JP2011181758A - Method of manufacturing organic switching element - Google Patents

Method of manufacturing organic switching element Download PDF

Info

Publication number
JP2011181758A
JP2011181758A JP2010045603A JP2010045603A JP2011181758A JP 2011181758 A JP2011181758 A JP 2011181758A JP 2010045603 A JP2010045603 A JP 2010045603A JP 2010045603 A JP2010045603 A JP 2010045603A JP 2011181758 A JP2011181758 A JP 2011181758A
Authority
JP
Japan
Prior art keywords
organic
fine particles
polymer compound
metal fine
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010045603A
Other languages
Japanese (ja)
Other versions
JP5484961B2 (en
Inventor
Katsuhiko Fujita
克彦 藤田
Hiroshi Ichikawa
央 市川
Takatoshi Hasegawa
貴俊 長谷川
Kei Yasui
圭 安井
Masaaki Ozawa
雅昭 小澤
Keisuke Odoi
啓祐 大土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nissan Chemical Corp
Original Assignee
Kyushu University NUC
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nissan Chemical Corp filed Critical Kyushu University NUC
Priority to JP2010045603A priority Critical patent/JP5484961B2/en
Publication of JP2011181758A publication Critical patent/JP2011181758A/en
Application granted granted Critical
Publication of JP5484961B2 publication Critical patent/JP5484961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic switching element which has enhanced reproducibility by suppressing variance in switching characteristics of the organic switching element. <P>SOLUTION: The method of manufacturing the organic switching element having a structure wherein an organic thin film containing metal particulates is sandwiched between two electrodes, includes (A) a stage of forming an organic lower film containing a first polymer compound on a lower electrode, (B) a stage of vapor-depositing first metal particulates on the organic lower film, (C) a stage of forming an organic upper film in which second metal particulates identical to or different from the first metal particulates are dispersed with a second polymer compound of the same kind with or different kind from the first polymer compound as a dispersant, on the first metal particulates successively to the stage (B), and (D) a stage of creating the structure in which the organic thin film comprising the organic upper film and organic lower film and containing the metal particulates is sandwiched between the upper electrode and lower electrode, wherein each of the first polymer compound and second polymer compound has a dithiocarbamate group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機メモリ素子などへの応用が期待される、2つの電極間に有機双安定性材料を挟み込んだスイッチング素子の製造方法に関する。   The present invention relates to a method for manufacturing a switching element in which an organic bistable material is sandwiched between two electrodes, which is expected to be applied to an organic memory element or the like.

従来の半導体材料に対して、低コスト、高い柔軟性などの特性を有する有機電子材料の特性は目覚しい進展をみせている。特に、材料に電圧を印加していくと、ある電圧以上で急激に回路の電流が増加してスイッチング現象が観測される有機双安定材料は、高密度な有機メモリ素子などへの適用が検討されている。   Compared to conventional semiconductor materials, the characteristics of organic electronic materials having characteristics such as low cost and high flexibility have made remarkable progress. In particular, the application of organic bistable materials to high-density organic memory devices and the like, in which switching phenomena are observed when a voltage is applied to the material, the circuit current suddenly increases above a certain voltage and the switching phenomenon is observed. ing.

このような素子の動作機構は二つの抵抗状態での可逆的なスイッチングによってなされる。例えば、Yang Yangらは、アミノイミダゾールジカーボニトリル(AIDCN)、ヒドロキシキノリンアルミニウム(Alq)などの有機半導体やポリスチレン、PMMA等の有機絶縁体中に、アルミニウム、銅、銀、金、ニッケル、マグネシウム、インジウム、カルシウム、リチウム等などの高導電率材料を薄膜形成、もしくは微粒子として分散させることにより、電圧印加によって高抵抗状態と低抵抗状態の双安定性を得ることができ、電圧をゼロにしても情報が保持される不揮発性メモリであることを示した(特許文献1、2、非特許文献1参照)。   The operation mechanism of such an element is achieved by reversible switching between two resistance states. For example, Yang Yang et al. In aluminum, copper, silver, gold, nickel, magnesium, organic semiconductors such as aminoimidazole dicarbonitrile (AIDCN), hydroxyquinoline aluminum (Alq), and organic insulators such as polystyrene and PMMA, By forming a thin film of highly conductive material such as indium, calcium, lithium, etc., or dispersing it as fine particles, bistability in a high resistance state and a low resistance state can be obtained by applying a voltage. It was shown that it is a non-volatile memory in which information is held (see Patent Documents 1 and 2 and Non-Patent Document 1).

また、特許文献3には、一つの分子内に電子供与性の官能基と電子受容性の官能基とを有する有機双安定材料層中に、導電性微粒子として平均粒径5nm以下の白金またはロジウム微粒子が分散したスイッチング素子が記載されている。そしてこれにより、粒径にばらつきの少ない微粒子を膜厚の薄い微粒子分散層中に均一に分散することができるので、安定した特性のスイッチング素子が得られることが記載される。   Patent Document 3 discloses platinum or rhodium having an average particle size of 5 nm or less as conductive fine particles in an organic bistable material layer having an electron-donating functional group and an electron-accepting functional group in one molecule. A switching element in which fine particles are dispersed is described. It is described that fine particles with little variation in particle size can be uniformly dispersed in a fine particle dispersion layer having a small film thickness, and a switching element with stable characteristics can be obtained.

従来提案されている金属微粒子を分散させた有機双安定材料において、その素子特性の安定化や低コスト化は重要な課題であり、有機半導体又は有機絶縁体における金属微粒子の分散性を高めることにより達せられるものと考えられる。これに対し、上記特許文献1、2及び非特許文献1に記載の技術は、有機半導体又は有機絶縁体における金属微粒子の分散剤について具体的に提案していない。また、特許文献3に記載の発明は、一つの分子内に電子供与性の官能基と電子受容性の官能基とを有する有機双安定材料を採用することを記載しているけれども、その採用により導電性微粒子の含有量が低減し得るとともに素子が電流双安定性を有することについては何ら記載するものではない。
また従来のスイッチング素子は、スイッチング特性のばらつきが大きく、アレイ化した際の歩留まりが大きく低下するという問題があった。
In organic bistable materials in which fine metal particles are conventionally proposed, stabilization of device characteristics and cost reduction are important issues. By increasing the dispersibility of fine metal particles in organic semiconductors or organic insulators. It is considered to be achieved. On the other hand, the techniques described in Patent Documents 1 and 2 and Non-Patent Document 1 do not specifically propose a dispersant for metal fine particles in an organic semiconductor or an organic insulator. Further, although the invention described in Patent Document 3 describes that an organic bistable material having an electron donating functional group and an electron accepting functional group in one molecule is used, No mention is made that the content of the conductive fine particles can be reduced and the device has current bistability.
In addition, the conventional switching element has a problem that the variation in switching characteristics is large and the yield when arrayed is greatly reduced.

本発明者らは、上記の課題を解決するために鋭意検討した結果、ジチオカルバメート基を含有する高分子化合物を金属微粒子分散剤として採用したことにより有機半導体及び有機絶縁体中での分散性を高め、これにより、金属微粒子の含有量を低減させるとともに、スイッチング素子の安定性を高めることに成功した。
とりわけ、スッチング素子の下側電極の上に予め金属微粒子を配置させることにより、即ち、下側電極の表面上に又はその近くに金属微粒子をより高濃度に存在させることにより、該素子のスイッチング特性のばらつきを抑制し、再現性を高めることに成功した。
As a result of diligent studies to solve the above-mentioned problems, the present inventors have adopted a polymer compound containing a dithiocarbamate group as a metal fine particle dispersant, thereby improving dispersibility in organic semiconductors and organic insulators. As a result, the content of the metal fine particles was reduced and the stability of the switching element was successfully improved.
In particular, by preliminarily arranging the metal fine particles on the lower electrode of the switching element, that is, by making the metal fine particles present at a higher concentration on or near the surface of the lower electrode, the switching characteristics of the element Succeeded in improving the reproducibility by suppressing the variation of

すなわち、本発明は、第1観点として金属微粒子を含有する有機薄膜を2つの電極で挟んだ構造のスイッチング素子を製造する方法において、
A)下側電極の上に、第一の高分子化合物を含有する有機下膜を形成する段階と、
B)該有機下膜の上に、第一の金属微粒子を蒸着する段階と、
C)続いて、その上に、前記第一の金属微粒子と同じ又は異なる第二の金属微粒子が前記第一の高分子化合物と同種又は異種の分散剤としての第二の高分子化合物によって分散されている有機上膜を形成する段階と、
D)該有機上膜及び該有機下膜からなる金属微粒子を含有する有機薄膜を上側電極及び下側電極で挟んだ構造に作り上げる段階とを含み、
前記第一の高分子化合物及び第二の高分子化合物は、ジチオカルバメート基を有する重量平均分子量が500〜5,000,000である高分子化合物である、
有機スイッチング素子の製造方法に関する。
第2観点として、前記B)の蒸着段階は、アークプラズマガンを用いて行われる、第1観点に記載の製造方法に関する。
第3観点として、前記A)段階で形成される有機下膜は、厚さ10nm以下の極薄膜である、第1観点に記載の製造方法に関する。
第4観点として、前記上側電極及び下側電極は、導電性金属の蒸着膜である、第1観点に記載の製造方法に関する。
第5観点として、前記第一の金属微粒子及び第二の金属微粒子は、金、銀、白金、銅、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム及びイリジウムよりなる群より選択される少なくとも1種である、第1観点に記載の製造方法に関する。
第6観点として、前記第一の金属微粒子及び第二の金属微粒子は、平均粒径が1nm以上500nm以下の金属微粒子である、第1観点に記載の製造方法に関する。
第7観点として、前記第一の高分子化合物及び第二の高分子化合物は、分岐状高分子化合物である、第1観点に記載の製造方法に関する。
第8観点として、前記第一の高分子化合物及び第二の高分子化合物は、式(1)で表される分岐状高分子化合物である、第1観点に記載の製造方法に関する。
(式中、R1は水素原子又はメチル基を表し、R2及びR3は、それぞれ、炭素原子数1乃
至5のアルキル基、炭素原子数1乃至5のヒドロキシアルキル基又は炭素原子数7乃至12のアリールアルキル基を表し、又は、R2とR3は互いに結合し、窒素原子と共に環を形成していてもよい。A1は式(2)又は式(3):
(式中、A2はエーテル結合又はエステル結合を含んでいても良い炭素原子数1乃至30
の直鎖状、枝分かれ状又は環状のアルキレン基を表し、Y1、Y2、Y3又はY4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、ニトロ基、ヒドロキシル基、アミノ基、カルボキシル基又はシアノ基を表す。)を表し、nは繰り返し単位構造の数であって2乃至100,000の整数を表す。)
That is, the present invention provides a switching element having a structure in which an organic thin film containing metal fine particles is sandwiched between two electrodes as a first aspect.
A) forming an organic underlayer containing the first polymer compound on the lower electrode;
B) depositing first metal fine particles on the organic underlayer;
C) Subsequently, second metal fine particles that are the same as or different from the first metal fine particles are dispersed on the second polymer compound as a dispersant of the same or different type as the first polymer compound. Forming an organic overcoat, and
D) forming an organic thin film containing metal fine particles comprising the organic upper film and the organic lower film into a structure sandwiched between an upper electrode and a lower electrode,
The first polymer compound and the second polymer compound are polymer compounds having a dithiocarbamate group and a weight average molecular weight of 500 to 5,000,000.
The present invention relates to a method for manufacturing an organic switching element.
As a second aspect, the vapor deposition step of B) relates to the manufacturing method according to the first aspect, which is performed using an arc plasma gun.
As a third aspect, the organic underlayer formed in the step A) relates to the manufacturing method according to the first aspect, which is an ultrathin film having a thickness of 10 nm or less.
As a 4th viewpoint, the said upper side electrode and lower side electrode are related with the manufacturing method as described in a 1st viewpoint which is a vapor deposition film of an electroconductive metal.
As a fifth aspect, the first metal fine particles and the second metal fine particles are at least one selected from the group consisting of gold, silver, platinum, copper, nickel, ruthenium, rhodium, palladium, osmium, and iridium. The manufacturing method according to the first aspect.
As a sixth aspect, the first metal fine particle and the second metal fine particle are related to the production method according to the first aspect, wherein the average particle diameter is a metal fine particle having a particle size of 1 nm to 500 nm.
As a seventh aspect, the first polymer compound and the second polymer compound are related to the production method according to the first aspect, which is a branched polymer compound.
As an eighth aspect, the first polymer compound and the second polymer compound are related to the production method according to the first aspect, which is a branched polymer compound represented by the formula (1).
(Wherein R 1 represents a hydrogen atom or a methyl group, and R 2 and R 3 represent an alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, or 7 to 7 carbon atoms, respectively. 12 represents an arylalkyl group, or R 2 and R 3 may be bonded to each other to form a ring together with the nitrogen atom, and A 1 represents formula (2) or formula (3):
(In the formula, A 2 has 1 to 30 carbon atoms which may contain an ether bond or an ester bond.
Represents a linear, branched or cyclic alkylene group, and Y 1 , Y 2 , Y 3 or Y 4 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. To 20 alkoxy groups, a halogen atom, a nitro group, a hydroxyl group, an amino group, a carboxyl group or a cyano group; N represents the number of repeating unit structures and represents an integer of 2 to 100,000. )

微粒子分散型の有機メモリ素子等の本発明に従う有機スイッチング素子においては、金属微粒子を予め下側電極の上に配置させること、詳細には、アークプラズマガンを用いて下側電極の上に金属微粒子を蒸着させることにより、スイッチング特性のばらつきを低減でき、特にON状態における電流値の再現性を向上できる。
加えて、本発明の有機スイッチング素子にあっては、分散剤としてのジチオカルバメート基を有する高分子化合物により分散された金属微粒子を用いることにより、金属微粒子の分散性が高いためスイッチング特性の安定性が高く、且つ金属微粒子の使用量を低減させることができ、スイッチング素子の低コスト化を達成できる。
In the organic switching element according to the present invention, such as a fine particle dispersed organic memory element, the metal fine particles are previously disposed on the lower electrode, and more specifically, the metal fine particles are formed on the lower electrode using an arc plasma gun. Vapor deposition can reduce variation in switching characteristics, and in particular, can improve the reproducibility of the current value in the ON state.
In addition, in the organic switching element of the present invention, by using metal fine particles dispersed by a polymer compound having a dithiocarbamate group as a dispersant, the dispersibility of the metal fine particles is high, so that switching characteristics are stable. The amount of metal fine particles used can be reduced, and the cost of the switching element can be reduced.

図1は、本発明のスイッチング素子の実施形態を示す図である。FIG. 1 is a diagram showing an embodiment of a switching element of the present invention. 図2は、実施例1においてアークプラズマガンにて蒸着した金微粒子のTEM画像(図2(a))と粒径分布(図2(b)を示す図である。FIG. 2 is a diagram showing a TEM image (FIG. 2 (a)) and a particle size distribution (FIG. 2 (b)) of gold fine particles deposited by an arc plasma gun in Example 1. FIG. 図3は、実施例で用いた2種の電圧操作(鋸歯状掃引(図3(a))、三角波掃引(図3(b)))を示す図である。FIG. 3 is a diagram showing two kinds of voltage operations (sawtooth sweep (FIG. 3A), triangular wave sweep (FIG. 3B)) used in the example. 図4は、実施例1で作製したスイッチング素子の電流密度対電圧(J−V)特性を示すグラフである。FIG. 4 is a graph showing the current density vs. voltage (JV) characteristics of the switching element fabricated in Example 1. 図5は、実施例1の素子(図5(a))と比較例1の素子(図5(b))を10回ずつON/OFF切替を行った際に測定された電流密度の範囲を示すグラフである。図中、四角と丸はそれぞれ高導電状態と低導電状態の電流密度平均値を示し、一組ごとに1回の切替に対応する。エラーバーは各測定で観測された電流密度の範囲を示す。FIG. 5 shows the range of current density measured when the ON / OFF switching of the element of Example 1 (FIG. 5A) and the element of Comparative Example 1 (FIG. 5B) was performed 10 times each. It is a graph to show. In the figure, squares and circles indicate average values of current density in the high conductive state and the low conductive state, respectively, and correspond to one switching per group. Error bars indicate the range of current density observed in each measurement.

以下、本発明を実施するための詳細を説明する。
本発明の金属微粒子を含有する有機薄膜を2つの電極で挟んだ構造の有機スイッチング素子の製造方法は、
A)下側電極の上に、第一の高分子化合物を含有する有機下膜を形成する段階と、
B)該有機下膜の上に、第一の金属微粒子を蒸着する段階と、
C)続いて、その上に、前記第一の金属微粒子と同じ又は異なる第二の金属微粒子が前記
第一の高分子化合物と同種又は分散剤としての異種の第二の高分子化合物によって分散されている有機上膜を形成する段階と、
D)該有機上膜及び該有機下膜からなる金属微粒子を含有する有機薄膜を上側電極及び下側電極で挟んだ構造に作り上げる段階
とを含みてなる。
Details for carrying out the present invention will be described below.
A method for producing an organic switching element having a structure in which an organic thin film containing metal fine particles of the present invention is sandwiched between two electrodes,
A) forming an organic underlayer containing the first polymer compound on the lower electrode;
B) depositing first metal fine particles on the organic underlayer;
C) Subsequently, second metal fine particles that are the same as or different from the first metal fine particles are dispersed on the second polymer compound of the same type or different from the first polymer compound. Forming an organic overcoat, and
And D) forming an organic thin film containing metal fine particles comprising the organic upper film and the organic lower film into a structure sandwiched between the upper electrode and the lower electrode.

図1に本発明の製造方法によって作製されるスイッチング素子1の実施形態を示す模式図を挙げる。スイッチング素子1は、基板上に下側電極2、有機下膜3、金属微粒子4、有機上膜5、上側電極6を積層した構造となっており、下側電極2及び上側電極6は、電気結線7及び8によってそれぞれ、電子制御ユニット9に接続されている。このうち、有機上膜5には金属微粒子10が分散されている。   FIG. 1 is a schematic diagram showing an embodiment of a switching element 1 manufactured by the manufacturing method of the present invention. The switching element 1 has a structure in which a lower electrode 2, an organic lower film 3, metal fine particles 4, an organic upper film 5, and an upper electrode 6 are laminated on a substrate. The lower electrode 2 and the upper electrode 6 are electrically connected to each other. Connections 7 and 8 are connected to the electronic control unit 9, respectively. Among these, metal fine particles 10 are dispersed in the organic upper film 5.

<A)段階>
まず、下側電極の上に、第一の高分子化合物を含有する有機下膜を形成する。
なお、下側電極の形成方法としては、真空蒸着法、スパッタ法、塗布法、インクジェット法、印刷法、ゾルゲル法等が挙げることができ、更にそのパターニング方法としては、フォトリソグラフィー法、インクジェット法、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法、シャドーマスクを用いた蒸着法及びこれらの手法を複数組み合わせた方法が挙げることができる。
下側電極材料としては、Au、Pt、Ag、Al、Cu、Rh、Ir、In、Ni、Pd、As、Se、Te、Mo、W、Mg、Zn等の金属、Mg/Cu、Mg/Ag、Mg/Al、Mg/In等の合金、SnO2、InO2、ZnO、InO2・SnO2(ITO)、Sb2O5・SnO2(ATO)等の金属酸化物、導電性ポリアニリン、導電性ポリピロール、導電性ポリチオフェン等の導電性高分子、カーボン等が挙げられる。
<A) Stage>
First, an organic underlayer containing the first polymer compound is formed on the lower electrode.
In addition, as a formation method of a lower electrode, a vacuum evaporation method, a sputtering method, a coating method, an ink jet method, a printing method, a sol-gel method, and the like can be given. Further, as a patterning method, a photolithography method, an ink jet method, Examples thereof include printing methods such as screen printing, offset printing and letterpress printing, microcontact printing methods, vapor deposition methods using shadow masks, and methods combining a plurality of these methods.
Lower electrode materials include Au, Pt, Ag, Al, Cu, Rh, Ir, In, Ni, Pd, As, Se, Te, Mo, W, Mg, Zn, and other metals, Mg / Cu, Mg / Alloys such as Ag, Mg / Al, Mg / In, metal oxides such as SnO 2 , InO 2 , ZnO, InO 2 · SnO 2 (ITO), Sb 2 O 5 · SnO 2 (ATO), conductive polyaniline, conductive Examples thereof include conductive polymers such as polypyrrole and conductive polythiophene, and carbon.

本発明において使用される第一の高分子化合物は、ジチオカルバメート基を有する高分子化合物からなり、ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量Mwが500乃至5,000,000の範囲のものが使用される。好ましくは1,000乃至1,000,000の重量平均分子量を有し、より好ましくは2,000乃至500,000であり、特に好ましくは3,000乃至200,000である。また、第一の高分子化合物の分散度Mw(重量平均分子量)/Mn(数平均分子量)としては1.0ないし7.0であり、好ましくは1.1ないし6.0であり、より好ましくは1.2ないし5.0である。   The first polymer compound used in the present invention is composed of a polymer compound having a dithiocarbamate group, and the weight average molecular weight Mw measured in terms of polystyrene by gel permeation chromatography is in the range of 500 to 5,000,000. Is used. It preferably has a weight average molecular weight of 1,000 to 1,000,000, more preferably 2,000 to 500,000, and particularly preferably 3,000 to 200,000. Further, the degree of dispersion Mw (weight average molecular weight) / Mn (number average molecular weight) of the first polymer compound is 1.0 to 7.0, preferably 1.1 to 6.0, and more preferably. Is 1.2 to 5.0.

上記第一の高分子化合物を含有する有機下膜を形成する方法としては、蒸着法又は溶液塗布法から適宜選択することができる。
溶液塗布法を選択した場合、第一の高分子化合物並びに所望によりその他の高分子化合物を、適当な溶媒に溶解して溶液の形態とし、該溶液を下側電極上に塗布し、アニーリングを行い、有機下膜を形成する。
The method for forming the organic underlayer containing the first polymer compound can be appropriately selected from a vapor deposition method or a solution coating method.
When the solution coating method is selected, the first polymer compound and optionally other polymer compounds are dissolved in an appropriate solvent to form a solution, and the solution is coated on the lower electrode and annealed. An organic underlayer is formed.

上記溶液塗布法の具体例としては、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凸版、平板、スクリーン印刷等)が挙げられ、中でも、単時間で塗布することができるために、揮発性の高い溶液であっても利用でき、また、均一性の高い塗布を行うことができ、且つ低コストであるという利点からスピンコート法を採用することが好ましい。
また溶液塗布法で用いられる溶媒としては、トルエン、キシレン、ジクロロベンゼン等の芳香族系溶媒、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒、テトラヒドロフラン等のエーテル系溶媒から選択して用いられる。
Specific examples of the solution coating method include spin coating method, blade coating method, dip coating method, roll coating method, bar coating method, die coating method, ink jet method, and printing method (such as letterpress, letterpress, flat plate, and screen printing). Among them, it can be applied in a single hour, so even a highly volatile solution can be used, it can be applied with high uniformity, and it is spin because of its low cost. It is preferable to employ a coating method.
The solvent used in the solution coating method is selected from aromatic solvents such as toluene, xylene and dichlorobenzene, ketone solvents such as methyl ethyl ketone and cyclohexanone, and ether solvents such as tetrahydrofuran.

また、その他の高分子化合物を用いる場合、ポリスチレン、ポリエステル類、ポリビニ
ルアルコール、ポリカーボネート、ポリアクリル酸メチル等のポリアクリル酸類、ポリメタクリル酸メチル等のポリメタクリル酸類、ポリオレフィン類、ポリアミド類、ポリイミド類、ポリウレタン類、ポリアセタール類、ポリシリコーン類、ポリビニルピリジン、下記式(4)で表されるハイパーブランチポリマー等の材料が適用可能であり、好ましくは、ポリスチレン、ポリメタクリル酸メチルなどが用いられる。
When using other polymer compounds, polystyrene, polyesters, polyvinyl alcohol, polycarbonate, polyacrylic acids such as polymethyl acrylate, polymethacrylic acids such as polymethyl methacrylate, polyolefins, polyamides, polyimides, Materials such as polyurethanes, polyacetals, polysilicones, polyvinyl pyridine, and hyperbranched polymers represented by the following formula (4) are applicable, and polystyrene, polymethyl methacrylate, and the like are preferably used.

なお、第一の高分子化合物(及び所望によりその他の高分子化合物)を溶解した溶液の濃度は特に限定されないが、溶液の総質量に対して前記第一の高分子化合物(及び所望によりその他の高分子化合物)の総質量(合計質量)は好ましくは0.1乃至80質量%、より好ましくは1乃至50質量%である。   The concentration of the solution in which the first polymer compound (and other polymer compound if desired) is dissolved is not particularly limited. However, the first polymer compound (and other other compounds if desired) is not limited to the total mass of the solution. The total mass (total mass) of the polymer compound is preferably 0.1 to 80% by mass, more preferably 1 to 50% by mass.

こうして形成された有機下膜は、その後の金属微粒子の蒸着によって下側電極に損傷を与えないようにする保護膜としての役割を担うものである。
該有機下膜は、10nm以下の極薄膜であることが好ましい。
The organic underlayer thus formed plays a role as a protective film that prevents the lower electrode from being damaged by the subsequent deposition of metal fine particles.
The organic underlayer is preferably an ultrathin film having a thickness of 10 nm or less.

<B)段階>
次に、<A)段階>で作製した該有機上膜の上に、第一の金属微粒子を蒸着する。
ここで用いられる第一の金属微粒子の金属種としては、Au、Pt、Ag、Al、Cu、Rh、Ir、In、Ni、Pd、As、Se、Te、Mo、W、Mg、Zn等が挙げられ、好ましくはAu、Ag、Pt及Cuが挙げられる。
また、該金属微粒子は、平均粒径が1乃至500nm、好ましくは1乃至100nm、
より好ましくは、1乃至10nmのものが使用できる。
<B) Stage>
Next, first metal fine particles are vapor-deposited on the organic upper film produced in <A) stage>.
Examples of the metal species of the first fine metal particles used here include Au, Pt, Ag, Al, Cu, Rh, Ir, In, Ni, Pd, As, Se, Te, Mo, W, Mg, Zn, and the like. Preferably, Au, Ag, Pt and Cu are mentioned.
The metal fine particles have an average particle size of 1 to 500 nm, preferably 1 to 100 nm,
More preferably, those having a thickness of 1 to 10 nm can be used.

前記第一の金属微粒子は、前記金属のイオンを還元することにより得られる。金属イオンを還元する方法としては、例えば、高圧水銀灯により光照射する方法、還元作用を有する化合物(還元剤)を添加する方法等があるが、後者の方法、すなわち、金属塩を溶解した水溶液に還元剤を添加する方法が、特別な装置を必要とせず製造上有利である。
前記金属塩としては、塩化金酸、硝酸銀、硫酸銅、硝酸銅、塩化第一白金、Pt(dba)2[dba=ジベンジリデンアセトン]、Pt(cod)2[cod=1,5−シクロオクタジエン]、PtMe2(cod)、塩化パラジウム、酢酸パラジウム、硝酸パラジ
ウム、Pd(dba)2、塩化ロジウム、酢酸ロジウム、塩化ルテニウム、酢酸ルテニウ
ム、Ru(cod)(cot)[cot=シクロオクタトリエン]、塩化イリジウム、酢酸イリジウム、Ni(cod)2等が挙げられる。
上記還元剤としては、特に限定されるものではなく、通常使用される各種のものを使用することができ、含有させる金属種等により還元剤を選択することが好ましい。例えば、従来、還元剤として使用されている水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素アルカリ金属塩、水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩、ヒドラジン化合物、クエン酸又はその塩、コハク酸又はその塩、アスコルビン酸又はその塩等を使用することができる。
上記還元剤の添加量は、上記金属イオン1molに対して1乃至50molが好ましい。1mol未満であると、還元が充分に行われず、50molを超えると、対凝集安定性が低下する。より好ましくは、1.5乃至10molである。
なお、金属微粒子中に含まれるナトリウム、カリウム、カルシウムイオン等の不純物イオンは、より少ない方が素子の繰り返し再現性が向上するため望ましい。これらの不純物イオンは、水やアルコールなどの溶媒による再沈澱法や金属微粒子を水と相溶しない有機溶媒に溶解させ、水と分液させる方法、また、イオン交換樹脂を用いた方法などによって洗浄、除去することができる。
The first metal fine particles can be obtained by reducing the metal ions. Methods for reducing metal ions include, for example, a method of irradiating light with a high-pressure mercury lamp, a method of adding a compound having a reducing action (reducing agent), etc. The latter method, ie, an aqueous solution in which a metal salt is dissolved. The method of adding a reducing agent is advantageous in production without requiring a special apparatus.
Examples of the metal salt include chloroauric acid, silver nitrate, copper sulfate, copper nitrate, platinum chloride, Pt (dba) 2 [dba = dibenzylideneacetone], Pt (cod) 2 [cod = 1,5-cycloocta Diene], PtMe 2 (cod), palladium chloride, palladium acetate, palladium nitrate, Pd (dba) 2 , rhodium chloride, rhodium acetate, ruthenium chloride, ruthenium acetate, Ru (cod) (cot) [cot = cyclooctatriene] Iridium chloride, iridium acetate, Ni (cod) 2 and the like.
The reducing agent is not particularly limited, and various commonly used ones can be used, and it is preferable to select the reducing agent according to the metal species to be contained. For example, borohydride alkali metal salts such as sodium borohydride and potassium borohydride conventionally used as reducing agents, lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, aluminum beryllium hydride, hydrogen Aluminum hydride salts such as aluminum magnesium hydride and calcium aluminum hydride, hydrazine compounds, citric acid or a salt thereof, succinic acid or a salt thereof, ascorbic acid or a salt thereof, and the like can be used.
The addition amount of the reducing agent is preferably 1 to 50 mol with respect to 1 mol of the metal ion. If the amount is less than 1 mol, the reduction is not sufficiently performed, and if it exceeds 50 mol, the stability against aggregation is lowered. More preferably, it is 1.5 to 10 mol.
Note that it is desirable that the amount of impurity ions such as sodium, potassium, and calcium ions contained in the metal fine particles is smaller because the repeatability of the device is improved. These impurity ions are washed by a reprecipitation method using a solvent such as water or alcohol, a method in which metal fine particles are dissolved in an organic solvent incompatible with water and separated from water, or a method using an ion exchange resin. Can be removed.

上記第一の金属微粒子の有機上膜への蒸着は、好ましくはアークプラズマガンを用いて行われる。
アークプラズマガンとは真空アーク蒸着源の一種であり、アーク放電により電極材料を蒸発させる仕組みをもつ。円筒状のアノードの内側に円柱状のカソードを同軸上に配し、アノードとカソード間にパルス電圧を印加することでカソード材料をナノメーターサイズの微粒子として供することができる。パルス電圧によって微粒子の粒径が、パルス数によって粒子数を制御することができる。パルス電圧を100−300V、パルス数を10〜500回として得られる粒径1〜10nmのナノ粒子層を好適に使用できる。
The vapor deposition of the first metal fine particles on the organic upper film is preferably performed using an arc plasma gun.
An arc plasma gun is a type of vacuum arc vapor deposition source that has a mechanism for evaporating electrode materials by arc discharge. By arranging a columnar cathode coaxially inside the cylindrical anode and applying a pulse voltage between the anode and the cathode, the cathode material can be provided as nanometer-sized fine particles. The particle size of the fine particles can be controlled by the pulse voltage, and the number of particles can be controlled by the number of pulses. A nanoparticle layer having a particle diameter of 1 to 10 nm obtained with a pulse voltage of 100 to 300 V and a pulse number of 10 to 500 times can be suitably used.

<C)段階>
続いて、第二の金属微粒子が分散剤としての第二の高分子化合物によって分散されている有機上膜を、蒸着された金属微粒子の上に形成する。
ここで用いられる第二の金属微粒子の金属種としては、<B)段階>で用いた第一の金属微粒子と同じ金属種が挙げられ、第一の金属微粒子として用いた金属種と同じ又は異なる金属種を用いることができる。
また、第二の高分子化合物としては、<A)段階>で用いたジチオカルバメート基を有する重量平均分子量が500〜5,000,000である高分子化合物を用いることができ、第一の高分子化合物と同種の又は異種の化合物を用いることができる。
<C) Stage>
Subsequently, an organic upper film in which the second metal fine particles are dispersed by the second polymer compound as a dispersant is formed on the deposited metal fine particles.
Examples of the metal species of the second metal fine particles used here include the same metal species as the first metal fine particles used in the <B) stage>, which are the same as or different from the metal species used as the first metal fine particles. Metal species can be used.
As the second polymer compound, a polymer compound having a dithiocarbamate group used in <A)> and having a weight average molecular weight of 500 to 5,000,000 can be used. A compound of the same type or a different type from the molecular compound can be used.

上記第二の金属微粒子が第二の高分子化合物によって分散されている有機上膜を、蒸着された金属微粒子の上に形成する方法としては、蒸着法又は溶液塗布法から適宜選択することができる。
溶液塗布法を選択した場合、例えば第二の高分子化合物で処理された第二の金属微粒子並びに所望によりその他の高分子化合物を溶媒に溶解(又は分散)して溶液(又は分散液)の形態とし、該溶液(又は分散液)を蒸着された金属微粒子の上に塗布し、アニーリングを行い、有機上膜を形成する。
The method for forming the organic upper film in which the second metal fine particles are dispersed by the second polymer compound on the vapor-deposited metal fine particles can be appropriately selected from a vapor deposition method or a solution coating method. .
When the solution coating method is selected, for example, the second metal fine particles treated with the second polymer compound and optionally other polymer compounds are dissolved (or dispersed) in a solvent to form a solution (or dispersion). Then, the solution (or dispersion) is applied onto the deposited metal fine particles, and annealing is performed to form an organic upper film.

第二の高分子化合物で処理された第二の金属微粒子の溶液(又は分散液)は、第二の高分子化合物と金属塩を混合し、得られた混合物に還元剤を添加し、金属イオンを還元することによって得られる。
ここで使用する金属塩、還元剤は前記<B)段階>で挙げたものから適宜選択して使用できる。
第二の金属微粒子に対する第二の高分子化合物の配合割合は、上記第二の金属微粒子100質量部に対して50〜2000質量部が好ましい。50質量部未満であると、第二の金属微粒子の分散性が不充分であり、2000質量部を超えると、有機物含有量が多くなり、物性等に不具合が生じやすくなる。より好ましくは、100〜1000質量部である。
The solution (or dispersion liquid) of the second metal fine particles treated with the second polymer compound is a mixture of the second polymer compound and the metal salt, a reducing agent is added to the resulting mixture, and metal ions are added. Can be obtained by reducing
The metal salt and reducing agent used here can be appropriately selected from those mentioned in the above <B) stage>.
The blending ratio of the second polymer compound to the second metal fine particles is preferably 50 to 2000 parts by mass with respect to 100 parts by mass of the second metal fine particles. When the amount is less than 50 parts by mass, the dispersibility of the second metal fine particles is insufficient, and when the amount exceeds 2000 parts by mass, the organic matter content increases, and problems such as physical properties tend to occur. More preferably, it is 100-1000 mass parts.

また、ここで使用する溶液塗布法の具体例、使用する溶媒、所望により添加できるその他の高分子化合物、溶液(又は分散液)の濃度は、<A)段階>で挙げたものから適宜採用することができる。   In addition, specific examples of the solution coating method used here, the solvent to be used, other polymer compounds that can be added as desired, and the concentration of the solution (or dispersion) are appropriately selected from those listed in <A) Step>. be able to.

こうして形成された有機上膜において、第二の金属微粒子は第二の高分子化合物によって分散安定化され、平均粒径が10nm以下、例えばおよそ3.5nmの金属微粒子に対しての分散状態を作り出すことができる。   In the organic upper film thus formed, the second metal fine particles are dispersed and stabilized by the second polymer compound, and a dispersion state is created for the metal fine particles having an average particle diameter of 10 nm or less, for example, about 3.5 nm. be able to.

<D)段階>
続いて、該有機上膜及び該有機下膜からなる金属微粒子を含有する有機薄膜を上側電極と下側電極で挟んだ構造に作り上げる。
具体的には、<C)段階>で形成した有機上膜の上に上側電極を形成する。ここで用い
る形成方法、上側電極材料としては、<A)段階>で下側電極の形成方法・電極材料として挙げたものから適宜選択できる。
<D) Stage>
Subsequently, an organic thin film containing metal fine particles composed of the organic upper film and the organic lower film is formed into a structure sandwiched between the upper electrode and the lower electrode.
Specifically, an upper electrode is formed on the organic upper film formed in <C) stage>. The formation method and the upper electrode material used here can be appropriately selected from those listed as the formation method and electrode material for the lower electrode in <A) stage>.

以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

[合成例1:ジチオカルバメート含有高分子化合物で処理された金微粒子(HPS−Au)の製造]
下記式(4)で表される分岐状高分子(HPS)0.5gをテトラヒドロフラン(THF)200mlに溶解し、これに30mM塩化金酸水溶液6.7mLを加えた。次いで0.1M水素化ホウ素ナトリウム水溶液10mLを5分間程度かけて滴下した。滴下に伴って溶液は褐色へと変化した。30分間攪拌を行った後、THFを減圧により留去すると水に不溶の黒色の沈殿が析出した。これを濾過してイオン交換水で洗浄した後、THF20mlを加えて溶解させ、メタノールにより再沈殿を行った。得られた粉末を回収し、乾燥を行った。
誘導結合プラズマ発光分析装置(ICP−AES)により組成物中のナトリウム及び金含有量を求めた結果、夫々、150ppm及び6.4wt%であった。また、イオンクロマトグラフィー[ダイオネックス社製 ICS−500]によって、塩素含有量を求めた
結果、63ppmであった。
(上記式(4)中、Etはエチル基を表す。)
[Synthesis Example 1: Production of Gold Fine Particles (HPS-Au) Treated with Dithiocarbamate-Containing Polymer Compound]
0.5 g of branched polymer (HPS) represented by the following formula (4) was dissolved in 200 ml of tetrahydrofuran (THF), and 6.7 mL of a 30 mM chloroauric acid aqueous solution was added thereto. Subsequently, 10 mL of 0.1 M sodium borohydride aqueous solution was dripped over about 5 minutes. The solution turned brown with the dropwise addition. After stirring for 30 minutes, THF was distilled off under reduced pressure to deposit a black precipitate insoluble in water. This was filtered and washed with ion-exchanged water, and then 20 ml of THF was added and dissolved, followed by reprecipitation with methanol. The obtained powder was collected and dried.
As a result of obtaining the sodium and gold contents in the composition by an inductively coupled plasma optical emission spectrometer (ICP-AES), they were 150 ppm and 6.4 wt%, respectively. Moreover, as a result of calculating | requiring a chlorine content by ion chromatography [ICS-500 by a Dionex company], it was 63 ppm.
(In the above formula (4), Et represents an ethyl group.)

[実施例1]
図1に示すようなスイッチング素子を以下の手順により作成した。
(1)ガラス洗浄
2cm×2cm程度にカットしたマイクロスライドガラス(岩城硝子(株)(現:AGCテクノグラス(株))を3%中性洗剤(ホワイト−7:ユーアイ化成(株))→イオン交換水→アセトン→エタノールの順で、それぞれ3回(5分・10分・15分間)ずつ超音波洗浄した。素子作成に使用する直前にエタノールによる煮沸洗浄、並びにUV−オゾン洗浄を20分行った。
(2)下側電極の形成
下部電極の形成は(株)アルバック製真空蒸着装置を用い、Al((株)ニラコ)を真空度4×10-4Pa以下、蒸着レート3〜4Å/分で70nm製膜した。また、蒸着源ボードにはフルウチ化学(株)製Wボートを使用した。
(3)有機下膜の形成
上記式(4)で表されるHPS 1.7wt%のジクロロベンゼン溶液を調製し、一晩攪拌した後、フィルタを通して4,500rpm、30秒の条件でスピンコートを行い、
その後、150℃、30分間アニール処理を行った。
(4)アークプラズマガンによる金微粒子の蒸着
ハイパーアークプラズマガンARL−300(アルバック(株)製)を用いて金微粒子を上記有機下膜の上部に蒸着した。製膜は真空度7.0×10-6Torr(9.3×10-4Pa)以下にて、パルス電圧100V、パルス間隔1回/秒、パルス回数20回で行った。
図2にアークプラズマガンにて蒸着した金微粒子のTEM画像(図2(a))と粒径分布(図2(b))を示す。これによると、平均粒径1.8nm、粒径の標準偏差は0.4nmと粒径のそろった金微粒子が蒸着できたことが確認された。
(5)有機上膜の形成
上記式(4)で表されるHPS 3wt%、合成例1で調製したHPS−Au 1wt%のジクロロベンゼン溶液を調製し、一晩攪拌した後、フィルタを通して3,000rpm、30秒の条件でスピンコートを行い、150℃、30分間アニール処理を行った。有機上膜を形成した後の素子の膜厚は120nm程度となった。
(6)上側電極の形成
上側電極の形成を下側電極の形成と同じ真空蒸着装置を用い、Al((株)ニラコ)を真空度4×10-4Pa以下、蒸着レート3〜4Å/secで70nm製膜した。また、蒸着源ボードにはフルウチ化学(株)製Wボートを使用した。
[Example 1]
A switching element as shown in FIG. 1 was prepared by the following procedure.
(1) Glass cleaning Micro slide glass (Iwaki Glass Co., Ltd. (current: AGC Techno Glass Co., Ltd.) cut to about 2 cm × 2 cm is neutralized with 3% neutral detergent (White-7: ui Kasei Co., Ltd.) → Ion Ultrasonic cleaning was performed three times (5 minutes, 10 minutes, and 15 minutes) in the order of exchanged water → acetone → ethanol, and boiled cleaning with ethanol and UV-ozone cleaning were performed for 20 minutes immediately before use for device fabrication. It was.
(2) Formation of lower electrode The formation of the lower electrode was performed using an ULVAC vacuum deposition apparatus, and Al (Nilaco Corporation) was applied at a vacuum degree of 4 × 10 −4 Pa or less and a deposition rate of 3 to 4 L / min. A 70 nm film was formed. In addition, a W boat made by Furuuchi Chemical Co., Ltd. was used as the evaporation source board.
(3) Formation of organic underlayer HPS 1.7 wt% dichlorobenzene solution represented by the above formula (4) is prepared and stirred overnight, and then spin-coated under a condition of 4,500 rpm for 30 seconds through a filter. Done
Thereafter, annealing was performed at 150 ° C. for 30 minutes.
(4) Deposition of gold fine particles by arc plasma gun Using a hyper arc plasma gun ARL-300 (manufactured by ULVAC, Inc.), gold fine particles were deposited on the organic underlayer. Film formation was performed at a vacuum of 7.0 × 10 −6 Torr (9.3 × 10 −4 Pa) or less, a pulse voltage of 100 V, a pulse interval of 1 / second, and a pulse count of 20 times.
FIG. 2 shows a TEM image (FIG. 2A) and a particle size distribution (FIG. 2B) of gold fine particles deposited by an arc plasma gun. According to this, it was confirmed that gold fine particles having an average particle diameter of 1.8 nm and a standard deviation of the particle diameter of 0.4 nm could be deposited.
(5) Formation of organic overcoat A dichlorobenzene solution of HPS 3 wt% represented by the above formula (4) and HPS-Au 1 wt% prepared in Synthesis Example 1 was prepared and stirred overnight, and then passed through a filter. Spin coating was performed at 000 rpm for 30 seconds, and annealing was performed at 150 ° C. for 30 minutes. The film thickness of the element after forming the organic upper film was about 120 nm.
(6) Formation of upper electrode Using the same vacuum deposition apparatus as the formation of the upper electrode, the upper electrode is formed using Al (Niraco Co., Ltd.) with a degree of vacuum of 4 × 10 −4 Pa or less and a deposition rate of 3-4 Å / sec. To 70 nm. In addition, a W boat made by Furuuchi Chemical Co., Ltd. was used as the evaporation source board.

[比較例1]
(4)アークプラズマガンによる金微粒子の蒸着を行わない以外は、実施例1と同じ手順にて比較例1のスイッチング素子を作製した。
[Comparative Example 1]
(4) A switching element of Comparative Example 1 was produced in the same procedure as Example 1 except that the gold fine particles were not deposited by the arc plasma gun.

[電流密度対電圧(J−V)特性の測定]
実施例1において得られた素子のJ−V特性の測定は、Agilent E5260/E5270とGRAILシリーズ極低温プローバー(GRAIL−ENTRY)を用い、該素子を真空チャンバーに入れ、1pa以下に減圧して測定を行った。
ここで電圧操作は、図3に示すように、鋸歯状掃引(saw tooth−sweep、図3(a))及び三角波掃引(triangle−sweep、図3(b))の2種類の操作を行った。
図4に、実施例1の素子のJ−V特性を示す。
実施例1のスイッチング素子についてまず鋸歯状掃引を行うと、0.1〜3.0Vの低電圧領域において高抵抗状態(低導電状態、OFF状態)を示し、およそ3.0Vになると、急激に電流が流れ低抵抗状態(高導電状態、ON状態)を示した。このときの閾電圧(Vth)は2.75Vであった。さらに電圧を上げていくと電流値が低下するNDR(Negative differential resistance:負性微分抵抗)現象が見られた。鋸歯状掃引を行う限り、電流値はほぼ同じ挙動を示した。また、素子に対して初めて電圧操作を行ったとき、2回目以降よりもさらに低い電流値を示した。この素子に対する初めての電圧操作は「素子化」と呼ぶことができ、有機層内で初回と2回目以降とは異なる現象が起きている事が推測される結果となった。
実施例1のスイッチング素子について三角波掃引を行うと、0.0Vから10.0Vまでの電圧を上昇させる掃引時は鋸歯状掃引と同じ挙動を示し、10.0Vから0.0Vまでの電圧を下降させる電圧操作では、0.1〜3.0Vの低電圧領域においても低抵抗状態を維持し、すなわち、電流双安定特性を示した。
[Measurement of current density vs. voltage (JV) characteristics]
The measurement of the JV characteristics of the element obtained in Example 1 was performed by using Agilent E5260 / E5270 and GRAIL series cryogenic prober (GRAIL-ENTRY), putting the element in a vacuum chamber and reducing the pressure to 1 pa or less. Went.
Here, as shown in FIG. 3, the voltage operation was performed in two types of operations: sawtooth-sweep (saw tooth-sweep, FIG. 3 (a)) and triangular wave sweep (triangle-sweep, FIG. 3 (b)). .
FIG. 4 shows the JV characteristics of the device of Example 1.
When the sawtooth sweep is first performed on the switching element of Example 1, a high resistance state (low conduction state, OFF state) is shown in a low voltage region of 0.1 to 3.0 V, and when about 3.0 V, A current flowed and a low resistance state (high conductivity state, ON state) was shown. The threshold voltage (V th ) at this time was 2.75V. Further, an NDR (Negative differential resistance) phenomenon in which the current value decreases as the voltage is increased was observed. As long as the sawtooth sweep was performed, the current value showed almost the same behavior. Further, when the voltage operation was performed on the element for the first time, the current value was lower than that for the second time and thereafter. The first voltage operation with respect to this element can be called “elementization”, and it was estimated that a phenomenon different from the first time and the second time or later occurred in the organic layer.
When the triangular wave sweep is performed on the switching element of the first embodiment, the same behavior as the sawtooth sweep is shown at the time of increasing the voltage from 0.0 V to 10.0 V, and the voltage from 10.0 V to 0.0 V is decreased. In the voltage operation, the low resistance state was maintained even in the low voltage region of 0.1 to 3.0 V, that is, the current bistable characteristics were exhibited.

[再現性の測定]
実施例1及び比較例1で作製したスイッチング素子の夫々について、10回連続でON/OFF切替を行い、電流値のばらつきを測定した。なお、また、ON/OFF状態を判別する「読込」操作は、1.8Vのときの電流値を読み取った。得られた結果を図5並びに表1に示す。
[Measurement of reproducibility]
For each of the switching elements fabricated in Example 1 and Comparative Example 1, ON / OFF switching was performed 10 times continuously, and the variation in current value was measured. In addition, in the “read” operation for determining the ON / OFF state, the current value at 1.8 V was read. The obtained results are shown in FIG.

図5及び表1に示すように、ON電流に関して、比較例1の素子と比べて実施例1の素子の電流値のばらつきが小さいことが確認され、再現性に優れる素子であるとする結果が得られた。   As shown in FIG. 5 and Table 1, regarding the ON current, it was confirmed that the variation in the current value of the element of Example 1 was smaller than that of the element of Comparative Example 1, and the result was that the element was excellent in reproducibility. Obtained.

1・・・スイッチング素子
2・・・下側電極
3・・・有機下膜
4・・・金属微粒子
5・・・有機上膜
6・・・上側電極
7、8・・・電気結線
9・・・電子制御ユニット
10・・・金属微粒子
DESCRIPTION OF SYMBOLS 1 ... Switching element 2 ... Lower electrode 3 ... Organic lower film 4 ... Metal fine particle 5 ... Organic upper film 6 ... Upper electrode 7, 8 ... Electrical connection 9 ...・ Electronic control unit 10 ... metal fine particles

特表2004−513513号公報JP-T-2004-513513 特開2005−101594号公報JP 2005-101594 A 特開2004−200569号公報JP 2004-200569 A

PROCEEDINGS OF THE IEEE,93,7(2005)PROCEEDINGS OF THE IEEE, 93, 7 (2005)

Claims (8)

金属微粒子を含有する有機薄膜を2つの電極で挟んだ構造のスイッチング素子を製造する方法において、
A)下側電極の上に、第一の高分子化合物を含有する有機下膜を形成する段階と、
B)該有機下膜の上に、第一の金属微粒子を蒸着する段階と、
C)続いて、その上に、前記第一の金属微粒子と同じ又は異なる第二の金属微粒子が前記第一の高分子化合物と同種又は異種の分散剤としての第二の高分子化合物によって分散されている有機上膜を形成する段階と、
D)該有機上膜及び該有機下膜からなる金属微粒子を含有する有機薄膜を上側電極及び下側電極で挟んだ構造に作り上げる段階とを含み、
前記第一の高分子化合物及び第二の高分子化合物は、ジチオカルバメート基を有する重量平均分子量が500〜5,000,000である高分子化合物である、
有機スイッチング素子の製造方法。
In a method of manufacturing a switching element having a structure in which an organic thin film containing metal fine particles is sandwiched between two electrodes,
A) forming an organic underlayer containing the first polymer compound on the lower electrode;
B) depositing first metal fine particles on the organic underlayer;
C) Subsequently, second metal fine particles that are the same as or different from the first metal fine particles are dispersed on the second polymer compound as a dispersant of the same or different type as the first polymer compound. Forming an organic overcoat, and
D) forming an organic thin film containing metal fine particles comprising the organic upper film and the organic lower film into a structure sandwiched between an upper electrode and a lower electrode,
The first polymer compound and the second polymer compound are polymer compounds having a dithiocarbamate group and a weight average molecular weight of 500 to 5,000,000.
Manufacturing method of organic switching element.
前記B)の蒸着段階は、アークプラズマガンを用いて行われる、請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the deposition step of B) is performed using an arc plasma gun. 前記A)段階で形成される有機下膜は、厚さ10nm以下の極薄膜である、請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the organic underlayer formed in step A) is an ultrathin film having a thickness of 10 nm or less. 前記上側電極及び下側電極は、導電性金属の蒸着膜である、請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the upper electrode and the lower electrode are deposited films of conductive metal. 前記第一の金属微粒子及び第二の金属微粒子は、金、銀、白金、銅、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム及びイリジウムよりなる群より選択される少なくとも1種である、請求項1に記載の製造方法。 The first metal fine particles and the second metal fine particles are at least one selected from the group consisting of gold, silver, platinum, copper, nickel, ruthenium, rhodium, palladium, osmium, and iridium. The manufacturing method as described. 前記第一の金属微粒子及び第二の金属微粒子は、平均粒径が1nm以上500nm以下の金属微粒子である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the first metal fine particles and the second metal fine particles are metal fine particles having an average particle diameter of 1 nm or more and 500 nm or less. 前記第一の高分子化合物及び第二の高分子化合物は、分岐状高分子化合物である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the first polymer compound and the second polymer compound are branched polymer compounds. 前記第一の高分子化合物及び第二の高分子化合物は、式(1)で表される分岐状高分子化合物である、請求項1に記載の製造方法。
(式中、R1は水素原子又はメチル基を表し、R2及びR3は、それぞれ、炭素原子数1乃
至5のアルキル基、炭素原子数1乃至5のヒドロキシアルキル基又は炭素原子数7乃至12のアリールアルキル基を表し、又は、R2とR3は互いに結合し、窒素原子と共に環を形成していてもよい。A1は式(2)又は式(3):
(式中、A2はエーテル結合又はエステル結合を含んでいても良い炭素原子数1乃至30
の直鎖状、枝分かれ状又は環状のアルキレン基を表し、Y1、Y2、Y3又はY4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、ニトロ基、ヒドロキシル基、アミノ基、カルボキシル基又はシアノ基を表す。)を表し、nは繰り返し単位構造の数であって2乃至100,000の整数を表す。)
The manufacturing method according to claim 1, wherein the first polymer compound and the second polymer compound are branched polymer compounds represented by the formula (1).
(Wherein R 1 represents a hydrogen atom or a methyl group, and R 2 and R 3 represent an alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, or 7 to 7 carbon atoms, respectively. 12 represents an arylalkyl group, or R 2 and R 3 may be bonded to each other to form a ring together with the nitrogen atom, and A 1 represents formula (2) or formula (3):
(In the formula, A 2 has 1 to 30 carbon atoms which may contain an ether bond or an ester bond.
Represents a linear, branched or cyclic alkylene group, and Y 1 , Y 2 , Y 3 or Y 4 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. To 20 alkoxy groups, a halogen atom, a nitro group, a hydroxyl group, an amino group, a carboxyl group or a cyano group; N represents the number of repeating unit structures and represents an integer of 2 to 100,000. )
JP2010045603A 2010-03-02 2010-03-02 Manufacturing method of organic switching element Expired - Fee Related JP5484961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045603A JP5484961B2 (en) 2010-03-02 2010-03-02 Manufacturing method of organic switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045603A JP5484961B2 (en) 2010-03-02 2010-03-02 Manufacturing method of organic switching element

Publications (2)

Publication Number Publication Date
JP2011181758A true JP2011181758A (en) 2011-09-15
JP5484961B2 JP5484961B2 (en) 2014-05-07

Family

ID=44692955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045603A Expired - Fee Related JP5484961B2 (en) 2010-03-02 2010-03-02 Manufacturing method of organic switching element

Country Status (1)

Country Link
JP (1) JP5484961B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513513A (en) * 2000-10-31 2004-04-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Organic bistable device and organic memory cell
JP2004200569A (en) * 2002-12-20 2004-07-15 Fuji Electric Holdings Co Ltd Switching element and its manufacturing method
JP2006261677A (en) * 2005-03-17 2006-09-28 Samsung Electronics Co Ltd Memory device and method of manufacturing memory device
JP2008120994A (en) * 2006-11-13 2008-05-29 Samsung Electronics Co Ltd Ferrocene-containing conductive polymer, organic memory element using the same and method for producing thereof
JP2008120790A (en) * 2006-11-13 2008-05-29 Samsung Electronics Co Ltd Metallocene dendrimer, organic memory element using the same, and method for producing the organic memory element
JP2008153616A (en) * 2006-12-18 2008-07-03 Samsung Electronics Co Ltd Organic memory device using iridium organometallic compound and method of manufacturing the same
JP2008166710A (en) * 2006-12-28 2008-07-17 Samsung Electronics Co Ltd Organic memory element and method of manufacturing it
WO2009031507A1 (en) * 2007-09-03 2009-03-12 Kyushu University Organic switching element and method for production thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513513A (en) * 2000-10-31 2004-04-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Organic bistable device and organic memory cell
JP2004200569A (en) * 2002-12-20 2004-07-15 Fuji Electric Holdings Co Ltd Switching element and its manufacturing method
JP2006261677A (en) * 2005-03-17 2006-09-28 Samsung Electronics Co Ltd Memory device and method of manufacturing memory device
JP2008120994A (en) * 2006-11-13 2008-05-29 Samsung Electronics Co Ltd Ferrocene-containing conductive polymer, organic memory element using the same and method for producing thereof
JP2008120790A (en) * 2006-11-13 2008-05-29 Samsung Electronics Co Ltd Metallocene dendrimer, organic memory element using the same, and method for producing the organic memory element
JP2008153616A (en) * 2006-12-18 2008-07-03 Samsung Electronics Co Ltd Organic memory device using iridium organometallic compound and method of manufacturing the same
JP2008166710A (en) * 2006-12-28 2008-07-17 Samsung Electronics Co Ltd Organic memory element and method of manufacturing it
WO2009031507A1 (en) * 2007-09-03 2009-03-12 Kyushu University Organic switching element and method for production thereof

Also Published As

Publication number Publication date
JP5484961B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
KR101114770B1 (en) Method for preparing nonvolatile organic memory devices and nonvolatile organic memory devices prepared by the same
JP5190412B2 (en) ALLOY NANOPARTICLE, PROCESS FOR PRODUCING THE SAME, AND INK AND PASTE USING THE ALLOY NANOPARTICLE
KR101167737B1 (en) Resistive organic memory device and preparation method thereof
TW201100500A (en) Liquid compositions for inkjet printing of organic layers or other uses
JP5441701B2 (en) Organic switching element and manufacturing method thereof
EP1594176B1 (en) Switching device
KR101244571B1 (en) Novel ferrocene containing polymer and organic memory device comprising the same
JP5326647B2 (en) Method for producing composition for forming electrode of solar cell
CN111244295B (en) Quantum dot light-emitting diode and preparation method thereof
JP2007208258A (en) Organic memory device, and method of manufacturing same
TW201638974A (en) Electrode composition, electrode manufactured using the same, and solar cell
JP5484961B2 (en) Manufacturing method of organic switching element
JP4254228B2 (en) Switching element and manufacturing method thereof
JP2008120994A (en) Ferrocene-containing conductive polymer, organic memory element using the same and method for producing thereof
JP5667558B2 (en) Organic switching element and manufacturing method thereof
JP2008135416A (en) Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
JP5151229B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
KR101249117B1 (en) Metallocenyl dendrimer, organic memory device using the same and preparation method thereof
CN109962116B (en) Composition for forming electrode, electrode manufactured using the same, and solar cell
WO2011126235A2 (en) Photocrosslinking polyimide polymer, a production method for the same and a memory element using the same
KR101149713B1 (en) Polyimide with a triphenylamine in a backbone, preparation thereof and products comprising the polymer
CN111244297A (en) Quantum dot light-emitting diode and preparation method thereof
JP5760912B2 (en) Organic electroluminescence device and method for producing the same
JP2006164593A (en) Metal electrode for dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R150 Certificate of patent or registration of utility model

Ref document number: 5484961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees