | 2013-04-22 | 2014-11-17 | 日本電信電話株式会社 | Optical communication line switching device and light wavelength adjusting method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6298932A (en) * | 1985-10-25 | 1987-05-08 | Furukawa Electric Co Ltd:The | Method for non-hit switching of optical line |
JPH0685749A (en) * | 1992-09-03 | 1994-03-25 | Fujikura Ltd | Optical fiber communication line changeover method and its device |
JP2002101046A (en) * | 2000-09-26 | 2002-04-05 | Toshiba Corp | Optical transmission system |
JP2007336458A (en) * | 2006-06-19 | 2007-12-27 | Toshiba Corp | Optical transmission apparatus and optical transmission system |
JP2009253884A (en) * | 2008-04-10 | 2009-10-29 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for hitlessly switching optical communication line |
-
2010
- 2010-03-02 JP JP2010045691A patent/JP5271934B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6298932A (en) * | 1985-10-25 | 1987-05-08 | Furukawa Electric Co Ltd:The | Method for non-hit switching of optical line |
JPH0685749A (en) * | 1992-09-03 | 1994-03-25 | Fujikura Ltd | Optical fiber communication line changeover method and its device |
JP2002101046A (en) * | 2000-09-26 | 2002-04-05 | Toshiba Corp | Optical transmission system |
JP2007336458A (en) * | 2006-06-19 | 2007-12-27 | Toshiba Corp | Optical transmission apparatus and optical transmission system |
JP2009253884A (en) * | 2008-04-10 | 2009-10-29 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for hitlessly switching optical communication line |
Non-Patent Citations (1)
Title |
---|
JPN6012025607; 東 裕司 他: '「光アクセス媒体切り替え方式の基礎検討 -サービス無瞬断光媒体切り替えシステム-」' 電子情報通信学会技術研究報告 [光ファイバ応用技術] Vol.108 No.310, 20081113, pp.27-31, 社団法人電子情報通信学会 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014045410A (en) * | 2012-08-28 | 2014-03-13 | Nippon Telegr & Teleph Corp <Ntt> | Method of detecting optical path length difference of duplex optical transmission line and detector of the same |
JP2014216662A (en) * | 2013-04-22 | 2014-11-17 | 日本電信電話株式会社 | Optical communication line switching device and light wavelength adjusting method |
Also Published As
Publication number | Publication date |
---|---|
JP5271934B2 (en) | 2013-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5115995B2 (en) | Optical line switching method and apparatus | |
CA2277409C (en) | Optical transmission system | |
UA48141C2 (en) | Symmetric dispersion-managed fiber-optic cable and a fiber-optic transmission system | |
JP3732371B2 (en) | Optical signal generation circuit | |
JP2015109689A (en) | Communication transmission system using optically aided digital signal processing dispersion compensation | |
JP4827672B2 (en) | WDM optical transmission system and WDM optical transmission method | |
JP5271934B2 (en) | Optical communication switching system and method using duplex line | |
JP5438838B2 (en) | Introducing channel side dispersion shift | |
US7366424B2 (en) | Methods and apparatus for producing transmission failure protected, bridged, and dispersion resistant signals | |
JP2009017498A (en) | Detour method and detour device for communication path | |
JP2008510402A (en) | Optical transmission system via polarization maintaining fiber | |
JP2006197378A (en) | Optical time division multiplex transmission equipment | |
JP2006072028A (en) | Optical switch | |
JP3238061B2 (en) | Optical pulse modulator | |
JP2007135124A (en) | Multimode optical transmission system | |
JP4089707B2 (en) | Optical signal generation circuit | |
JP2002031825A (en) | Optical nrz-rz format converter | |
JP2003262830A (en) | Polarization scrambler and optical transmitter | |
JP4959447B2 (en) | Communication path switching method and control device | |
JP2912122B2 (en) | Optical network node device and instantaneous interruption switching method | |
JP2001036476A (en) | Optical communication system, optical transmitter, optical receiver and optical communication method | |
Dias | Transmission of PAM4 signals in amplified inter-datacenters connections with direct-detection and multicore fibers limited by inter-core crosstalk | |
JPH0456925A (en) | Optical transmission path switching device | |
CN116961747A (en) | Visible light access system | |
JP4959448B2 (en) | Communication path switching method and control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120127 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130513 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5271934 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |