JP2011181658A - Oligomethyl arsine compound for amorphous semiconductor film, and film forming gas using the same - Google Patents

Oligomethyl arsine compound for amorphous semiconductor film, and film forming gas using the same Download PDF

Info

Publication number
JP2011181658A
JP2011181658A JP2010044041A JP2010044041A JP2011181658A JP 2011181658 A JP2011181658 A JP 2011181658A JP 2010044041 A JP2010044041 A JP 2010044041A JP 2010044041 A JP2010044041 A JP 2010044041A JP 2011181658 A JP2011181658 A JP 2011181658A
Authority
JP
Japan
Prior art keywords
amorphous semiconductor
semiconductor film
film
compound
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010044041A
Other languages
Japanese (ja)
Inventor
Toshihisa Ide
利久 井手
Tatsuya Irie
竜也 入江
Kenji Tanaka
健二 田仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2010044041A priority Critical patent/JP2011181658A/en
Publication of JP2011181658A publication Critical patent/JP2011181658A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound which is chemically safe and easy to be transported in large quantities as a compound used for a pin-junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device. <P>SOLUTION: An oligomethyl arsine compound is used for the pin-junction amorphous semiconductor film formed as the photoelectric conversion layer of the photovoltaic device, and is represented by general formula (1) (CH<SB>3</SB>)nAsH<SB>3-n</SB>[wherein (n) represents an integer of 1 to 3]. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は太陽電池などの光起電力装置の光電変換層の製造プロセスにおいて、pin接合の非晶質半導体膜の成膜に用いる化合物に関するものである   The present invention relates to a compound used for forming a pin junction amorphous semiconductor film in a process for producing a photoelectric conversion layer of a photovoltaic device such as a solar cell.

近年、クリーンなエネルギーとして、太陽光発電が注目されており、その中でも特に非晶質半導体を用いた太陽電池はコスト面において他の種類の太陽電池よりも有望であり、積極的な研究開発が進められている。   In recent years, solar power generation has attracted attention as a clean energy. Among them, solar cells using amorphous semiconductors are more promising than other types of solar cells in terms of cost, and are actively researched and developed. It is being advanced.

一般的に、非晶質半導体を用いる太陽電池はガラス基板上の上に、ITO、SnO、などの透明電極、p型、i型、n型の非晶質シリコン(a−si)膜、Ag、Auなどの裏面電極を順に積層形成して構成されている。例えば、a−Si膜は、p型、i型、n型の各層を別々のプラズマCVD装置内で順次形成する、連続分離式にて作製されること(例えば、特許文献1)が知られている。 Generally, a solar cell using an amorphous semiconductor has a transparent electrode such as ITO or SnO 2 on a glass substrate, a p-type, i-type, or n-type amorphous silicon (a-si) film, A back electrode such as Ag and Au is laminated in order. For example, it is known that an a-Si film is produced by a continuous separation method in which p-type, i-type, and n-type layers are sequentially formed in separate plasma CVD apparatuses (for example, Patent Document 1). Yes.

特開昭60−31082号公報Japanese Patent Laid-Open No. 60-31082

一般的に、プラズマCVDによりn型の非晶質半導体膜を得るために、5族の元素をドープするが、このドーピング原料として、アルシン(AsH)を用いる。しかし、AsHは沸点が−62.5℃の気体であるため、大量に輸送をするためには高圧充填を行う必要がある。また、化学的に不安定であるため高濃度のAsHを高圧充填して扱うことは安全性に問題が生じ、希釈して充填する必要がある。したがって、大量輸送が難しく、輸送コストが大きくなるという問題がある。このため、光起電力装置の光電変換層の製造プロセスのように大量のガス供給が必要なプロセスには不利である。また、AsHの許容濃度は0.005%であり、極めて毒性が高いことから、設備上および取扱い上厳重な安全対策が必要不可欠となっている。 In general, in order to obtain an n-type amorphous semiconductor film by plasma CVD, a Group 5 element is doped. Arsine (AsH 3 ) is used as a doping material. However, AsH 3 is a gas having a boiling point of −62.5 ° C., high-pressure filling is necessary to transport a large amount. Further, since it is chemically unstable, handling with high concentration of AsH 3 under high pressure causes a problem in safety, and it is necessary to dilute and fill. Therefore, there is a problem that mass transportation is difficult and transportation cost is increased. For this reason, it is disadvantageous for a process that requires a large amount of gas supply, such as a manufacturing process of a photoelectric conversion layer of a photovoltaic device. Further, the allowable concentration of AsH 3 is 0.005%, which is extremely toxic. Therefore, strict safety measures are indispensable for facilities and handling.

本発明は、光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる化合物で、特に、AsHガスに代わる化学的に安全で、かつ大量輸送しやすいドーピング原料を提供することを目的としている。 The present invention is a compound used for an amorphous semiconductor film having a pin junction formed as a photoelectric conversion layer of a photovoltaic device. In particular, it is a chemically safe alternative to AsH 3 gas, and is easily doped in large quantities. The purpose is to provide raw materials.

このような状況に鑑み、本発明者らは、上記課題を解決すべく鋭意検討した結果、室温において液体であるオリゴメチルアルシン化合物が、AsHガスに代わる化学的に安定で、かつ大量輸送しやすいドーピング原料となることを見出し、本発明に至った。 In view of such a situation, the present inventors have intensively studied to solve the above problems, and as a result, the oligomethylarsine compound, which is liquid at room temperature, is chemically stable and can be transported in large quantities instead of AsH 3 gas. As a result, the present invention has been found.

すなわち本発明は、光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる、一般式(1)
(CHAsH3−n (1)
[式中、nは1〜3のいずれか一つの整数を表す]で表されるオリゴメチルアルシン化合物を提供するものである。さらには、n型の該非晶質半導体膜を形成するためのドーピングガスとして用いられる、上記一般式(1)で表されるオリゴメチルアルシン化合物、また、n型の該非晶質半導体膜を成膜するのに用いられる成膜ガスに、上記一般式(1)で表されるオリゴメチルアルシン化合物がドーピングガスとして0.0001〜10体積%の範囲内で混合されていることを特徴とする、n型半導体となる非晶質半導体膜の成膜ガスを提供するものである。
That is, the present invention is a general formula (1) used for a pin junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device.
(CH 3 ) n AsH 3-n (1)
In the formula, n represents an oligomethylarsine compound represented by any one of 1 to 3. Furthermore, the oligomethylarsine compound represented by the general formula (1) used as a doping gas for forming the n-type amorphous semiconductor film, and the n-type amorphous semiconductor film are formed. The film-forming gas used for this is mixed with an oligomethylarsine compound represented by the above general formula (1) as a doping gas in a range of 0.0001 to 10% by volume, n A deposition gas for an amorphous semiconductor film to be a type semiconductor is provided.

本発明により、光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる化合物として、化学的に安定な化合物を提供することができる。   According to the present invention, a chemically stable compound can be provided as a compound used for a pin junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device.

実施例に用いたプラズマCVDの成膜装置の該略図である。1 is a schematic view of a plasma CVD film forming apparatus used in an example.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

本発明で用いられるオリゴメチルアルシン化合物は一般式(1)
(CHAsH3−n (1)
[式中、nは1〜3のいずれか一つの整数を表す]で表され、具体的には、トリメチルアルシン(As(CH)、ジメチルアルシン((CHAsH)、メチルアルシン((CH)AsH)が挙げられる。この中で、((CHAsHは沸点2℃のガス状化合物であり、(CH)AsHは沸点36℃、As(CHは沸点52℃である。このため室温(25℃)以上の温度で液体であるAs(CH、(CH)AsHが、安全面で特に好ましい化合物である。
The oligomethylarsine compound used in the present invention has the general formula (1)
(CH 3 ) n AsH 3-n (1)
[Wherein n represents an integer of 1 to 3], specifically, trimethylarsine (As (CH 3 ) 3 ), dimethylarsine ((CH 3 ) 2 AsH), methyl Arsine ((CH 3 ) AsH 2 ). Among them, ((CH 3 ) 2 AsH is a gaseous compound having a boiling point of 2 ° C., (CH 3 ) AsH 2 has a boiling point of 36 ° C., and As (CH 3 ) 3 has a boiling point of 52 ° C. Therefore, room temperature ( As (CH 3 ) 3 and (CH 3 ) AsH 2 which are liquids at a temperature of 25 ° C. or higher are particularly preferable compounds in terms of safety.

本発明の化合物のうち、As(CHは、例えばInorg.Chem.1990,29,3502.に記載されるようにメチルグリニャール試薬とクロロジアルコキシアルシンを反応させる方法、(CH)AsHは、例えばJ.Am.Chem.Soc.1954,76,386.に記載されるようにジメチルクロロアルシンをTHF中LiAlHなどの還元剤により水素化する方法、(CH)AsHは、例えばJ.Am.Chem.Soc.1937,59,2068.に記載されるようにKAsHとCHClを反応させる方法など、公知の方法で得ることができ、本発明は、該化合物を得る方法に限定されない。 Among the compounds of the present invention, As (CH 3 ) 3 is, for example, Inorg. Chem. 1990, 29, 3502. (CH 3 ) 2 AsH is a method of reacting a methyl Grignard reagent with chlorodialkoxyarsine as described in J. Am. Chem. Soc. 1954, 76, 386. A method of hydrogenating dimethylchloroarsine with a reducing agent such as LiAlH 4 in THF as described in (CH 3 ) AsH 2 is described, for example, in J. Am. Am. Chem. Soc. 1937, 59, 2068. And can be obtained by a known method such as a method of reacting KAsH 2 with CH 3 Cl, and the present invention is not limited to the method of obtaining the compound.

本発明の化合物は、プラズマCVD、熱CVD、光CVDなどpin接合の非晶質半導体膜を成膜する一般的な方法に用いることができる。   The compound of the present invention can be used in a general method for forming a pin junction amorphous semiconductor film such as plasma CVD, thermal CVD, and photo CVD.

非晶質半導体としては、a−Si、a−SiGe、a−SiN、a−SiC、a−SiOなどが挙げられる。Si源としては、モノシラン(SiH)など、a−SiGeのGe源としては、モノゲルマン(GeH)など、a−SiNのN源としては、アンモニア、窒素など、a−SiCのC源としては、エタン、プロパンなどの低級アルカン、a−SiOのO源としては、酸素などのガスが非晶質半導体膜の成膜に用いられる。またこの際、モノシラン、モノゲルマンなどは希釈された状態で成膜装置内に供給され、キャリアガスとして水素、ヘリウム、窒素などが用いられる
特に本発明の化合物は、非晶質半導体の成膜時のドーピング原料として用いることが有効である。また、ドーピング原料として用いる場合、本発明の化合物を0.0001〜10体積%の範囲内で混合させた成膜ガスを用いることが好ましい。0.0001体積%未満ではドーピング濃度が低濃度すぎてn型としての機能が低下し、10体積%超では、半導体膜を形成する材料が低濃度すぎて半導体としての機能が低下する虞がある。
Examples of the amorphous semiconductor include a-Si, a-SiGe, a-SiN, a-SiC, and a-SiO 2 . As a Si source, monosilane (SiH 4 ), etc. As a-SiGe Ge source, as monogermane (GeH 4 ), etc. As a-SiN N source, as ammonia, nitrogen, etc. As a C source of a-SiC In this case, a lower alkane such as ethane or propane, or a gas such as oxygen is used for forming an amorphous semiconductor film as an O source of a-SiO. At this time, monosilane, monogermane, etc. are supplied into the film forming apparatus in a diluted state, and hydrogen, helium, nitrogen, etc. are used as a carrier gas. Particularly, the compound of the present invention is used for forming an amorphous semiconductor. It is effective to use it as a doping material. Moreover, when using as a doping raw material, it is preferable to use the film-forming gas which mixed the compound of this invention in 0.0001-10 volume%. If it is less than 0.0001% by volume, the doping concentration is too low and the function as an n-type is reduced. If it exceeds 10% by volume, the material forming the semiconductor film is too low and the function as a semiconductor may be reduced. .

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

磁製カップの上にろ紙を置き、Inorg.Chem.1990,29,3502.に記載されている方法を用いて得られたAs(CHを注射器で0.5mL滴下し、その様子を観察した。5分後においても、ろ紙が燃えた形跡も焦げた形跡も観測されなかった。この実験を繰り返し3回実施したが同様の結果となった。このことから、自然発火性はないものと考えられる。 Place the filter paper on the porcelain cup and place it in Inorg. Chem. 1990, 29, 3502. As (CH 3 ) 3 obtained by using the method described in 1 ), 0.5 mL was dropped with a syringe, and the state was observed. Even after 5 minutes, no evidence of burning or scorching of the filter paper was observed. This experiment was repeated three times with similar results. From this, it is considered that there is no spontaneous ignition.

磁製カップの上にろ紙を置きJ.Am.Chem.Soc.1954,76,386.に記載されている方法を用いて得られた(CHAsHを注射器で0.5mL滴下し、その様子を観察した。5分後においても、ろ紙が燃えた形跡も焦げた形跡も観測されなかった。この実験を繰り返し3回実施したが同様の結果となった。このことから、自然発火性はないものと考えられる。 Place the filter paper on the porcelain cup. Am. Chem. Soc. 1954, 76, 386. 0.5 mL of (CH 3 ) 2 AsH obtained using the method described in 1 ) was dropped with a syringe, and the state was observed. Even after 5 minutes, no evidence of burning or scorching of the filter paper was observed. This experiment was repeated three times with similar results. From this, it is considered that there is no spontaneous ignition.

真空引きした1LのSUS製シリンダーにJ.Am.Chem.Soc.1937,59,2068.に記載されている方法を用いて得られた(CH)AsHを室温で入れ、その後空気を所定量入れ、全体で1000torrとなるようにした。その後室温で圧力変化の様子を観察した。空気の濃度0〜100%のいずれの場合においても5分後における圧力変動は観測されなかった。このことから、自然発火性はないものと考えられる。 To a 1 L SUS cylinder evacuated, J. Am. Chem. Soc. 1937, 59, 2068. (CH 3 ) AsH 2 obtained by using the method described in 1 ) was introduced at room temperature, and then a predetermined amount of air was introduced so that the total amount was 1000 torr. Thereafter, the pressure change was observed at room temperature. No pressure fluctuation was observed after 5 minutes in any case of air concentration 0-100%. From this, it is considered that there is no spontaneous ignition.

図1は、本実施例に用いたプラズマCVDの成膜装置の概略図である。上部放電電極2a、及び温度制御手段を備えた電極ヒータ12を内蔵した下部放電電極2bが対向して配置されている。下部放電電極2b上には成膜対象のガラス基板3が載置されている。真空チャンバ1には高周波電源4により、13.56MHzの高周波電圧が印加される。また、真空チャンバ1には排気システム5が接続されており、その内部が真空状態に維持されている。そして、上部放電電極2a、下部放電電極2b間に真空放電が生じてプラズマが発生するようになっている。   FIG. 1 is a schematic view of a plasma CVD film forming apparatus used in this embodiment. An upper discharge electrode 2a and a lower discharge electrode 2b incorporating an electrode heater 12 having a temperature control means are arranged to face each other. A glass substrate 3 to be deposited is placed on the lower discharge electrode 2b. A high frequency voltage of 13.56 MHz is applied to the vacuum chamber 1 by a high frequency power source 4. Further, an exhaust system 5 is connected to the vacuum chamber 1, and the inside thereof is maintained in a vacuum state. A vacuum discharge is generated between the upper discharge electrode 2a and the lower discharge electrode 2b to generate plasma.

真空チャンバ1は、配管9を介してSiHボンベ6及びInorg.Chem.1990,29,3502.に記載されている方法を用いて得られたAs(CHを充填したボンベ7に連結されている。配管9の中途にはSiHのガス流量を制御するマスフローコントローラ8aとAs(CHのガス量を制御するマスフローコントローラ8bとが設けられている。As(CHボンベ7の周囲にはAs(CHを気化するためのヒータ10が設置され、50℃に加温されている。また、配管9には、その内部を加温するためのコイルヒータ11が巻きつけられている。なお、10MPa以上の高圧充填されたAsHとは異なり、As(CHは室温で265torr程度の蒸気圧をもつ液体であるため、50℃におけるボンベ内圧力は略0.1MPaである。 The vacuum chamber 1 is connected to the SiH 4 cylinder 6 and the Inorg. Chem. 1990, 29, 3502. The cylinder 7 filled with As (CH 3 ) 3 obtained by using the method described in the above. In the middle of the pipe 9, a mass flow controller 8a for controlling the gas flow rate of SiH 4 and a mass flow controller 8b for controlling the gas amount of As (CH 3 ) 3 are provided. A heater 10 for vaporizing As (CH 3 ) 3 is installed around the As (CH 3 ) 3 cylinder 7 and heated to 50 ° C. A coil heater 11 is wound around the pipe 9 to heat the inside. Unlike AsH 3 filled with a high pressure of 10 MPa or more, As (CH 3 ) 3 is a liquid having a vapor pressure of about 265 torr at room temperature, and the pressure inside the cylinder at 50 ° C. is about 0.1 MPa.

次に動作について説明する。真空チャンバ1内の下部放電電極2b上に載置されているガラス基板3を電極ヒータ12により200℃に加熱する。排気システム5により真空チャンバ1内を略1Paの真空状態に維持し、高周波電源4により13.56MHzの高周波電圧を出力30Wで印加する。一方、SiHボンベ6からマスフローコントローラ8aにてその流量を制御したSiHガスをコイルヒータ11への通電により内部を50℃程度に維持した配管9を介して真空チャンバ1内に導入する。また、ヒータ10にて50℃に加温して気化させたボンベ7内のAs(CHを、マスフローコントローラ8bにてその流量を制御し、配管9を介して真空チャンバ1内に導入する。SiHガスとAs(CHガスの導入量は各マスフローコントローラ8aおよび8bを用いて、トータルガス流量を10sccm、導入されるトータルガス中のAs(CHガスのガス混合率を0.1体積%に調節し、0.8nm/s程度の蒸着速度にて成膜する。このときの真空チャンバ1内を圧力10Paに維持されている。このようにしてガラス基板3上に膜厚1000Åの膜が得られた。得られた膜に対しSIMS測定を実施した結果、3×1019atoms/cmのAsがドーピングされており、AsHを用いた場合と同等の濃度であった。 Next, the operation will be described. The glass substrate 3 placed on the lower discharge electrode 2 b in the vacuum chamber 1 is heated to 200 ° C. by the electrode heater 12. The inside of the vacuum chamber 1 is maintained in a vacuum state of about 1 Pa by the exhaust system 5, and a high frequency voltage of 13.56 MHz is applied by the high frequency power source 4 at an output of 30 W. On the other hand, it is introduced into the vacuum chamber 1 through the pipe 9 that maintained internal to about 50 ° C. The SiH 4 gas controlling the flow rate from the SiH 4 gas cylinder 6 by a mass flow controller 8a by energizing the coil heater 11. Further, As (CH 3 ) 3 in the cylinder 7 heated to 50 ° C. by the heater 10 and vaporized is introduced into the vacuum chamber 1 through the pipe 9 while controlling the flow rate by the mass flow controller 8b. To do. The amount of SiH 4 gas and As (CH 3 ) 3 gas introduced was determined using the mass flow controllers 8a and 8b, the total gas flow rate was 10 sccm, and the gas mixing ratio of As (CH 3 ) 3 gas in the total gas introduced The film is formed at a deposition rate of about 0.8 nm / s by adjusting to 0.1% by volume. The inside of the vacuum chamber 1 at this time is maintained at a pressure of 10 Pa. In this way, a film having a thickness of 1000 mm was obtained on the glass substrate 3. As a result of performing SIMS measurement on the obtained film, 3 × 10 19 atoms / cm 3 of As was doped, and the concentration was the same as when AsH 3 was used.

As(CH)を、J.Am.Chem.Soc.1954,76,386.に記載されている方法を用いて得られた(CHAsHに代えた以外は、実施例4と同じように成膜し、Asが実施例4と同様の濃度でドーピングされた膜が得られた。 The As (CH 3) 3, J . Am. Chem. Soc. 1954, 76, 386. A film was formed in the same manner as in Example 4 except that (CH 3 ) 2 AsH obtained by using the method described in 1) was used, and a film doped with As at the same concentration as in Example 4 was obtained. Obtained.

As(CH)を、J.Am.Chem.Soc.1937,59,2068.に記載されている方法を用いて得られた(CH)AsHに代え、ヒータ10およびヒータ11をはずした以外は、実施例4と同じように成膜し、Asが実施例4と同様の濃度でドーピングされた膜が得られた。 The As (CH 3) 3, J . Am. Chem. Soc. 1937, 59, 2068. A film was formed in the same manner as in Example 4 except that the heater 10 and the heater 11 were removed in place of (CH 3 ) AsH 2 obtained by using the method described in 1 ), and As was the same as in Example 4. A film doped with a concentration of

なお、上述の実施例では、成膜方法としてプラズマCVD法を用いたが、公知の光CVD法またはマイクロCVD法等を用いても同様の効果が得られた。   In the above-described embodiment, the plasma CVD method is used as the film forming method, but the same effect can be obtained by using a known photo-CVD method or micro-CVD method.

1・・・真空チャンバ
2a・・・上部放電電極
2b・・・下部放電電極
3・・・ガラス基板
4・・・高周波電源
5・・・排気システム
6・・・SiHボンベ
7・・・ボンベ
8a、8b・・・マスフローコントローラ
9・・・配管
10・・・ヒータ
11・・・コイルヒータ
12・・・電極ヒータ
DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber 2a ... Upper discharge electrode 2b ... Lower discharge electrode 3 ... Glass substrate 4 ... High frequency power supply 5 ... Exhaust system 6 ... SiH 4 cylinder 7 ... Cylinder 8a, 8b ... mass flow controller 9 ... pipe 10 ... heater 11 ... coil heater 12 ... electrode heater

Claims (3)

光起電力装置の光電変換層として成膜されるpin接合の非晶質半導体膜に用いられる、一般式(1)
(CH)nAsH3−n (1)
[式中、nは1〜3のいずれか一つの整数を表す。]で表されるオリゴメチルアルシン化合物。
General formula (1) used for a pin junction amorphous semiconductor film formed as a photoelectric conversion layer of a photovoltaic device
(CH 3 ) nAsH 3-n (1)
[Wherein n represents any one integer of 1 to 3. ] The oligomethylarsine compound represented by this.
n型の該非晶質半導体膜を形成するためのドーピングガスとして用いられる、請求項1に記載のオリゴメチルアルシン化合物。 The oligomethylarsine compound according to claim 1, which is used as a doping gas for forming the n-type amorphous semiconductor film. n型の該非晶質半導体膜を成膜するのに用いられる成膜ガスに、請求項1に記載のオリゴメチルアルシン化合物がドーピングガスとして0.0001〜10体積%の範囲内で混合されていることを特徴とする、n型半導体となる非晶質半導体膜の成膜ガス。
The oligomethylarsine compound according to claim 1 is mixed as a doping gas in a range of 0.0001 to 10% by volume in a film forming gas used to form the n-type amorphous semiconductor film. A film forming gas for an amorphous semiconductor film to be an n-type semiconductor.
JP2010044041A 2010-03-01 2010-03-01 Oligomethyl arsine compound for amorphous semiconductor film, and film forming gas using the same Pending JP2011181658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044041A JP2011181658A (en) 2010-03-01 2010-03-01 Oligomethyl arsine compound for amorphous semiconductor film, and film forming gas using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044041A JP2011181658A (en) 2010-03-01 2010-03-01 Oligomethyl arsine compound for amorphous semiconductor film, and film forming gas using the same

Publications (1)

Publication Number Publication Date
JP2011181658A true JP2011181658A (en) 2011-09-15

Family

ID=44692880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044041A Pending JP2011181658A (en) 2010-03-01 2010-03-01 Oligomethyl arsine compound for amorphous semiconductor film, and film forming gas using the same

Country Status (1)

Country Link
JP (1) JP2011181658A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102502A (en) * 1991-10-09 1993-04-23 Mitsui Toatsu Chem Inc Amorphous solar cell
JPH07297138A (en) * 1994-04-22 1995-11-10 Mitsui Toatsu Chem Inc Method for depositing thin film of crystalline semiconductor
JP2000012465A (en) * 1998-06-22 2000-01-14 Sharp Corp Formation of silicon film and manufacture of solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102502A (en) * 1991-10-09 1993-04-23 Mitsui Toatsu Chem Inc Amorphous solar cell
JPH07297138A (en) * 1994-04-22 1995-11-10 Mitsui Toatsu Chem Inc Method for depositing thin film of crystalline semiconductor
JP2000012465A (en) * 1998-06-22 2000-01-14 Sharp Corp Formation of silicon film and manufacture of solar battery

Similar Documents

Publication Publication Date Title
CN101582464B (en) Compositionally-graded and structurally-graded photovoltaic device and method of making the same
US20110230008A1 (en) Method and Apparatus for Silicon Film Deposition
US20100059110A1 (en) Microcrystalline silicon alloys for thin film and wafer based solar applications
US20130112264A1 (en) Methods for forming a doped amorphous silicon oxide layer for solar cell devices
Masuda et al. Phosphorus-and boron-doped hydrogenated amorphous silicon films prepared using vaporized liquid cyclopentasilane
US20110114177A1 (en) Mixed silicon phase film for high efficiency thin film silicon solar cells
Schroeder et al. Current status of the thermo-catalytic (hot-wire) CVD of thin silicon films for photovoltaic applications
JP2011181658A (en) Oligomethyl arsine compound for amorphous semiconductor film, and film forming gas using the same
WO2011048866A1 (en) Oligomethyl germane compound for amorphous semiconductor film, and film formation gas using same
WO2011036957A1 (en) Oligomethylphosphine compound for amorphous semiconductor film and film deposition gas containing same
Gudovskikh et al. n‐GaP/p‐Si Heterojunction Solar Cells Fabricated by PE‐ALD
Schropp et al. Ultrafast deposition of silicon nitride and semiconductor silicon thin films by hot wire chemical vapor deposition
JPH0831413B2 (en) Method for manufacturing PIN photoelectric conversion element
JP2013529374A (en) Method and apparatus for depositing microcrystalline materials in photovoltaic applications
JP3487580B2 (en) Deposited film forming method and deposited film forming apparatus
JPS61190926A (en) Formation of depisited film
JPS61191022A (en) Formation of deposited film
JPS61190923A (en) Formation of deposited film
JPS61189627A (en) Formation of deposited film
JPS61196521A (en) Deposition film forming method
JPS61194822A (en) Deposited film forming method
JPS61196518A (en) Deposition film forming method
JPS61179868A (en) Method of forming accumulated film
JPS61220324A (en) Deposition film forming
JPS6197818A (en) Formation of deposited film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204