JP2011181706A - Solar cell with output relaxing function - Google Patents

Solar cell with output relaxing function Download PDF

Info

Publication number
JP2011181706A
JP2011181706A JP2010044813A JP2010044813A JP2011181706A JP 2011181706 A JP2011181706 A JP 2011181706A JP 2010044813 A JP2010044813 A JP 2010044813A JP 2010044813 A JP2010044813 A JP 2010044813A JP 2011181706 A JP2011181706 A JP 2011181706A
Authority
JP
Japan
Prior art keywords
power generation
change
light transmittance
generation amount
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010044813A
Other languages
Japanese (ja)
Other versions
JP5441037B2 (en
Inventor
Shigeru Aihara
茂 相原
Kenji Nakada
健司 中田
Takeshi Kamata
武 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tempearl Industrial Co Ltd
Original Assignee
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tempearl Industrial Co Ltd filed Critical Tempearl Industrial Co Ltd
Priority to JP2010044813A priority Critical patent/JP5441037B2/en
Publication of JP2011181706A publication Critical patent/JP2011181706A/en
Application granted granted Critical
Publication of JP5441037B2 publication Critical patent/JP5441037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell including an output relaxing function to assist an individual operation-detecting function so that when two or more photovoltaic power generators are installed in one bank, a function of detecting an individual operation of an inverter may reliably operate. <P>SOLUTION: The solar cell 1 with the output relaxing function is characterized in that a metal electrode layer 102, a semiconductor layer 103 joined to the metal electrode layer, a transparent electrode layer 104 joined to the semiconductor layer, and a light transmittance control layer 105 joined to the transparent electrode layer are formed in order, a control IC controlling the light transmittance control layer includes a power generation amount-measuring means for the semiconductor layer and a comparison operation means for changing light transmittance in a direction where change in power generation amount is canceled in accordance with measured change in power generation amount, and the comparison operation means sets at random and changes a relaxation time up to when the light transmittance is put back till the original light transmittance from the changed state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽電池に関し、特に太陽電池における短時間出力変動の緩和機能を有した太陽電池に係る。 The present invention relates to a solar cell, and more particularly to a solar cell having a function of mitigating short-time output fluctuations in a solar cell.

昨今、分散電源電力供給システムの普及が進んでいる。例えば、太陽電池、燃料電池、マイクロガスタービンなどの分散電源を、一般家庭や集合住宅、小規模事業所など、ユーザ負荷に近接して設置し、ユーザに電力供給を行なうことが多い。 In recent years, distributed power supply systems have been widely used. For example, distributed power sources such as solar cells, fuel cells, and micro gas turbines are often installed in close proximity to user loads, such as ordinary homes, apartment houses, and small businesses, to supply power to users.

特許文献1の図2には、太陽電池を発電源とした分散電源システムの一例が示されている。この図2において、分散電源システムは太陽電池アレイ1とこの太陽電池アレイ1から出力される直流電力を交流電力に変えるインバータ24を内蔵した電力変換手段4とを備えている。この電力変換手段4は商用電力系統11から分散型電力を切り離す遮断器25と、周波数変動や電圧変動に基づいて商用電力系統11の遮断器26の解列を検知して遮断器25を解列させる単独運転検知手段27とを含む系統連系保護装置を内蔵した構成となっている。 FIG. 2 of Patent Document 1 shows an example of a distributed power supply system using a solar cell as a power generation source. In FIG. 2, the distributed power supply system includes a solar cell array 1 and power conversion means 4 incorporating an inverter 24 that converts DC power output from the solar cell array 1 into AC power. This power conversion means 4 detects the disconnection of the circuit breaker 25 that disconnects the distributed power from the commercial power system 11 and the circuit breaker 26 of the commercial power system 11 based on frequency fluctuations and voltage fluctuations, and disconnects the circuit breaker 25. The system interconnection protection device including the isolated operation detecting means 27 is built in.

そして、特許文献2に開示されたように、太陽光発電装置に備えられるインバータは、内包される制御回路によりインバータの交流側出力電圧を一定電圧に制御する機能、即ち電圧上昇を抑制する機能、および単独運転を検出する機能を有している。 And as disclosed in Patent Document 2, the inverter provided in the solar power generation device has a function of controlling the AC output voltage of the inverter to a constant voltage by the included control circuit, that is, a function of suppressing a voltage increase, And has a function of detecting isolated operation.

インバータの単独運転を検出する機能については、特許文献2に示されているように、インバータの出力電圧が電力系統に接続された状態で、工事等のために系統停電が発生した場合に、インバータを停止させるものである。仮に、インバータが運転状態のままであるとすると、インバータの単独運転により電力系統の工事区間にインバータの出力電圧が印加され、工事作業者等が感電する危険性がある。そのため、単独運転を検出する機能は、系統停電状態において、インバータの出力電圧が印加されたことによる電圧の変化を検出して、インバータを停止させるものである。 As for the function for detecting the independent operation of the inverter, as shown in Patent Document 2, when a system power failure occurs due to construction or the like while the output voltage of the inverter is connected to the power system, the inverter Is to stop. If the inverter remains in an operating state, the inverter output voltage is applied to the construction section of the power system due to the independent operation of the inverter, and there is a risk of electric shock to construction workers and the like. Therefore, the function of detecting the isolated operation is to detect a change in voltage due to the application of the output voltage of the inverter in the system power failure state and stop the inverter.

単独運転の検出機能について、特に、電力系統における同一の柱上変圧器に複数の自家発電装置が接続されている場合には、この検出機能が有効に働くか否かは重要な課題である。即ち、電力系統の柱上変圧器を同じくする地域(「バンク」という)内に2つの自家発電装置が設置されている場合、系統停電が発生しても、一方の自家発電装置から電力系統に電力が供給されることにより、他方のインバータは、出力電圧が印加されたことによる電圧の変化を検出してインバータを停止させることが困難となる場合がある。そのため、同一バンク内の既存の自家発電装置と新設の自家発電装置との間で、単独運転を検出する機能が確実に働くか否かを事前に確認しておく必要がある。この確認作業は、専ら、電力事業者により行われることが多い。 Regarding the detection function of the isolated operation, particularly when a plurality of private power generators are connected to the same pole transformer in the power system, whether or not this detection function works effectively is an important issue. In other words, if two private power generators are installed in the same area (called “bank”) where the pole transformer of the power system is the same, even if a system power failure occurs, When power is supplied, it may be difficult for the other inverter to detect a change in voltage due to the application of the output voltage and stop the inverter. Therefore, it is necessary to confirm in advance whether or not the function for detecting an isolated operation surely works between an existing private power generation device and a new private power generation device in the same bank. This confirmation work is often performed exclusively by electric power companies.

また、特許文献2においては、同一バンク内に、2つ以上の太陽光発電装置が設置される場合には、同一バンク内の天候はほぼ同じであるため、いずれの発電装置による発電量も同様に推移する。そのため、晴天で発電量が十分に得られる場合でも、同一バンク内での逆潮流が増加することにより、同一バンク内の電圧が一時的に上昇し、電力事業者に売電することができない場合も生じ得る、ことが示されている。 Moreover, in patent document 2, when two or more photovoltaic power generation apparatuses are installed in the same bank, the weather in the same bank is almost the same, so the power generation amount of any power generation apparatus is the same. Transition to For this reason, even if the amount of power generated is clear enough, the reverse power flow in the same bank will increase, causing the voltage in the same bank to rise temporarily and it is not possible to sell power to the power company. Has also been shown to occur.

特開2002−152976号公報JP 2002-152976 A 特開2008−77369号公報JP 2008-77369 A

このように、太陽光発電装置の普及に当たっては、従来では電力事業者から商用電力が供給される需要者側にて発電がなされるため、該電力事業者側と需要者側における発電状況の連携と把握が重要になってくる。特に、同一バンク内において、2つ以上の太陽光発電装置が設置される場合においては、電力事業者側の系統停電が発生した状態において需要者側の発電装置のみが発電運転を続ける単独運転を、確実に検出してインバータを停止させる機能を備えることが重要な課題となっている。 As described above, since the power generation is conventionally performed on the consumer side supplied with the commercial power from the electric power company, the cooperation between the electric power company side and the customer side is considered. And grasping becomes important. In particular, in the case where two or more photovoltaic power generation devices are installed in the same bank, only the power generation device on the customer side continues the power generation operation in a state where a system power failure occurs on the power provider side. It has become an important issue to provide a function for reliably detecting and stopping the inverter.

そこで、本発明は、上記課題に鑑みてなされたもので、同一バンク内に2つ以上の太陽光発電装置が設置される場合においてインバータにおける単独運転を検出する機能が確実に働くよう、出力緩和機能を備えて単独運転検出機能を補助する太陽電池を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and when the two or more photovoltaic power generators are installed in the same bank, the output is reduced so that the function of detecting an independent operation in the inverter works reliably. An object of the present invention is to provide a solar cell that has a function and assists an isolated operation detection function.

本発明に係る太陽電池は、上述の課題を解決すべく構成されたもので、
金属電極層と、該金属電極層と接合される半導体層と、該半導体層と接合される透明電極層と、該透明電極層と接合される透光率制御層とが順次形成されて、導電性基板に配設されるとともに、前記透明電極層に設けられた集電電極と、前記金属電極とに電気的に接続された前記透光率制御層制御ICが前記導電性基板に配設されて、前記制御ICは、前記半導体層における発電量計測手段と、計測した発電量の変化に応じて該発電量の変化を打ち消す方向に透光率を初期状態から変化させる比較演算手段とを備え、該比較演算手段により、前記透光率を変化させた状態から元の透光率に戻すまでの緩和時間をランダムに設定し、前記透光率を変化させた状態から元の透光率に戻すまでの緩和時間を変化させるよう制御することを特徴として出力緩和機能を備えた太陽電池を構成するとよい。
The solar cell according to the present invention is configured to solve the above-described problems,
A metal electrode layer, a semiconductor layer bonded to the metal electrode layer, a transparent electrode layer bonded to the semiconductor layer, and a light transmittance control layer bonded to the transparent electrode layer are sequentially formed, and conductive The light-transmitting control layer control IC electrically connected to the current collecting electrode provided on the transparent electrode layer and the metal electrode is provided on the conductive substrate. The control IC includes a power generation amount measurement unit in the semiconductor layer, and a comparison calculation unit that changes the transmissivity from the initial state in a direction to cancel the change in the power generation amount according to the change in the measured power generation amount. Then, by the comparison calculation means, a relaxation time from the state where the light transmittance is changed to the time when the light transmittance is returned to the original light transmittance is randomly set, and the state where the light transmittance is changed is changed to the original light transmittance. Characterized by controlling to change the relaxation time to return It may constitute a solar cell having a force relaxation function.

かかる構成によれば、太陽電池を設置して使用開始後、光量の増加により発電量が変化した場合には、該発電量の変化を打ち消す方向に透光率を変化させるとともに、該変化を 元に戻すまでの緩和時間をランダムに設けて制御を行うため、太陽電池が複数設けられている場合には、該太陽電池から出力される電力の上昇のタイミングを分散させることができ、インバータにおける単独運転の検出を確実に行うことができる出力緩和機能を備えた太陽電池を提供できる。 According to this configuration, when the power generation amount changes due to an increase in the amount of light after the solar cell is installed and used, the transmissivity is changed in a direction to cancel the change in the power generation amount, and the change is restored. In order to perform control by randomly setting a relaxation time until returning to the case, when a plurality of solar cells are provided, it is possible to disperse the timing of the increase in the power output from the solar cells, It is possible to provide a solar cell having an output relaxation function that can reliably detect driving.

また、本発明に係る太陽電池は、発電量の変化の大きさを定めた閾値データを前記比較演算手段におけるメモリ部に記憶し、該閾値データと前記発電量計測手段により計測された発電量の変化データとを比較し、該発電量の変化データが閾値データを越えた場合に、透光率を変化させることを特徴とした請求項1記載の出力緩和機能を備えた太陽電池を構成するとよい。 Further, the solar cell according to the present invention stores threshold data that defines the magnitude of the change in the amount of power generation in the memory unit of the comparison calculation means, and the power generation amount measured by the threshold data and the power generation amount measurement means. The solar cell having an output mitigation function according to claim 1, wherein the light transmission rate is changed when the change data of the power generation amount exceeds the threshold data by comparing with the change data. .

かかる構成によれば、所定の閾値に満たない発電量の変化の場合には、透光率を変化させず、制御に係る電力を削減することができる。 According to such a configuration, in the case of a change in the amount of power generation that does not satisfy the predetermined threshold, it is possible to reduce the power related to the control without changing the light transmittance.

また、本発明に係る太陽電池は、発電量の変化データと透光率の変化データとを対応させた発電量−透光率対応データを予め前記比較演算手段におけるメモリ部に記憶し、前記比較演算手段は、計測した発電量の変化に応じた透光率の変化データをメモリ部から読み出して、発電量の変化に応じて変化させる透光率の大きさを演算し、発電量の変化を打ち消す方向に透光率を変化させることを特徴とする請求項1又は請求項2記載の出力緩和機能を備えた太陽電池を構成するとよい。 Further, the solar cell according to the present invention stores the power generation amount-transmittance correspondence data in which the power generation amount change data and the light transmittance change data are associated with each other in advance in the memory unit of the comparison operation unit, and the comparison The calculation means reads the change data of the light transmittance according to the measured change in the power generation amount from the memory unit, calculates the magnitude of the light transmittance to be changed according to the change in the power generation amount, and calculates the change in the power generation amount. The solar cell having an output relaxation function according to claim 1 or 2, wherein the transmissivity is changed in the direction of cancellation.

かかる構成によれば、太陽電池の特性に応じた発電量−透光率対応データを記憶させることにより、実際の太陽電池に応じて適切に透光率を変化させる制御を行うことができる。 According to such a configuration, by storing the power generation amount-transmittance correspondence data according to the characteristics of the solar cell, it is possible to perform control for appropriately changing the transmittance according to the actual solar cell.

以上の如く、本発明によれば、同一バンク内に2つ以上の太陽光発電装置が設置される場合において、該同一バンク内の天候の推移がほぼ同じ場合であっても、インバータにおける単独運転を検出する機能が確実に働くよう、出力緩和機能を備えて単独運転検出機能を補助する太陽電池を提供することができる。 As described above, according to the present invention, when two or more photovoltaic power generation devices are installed in the same bank, the inverter operates independently even if the weather changes in the same bank are almost the same. In order to ensure that the function of detecting the solar battery functions, a solar cell having an output relaxation function and assisting the isolated operation detection function can be provided.

第1の実施形態を示す太陽電池素子の概略構成図を示す。The schematic block diagram of the solar cell element which shows 1st Embodiment is shown. 同実施形態に係る透光率制御層の概略構成図を示す。The schematic block diagram of the translucency control layer which concerns on the same embodiment is shown. 同実施形態に係る制御ICのブロック構成図を示す。The block block diagram of the control IC which concerns on the embodiment is shown. 同実施形態に係る制御ICのメモリ内に記憶されるデータを示す。The data memorize | stored in the memory of control IC concerning the embodiment are shown. 同実施形態に係る光量、発電量及び透光率の変化を示す。The change of the light quantity, electric power generation amount, and the light transmittance which concern on the embodiment is shown. 太陽電池を複数接続して設けた図を示す。The figure which connected and provided multiple solar cells is shown.

次に本発明の実施形態を図1乃至図6を用いて詳細に説明する。 Next, an embodiment of the present invention will be described in detail with reference to FIGS.

(第1の実施形態)
(太陽電池の説明)
図1は、本発明における太陽電池の第1の実施形態を示した概略構成図である。図1は、太陽電池1における層状構成をなす太陽電池素子の断面を示したもので、該太陽電池素子は、導電性基板101上に層状に形成される。該導電性基板101上には、金属電極層102と、該金属電極層102と接合される半導体層103と、該半導体層103と接合される透明電極層104と、該透明電極層104と接合される透光率制御層105とが順次層状に形成される。
(First embodiment)
(Description of solar cell)
FIG. 1 is a schematic configuration diagram showing a first embodiment of a solar cell in the present invention. FIG. 1 shows a cross section of a solar cell element having a layered structure in the solar cell 1, and the solar cell element is formed in layers on a conductive substrate 101. On the conductive substrate 101, a metal electrode layer 102, a semiconductor layer 103 bonded to the metal electrode layer 102, a transparent electrode layer 104 bonded to the semiconductor layer 103, and a bond to the transparent electrode layer 104 The translucency control layer 105 to be formed is sequentially formed in layers.

また、前記導電性基板101上には、前記透光率制御層105を制御するための制御IC106が配設され、該制御IC106は、前記透明電極層に設けられた集電電極107と、前記金属電極層102とに電気的に接続されて電源を得る。 A control IC 106 for controlling the light transmittance control layer 105 is disposed on the conductive substrate 101. The control IC 106 includes a current collecting electrode 107 provided on the transparent electrode layer, A power source is obtained by being electrically connected to the metal electrode layer 102.

前記制御IC106は、前記半導体層における発電量を計測して、該発電量の変化を経時的な変化として検出するとともに、発電量の変化に応じて、該発電量の変化を打ち消す方向に透光率制御層における透光率を変化させ、その後、再び元の透光率に戻すよう透光率を変化させる比較演算手段を備えるものである。 The control IC 106 measures a power generation amount in the semiconductor layer, detects a change in the power generation amount as a change with time, and transmits light in a direction to cancel the change in the power generation amount according to the change in the power generation amount. Comparison operation means for changing the light transmittance in the rate control layer and then changing the light transmittance so as to return to the original light transmittance again is provided.

図3には、制御IC106のブロック構成図を示した。
制御IC106は、前記集電電極から電源を得るための電源入力部1061と、該電源入力部に入力された電圧値、電流値の時間的な変化を計測するとともに、該電圧値、電流値の時間的な変化に応じて透光率制御層における透光率の変化量を定める比較演算部1063と、該比較演算部1063で定められた透光率の変化量に相当する電圧値を出力する電圧出力部1062とを備えている。
FIG. 3 shows a block diagram of the control IC 106.
The control IC 106 measures a temporal change in the voltage value and the current value input to the power input unit 1061 for obtaining power from the current collecting electrode, and the voltage value and the current value. A comparison operation unit 1063 that determines the amount of change in light transmittance in the light transmittance control layer according to a change over time, and a voltage value corresponding to the amount of change in light transmittance determined by the comparison operation unit 1063 is output. A voltage output unit 1062.

前記比較演算部1063は、該電源入力部から入力される電圧の時間的な変化を計測する発電量計測部10631と、透光率を変化させる範囲を定める透光率変化データを記憶させたメモリ部10633と、電圧の時間的な変化の大きさと透光率変化データとを比較し、電圧の時間的な変化の大きさに応じて透光率の変化量を定める比較演算部10632と、時間の経過をカウントするタイマー部とを備えている。 The comparison calculation unit 1063 includes a power generation amount measurement unit 10631 that measures a temporal change in voltage input from the power input unit, and a memory that stores transmittance change data that defines a range in which the transmittance is changed. Unit 10633, a comparison operation unit 10632 that compares the magnitude of temporal change in voltage with the transmittance change data, and determines the amount of change in transmittance according to the magnitude of temporal change in voltage, and time The timer part which counts progress of this is provided.

また、前記比較演算部10632は、元の透光率から透光率を変化させた後、再び元の透光率に戻すまでの緩和時間をランダムに設定する緩和時間設定機能を備えている。
ここでいう緩和時間とは、元の透光率から透光率を変化させた後、再び元の透光率に戻すまでの設定時間をいい、前記電圧の時間的な変化の大きさが大きい場合には、前記緩和時間は大きく、前記電圧の時間的な変化の大きさが小さい場合には、前記緩和時間は小さく設定されている。
Further, the comparison operation unit 10632 has a relaxation time setting function for randomly setting a relaxation time until the light transmittance is returned to the original light transmittance after changing the light transmittance from the original light transmittance.
The relaxation time here means a set time until the light transmittance is returned to the original light transmittance after changing the light transmittance from the original light transmittance, and the magnitude of the temporal change of the voltage is large. In this case, the relaxation time is set large, and when the magnitude of temporal change in the voltage is small, the relaxation time is set small.

また、緩和時間がランダムであるとは、前記電圧の時間的な変化の大きさと透光率変化データとを比較し、電圧の時間的な変化の大きさに応じて定められた緩和時間を所定の時間幅を持たせて変化させるということである。例えば、前記電圧の時間的な変化の大きさが大きい場合には、前記緩和時間は大きく、前記電圧の時間的な変化の大きさが小さい場合には、前記緩和時間は小さく設定されている。このため、大きな緩和時間に対しては、所定の時間幅も大きく設定され、小さな緩和時間に対しては、所定の時間幅も小さく設定される。即ち、緩和時間に対する割合を設定し、その緩和時間に対して所定の時間幅を設けるよう定めるとよい。 The relaxation time being random means that the magnitude of temporal change in the voltage is compared with the transmittance change data, and the relaxation time determined according to the magnitude of the temporal change in voltage is predetermined. It is to change with the time width of. For example, when the magnitude of the voltage change over time is large, the relaxation time is set large, and when the magnitude of the voltage change over time is small, the relaxation time is set small. For this reason, the predetermined time width is set large for a large relaxation time, and the predetermined time width is also set small for a small relaxation time. That is, it is preferable to set a ratio with respect to the relaxation time and to provide a predetermined time width for the relaxation time.

(透光率制御層の説明)
前記透光率制御層105は、前記半導体層103に照射される光の透光率の大小を制御するもので、これにより前記半導体層103への太陽光の照射量の大小が制御される。本実施例では、電圧を印加することにより分子の配向を変化させる液晶を用いて構成している。
図2に、前記透光率制御層105の概略構成図を示した。
(Description of translucency control layer)
The light transmittance control layer 105 controls the light transmittance of the semiconductor layer 103 and thereby controls the amount of sunlight irradiated to the semiconductor layer 103. In this embodiment, the liquid crystal is used to change the molecular orientation by applying a voltage.
FIG. 2 shows a schematic configuration diagram of the light transmittance control layer 105.

図2は、透光率制御層105の断面を示したもので、該透光率制御層105は、前記透明電極層104上に層状に形成される。透光率制御層105は、前記透明電極層104に接合される偏光板1051と、該偏光板1051に接合される透明電極層1052と、該透明電極層1052と接合され2つの配向層1053、1054に挟まれる液晶層1055と該液晶層1055に接合される透明電極層1056と、該透明電極層1056に接合される偏光板1057とにより層状に形成される。 FIG. 2 shows a cross section of the translucency control layer 105, and the translucency control layer 105 is formed on the transparent electrode layer 104 in layers. The light transmittance control layer 105 includes a polarizing plate 1051 bonded to the transparent electrode layer 104, a transparent electrode layer 1052 bonded to the polarizing plate 1051, and two alignment layers 1053 bonded to the transparent electrode layer 1052. A liquid crystal layer 1055 sandwiched between 1054, a transparent electrode layer 1056 bonded to the liquid crystal layer 1055, and a polarizing plate 1057 bonded to the transparent electrode layer 1056 are formed in layers.

前記透光率制御層105における透明電極1052、1056は、前記制御IC106と電気的に接続される。前記液晶1055は、制御IC106から電源の印加状態を制御されることにより該液晶1055の配向を変化させる。 The transparent electrodes 1052 and 1056 in the light transmittance control layer 105 are electrically connected to the control IC 106. The liquid crystal 1055 changes the orientation of the liquid crystal 1055 by controlling the application state of power from the control IC 106.

(制御の説明)
次に、制御の流れについて説明を行う。
前記発電量計測部10631は、電源入力部1061に入力される前記半導体層にて発電した電圧値、電流値をA/D変換によってデジタルデータ化し、前記比較部10632に出力する。
(Explanation of control)
Next, the control flow will be described.
The power generation amount measurement unit 10631 converts the voltage value and current value generated by the semiconductor layer input to the power input unit 1061 into digital data by A / D conversion, and outputs the digital data to the comparison unit 10632.

前記比較部10632は、所定の間隔で、デジタルデータ化された発電量をモニタするとともに、発電量の時間変化を演算処理により求める。発電量の時間変化があった場合には、前記メモリ部10633から透光率変化データを読み出し、該透光率変化データに基づいて、透光率を変化させるための印加電圧データを求める。そして、比較部10632から前記印加電圧データを電源出力部1062に出力し、該電源出力部1062は、印加電圧データに基づいて、透光率制御層に印加する電圧を制御し、透光率を変化させる。 The comparison unit 10632 monitors the power generation amount converted into digital data at a predetermined interval, and obtains a temporal change in the power generation amount through arithmetic processing. When the amount of power generation changes with time, the transmittance change data is read from the memory unit 10633, and applied voltage data for changing the transmittance is obtained based on the transmittance change data. Then, the applied voltage data is output from the comparison unit 10632 to the power output unit 1062, and the power output unit 1062 controls the voltage to be applied to the light transmittance control layer based on the applied voltage data, and the light transmittance is obtained. Change.

前記メモリ部10633に記憶されるデータとしては、例えば、透光率の変化量、入力電圧変化量、出力電圧値、前記緩和時間、を対応付けたデータテーブルを記憶しておく。これにより、前記比較部10632は、入力電圧の変化量に対応する出力電圧の大きさ並びに緩和時間を一義的に読み取ることができ、入力電圧値の時間的な変化に追随して速やかに透光率の制御を行うことができる。 As data stored in the memory unit 10633, for example, a data table in which a change amount of light transmittance, an input voltage change amount, an output voltage value, and the relaxation time are associated with each other is stored. Accordingly, the comparison unit 10632 can uniquely read the magnitude of the output voltage and the relaxation time corresponding to the amount of change in the input voltage, and can quickly transmit the light according to the temporal change in the input voltage value. Rate control can be performed.

次に、図5を用いて、前記制御IC106による前記透光率制御層105を制御した場合の光量、発電量及び透光率の変化を説明する。図5(a)は、光量の時間変化、図5(b)は、太陽電池における発電量の変化、図5(c)は、透光率の変化を示す。いずれも横軸が時間を示し、夫々縦軸が光量、発電量、透光率を示す。 Next, changes in the light amount, power generation amount, and transmissivity when the transmissivity control layer 105 is controlled by the control IC 106 will be described with reference to FIG. FIG. 5A shows the change in the amount of light over time, FIG. 5B shows the change in the amount of power generated in the solar cell, and FIG. 5C shows the change in the transmissivity. In each case, the horizontal axis represents time, and the vertical axis represents light amount, power generation amount, and light transmittance, respectively.

まず、光量がAからAに大きく増加した場合、一般に太陽電池における発電量は光量の増加に追随して大きく増加する。本実施形態における太陽電池1においては、前記発電量計測部10631においてデジタルデータ化された発電量のデータを用いて、該発電量の時間変化を演算処理により求め、メモリ部10633に記憶された透光率変化データに基づき、該発電量の時間変化に応じた印加電圧データを求める。該印加電圧データに基づいて電源出力部1062から出力された電圧により、透光率は、光量の時間変化による発電を打ち消す方向に、τからτに変化させられ、光量の時間変化が収まった場合には、τからτに近づくよう所定の時間をかけて、緩和的に変化させられる。 First, the amount of light may greatly increased from A 0 to A B, generally the power generation amount in the solar cell is greatly increased following the increase in light intensity. In the solar cell 1 according to the present embodiment, by using the power generation amount data digitized by the power generation amount measurement unit 10631, a temporal change in the power generation amount is obtained by an arithmetic process, and the transparent data stored in the memory unit 10633 is obtained. Based on the light rate change data, applied voltage data corresponding to the time change of the power generation amount is obtained. Based on the voltage output from the power supply output unit 1062 based on the applied voltage data, the transmissivity is changed from τ 0 to τ B in a direction to cancel the power generation due to the time change of the light amount, and the time change of the light amount is suppressed. In such a case, the change is relaxed over a predetermined time so as to approach τ 0 from τ B.

即ち、前記電源出力部1062からの出力電圧が所定の時間をかけて徐々に変化するように、比較部10632が制御を行う。このとき、前記比較部10632は、前記データテーブルに記憶されている緩和時間を基にして、所定の割合だけランダムに緩和時間を変化させ、該緩和時間をかけて透光率を元の透光率に変化させる。これにより、太陽電池1における発電量の変化は、光量の増加に追随してPからPに向けて急激に増加する変化とはならず、PからPに向けて、徐々に緩和的に増加する変化となる。 That is, the comparison unit 10632 performs control so that the output voltage from the power output unit 1062 gradually changes over a predetermined time. At this time, the comparison unit 10632 randomly changes the relaxation time by a predetermined ratio based on the relaxation time stored in the data table, and uses the relaxation time to change the light transmittance to the original light transmission rate. Change the rate. As a result, the change in the amount of power generated in the solar cell 1 does not become a change that rapidly increases from P 0 to P B following the increase in the amount of light, but gradually relaxes from P 0 to P B. Change will increase.

太陽電池1を用いた太陽光発電装置が、同一バンク内に複数備えられている場合、同一バンク内における天候がほぼ同じであっても、前述した緩和時間がランダムに設けられるため、発電量の回復には差が生ずる。このため、インバータにおける電圧の変化が検出しやすくなり、単独運転の検出が確実に行うことができるようになる。 When a plurality of solar power generation devices using the solar cell 1 are provided in the same bank, even if the weather in the same bank is almost the same, the above-described relaxation time is provided at random, There is a difference in recovery. For this reason, it becomes easy to detect a change in voltage in the inverter, and it becomes possible to reliably detect an isolated operation.

続いて、光量がABからAAに減少した場合、本実施形態における太陽電池1においては、先と同様に、透光率は、光量の時間変化による発電を打ち消す方向に、τAからτ0に変化させられ、光量の時間変化が収まった場合には、τAからτに近づくよう緩和的に変化させられる。これにより、太陽電池1における発電量の変化は、PBからPAに向けて、徐々に緩和的に増加する変化となる。光量がAAからA0に減少した場合についても同様な制御が行われる。 Subsequently, when the light amount decreases from A B to A A , in the solar cell 1 according to the present embodiment, the transmissivity is changed from τ A to τ in the direction to cancel the power generation due to the temporal change in the light amount. When it is changed to 0 and the time change of the light quantity is settled, it is changed moderately so as to approach τ 0 from τ A. Thus, the power generation amount of change in the solar cell 1 toward the P B to P A, a change that increases gradually relaxed manner. Similar control is performed when the amount of light decreases from A A to A 0 .

このように、光量の変化(ΔA1、ΔA2)に伴う発電量の変化の大きさ(ΔP1、ΔP2)は一般的な太陽電池と同じであるが、光量の変化の大きさと時間変化に応じて求めた、透光率の変化分(τ1 、τ2 )を時間的にランダムに緩和させるため、夫々の太陽光発電装置において発電量の変化がランダムに起こり、太陽電池1に接続されたインバータは、電圧の変化を検出しやすくなり、単独運転の検出を確実に行うことができるようになる。 As described above, the magnitude (ΔP1, ΔP2) of the change in the power generation amount due to the change in the light quantity (ΔA1, ΔA2) is the same as that of a general solar cell, but is obtained according to the magnitude of the change in the light quantity and the time change. In addition, in order to relieve the change in light transmittance (τ 1 , τ 2 ) at random in time, a change in the amount of power generation occurs randomly in each solar power generation device, and the inverter connected to the solar cell 1 is It becomes easier to detect a change in voltage, and it becomes possible to reliably detect an isolated operation.

なお、例えば、τからτに近づくよう緩和的な変化をさせる場合の緩和時間の長さについては、発電量の変化の大きさ(ΔA1、ΔA2など)に基づいて、発電量が大きく変化した場合には、インバータへの負荷を軽減できるよう緩和時間を長く設定し、発電量の変化が小さな場合には、インバータの負荷も小さくなるため緩和時間を短く設定しているが、予め、発電量の変化の大きさと緩和時間の長さとの関係式をメモリ部に記憶させておき、発電量計測部10631により計測した発電量の変化の大きさを該関係式に当てはめて、緩和時間の長さを求めて、求めた緩和時間に対して変化させる割合をランダムに発生させたうえで乗算し、緩和時間をランダムに設定する制御を行うよう構成してもよい。 For example, regarding the length of the relaxation time when a moderate change is made so as to approach τ 0 from τ B , the power generation amount greatly changes based on the magnitude of the change in power generation amount (ΔA1, ΔA2, etc.). In this case, the relaxation time is set long so that the load on the inverter can be reduced, and when the change in power generation amount is small, the load on the inverter is also small, so the relaxation time is set short. A relational expression between the magnitude of change in amount and the length of relaxation time is stored in the memory unit, and the magnitude of change in power generation amount measured by the power generation amount measuring unit 10631 is applied to the relational expression to increase the relaxation time. It is also possible to perform control to obtain the length and to randomly generate a ratio to be changed with respect to the obtained relaxation time and multiply the result to randomly set the relaxation time.

(第2の実施形態)
次に、第2の実施形態について説明を行う。
第1の実施形態との違いは、演算処理により求めた発電量の時間変化の大きさをモニタし、該発電量の時間変化の大きさが、メモリ部10633に記憶された閾値データを超えた場合に、透光率を変化させる制御を行う点である。
(Second Embodiment)
Next, the second embodiment will be described.
The difference from the first embodiment is that the amount of time change of the power generation amount obtained by the arithmetic processing is monitored, and the amount of time change of the power generation amount exceeds the threshold data stored in the memory unit 10633. In this case, control for changing the light transmittance is performed.

光量の変化は、経時的に随時発生するものであるが、僅かな光量の変化においても、透光率を変化させる制御を行う場合には、常に制御ICの駆動電力が必要となる。このため、制御ICにて検出される発電量の時間変化の大きさが、インバータに負担がかからない程度の電圧変化の大きさに相当する大きさを閾値データとして設け、該閾値データよりも発電量の時間変化の大きさのデータが小さな場合には、比較部10632における透光率を変化させる制御を行わず、該閾値データよりも発電量の時間変化の大きさのデータが大きな場合には、比較部10632における透光率を変化させる制御を行うよう比較演算部を構成した。 The change in the amount of light occurs as needed over time, but the drive power of the control IC is always required when performing control to change the transmissivity even with a slight change in the amount of light. For this reason, a magnitude corresponding to the magnitude of the voltage change that does not burden the inverter is set as threshold data, and the amount of power generation detected by the control IC is larger than the threshold data. In the case where the time change magnitude data is small, control for changing the light transmittance in the comparison unit 10632 is not performed, and when the power generation amount time change data is larger than the threshold data, The comparison operation unit was configured to perform control to change the light transmittance in the comparison unit 10632.

例えば、太陽電池1の発電可能電圧が1Vとした場合において、電圧値の時間変化の大きさが前記発電可能電圧の半分となる0.5Vを前記閾値データと設定し、前記メモリ部10633に記憶しておく。前記比較部10632が、発電量計測部10631で得られた発電電圧値データと、前記閾値データとを比較し、発電電圧値データが閾値データに満たない場合には、透光率の制御を行わない。 For example, when the voltage that can be generated by the solar cell 1 is 1 V, 0.5 V at which the magnitude of the time change of the voltage value is half of the voltage that can be generated is set as the threshold data and stored in the memory unit 10633. Keep it. The comparison unit 10632 compares the power generation voltage value data obtained by the power generation amount measurement unit 10631 with the threshold data, and performs control of the light transmittance when the power generation voltage value data is less than the threshold data. Absent.

(第3の実施形態)
次に、第3の実施形態について説明を行う。
第1の実施形態との違いは、発電量の変化データと透光率の変化データとを対応させた発電量−透光率対応データを予め前記メモリ部に記憶し、前記比較演算部1063は、計測した発電量の変化に応じた透光率の変化データをメモリ部から読み出して、発電量の変化に応じて変化させる透光率の大きさを演算し、変化させる制御を行う点である。
(Third embodiment)
Next, a third embodiment will be described.
The difference from the first embodiment is that the power generation amount-transmittance correspondence data in which the power generation amount change data and the light transmittance change data are associated with each other is stored in advance in the memory unit, and the comparison operation unit 1063 is The point is to read the change data of the transmissivity according to the change of the measured power generation amount from the memory unit, calculate the magnitude of the transmissivity to be changed according to the change of the power generation amount, and perform control to change it. .

図4に、発電量−透光率対応データの例を示した。このデータは、太陽電池1における半導体層に適した、発電量の時間変化の大きさに対する、透光率の変化の大きさ、並びに透光率制御層に印加する印加電圧の大きさを対応させたデータである。太陽電池に用いる半導体層は、用いる半導体の種類に応じて、光量に対する発電量の大きさが異なる。このため、太陽電池を構成する半導体に適した発電量の時間変化に対する透光率の変化量、該透光率の変化量に対応する印加電圧の大きさを夫々対応させたデータを前記メモリ部10633に記憶させておき、前記比較部10632における比較演算処理の時に、該発電量−透光率対応データを読み出して、発電量の時間変化に応じて変化させる透光率の大きさを演算し、発電量の変化を打ち消す方向に透光率を変化させる。 FIG. 4 shows an example of the power generation amount-transmittance correspondence data. This data is suitable for the semiconductor layer in the solar cell 1 and corresponds to the magnitude of the change in transmissivity and the magnitude of the applied voltage applied to the transmissivity control layer with respect to the magnitude of the change in power generation over time. Data. The semiconductor layer used in the solar cell has a different amount of power generation with respect to the amount of light depending on the type of semiconductor used. For this reason, the memory unit stores data corresponding to the amount of change in transmissivity with respect to time variation of the amount of power generation suitable for the semiconductor constituting the solar cell and the magnitude of the applied voltage corresponding to the amount of change in transmissivity. 10633, and at the time of the comparison calculation process in the comparison unit 10632, the power generation amount-transmittance correspondence data is read to calculate the magnitude of the light transmittance to be changed according to the time change of the power generation amount. The transmissivity is changed in a direction that cancels the change in the power generation amount.

これにより、太陽電池に使用される半導体層の発電特性に応じて適切に透光率を変化させる制御を行うことができる。 Thereby, the control which changes a light transmittance appropriately according to the power generation characteristic of the semiconductor layer used for a solar cell can be performed.

(制御対象となる太陽電池の種類について)
また、太陽電池に用いる半導体として、結晶系となる単結晶シリコン、多結晶シリコン、アモルファス系となるアモルファスシリコンに代表されるIV族半導体、GaAs、CdS、CuInSe2等、III−V族、II−VI族、I−III−VI族などの化合物半導体、フタロシアニンなどの有機半導体を用いた太陽電池、また、湿式太陽電池に代表される色素増感太陽電池においても、本願における透光率制御層を設けて経時的に透光率を制御し、これら半導体等に照射される太陽光の大小を制御することにより、出力を制御することが可能である。この他、太陽光や照明などの光が照射されることにより発電が行われる電池であれば、太陽光や照明などの照射量を調整することにより制御が可能である。
(About the types of solar cells to be controlled)
In addition, as semiconductors used for solar cells, crystalline single crystal silicon, polycrystalline silicon, group IV semiconductors typified by amorphous silicon, GaAs, CdS, CuInSe2, III-V group, II-VI The transmissivity control layer in the present application is also provided in solar cells using compound semiconductors such as Group I, III-VI, etc., organic semiconductors such as phthalocyanine, and dye-sensitized solar cells typified by wet solar cells. Thus, it is possible to control the output by controlling the light transmittance over time and controlling the magnitude of sunlight applied to these semiconductors and the like. In addition, any battery that generates power by being irradiated with light such as sunlight or illumination can be controlled by adjusting the amount of irradiation such as sunlight or illumination.

(他の例)
また、太陽電池1を複数用いてモジュール化する場合には、太陽電池1を直列接続したり、並列接続して用いるとよい。図6(a)には、前記導電性基板101上に太陽電池1を複数形成した例を示している。それぞれの太陽電池は、前記導電性基板101上に形成された電極108にて接続されており、また、制御IC106はそれぞれの太陽電池に設けられている。モジュール同士を接続する場合には電極108を順次接続するとよい。
(Other examples)
When a plurality of solar cells 1 are used for modularization, the solar cells 1 may be connected in series or connected in parallel. FIG. 6A shows an example in which a plurality of solar cells 1 are formed on the conductive substrate 101. Each solar cell is connected by an electrode 108 formed on the conductive substrate 101, and a control IC 106 is provided in each solar cell. When the modules are connected to each other, the electrodes 108 may be sequentially connected.

前記導電性基板101上に設けた制御IC106について、該制御ICと電極との電気的接続を微小ワイヤで接続してもよいし、導電性基板上にパターン配線を設けて接続してもよい。 With respect to the control IC 106 provided on the conductive substrate 101, the electrical connection between the control IC and the electrode may be connected by a fine wire, or may be connected by providing a pattern wiring on the conductive substrate.

また、図6(b)には、太陽電池1を複数形成し、これら太陽電池を1つの制御ICにて制御する例を示している。この場合、制御ICへの電源供給は一つの太陽電池から行ってもよいし、複数の太陽電池から行ってもよい。また、配線の効率化を図るため、制御IC106を基板の中ほどに設けている。
尚、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
FIG. 6B shows an example in which a plurality of solar cells 1 are formed and these solar cells are controlled by one control IC. In this case, power supply to the control IC may be performed from one solar cell or from a plurality of solar cells. In order to increase the efficiency of wiring, the control IC 106 is provided in the middle of the substrate.
In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the summary of this invention.

例えば、第一の実施形態において、透光率制御層105には液晶を用いた例を示した。この液晶は、電圧の印加とともに、分子の配向が変化するものとして説明を行ったが、制御ICにおける制御電力を減少させ、省電力化を図るため、例えば、電圧の印加を断っても液晶の配向状態が維持されるメモリ効果を有した強誘電性液晶を用いて構成してもよい。これにより、常に電圧を印加しておく必要がなくなる。透光率を変化させる場合には、短時間の電圧印加を行い、徐々に透光率を変化させていくことが可能である。 For example, in the first embodiment, an example in which liquid crystal is used for the light transmittance control layer 105 is shown. This liquid crystal has been described on the assumption that the orientation of molecules changes with the application of voltage. However, in order to reduce the control power in the control IC and save power, for example, the liquid crystal A ferroelectric liquid crystal having a memory effect that maintains the alignment state may be used. This eliminates the need to always apply a voltage. In the case of changing the light transmittance, it is possible to apply the voltage for a short time and gradually change the light transmittance.

また、複数の太陽電池を制御する場合において、制御する太陽電池と制御しない太陽電池を設けて、制御しない太陽電池は前記制御IC106の電源として用いるよう構成してもよい。 In the case of controlling a plurality of solar cells, a solar cell to be controlled and a solar cell not to be controlled may be provided, and the solar cell not to be controlled may be used as a power source for the control IC 106.

さらに、図6(c)に示したように、制御ICの回路パターンを、予め太陽電池に用いる半導体層に隣接させて作成し、太陽電池と一体化して制御ICを設けてもよい。この場合は、制御IC用の電源接続のための配線を不要とでき、また、太陽電池と制御ICを個別生産する場合と比較して生産の効率化が図れる。 Further, as shown in FIG. 6C, a circuit pattern of the control IC may be prepared in advance adjacent to a semiconductor layer used for the solar cell, and the control IC may be provided integrally with the solar cell. In this case, the wiring for connecting the power supply for the control IC can be eliminated, and the production efficiency can be improved as compared with the case where the solar cell and the control IC are individually produced.

また、他の制御の例をに示す。光量の時間変化が一定量以上生じ、大きな発電量の変化が予測される場合には、次のように透光率を時間的に変化させる制御を行う。 Another example of control is shown below. When a change in the amount of light over time occurs more than a certain amount and a large change in the amount of power generation is predicted, control is performed to change the transmittance with time as follows.

例えば、発電量計測部10631により計測した入力電圧の時間的な変化量が、発電可能電圧に近い場合、即ち、出力電力がゼロ近くから、一気に最高出力まで変化するような場合には、第1の実施形態のように透光率をτからτに変化させる一方、その後の透光率をτから大きくしていく場合に、τよりも透光率が低いτ´に近づくよう所定の緩和的な変化をさせる。τよりも透光率が低いτ´である状態を所定時間維持させる制御を行い、発電量の時間変化が収まっても、しばらくは、透光率がτよりも低い状態を維持させ、発電量の急激な上昇を抑制する。 For example, when the temporal change amount of the input voltage measured by the power generation amount measuring unit 10631 is close to the power generation possible voltage, that is, when the output power changes from near zero to the maximum output at once, the first approaches while changing the tau B of the light transmittance from tau 0, if is increased subsequent light transmittance from tau B, light transmittance is less than τ 0 τ 0 'as in the embodiment Make a certain modest change. performs control to maintain the status light transmittance is low tau 0 'predetermined time than tau 0, even if the time change amount of power generation subsided, a while, to maintain the lower than 0 light transmittance is tau , Suppress the rapid increase in power generation.

発電量が減少してきたことが検出された場合には、透光率をτに戻すよう制御を行う。このような制御を行うことにより、発電量の増加が非常に大きな場合には、発電量そのものが減少するように、透光率を小さく維持させることで、万が一単独運転の検出がなされなかった場合の電気事故を未然に抑制するとともに、太陽電池と接続されているインバータに対して、高電圧が印加されることによる機器の負担を低減させる。
When it is detected that the power generation amount has decreased, control is performed so that the light transmittance is returned to τ 0 . By performing such control, when the increase in power generation amount is very large, if the single operation is not detected by keeping the light transmittance small so that the power generation amount itself decreases. In addition to suppressing electrical accidents, the burden on the equipment due to the application of high voltage to the inverter connected to the solar cell is reduced.

1 太陽電池
101 導電性基板
102 金属電極層
103 半導体層
104 透明電極層
105 透光率制御層
1051 偏光板
1052 透明電極
1053 透明電極
1054 配向層
1055 配向層
1056 液晶
1057 偏光板
106 制御IC
1061 電源入力部
1062 電源出力部
1063 比較演算部
10631 発電量計測部
10632 比較部
10633 メモリ部
107 集電電極

DESCRIPTION OF SYMBOLS 1 Solar cell 101 Conductive substrate 102 Metal electrode layer 103 Semiconductor layer 104 Transparent electrode layer 105 Light transmittance control layer 1051 Polarizing plate 1052 Transparent electrode 1053 Transparent electrode 1054 Alignment layer 1055 Alignment layer 1056 Liquid crystal 1057 Polarizing plate 106 Control IC
1061 Power input unit 1062 Power output unit 1063 Comparison calculation unit 10631 Power generation amount measurement unit 10632 Comparison unit 10633 Memory unit 107 Current collecting electrode

Claims (3)

金属電極層と、該金属電極層と接合される半導体層と、該半導体層と接合される透明電極層と、該透明電極層と接合される透光率制御層とが順次形成されて、導電性基板に配設されるとともに、
前記透明電極層に設けられた集電電極と、前記金属電極とに電気的に接続された前記透光率制御層制御ICが前記導電性基板に配設されて、
前記制御ICは、前記半導体層における発電量計測手段と、
計測した発電量の変化に応じて該発電量の変化を打ち消す方向に透光率を変化させる比較演算手段を備え、
該比較演算手段により、前記透光率を変化させた状態から元の透光率に戻すまでの緩和時間をランダムに設定し、前記透光率を変化させた状態から元の透光率に戻すまでの緩和時間を変化させるよう制御することを特徴とする出力緩和機能を備えた太陽電池。
A metal electrode layer, a semiconductor layer bonded to the metal electrode layer, a transparent electrode layer bonded to the semiconductor layer, and a light transmittance control layer bonded to the transparent electrode layer are sequentially formed, and conductive And disposed on the conductive substrate,
A current collecting electrode provided on the transparent electrode layer and the light transmittance control layer control IC electrically connected to the metal electrode are disposed on the conductive substrate,
The control IC includes a power generation amount measuring unit in the semiconductor layer,
Comparing calculation means for changing the transmissivity in a direction to cancel the change in the power generation amount according to the change in the power generation amount measured,
The comparison calculation means randomly sets a relaxation time until the light transmittance is returned from the changed state to the original light transmittance, and returns from the changed light transmittance to the original light transmittance. A solar cell provided with an output relaxation function, characterized in that the control is performed so as to change the relaxation time.
発電量の変化の大きさを定めた閾値データを前記比較演算手段におけるメモリ部に記憶し、該閾値データと前記発電量計測手段により計測された発電量の変化データとを比較し、該発電量の変化データが閾値データを越えた場合に、透光率を変化させることを特徴とする請求項1記載の出力緩和機能を備えた太陽電池。
Threshold data that defines the amount of change in the amount of power generation is stored in the memory unit in the comparison calculation means, the threshold data is compared with the change data in the power generation amount measured by the power generation amount measurement means, and the power generation amount The solar cell with an output relaxation function according to claim 1, wherein the transmissivity is changed when the change data exceeds the threshold data.
発電量の変化データと透光率の変化データとを対応させた発電量−透光率対応データを予め前記比較演算手段におけるメモリ部に記憶し、
前記比較演算手段は、計測した発電量の変化に応じた透光率の変化データをメモリ部から読み出して、
発電量の変化に応じて変化させる透光率の大きさを演算し、
発電量の変化を打ち消す方向に透光率を変化させることを特徴とする請求項1又は請求項2記載の太陽電池。
The power generation amount-transmittance correspondence data in which the power generation amount change data and the light transmittance change data are associated with each other is stored in advance in the memory unit of the comparison calculation unit,
The comparison calculation means reads the change data of the light transmittance according to the change of the measured power generation amount from the memory unit,
Calculate the amount of translucency to be changed according to the change in power generation amount,
The solar cell according to claim 1 or 2, wherein the transmissivity is changed in a direction to cancel the change in the amount of power generation.
JP2010044813A 2010-03-02 2010-03-02 Solar cell with output mitigation function Active JP5441037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044813A JP5441037B2 (en) 2010-03-02 2010-03-02 Solar cell with output mitigation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044813A JP5441037B2 (en) 2010-03-02 2010-03-02 Solar cell with output mitigation function

Publications (2)

Publication Number Publication Date
JP2011181706A true JP2011181706A (en) 2011-09-15
JP5441037B2 JP5441037B2 (en) 2014-03-12

Family

ID=44692915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044813A Active JP5441037B2 (en) 2010-03-02 2010-03-02 Solar cell with output mitigation function

Country Status (1)

Country Link
JP (1) JP5441037B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221720A (en) * 1983-05-31 1984-12-13 Toshiba Corp Controller for output of solar battery
JPS61121479A (en) * 1984-11-19 1986-06-09 Mitsubishi Electric Corp Solar battery element
JPS62102310A (en) * 1985-10-29 1987-05-12 Mitsubishi Electric Corp Power source device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221720A (en) * 1983-05-31 1984-12-13 Toshiba Corp Controller for output of solar battery
JPS61121479A (en) * 1984-11-19 1986-06-09 Mitsubishi Electric Corp Solar battery element
JPS62102310A (en) * 1985-10-29 1987-05-12 Mitsubishi Electric Corp Power source device

Also Published As

Publication number Publication date
JP5441037B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
TWI604686B (en) Parallel DC voltage source converters to provide power to alternating current (AC) power systems and methods therefor
JP6236582B2 (en) Electronic management system for solar cells with matching thresholds.
KR101020813B1 (en) Solar cell generating apparatus
JP5377018B2 (en) Solar power system
JP6330122B2 (en) ELECTRONIC MANAGEMENT SYSTEM FOR SOLAR CELL POWER GENERATION DEVICE, SOLAR CELL POWER GENERATION DEVICE, AND ITS MANUFACTURING METHOD
KR101104097B1 (en) Output Voltage Control Apparatus for Photovoltaic Power Generation System
US9231408B2 (en) Matrix connection device for photovoltaic panels and/or wind turbines
CN102484431A (en) Adaptive photovoltaic inverter
KR101135990B1 (en) Solar photovoltaic generating system using variable array
CN102722212A (en) Maximum power point tracking method for photovoltaic power generation system under non-uniform illumination
KR20170046990A (en) Power supply device, and power supply system including the same
KR102340591B1 (en) Photovoltaic power conversion apparatus with channel monitoring devices
CN104170202B (en) With the renewable energy source unit for simplifying connection
US9246330B2 (en) Photovoltaic device
KR20170107279A (en) Photovoltaic module
JP6513002B2 (en) Solar power system
JP6545566B2 (en) Power converter
KR20140131483A (en) Photovoltaic generation system capable of selectively parallel operation
JP5441037B2 (en) Solar cell with output mitigation function
JP5582601B2 (en) Solar cell with output mitigation function
KR101352474B1 (en) Solar photovoltaic generating system using series-parallel variable array
JP2010153552A (en) Method for ground fault test of solar cell array
Zhang et al. A potential induced degradation suppression method for photovoltaic systems
CN207636674U (en) Photovoltaic generation unit IGBT module ageing system
KR20160006885A (en) Photovoltaic Solar Module haing fire protection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5441037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250