JP2011181371A - プラズマディスプレイパネルの製造方法 - Google Patents

プラズマディスプレイパネルの製造方法 Download PDF

Info

Publication number
JP2011181371A
JP2011181371A JP2010045141A JP2010045141A JP2011181371A JP 2011181371 A JP2011181371 A JP 2011181371A JP 2010045141 A JP2010045141 A JP 2010045141A JP 2010045141 A JP2010045141 A JP 2010045141A JP 2011181371 A JP2011181371 A JP 2011181371A
Authority
JP
Japan
Prior art keywords
oxide
base film
substrate
discharge
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010045141A
Other languages
English (en)
Inventor
Shinji Goto
真志 後藤
Takayuki Shimamura
隆之 島村
Takuji Tsujita
卓司 辻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010045141A priority Critical patent/JP2011181371A/ja
Publication of JP2011181371A publication Critical patent/JP2011181371A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Abstract

【課題】高精細で高輝度の表示性能を備え、かつ低消費電力のプラズマディスプレイパネルを実現することを目的とする。
【解決手段】プラズマディスプレイパネルの製造方法において、前記前面板の前記保護層は、誘電体層上に下地膜を形成するとともに、前記下地膜上に酸化マグネシウムの結晶粒子が複数個凝集した凝集粒子を付着させて形成し、かつ前記下地膜を、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、前記金属酸化物は前記下地膜面のX線回折分析において、特定方位面の前記金属酸化物を構成する前記酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するものであり、前記保護層の形成工程は、下地膜形成工程、酸化工程および結晶粒子形成工程を有する方法である。
【選択図】図1

Description

本発明は、表示デバイスなどに用いるプラズマディスプレイパネルの製造方法に関する。
プラズマディスプレイパネル(以下、PDPと呼ぶ)は、高精細化、大画面化の実現が可能であることから、100インチクラスのテレビなどが製品化されている。近年、PDPにおいては、従来のNTSC方式に比べて走査線数が2倍以上の高精細テレビへの適用が進められており、エネルギー問題に対応してさらなる消費電力低減への取り組みや、環境問題に配慮した鉛成分を含まないPDPへの要求なども高まっている。
PDPは、基本的には、前面板と背面板とで構成されている。前面板は、フロート法により製造された硼硅酸ナトリウム系ガラスのガラス基板と、ガラス基板の一方の主面上に形成されたストライプ状の透明電極とバス電極とで構成される表示電極と、表示電極を覆ってコンデンサとしての働きをする誘電体層と、誘電体層上に形成された酸化マグネシウム(MgO)からなる保護層とで構成されている。
一方、背面板は、ガラス基板と、その一方の主面上に形成されたストライプ状のアドレス電極と、アドレス電極を覆う下地誘電体層と、下地誘電体層上に形成された隔壁と、各隔壁間に形成された赤色、緑色及び青色それぞれに発光する蛍光体層とで構成されている。
前面板と背面板とはその電極形成面側を対向させて気密封着され、隔壁によって仕切られた放電空間にネオン(Ne)−キセノン(Xe)の放電ガスが400Torr〜600Torrの圧力で封入されている。PDPは、表示電極に映像信号電圧を選択的に印加することによって放電させ、その放電によって発生した紫外線が各色蛍光体層を励起して赤色、緑色、青色の発光をさせてカラー画像表示を実現している。
また、このようなPDPの駆動方法としては、書き込みをしやすい状態に壁電荷を調整する初期化期間と、入力画像信号に応じて書き込み放電を行う書き込み期間と、書き込みが行われた放電空間で維持放電を生じさせることによって表示を行う維持期間を有する駆動方法が一般的に用いられている。これらの各期間を組み合わせた期間(サブフィールド)が、画像の1コマに相当する期間(1フィールド)内で複数回繰り返されることによってPDPの階調表示を行っている。
このようなPDPにおいて、前面板の誘電体層上に形成される保護層の役割としては、放電によるイオン衝撃から誘電体層を保護すること、アドレス放電を発生させるための初期電子を放出することなどがあげられる。イオン衝撃から誘電体層を保護することは、放電電圧の上昇を防ぐ重要な役割であり、またアドレス放電を発生させるための初期電子を放出することは、画像のちらつきの原因となるアドレス放電ミスを防ぐ重要な役割である。
保護層からの初期電子の放出数を増加させて画像のちらつきを低減するために、例えば、MgO保護層に不純物を添加する例や、MgO粒子をMgO保護層上に形成した例が開示されている(例えば、特許文献1、2、3、4、5など参照)。
特開2002−260535号公報 特開平11−339665号公報 特開2006−59779号公報 特開平8−236028号公報 特開平10−334809号公報
近年、テレビは高精細化が進んでおり、市場では低コスト・低消費電力・高輝度のフルHD(ハイ・ディフィニション)(1920×1080画素:プログレッシブ表示)PDPが要求されている。保護層からの電子放出特性はPDPの画質を決定するため、電子放出特性を制御することが非常に重要である。
すなわち、高精細化された画像を表示するためには、1フィールドの時間が一定にもかかわらず書き込みを行う画素の数が増えるため、サブフィールド中の書き込み期間において、アドレス電極へ印加するパルスの幅を狭くする必要が生じる。しかしながら、電圧パルスの立ち上がりから放電空間内で放電が発生するまでには「放電遅れ」と呼ばれるタイムラグの存在があるため、パルスの幅が狭くなれば書き込み期間内で放電が終了できる確率が低くなってしまう。その結果、点灯不良が生じ、ちらつきといった画質性能の低下という問題も生じてしまう。
このようにPDPの高精細化や低消費電力化を進めるにあたっては、放電電圧が高くならないようにすることと、さらに、点灯不良を低減して画質を向上させることを、同時に実現させなければならないという課題があった。
本発明はこのような課題に鑑みなされたもので、高輝度の表示性能を備え、かつ低電圧駆動が可能なPDPを実現することを目的としている。
上記の目的を達成するために、本発明は、基板上に形成した表示電極を覆うように誘電体層を形成するとともに前記誘電体層上に保護層を形成した第1基板と、前記第1基板に放電ガスが充填された放電空間を形成するように対向配置され、かつ前記第1基板の前記表示電極と交差する方向にアドレス電極を形成するとともに前記放電空間を区画する隔壁を設けた第2基板とを有し、前記第1基板と前記第2基板とを対向配置して周辺部を封着部材により封着する封着工程を有するプラズマディスプレイパネルの製造方法であって、前記第1基板の前記保護層は、前記誘電体層上に下地膜を形成するとともに、前記下地膜上に酸化マグネシウムの結晶粒子が複数個凝集した凝集粒子を付着させて形成し、かつ前記下地膜を、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、前記金属酸化物は前記下地膜面のX線回折分析において、特定方位面の前記金属酸化物を構成する前記酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するものであり、前記保護層の形成工程は、下地膜を形成する下地膜形成工程と、その後下地膜を酸化させる酸化工程と、前記結晶粒子を下地膜に付着させる結晶粒子形成工程とを有することを特徴とする。
本発明によれば、保護層における二次電子放出特性を向上させ、輝度を高めるために放電ガスのXeガス分圧を大きくした場合でも放電開始電圧を低減することが可能で、高精細画像でも高輝度で低電圧駆動が可能な表示性能に優れたPDPを実現することができる。また、パネルの製造工程中での保護膜と不純物ガスとの反応を抑制することができ、放電セル毎の放電特性のばらつきを抑制したPDPを実現することができる。
本発明の実施の形態におけるPDPの構造を示す斜視図 同PDPの前面板の構成を示す断面図 同パネルの製造方法を示すフローチャート 同PDPの下地膜におけるX線回折結果を示す図 同PDPの他の構成の下地膜におけるX線回折結果を示す図 同PDPの凝集粒子を説明するための拡大図 同PDPの放電遅れと保護層中のカルシウム(Ca)濃度との関係を示す図 同PDPの電子放出性能と電荷保持性能について調べた結果を示す図 同PDPに用いた結晶粒子の粒径と電子放出特性の関係を示す特性図 同PDPの酸化工程の有無と維持電圧の変化との関係を示す図
以下、本発明の実施の形態におけるPDPについて図面を用いて説明する。
図1は本発明の実施の形態におけるPDPの構造を示す斜視図である。PDPの基本構造は、一般的な交流面放電型PDPと同様である。図1に示すように、PDP1は前面ガラス基板3などよりなる第1基板としての前面板2と、背面ガラス基板11などよりなる第2基板としての背面板10とが対向して配置され、その前面板2と背面板10の周辺部をガラスフリットなどからなる封着部材によって気密封着することにより構成されている。封着されたPDP1内部の放電空間16には、XeとNeなどの放電ガスが400Torr〜600Torrの圧力で封入されている。
前面板2の前面ガラス基板3上には、走査電極4及び維持電極5よりなる一対の帯状の表示電極6とブラックストライプ(遮光層)7が互いに平行にそれぞれ複数列配置されている。前面ガラス基板3上には表示電極6と遮光層7とを覆うように電荷を保持してコンデンサとしての働きをする誘電体層8が形成され、さらにその上に保護層9が形成されている。
また、背面板10の背面ガラス基板11上には、前面板2の走査電極4及び維持電極5と直交する方向に、複数の帯状のアドレス電極12が互いに平行に配置され、これを下地誘電体層13が被覆している。さらに、アドレス電極12間の下地誘電体層13上には放電空間16を区切る所定の高さの隔壁14が形成されている。隔壁14間の溝ごとに、紫外線によって赤色、緑色及び青色にそれぞれ発光する蛍光体層15が順次塗布して形成されている。走査電極4及び維持電極5とアドレス電極12とが交差する位置に放電空間が形成され、表示電極6方向に並んだ赤色、緑色、青色の蛍光体層15を有する放電空間がカラー表示のための画素になる。
図2は、本発明の実施の形態におけるPDP1の前面板2の詳細な構成を示す断面図であり、図2は図1と上下反転させて示している。図2に示すように、フロート法などにより製造された前面ガラス基板3に、走査電極4と維持電極5よりなる表示電極6と遮光層7がパターン形成されている。走査電極4と維持電極5はそれぞれインジウムスズ酸化物(ITO)や酸化スズ(SnO2)などからなる透明電極4a、5aと、透明電極4a、5a上に形成された金属バス電極4b、5bとにより構成されている。金属バス電極4b、5bは透明電極4a、5aの長手方向に導電性を付与する目的として用いられ、銀(Ag)材料を主成分とする導電性材料によって形成されている。
誘電体層8は、前面ガラス基板3上に形成されたこれらの透明電極4a、5aと金属バス電極4b、5bと遮光層7を覆って設けた第1誘電体層81と、第1誘電体層81上に形成された第2誘電体層82の少なくとも2層構成とし、さらに第2誘電体層82上に保護層9が形成されている。
保護層9は、誘電体層8に形成した下地膜91と、下地膜91上に酸化マグネシウム(MgO)の結晶粒子92aを複数個凝集させた凝集粒子92とにより構成している。また、保護層9において、下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる金属酸化物により形成されており、さらにはこの保護層9の下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成するのが望ましい。
図3はPDPの製造工程を示すフローチャートであり、図3に示すように、PDPは、前面ガラス基板から電極形成工程、誘電体層形成工程および保護層形成工程を経て前面板を作製する工程と、背面板作製工程と、背面板作製工程により作製した背面板10の画像表示領域外部に封着部材であるガラスフリットを塗布し、その後ガラスフリットの樹脂成分等を除去するために350℃程度の温度で仮焼成するフリット塗布工程と、減圧加熱工程を終了した前面板2とフリット塗布工程を終了した背面板10とを貼付けて封着する封着工程と、この後放電空間内のガスを排気する排気工程と、この後真空排気されたパネル内部にNeおよびXeを主成分とする放電ガスを供給する放電ガス供給工程を経てパネルが完成される。また、本発明における保護層形成工程には、下地膜を形成する下地膜形成工程と、その後下地膜を酸化させる酸化工程と、前記結晶粒子を下地膜に付着させる結晶粒子形成工程とを具備している。
ここで、封着部材としては、酸化ビスマスや酸化バナジウムを主成分としたフリットが望ましい。この酸化ビスマスを主成分とするフリットとしては、例えば、Bi23−B23−RO−MO系(ここでRは、Ba、Sr、Ca、Mgのいずれかであり、Mは、Cu、Sb、Feのいずれかである。)のガラス材料に、Al23、SiO2、コージライト等酸化物からなるフィラーを加えたものを用いることができる。また、酸化バナジウムを主成分とするフリットとしては、例えば、V25−BaO−TeO−WO系のガラス材料に、Al23、SiO2、コージライト等酸化物からなるフィラーを加えたものを用いることができる。
次に、前面板作製工程について説明する。まず、前面ガラス基板3上に、走査電極4及び維持電極5と遮光層7とを形成する。走査電極4と維持電極5とを構成する透明電極4a、5aと金属バス電極4b、5bは、フォトリソグラフィ法などを用いてパターニングして形成される。透明電極4a、5aは薄膜プロセスなどを用いて形成され、金属バス電極4b、5bは銀(Ag)材料を含むペーストを所定の温度で焼成して固化している。また、遮光層7も同様に、黒色顔料を含むペーストをスクリーン印刷する方法や黒色顔料をガラス基板の全面に形成した後、フォトリソグラフィ法を用いてパターニングし、焼成することにより形成される。
次に、走査電極4、維持電極5及び遮光層7を覆うように前面ガラス基板3上に誘電体ペーストをダイコート法などにより塗布して誘電体ペースト(誘電体材料)層を形成する。誘電体ペーストを塗布した後、所定の時間放置することによって塗布された誘電体ペースト表面がレベリングされて平坦な表面になる。その後、誘電体ペースト層を焼成固化することにより、走査電極4、維持電極5及び遮光層7を覆う誘電体層8が形成される。なお、誘電体ペーストはガラス粉末などの誘電体材料、バインダ及び溶剤を含む塗料である。
次に、誘電体層8上に下地膜91を形成する。本発明の実施の形態においては、下地膜91を、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成している。
この下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)の単独材料のペレットや、それらの材料を混合したペレットを用いて薄膜成膜方法によって形成される。薄膜成膜方法としては、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などの公知の方法が適用できる。一例として、スパッタリング法では1Pa、蒸着法の一例である電子ビーム蒸着法では0.1Paが実際上取り得る圧力の上限と考えられる。また、下地膜91の成膜時の雰囲気としては、水分付着や不純物の吸着を防止するために外部と遮断された密閉状態で、成膜時の雰囲気を調整することにより、所定の電子放出特性を有する金属酸化物よりなる下地膜91を形成することができる。
次に、下地膜91上に付着形成する酸化マグネシウム(MgO)の結晶粒子92aの凝集粒子92について述べる。これらの結晶粒子92aは、以下に示す気相合成法または前駆体焼成法のいずれかで製造することができる。気相合成法では、不活性ガスが満たされた雰囲気下で純度が99.9%以上のマグネシウム金属材料を加熱し、さらに、雰囲気に酸素を少量導入することによって、マグネシウムを直接酸化させ、酸化マグネシウム(MgO)の結晶粒子92aを作製することができる。
一方、前駆体焼成法では、以下の方法によって結晶粒子92aを作製することができる。前駆体焼成法では、酸化マグネシウム(MgO)の前駆体を700℃以上の高温で均一に焼成し、これを徐冷して酸化マグネシウム(MgO)の結晶粒子92aを得ることができる。前駆体としては、例えば、マグネシウムアルコキシド(Mg(OR)2)、マグネシウムアセチルアセトン(Mg(acac)2)、水酸化マグネシウム(Mg(OH)2)、炭酸マグネシウム(MgCO2)、塩化マグネシウム(MgCl2)、硫酸マグネシウム(MgSO4)、硝酸マグネシウム(Mg(NO32)、シュウ酸マグネシウム(MgC24)の内のいずれか1種以上の化合物を選ぶことができる。なお選択した化合物によっては、通常、水和物の形態をとることもあるがこのような水和物を用いてもよい。
これらの化合物は、焼成後に得られる酸化マグネシウム(MgO)の純度が99.95%以上、望ましくは99.98%以上になるように調整する。これらの化合物中に、各種アルカリ金属、B、Si、Fe、Alなどの不純物元素が一定量以上混じっていると、熱処理時に不要な粒子間癒着や焼結を生じ、高結晶性の酸化マグネシウム(MgO)の結晶粒子を得にくいためである。このため、不純物元素を除去するなどにより予め前駆体を調整することが必要となる。
上記いずれかの方法で得られた酸化マグネシウム(MgO)の結晶粒子92aを、溶媒に分散させ、その分散液をスプレー法やスクリーン印刷法、静電塗布法などによって下地膜91の表面に分散散布させる。その後、乾燥・焼成工程を経て溶媒除去を図り、酸化マグネシウム(MgO)の結晶粒子92aを下地膜91の表面に定着させることができる。
このような一連の工程により前面ガラス基板3上に所定の構成物(走査電極4、維持電極5、遮光層7、誘電体層8、保護層9)形成されて前面板2が完成する。
一方、背面板作製工程において、背面板10は次のようにして形成される。まず、背面ガラス基板11上に、銀(Ag)材料を含むペーストをスクリーン印刷する方法や、金属膜を全面に形成した後、フォトリソグラフィ法を用いてパターニングする方法などによりアドレス電極12用の構成物となる材料層を形成する。その後、所定の温度で焼成することによりアドレス電極12を形成する。次に、アドレス電極12が形成された背面ガラス基板11上にダイコート法などにより、アドレス電極12を覆うように誘電体ペーストを塗布して誘電体ペースト層を形成する。その後、誘電体ペースト層を焼成することにより下地誘電体層13を形成する。なお、誘電体ペーストはガラス粉末などの誘電体材料とバインダ及び溶剤を含んだ塗料である。
次に、下地誘電体層13上に隔壁材料を含む隔壁形成用ペーストを塗布し、所定の形状にパターニングすることにより隔壁材料層を形成する。その後、所定の温度で焼成することにより隔壁14を形成する。ここで、下地誘電体層13上に塗布した隔壁用ペーストをパターニングする方法としては、フォトリソグラフィ法やサンドブラスト法を用いることができる。そして、隣接する隔壁14間の下地誘電体層13上及び隔壁14の側面に蛍光体材料を含む蛍光体ペーストを塗布し、焼成することにより蛍光体層15が形成される。以上の工程により、背面ガラス基板11上に所定の構成部材を有する背面板10が完成する。
ここで、前面板2の誘電体層8を構成する第1誘電体層81と第2誘電体層82について詳細に説明する。第1誘電体層81の誘電体材料は、次の材料組成より構成されている。すなわち、酸化ビスマス(Bi23)を20重量%〜40重量%、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種を0.5重量%〜12重量%含み、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)から選ばれる少なくとも1種を0.1重量%〜7重量%含んでいる。
なお、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)に代えて、酸化銅(CuO)、酸化クロム(Cr23)、酸化コバルト(Co23)、酸化バナジウム(V27)、酸化アンチモン(Sb23)から選ばれる少なくとも1種を0.1重量%〜7重量%含ませてもよい。
また、上記以外の成分として、酸化亜鉛(ZnO)を0重量%〜40重量%、酸化硼素(B23)を0重量%〜35重量%、酸化硅素(SiO2)を0重量%〜15重量%、酸化アルミニウム(Al23)を0重量%〜10重量%など、鉛成分を含まない材料組成が含まれていてもよい。
これらの組成成分からなる誘電体材料を、湿式ジェットミルやボールミルで粒径が0.5μm〜2.5μmとなるように粉砕して誘電体材料粉末を作製する。次にこの誘電体材料粉末55重量%〜70重量%と、バインダ成分30重量%〜45重量%とを三本ロールでよく混練してダイコート用、または印刷用の第1誘電体層81用ペーストを作製する。
バインダ成分はエチルセルロース、またはアクリル樹脂1重量%〜20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加してペーストとして印刷特性を向上させてもよい。
次に、この第1誘電体層用ペーストを用い、表示電極6を覆うように前面ガラス基板3にダイコート法あるいはスクリーン印刷法で印刷して乾燥させ、その後、誘電体材料の軟化点より少し高い温度の575℃〜590℃で焼成して第1誘電体層81を形成する。
次に、第2誘電体層82について説明する。第2誘電体層82の誘電体材料は、次の材料組成より構成されている。すなわち、酸化ビスマス(Bi23)を11重量%〜20重量%、さらに、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種を1.6重量%〜21重量%含み、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)から選ばれる少なくとも1種を0.1重量%〜7重量%含んでいる。
なお、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)に代えて、酸化銅(CuO)、酸化クロム(Cr23)、酸化コバルト(Co23)、酸化バナジウム(V27)、酸化アンチモン(Sb23)、酸化マンガン(MnO2)から選ばれる少なくとも1種を0.1重量%〜7重量%含ませてもよい。
また、上記以外の成分として、酸化亜鉛(ZnO)を0重量%〜40重量%、酸化硼素(B23)を0重量%〜35重量%、酸化硅素(SiO2)を0重量%〜15重量%、酸化アルミニウム(Al23)を0重量%〜10重量%など、鉛成分を含まない材料組成が含まれていてもよい。
これらの組成成分からなる誘電体材料を、湿式ジェットミルやボールミルで粒径が0.5μm〜2.5μmとなるように粉砕して誘電体材料粉末を作製する。次にこの誘電体材料粉末55重量%〜70重量%と、バインダ成分30重量%〜45重量%とを三本ロールでよく混練してダイコート用、または印刷用の第2誘電体層用ペーストを作製する。バインダ成分はエチルセルロース、またはアクリル樹脂1重量%〜20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加して印刷性を向上させてもよい。
次にこの第2誘電体層用ペーストを用いて第1誘電体層81上にスクリーン印刷法あるいはダイコート法で印刷して乾燥させ、その後、誘電体材料の軟化点より少し高い温度の550℃〜590℃で焼成する。
なお、誘電体層8の膜厚としては、可視光透過率を確保するために第1誘電体層81と第2誘電体層82とを合わせ41μm以下とすることが好ましい。また、第1誘電体層81は、金属バス電極4b、5bの銀(Ag)との反応を抑制するために酸化ビスマス(Bi23)の含有量を第2誘電体層82の酸化ビスマス(Bi23)の含有量よりも多くして20重量%〜40重量%としている。そのため、第1誘電体層81の可視光透過率が第2誘電体層82の可視光透過率よりも低くなるので、第1誘電体層81の膜厚を第2誘電体層82の膜厚よりも薄くしている。
なお、第2誘電体層82においては、酸化ビスマス(Bi23)の含有量が11重量%以下であると着色は生じにくくなるが、第2誘電体層82中に気泡が発生しやすくなるため好ましくない。一方、含有率が40重量%を超えると着色が生じやすくなるために透過率が低下する。
また、誘電体層8の膜厚が小さいほど輝度の向上と放電電圧を低減するという効果は顕著になるので、絶縁耐圧が低下しない範囲内であればできるだけ膜厚を小さく設定するのが望ましい。このような観点から、本発明の実施の形態では、誘電体層8の膜厚を41μm以下に設定し、第1誘電体層81を5μm〜15μm、第2誘電体層82を20μm〜36μmとしている。
このようにして製造されたPDPは、表示電極6に銀(Ag)材料を用いても、前面ガラス基板3の着色現象(黄変)が少なくて、なおかつ、誘電体層8中に気泡の発生などがなく、絶縁耐圧性能に優れた誘電体層8を実現することができる。
次に、本発明の実施の形態における保護層9の詳細について説明する。本発明の実施の形態におけるPDPでは、図2に示すように、保護層9は、誘電体層8に形成した下地膜91と、下地膜91上に付着させた酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92とにより構成されている。また、下地膜91を、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、金属酸化物は下地膜91面のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するようにしている。
図4は、本発明の実施の形態におけるPDPの保護層9を構成する下地膜91面におけるX線回折結果を示す図である。また、図4中には、酸化マグネシウム(MgO)単体、酸化カルシウム(CaO)単体、酸化ストロンチウム(SrO)単体、及び酸化バリウム(BaO)単体のX線回折分析の結果も示す。
図4において、横軸はブラッグの回折角(2θ)であり、縦軸はX線回折波の強度である。回折角の単位は1周を360度とする度で示し、強度は任意単位(arbitrary unit)で示している。図中には特定方位面である結晶方位面を括弧付けで示している。図4に示すように、結晶方位面の(111)では、酸化カルシウム(CaO)単体では回折角32.2度、酸化マグネシウム(MgO)単体では回折角36.9度、酸化ストロンチウム(SrO)単体では回折角30.0度、酸化バリウム(BaO)単体では回折角27.9度にピークを有していることがわかる。
本発明の実施の形態におけるPDPでは、保護層9の下地膜91として、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成している。
図4には、下地膜91を構成する単体成分が2成分の場合についてのX線回折結果を示している。すなわち、酸化マグネシウム(MgO)と酸化カルシウム(CaO)の単体を用いて形成した下地膜91のX線回折結果をA点、酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)の単体を用いて形成した下地膜91のX線回折結果をB点、さらに、酸化マグネシウム(MgO)と酸化バリウム(BaO)の単体を用いて形成した下地膜91のX線回折結果をC点で示している。
すなわち、A点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化カルシウム(CaO)単体の回折角32.2度との間である回折角36.1度にピークが存在している。同様に、B点、C点もそれぞれ最大回折角と最小回折角との間の35.7度、35.4度にピークが存在している。
また、図5には、図4と同様に、下地膜91を構成する単体成分が3成分以上の場合のX線回折結果を示している。すなわち、図5には、単体成分として酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)を用いた場合の結果をD点、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)を用いた場合の結果をE点、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)及び酸化バリウム(BaO)を用いた場合の結果をF点で示している。
すなわち、D点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化ストロンチウム(SrO)単体の回折角30.0度との間である回折角33.4度にピークが存在している。同様に、E点、F点もそれぞれ最大回折角と最小回折角との間の32.8度、30.2度にピークが存在している。
したがって、本発明の実施の形態におけるPDPの下地膜91は、単体成分として2成分であれ、3成分であれ、下地膜91を構成する金属酸化物の下地膜91面のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。
なお、上記の説明では特定方位面としての結晶方位面として(111)を対象として説明したが、他の結晶方位面を対象とした場合も金属酸化物のピークの位置が上記と同様である。
酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)の真空準位からの深さは酸化マグネシウム(MgO)と比較して浅い領域に存在する。そのため、PDP1を駆動する場合において、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)のエネルギー準位に存在する電子がキセノン(Xe)イオンの基底状態に遷移する際に、オージェ効果により放出される電子数が、酸化マグネシウム(MgO)のエネルギー準位から遷移する場合と比較して多くなると考えられる。
また、上述のように、本発明の実施の形態における下地膜91は、金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。X線回折分析の結果が、図4及び図5に示す特徴を有する金属酸化物はそのエネルギー準位もそれらを構成する単体の酸化物の間に存在する。したがって、下地膜91のエネルギー準位も単体の酸化物の間に存在し、オージェ効果により他の電子が獲得するエネルギー量が真空準位を超えて放出されるに十分な量とすることができる。
その結果、下地膜91では、酸化マグネシウム(MgO)単体と比較して、良好な二次電子放出特性を発揮することができ、結果として、放電維持電圧を低減することができる。そのため、特に輝度を高めるために放電ガスとしてのキセノン(Xe)分圧を高めた場合に、放電電圧を低減し、低電圧でなおかつ高輝度のPDPを実現することが可能となる。
ここで、本発明の実施の形態におけるPDPにおいて、下地膜91の構成を変えた場合のPDPの放電維持電圧について説明する。まず、本発明によるサンプルとして、サンプルA(下地膜91は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)による金属酸化物)、サンプルB(下地膜91は酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)による金属酸化物)、サンプルC(下地膜91は酸化マグネシウム(MgO)と酸化バリウム(BaO)による金属酸化物)、サンプルD(下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)による金属酸化物)、サンプルE(下地膜91は酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)による金属酸化物)を準備し、また比較例として、下地膜91を酸化マグネシウム(MgO)単体で構成したものを準備した。
そして、これらのサンプルAからEについて、放電維持電圧を測定すると、比較例を100とした場合、サンプルAは90、サンプルBは87、サンプルCは85、サンプルDは81、サンプルEは82の値を示した。
放電ガスのキセノン(Xe)の分圧を10%から15%に高めた場合には輝度が約30%上昇するが、下地膜91が酸化マグネシウム(MgO)単体の場合の比較例では、放電維持電圧が約10%上昇する。一方、本発明の実施の形態におけるPDPでは、サンプルA、サンプルB、サンプルC、サンプルD、サンプルEともに、放電維持電圧を比較例に比較して約10%〜20%低減することができるため、通常動作範囲内の放電開始電圧とすることができ、高輝度で低電圧駆動のPDPを実現することができる。
なお、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)は、単体では反応性が高いために不純物と反応しやすく、そのために電子放出性能が低下しやすいが、それらの金属酸化物の構成とすることにより、反応性を低減し、不純物の混入や酸素欠損の少ない結晶構造で形成されることから、PDPの駆動時に電子が過剰放出されるのが抑制され、低電圧駆動と二次電子放出性能の両立効果に加えて、適度な電子保持特性の効果も発揮される。この電荷保持特性は、特に初期化期間に貯めた壁電荷を保持しておき、書込期間において書込不良を防止して確実な書込放電を行う上で有効である。
次に、本発明の実施の形態における下地膜91上に設けた、酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92について詳細に説明する。酸化マグネシウム(MgO)の凝集粒子92は、本発明者の実験により、主として書込放電における「放電遅れ」を抑制する効果と、「放電遅れ」の温度依存性を改善する効果が確認されている。そこで本発明の実施の形態では、凝集粒子92が下地膜91に比べて高度な初期電子放出特性に優れる性質を利用して、放電パルス立ち上がり時に必要な初期電子供給部として配設している。
「放電遅れ」は、放電開始時において、トリガーとなる初期電子が下地膜91表面から放電空間16中に放出される量が不足することが主原因と考えられる。そこで、放電空間16に対する初期電子の安定供給に寄与するため、酸化マグネシウム(MgO)の凝集粒子92を下地膜91の表面に分散配置する。これによって、放電パルスの立ち上がり時に放電空間16中に電子が豊富に存在し、放電遅れの解消が図られる。したがって、このような初期電子放出特性により、PDP1が高精細の場合などにおいても放電応答性の良い高速駆動ができるようになっている。なお下地膜91の表面に金属酸化物の凝集粒子92を配設する構成では、主として書込放電における「放電遅れ」を抑制する効果に加え、「放電遅れ」の温度依存性を改善する効果も得られる。
以上のように、本発明の実施の形態におけるPDP1では、低電圧駆動と電荷保持の両立効果を奏する下地膜91と、放電遅れの防止効果を奏する酸化マグネシウム(MgO)の凝集粒子92とにより構成することによって、PDP1全体として、高精細なPDPでも高速駆動を低電圧で駆動でき、且つ、点灯不良を抑制した高品位な画像表示性能を実現できる。
本発明の実施の形態では、下地膜91上に、結晶粒子92aが数個凝集した凝集粒子92を離散的に散布させ、全面に亘ってほぼ均一に分布するように複数個付着させることにより構成している。図6は凝集粒子92を説明する拡大図である。
凝集粒子92とは、図6に示すように、所定の一次粒径の結晶粒子92aが凝集またはネッキングした状態のものである。すなわち、固体として大きな結合力を持って結合しているのではなく、静電気やファンデルワールス力などによって複数の一次粒子が集合体の体をなしているもので、超音波などの外的刺激により、その一部または全部が一次粒子の状態になる程度で結合しているものである。凝集粒子92の粒径としては、約1μm程度のもので、結晶粒子92aとしては、14面体や12面体などの7面以上の面を持つ多面体形状を有するのが望ましい。
また、結晶粒子92aの一次粒子の粒径は、結晶粒子92aの生成条件によって制御できる。例えば、炭酸マグネシウムや水酸化マグネシウムなどのMgO前駆体を焼成して生成する場合、焼成温度や焼成雰囲気を制御することで粒径を制御することができる。一般的に、焼成温度は700℃から1500℃の範囲で選択できるが、焼成温度を比較的高い1000℃以上にすることで、その粒径を0.3〜2μm程度に制御することが可能である。さらに、結晶粒子92aをMgO前駆体を加熱して得ることにより、その生成過程において、複数個の一次粒子同士が凝集またはネッキングと呼ばれる現象により結合して凝集粒子92を得ることができる。
図7は、本発明の実施の形態におけるPDPのうち、酸化マグネシウム(MgO)と酸化カルシウム(CaO)との金属酸化物で構成した下地膜91を用いた場合の放電遅れと保護層9中のカルシウム(Ca)濃度との関係を示す図である。下地膜91として酸化マグネシウム(MgO)と酸化カルシウム(CaO)とからなる金属酸化物で構成し、金属酸化物は、下地膜91面におけるX線回折分析において、酸化マグネシウム(MgO)のピークが発生する回折角と酸化カルシウム(CaO)のピークが発生する回折角との間にピークが存在するようにしている。なお、図7には、保護層9として下地膜91のみの場合と、下地膜91上に凝集粒子92を配置した場合とについて示し、放電遅れは、下地膜91中にカルシウム(Ca)が含有されていない場合を基準として示している。
また、電子放出性能は、大きいほど電子放出量が多いことを示す数値で、表面状態及びガス種とその状態によって定まる初期電子放出量によって表現する。初期電子放出量については表面にイオン、あるいは電子ビームを照射して表面から放出される電子電流量を測定する方法で測定できるが、PDP1の前面板2表面の評価を非破壊で実施することは困難を伴う。そこで、特開2007−48733号公報に記載されている方法を用いた。すなわち、放電時の遅れ時間のうち、統計遅れ時間と呼ばれる放電の発生しやすさの目安となる数値を測定し、その逆数を積分すると初期電子の放出量と線形に対応する数値になる。
そこで、この数値を用いて評価している。放電時の遅れ時間とは、パルスの立ち上がりから放電が遅れて行われる放電遅れの時間を意味し、放電遅れは、放電が開始される際にトリガーとなる初期電子が保護層9表面から放電空間中に放出されにくいことが主要な要因として考えられている。
図7より明らかなように、下地膜91のみの場合と、下地膜91上に凝集粒子92を配置した場合とにおいて、下地膜91のみの場合はカルシウム(Ca)濃度の増加とともに放電遅れが大きくなるのに対し、下地膜91上に凝集粒子92を配置することによって放電遅れを大幅に小さくすることができ、カルシウム(Ca)濃度が増加しても放電遅れはほとんど増大しないことがわかる。
次に、本発明の実施の形態における凝集粒子92を有する保護層9の効果を確認するために行った実験結果について説明する。まず、構成の異なる下地膜91と下地膜91上に設けた凝集粒子92を有するPDPを試作した。試作品1は酸化マグネシウム(MgO)の下地膜91のみの保護層9を形成したPDP、試作品2は酸化マグネシウム(MgO)にAl、Siなどの不純物をドープした下地膜91のみの保護層9を形成したPDP、試作品3は酸化マグネシウム(MgO)による下地膜91上に酸化マグネシウム(MgO)の結晶粒子92aの一次粒子のみを散布し付着させた保護層9を形成したPDPである。
一方、試作品4は本発明の実施の形態におけるPDPであり、保護層9として、前述のサンプルAを用いている。すなわち、保護層9は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)との金属酸化物で構成した下地膜91と、下地膜91上に結晶粒子92aを凝集させた凝集粒子92を全面に亘ってほぼ均一に分布するように付着させている。なお、下地膜91は、下地膜91面のX線回折分析において、下地膜91を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。すなわち、この場合の最小回折角は酸化カルシウム(CaO)の32.2度、最大回折角は酸化マグネシウム(MgO)の36.9度であり、下地膜91の回折角のピークが36.1度に存在するようにしている。
これらのPDPについて、その電子放出性能と電荷保持性能を調べ、その結果を図8に示す。電子放出性能は上述の方法で評価し、電荷保持性能は、その指標として、PDPとして作製した場合に電荷放出現象を抑えるために必要とする走査電極に印加する電圧(以下Vscn点灯電圧と呼称する)の電圧値を用いた。すなわち、Vscn点灯電圧の低い方が電荷保持能力の高いことを示す。このことは、PDPを設計する上で、電源や各電気部品として、耐圧及び容量の小さい部品を使用することが可能となる。現状の製品において、走査電圧を順次パネルに印加するためのMOSFETなどの半導体スイッチング素子には、耐圧150V程度の素子が使用されており、Vscn点灯電圧としては、温度による変動を考慮して120V以下に抑えるのが望ましい。
図8は本発明の実施の形態におけるPDPの電子放出性能と電荷保持性能について調べた結果を示す図である。図8から明らかなように、本発明の実施の形態における下地膜91に酸化マグネシウム(MgO)の単結晶粒子92aを凝集させた凝集粒子92を散布して全面に亘って均一に分布させた試作品4は、電荷保持性能の評価において、Vscn点灯電圧を120V以下にすることができ、なおかつ電子放出性能が酸化マグネシウム(MgO)のみの保護層の場合の試作品1に比べて格段に良好な特性を得ることができる。
一般的にはPDPの保護層の電子放出能力と電荷保持能力は相反する。例えば、保護層の製膜条件を変更することや、保護層中にAlやSi、Baなどの不純物をドーピングして製膜することにより電子放出性能を向上することは可能であるが、副作用としてVscn点灯電圧も上昇してしまう。
本発明の実施の形態における保護層9を形成した試作品4のPDPにおいては、電子放出能力としては、酸化マグネシウム(MgO)のみの保護層を用いた試作品1の場合に比べて8倍以上の特性を有し、電荷保持能力としてはVscn点灯電圧が120V以下のものを得ることができる。したがって、高精細化により走査線数が増加し、かつセルサイズが小さいPDPに対しては有用で、電子放出能力と電荷保持能力の両方を満足させて、放電遅れを低減して良好な画像表示を実現することができる。
次に、本発明によるPDPの保護層9に用いた結晶粒子の粒径について詳細に説明する。なお、以下の説明において、粒径とは平均粒径を意味し、平均粒径とは、体積累積平均径(D50)のことを意味している。
図9は、上記図8で説明した本発明の試作品4において、結晶粒子92aの粒径を変化させて電子放出性能を調べた実験結果を示すものである。なお、図9において、結晶粒子92aの粒径は、結晶粒子92aをSEM観察することで測長した。図9に示すように、粒径が0.3μm程度に小さくなると、電子放出性能が低くなり、ほぼ0.9μm以上であれば、高い電子放出性能が得られることがわかる。
ところで、放電セル内での電子放出数を増加させるためには、下地膜91上の単位面積あたりの結晶粒子92aの数は多い方が望ましいが、本発明者らの実験によれば、前面板2の保護層9と密接に接触する背面板10の隔壁14の頂部に相当する部分に結晶粒子92aが存在することで、隔壁14の頂部を破損させ、その材料が蛍光体15の上に乗るなどによって、該当するセルが正常に点灯消灯しなくなる現象が発生することがわかった。この隔壁破損の現象は、結晶粒子92aが隔壁14頂部に対応する部分に存在しなければ発生しにくいことから、付着させる結晶粒子92aの数が多くなれば隔壁14の破損発生確率が高くなる。このような観点からは、結晶粒子径が2.5μm程度に大きくなると、隔壁破損の確率が急激に高くなり、2.5μmより小さい結晶粒子径であれば、隔壁破損の確率は比較的小さく抑えることができる。
以上の結果より、本発明の実施の形態におけるPDPにおいては、凝集粒子92として、粒径が0.9μm〜2μmの範囲にある凝集粒子92を使用すれば、上述した本発明の効果を安定的に得られることがわかった。なお、結晶粒子として酸化マグネシウム(MgO)粒子を用いて説明したが、この他の単結晶粒子でも、酸化マグネシウム(MgO)同様に高い電子放出性能を持つSr、Ca、Ba、Alなどの金属酸化物による結晶粒子を用いても同様の効果を得ることができるため、粒子種としては酸化マグネシウム(MgO)に限定されるものではない。
ところで、本発明において、保護層9を、上述したような特徴を有する酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる金属酸化物により形成した場合、パネルの放電開始電圧を低下させ、放電遅れを小さくして放電を安定させることができるが、これらの材料は、水、炭酸ガス等の不純物ガスとの反応性が高く、特に水、二酸化炭素と反応することにより放電特性が劣化しやすい。
そこで、本発明においては、図3に示す製造工程の保護層形成工程において、下地膜形成工程の後に酸化工程を具備し不純ガスとの反応を抑制している。以下、本発明の実施の形態における酸化工程について詳細に説明する。
酸化工程においては、下地膜形成工程において下地膜が形成された前面板2に対して酸素を含む雰囲気中(例えば大気雰囲気)において波長が220nm以下の紫外線を含むランプ光の照射を行なっている。この紫外線ランプ光の照射により、酸素分子が解離、反応しオゾンや酸素ラジカルを発生させ、下地膜表面の不純物の除去や表面の安定化がなされる。
特に下地膜の表面に酸素欠損などの欠陥がある場合には、不純ガスと反応しやすいため、酸化工程によって下地膜表面を酸化させることは有効である。
図10には、酸化工程の有無による維持電圧の変化を示しており、酸化工程を行なうことにより維持電圧のばらつきが小さく抑えられ電圧が安定していることがわかる。
このように本実施の形態においては、保護層9の下地膜として酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる金属酸化物により形成し、下地膜形成後に前記下地膜に対して酸化工程を行なっているため、不純ガスの吸着および反応による放電劣化を抑制でき、放電特性のばらつきを抑えることが可能となる。これにより低い放電電圧と点灯不良の低減を同時に実現させることができる。
なお、本実施の形態においては、紫外線ランプによりオゾンや酸素ラジカルを発生させたが、例えばプラズマ放電などによりオゾンおよび酸素ラジカルを発生させても同様の効果が得られる。このようにオゾンおよび酸素ラジカルなど活性種による酸化法は低い温度で高速に酸化できるため、好ましい。
また、本発明の酸化工程は、下地膜を酸化性ガス雰囲気で加熱することでも同様の効果が得られる。以下に具体的な実施例を用いて説明する。
本実施の形態においては、酸化工程として、下地膜形成工程において下地膜が形成された前面板2を酸素ガスおよび窒素ガスの混合雰囲気(酸素比率20%)で350℃に加熱を行なった。下地膜形成時の基板温度(本実施の形態においては300℃)よりも高い温度に加熱することによって下地膜表面が酸化され、酸素欠損などの欠陥が減少するため、不純ガスとの反応が抑制される。なお、加熱温度の上限としては、ガラス基板を用いているため、500℃以下が好ましい。また、加熱雰囲気としては、酸素などの酸化性ガスを含む雰囲気で行なえばよい。この結果、下地膜表面の不純物の除去や表面の安定化がなされ不純ガスの吸着および反応による放電劣化を抑制でき、放電特性のばらつきを抑えることが可能となる。これにより低い放電電圧と点灯不良の低減を同時に実現させることができる。本実施の形態においても、図10に示す維持電圧のばらつき抑制効果と同等の効果が得られている。
なお、酸化工程は下地膜形成工程の後、速やかに行なうことが好ましい。これにより下地膜形成後の下地膜と不純ガスの反応を速やかに抑制することが可能となる。
さらには、下地膜形成工程後、大気雰囲気に暴露せず酸化工程を行なうことは、なお好ましい。具体的な方法としては、例えば下地膜蒸着後、基板冷却中や、基板の取出し室にて酸化性雰囲気に暴露することによって実現できる。
以上のように本発明は、高画質の表示性能を備え、かつ低消費電力のPDPを実現する上で有用な発明である。
1 PDP
2 前面板
3 前面ガラス基板
4 走査電極
4a,5a 透明電極
4b,5b 金属バス電極
5 維持電極
6 表示電極
7 ブラックストライプ(遮光層)
8 誘電体層
9 保護層
10 背面板
11 背面ガラス基板
12 アドレス電極
13 下地誘電体層
14 隔壁
15 蛍光体層
16 放電空間
81 第1誘電体層
82 第2誘電体層
91 下地膜
92 凝集粒子
92a 結晶粒子

Claims (3)

  1. 基板上に形成した表示電極を覆うように誘電体層を形成するとともに前記誘電体層上に保護層を形成した第1基板と、前記第1基板に放電ガスが充填された放電空間を形成するように対向配置され、かつ前記第1基板の前記表示電極と交差する方向にアドレス電極を形成するとともに前記放電空間を区画する隔壁を設けた第2基板とを有し、前記第1基板と前記第2基板とを対向配置して周辺部を封着部材により封着する封着工程を有するプラズマディスプレイパネルの製造方法であって、前記第1基板の前記保護層は、前記誘電体層上に下地膜を形成するとともに、前記下地膜上に酸化マグネシウムの結晶粒子が複数個凝集した凝集粒子を付着させて形成し、かつ前記下地膜を、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、前記金属酸化物は前記下地膜面のX線回折分析において、特定方位面の前記金属酸化物を構成する前記酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するものであり、前記保護層の形成工程は、下地膜を形成する下地膜形成工程と、その後下地膜を酸化させる酸化工程と、前記結晶粒子を下地膜に付着させる結晶粒子形成工程とを有することを特徴とするプラズマディスプレイパネルの製造方法。
  2. 前記酸化工程は、下地膜に対してオゾンまたは酸素ラジカルの存在雰囲気にさらすことを特徴する請求項1に記載のプラズマディスプレイパネルの製造方法。
  3. 前記酸化工程は、下地膜を酸化性ガス雰囲気で加熱することを特徴する請求項1に記載のプラズマディスプレイパネルの製造方法。
JP2010045141A 2010-03-02 2010-03-02 プラズマディスプレイパネルの製造方法 Pending JP2011181371A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045141A JP2011181371A (ja) 2010-03-02 2010-03-02 プラズマディスプレイパネルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045141A JP2011181371A (ja) 2010-03-02 2010-03-02 プラズマディスプレイパネルの製造方法

Publications (1)

Publication Number Publication Date
JP2011181371A true JP2011181371A (ja) 2011-09-15

Family

ID=44692676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045141A Pending JP2011181371A (ja) 2010-03-02 2010-03-02 プラズマディスプレイパネルの製造方法

Country Status (1)

Country Link
JP (1) JP2011181371A (ja)

Similar Documents

Publication Publication Date Title
WO2010035488A1 (ja) プラズマディスプレイパネル
WO2010070861A1 (ja) プラズマディスプレイパネル
WO2010035493A1 (ja) プラズマディスプレイパネル
JP2010192356A (ja) プラズマディスプレイパネルの製造方法
JP2010186665A (ja) プラズマディスプレイパネル
JP2010192358A (ja) プラズマディスプレイパネルの製造方法
JP2010103077A (ja) プラズマディスプレイパネル
JP5126451B2 (ja) プラズマディスプレイパネル
JP2010192355A (ja) プラズマディスプレイパネルの製造方法
JP2011181317A (ja) プラズマディスプレイ装置
WO2011102145A1 (ja) プラズマディスプレイパネルの製造方法
JP2011181371A (ja) プラズマディスプレイパネルの製造方法
WO2011114662A1 (ja) プラズマディスプレイパネル
WO2011108260A1 (ja) プラズマディスプレイパネルの製造方法
WO2010070848A1 (ja) プラズマディスプレイパネル
WO2010070847A1 (ja) プラズマディスプレイパネル
JP2011204537A (ja) プラズマディスプレイパネルの製造方法
JP2011192573A (ja) プラズマディスプレイパネル
JP2011204536A (ja) プラズマディスプレイパネルの製造方法
JP2010182559A (ja) プラズマディスプレイパネルの製造方法
JP2011181318A (ja) プラズマディスプレイパネル
JP2011181320A (ja) プラズマディスプレイパネル
JP2011192571A (ja) プラズマディスプレイパネル
JP2011180333A (ja) プラズマディスプレイ装置
JP2011198481A (ja) プラズマディスプレイパネル