JP2011180153A - Charged particle beam device - Google Patents

Charged particle beam device Download PDF

Info

Publication number
JP2011180153A
JP2011180153A JP2011129745A JP2011129745A JP2011180153A JP 2011180153 A JP2011180153 A JP 2011180153A JP 2011129745 A JP2011129745 A JP 2011129745A JP 2011129745 A JP2011129745 A JP 2011129745A JP 2011180153 A JP2011180153 A JP 2011180153A
Authority
JP
Japan
Prior art keywords
defect
sample
column
charged particle
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011129745A
Other languages
Japanese (ja)
Other versions
JP5548652B2 (en
Inventor
Hiroyuki Ito
博之 伊藤
Hiroko Sasaki
裕子 笹氣
Tadashi Otaka
正 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011129745A priority Critical patent/JP5548652B2/en
Publication of JP2011180153A publication Critical patent/JP2011180153A/en
Application granted granted Critical
Publication of JP5548652B2 publication Critical patent/JP5548652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a downsized charged beam inspection apparatus, saving on a space, reducing a cost, preventing vibration, accelerating the speed, and having a high reliability of inspection, and large effects, especially for the case of a wafer having a large diameter, in a device for inspecting defects of a sample. <P>SOLUTION: A charged beam particle device is equipped with: a rotating stage on which a sample is placed; a uniaxial mobile stage that moves the rotating stage along a uniaxial direction; a vacuum chamber containing the uniaxial mobile stage; a first column for detecting a defect on the sample by irradiating the sample with light or a charged particle beam; and a second column for re-detecting the defect by irradiating the sample with a charged particle beam on the basis of the coordinates of the defect detected by the first column. A detector for detecting the defect has its detector plane facing toward the center of each column. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子ビームやイオンビームなどの荷電粒子ビームを用いて試料の観察や加工を行う荷電粒子ビーム装置に関する。   The present invention relates to a charged particle beam apparatus that observes and processes a sample using a charged particle beam such as an electron beam or an ion beam.

荷電粒子ビーム装置の観察対象のうち、特に、半導体デバイスは、形成される回路パターンの微細化により、光学方式の高感度化に加えて、荷電粒子ビームによる検査法や加工法が注目されている。検査では走査電子顕微鏡(SEM)を応用した検査装置が開発されている。半導体デバイスが形成される半導体ウエハの検査では、光学像または荷電粒子ビーム走査像による欠陥検出、その欠陥を観察して分類するレビューSEM、パターンの寸法を検査する測長SEMが使用される。また、集束イオンビーム装置(FIB)による欠陥部の加工処理、SEMによる試料の傾斜観察やX線分析等多様な技術が開発されている。半導体デバイスは、その構造や材料の複雑化により、複数の検査方式を混用して検査データを整理することが一般的になってきており、複数の検査機能を一台の装置にまとめる技術も提案されている(例えば、特許文献1参照)。一方、半導体ウエハの径がますます大きくなっており、特に、荷電粒子ビーム方式は真空容器を必要とするため、装置を大型化せざるをえない。以上の状況は、検査システムのコストアップや大型化によるスループットの低下、複雑な検査プロセス間のウエハ搬送による異物付着リスク増加等、本来もっとも重要な検査信頼性までも低下させている。特に、電子ビームやイオンビーム装置では、位置決めステージの大型化による駆動抵抗や残留振動の増加により、精度の低下や移動時間の増加に加えて、真空排気時間の増加もスループット低下をもたらす。また、装置のユーザにとっても、高価なクリーンルームに大型真空容器を要する検査装置を設置することは、コスト上の大きな負担となってきている。   Among the observation targets of charged particle beam devices, in particular, semiconductor devices are attracting attention for inspection methods and processing methods using charged particle beams in addition to increasing the sensitivity of optical systems by miniaturizing circuit patterns to be formed. . In the inspection, an inspection apparatus using a scanning electron microscope (SEM) has been developed. In the inspection of a semiconductor wafer on which a semiconductor device is formed, a defect detection by an optical image or a charged particle beam scanning image, a review SEM for observing and classifying the defect, and a length measurement SEM for inspecting a pattern dimension are used. In addition, various techniques have been developed, such as processing of a defect portion using a focused ion beam apparatus (FIB), tilt observation of a sample using an SEM, and X-ray analysis. Due to the complexity of the structure and materials of semiconductor devices, it has become common to organize inspection data using a mixture of multiple inspection methods, and a technique for combining multiple inspection functions into a single device is also proposed. (For example, refer to Patent Document 1). On the other hand, the diameter of semiconductor wafers is increasing, and in particular, the charged particle beam method requires a vacuum vessel, so the apparatus must be enlarged. The above situation has lowered even the most important inspection reliability by nature, such as a decrease in throughput due to an increase in the cost and size of the inspection system, and an increase in the risk of foreign matter adhesion due to wafer transfer between complicated inspection processes. In particular, in an electron beam or ion beam apparatus, an increase in driving resistance and residual vibration due to an increase in the size of the positioning stage causes a decrease in throughput due to an increase in evacuation time in addition to a decrease in accuracy and an increase in movement time. Moreover, it has become a large cost burden for the user of the apparatus to install an inspection apparatus that requires a large vacuum container in an expensive clean room.

特開2006−294481号公報JP 2006-294482 A

本発明は、試料の欠陥を検査する装置において、装置が小型化できて省スペース,コストダウン,振動抑止と高速化,検査の信頼性が得られ、特に大口径化したウエハの場合に効果が大きい荷電ビーム検査装置を得ることを目的とする。   The present invention can reduce the size of an apparatus for inspecting a defect of a sample, and can save space, reduce cost, suppress vibration and increase the speed, and provide inspection reliability, and is particularly effective for a wafer having a large diameter. The purpose is to obtain a large charged beam inspection apparatus.

上記課題を解決するために、本発明の実施態様は、少なくとも一つ以上の検査を荷電ビーム機構で行う複数の検査機構を具備し、各検査機構を概略一軸に配する共通の真空容器内に設けられた各検査機構間を一軸移動する一軸移動機構と、試料を載置し一軸移動機構上に回転軸を有した回転ステージと、試料を各検査機構間で一軸移動機構により移動させ、次に回転ステージで試料の検査位置を検査機構へ調整して合わせ、検査機構により試料の検査を行う構成としたものである。   In order to solve the above-mentioned problems, an embodiment of the present invention includes a plurality of inspection mechanisms that perform at least one inspection by a charged beam mechanism, and each inspection mechanism is arranged in a common vacuum container that is arranged substantially on one axis. A uniaxial movement mechanism that moves uniaxially between each of the inspection mechanisms provided, a rotary stage that places a sample and has a rotation axis on the uniaxial movement mechanism, and moves the sample between the inspection mechanisms by a uniaxial movement mechanism, In addition, the inspection position of the sample is adjusted to the inspection mechanism with the rotary stage, and the sample is inspected by the inspection mechanism.

以上述べたように、本発明の実施例によれば、装置が小型化できて省スペース,コストダウン,振動抑止と高速化,検査の信頼性が得られ、特に大口径化したウエハの場合に効果が大きい荷電ビーム検査装置を得ることができる。   As described above, according to the embodiments of the present invention, the apparatus can be miniaturized, and space saving, cost reduction, vibration suppression and high speed, inspection reliability can be obtained, especially in the case of a wafer having a large diameter. A charged beam inspection apparatus having a large effect can be obtained.

荷電粒子ビーム装置の概略構成を示す縦断面図。The longitudinal cross-sectional view which shows schematic structure of a charged particle beam apparatus. 荷電粒子ビーム装置の概略構成を示す縦断面図。The longitudinal cross-sectional view which shows schematic structure of a charged particle beam apparatus. 荷電粒子ビーム装置の概略構成を示す縦断面図。The longitudinal cross-sectional view which shows schematic structure of a charged particle beam apparatus. 荷電粒子ビーム装置の概略構成を示す縦断面図。The longitudinal cross-sectional view which shows schematic structure of a charged particle beam apparatus. 荷電粒子ビーム装置の概略構成を示す平面断面図。FIG. 2 is a plan sectional view showing a schematic configuration of the charged particle beam apparatus. ステージ上のウエハの移動状態を説明する平面図。The top view explaining the movement state of the wafer on a stage. ウエハの平面図。The top view of a wafer. ウエハ上の観察対象を拡大した平面図と側面図。The top view and side view which expanded the observation object on a wafer.

以下、本発明の一実施例を説明する。半導体ウエハの大口径化,検査プロセスの複合化に対応するため、複数の検査機構を同一の真空容器に設け、試料の移動には回転ステージと一軸ステージ移動機構系を用いる。すなわち、各検査機構間を一軸移動機構で試料移動し、試料ウエハ上の検査位置決めは、回転ステージと一軸移動ステージを共用して行う。これにより、真空容器を、従来のXY移動ステージに比べて半分以下の大きさとし、可動部の重量増加を抑えることができ、小型化できるので、省スペースの効果と、コストダウンの効果がある。また、2つの装置をひとつにまとめることにより、装置間のウエハの移動時の異物付着等を防止することができる。さらに、回転ステージにより、不要振動を抑えることができるので、高速な位置決めが可能となる。また、各検査機構の画像情報とその付帯情報である欠陥の座標,高さ,サイズ,画像のコントラストを共有化して、欠陥検査や寸法計測の信頼性や操作性も改善される。特に、外径450ミリメートル等の大径ウエハの場合に、効果が顕著である。   An embodiment of the present invention will be described below. In order to cope with an increase in the diameter of a semiconductor wafer and a combination of inspection processes, a plurality of inspection mechanisms are provided in the same vacuum vessel, and a rotary stage and a uniaxial stage moving mechanism system are used for moving a sample. That is, the sample is moved between the inspection mechanisms by the uniaxial movement mechanism, and the inspection positioning on the sample wafer is performed by using the rotary stage and the uniaxial movement stage in common. As a result, the vacuum container is made half the size of the conventional XY moving stage, the increase in the weight of the movable part can be suppressed, and the size can be reduced. Thus, there are effects of space saving and cost reduction. Further, by bringing the two devices together, it is possible to prevent adhesion of foreign matters when the wafer moves between the devices. Furthermore, since unnecessary vibrations can be suppressed by the rotary stage, high-speed positioning is possible. In addition, the image information of each inspection mechanism and the accompanying information such as defect coordinates, height, size, and image contrast are shared to improve the reliability and operability of defect inspection and dimension measurement. The effect is particularly remarkable in the case of a large-diameter wafer having an outer diameter of 450 mm.

図1は、荷電粒子ビーム装置の概略構成を示す縦断面図である。試料であるウエハ8を入れる真空容器12ひとつに対して、2つの荷電粒子ビームカラムを設けている。ひとつは、電子ビームをウエハ8に照射し、ウエハ8で発生する二次信号を検出して欠陥を検出する欠陥検査SEM、ひとつは、検査SEMで検出された欠陥を拡大撮像して、欠陥の特徴量から分類する欠陥レビューSEMである。ウエハ8は、真空容器12内の回転ステージ10,一軸移動ステージ11により、はじめに欠陥検査SEMのカラムの下に位置決めされる。   FIG. 1 is a longitudinal sectional view showing a schematic configuration of a charged particle beam apparatus. Two charged particle beam columns are provided for one vacuum vessel 12 in which a wafer 8 as a sample is placed. One is a defect inspection SEM that irradiates the wafer 8 with an electron beam and detects a secondary signal generated on the wafer 8 to detect a defect. The other is an enlarged image of the defect detected by the inspection SEM. It is a defect review SEM classified based on feature quantities. The wafer 8 is first positioned under the column of the defect inspection SEM by the rotary stage 10 and the uniaxial moving stage 11 in the vacuum vessel 12.

欠陥検査SEMは、電子ビームのスポットサイズが小さいにもかかわらず、ウエハ8の全表面を検査対象とすることから、ひとつの画面を構成するための電子ビームの走査回数を減らして高速化するため、大電流の電子ビームでウエハ8を照射する。大電流の電子源1bから発した電子を、第一照射レンズ2bと制限絞り3bで絞り込む。更に、電子ビームの収束角が第二照射レンズ4bで調整され、最終的に対物レンズ7bでウエハ8に結像される。ここで、偏向器6bでビーム走査し、検出器5bで画像信号を得、試料面の欠陥情報を得る。欠陥検査SEMでは、試料面の帯電や放出電子軌道を制御するための制御電極13が設置され、帯電等による電位コントラスト,絶縁状態,異物,パターン異常等がある所定の感度で検知される。   In the defect inspection SEM, although the spot size of the electron beam is small, the entire surface of the wafer 8 is to be inspected, so that the number of scans of the electron beam for constituting one screen is reduced and the speed is increased. The wafer 8 is irradiated with a high-current electron beam. The electrons emitted from the high-current electron source 1b are narrowed down by the first irradiation lens 2b and the limiting diaphragm 3b. Further, the convergence angle of the electron beam is adjusted by the second irradiation lens 4b and finally imaged on the wafer 8 by the objective lens 7b. Here, beam scanning is performed by the deflector 6b, an image signal is obtained by the detector 5b, and defect information on the sample surface is obtained. In the defect inspection SEM, a control electrode 13 for controlling the charging of the sample surface and the emitted electron trajectory is installed, and is detected with a predetermined sensitivity such as potential contrast due to charging, insulation state, foreign matter, pattern abnormality, and the like.

次に、検査を終了したウエハ8は、回転ステージ10ごと一軸移動ステージ11が駆動系9により駆動されて、真空容器12内の欠陥レビューSEMの下に移送される。欠陥検査SEMで得た欠陥の座標,サイズ,画像のコントラスト等の欠陥情報は、図示しない記憶装置へ記憶され、欠陥レビューSEMで欠陥を探索するときの検索情報として使用される。   Next, the wafer 8 that has been inspected is transported together with the rotary stage 10 under the defect review SEM in the vacuum vessel 12 with the uniaxial moving stage 11 being driven by the drive system 9. Defect information such as defect coordinates, size, and image contrast obtained by the defect inspection SEM is stored in a storage device (not shown), and is used as search information when a defect is searched for by the defect review SEM.

欠陥レビューSEMは、電子源1aから発した電子を第一照射レンズ2aと制限絞り3aで絞り込む。更に電子開き角が第二照射レンズ4aで調整され、最終的に対物レンズ7aでウエハ8に結像して偏向器6aで走査し、検出器5aで走査画像を得る。欠陥レビューSEMは、欠陥検査SEMで取得した欠陥情報に基づいて、欠陥の座標を手がかりに欠陥を探索し、欠陥を見つけたらその拡大画像を撮像する。欠陥の画像に基づいて、図示しない演算装置で欠陥の種類の分類が行われる。ユーザはこの欠陥に関する情報に基づいて、欠陥が発生したプロセスの特定や欠陥発生原因の究明が可能となる。   The defect review SEM narrows down the electrons emitted from the electron source 1a with the first irradiation lens 2a and the limiting diaphragm 3a. Further, the electronic opening angle is adjusted by the second irradiation lens 4a, and finally the image is formed on the wafer 8 by the objective lens 7a, scanned by the deflector 6a, and a scanned image is obtained by the detector 5a. The defect review SEM searches for the defect based on the defect coordinates based on the defect information acquired by the defect inspection SEM, and captures an enlarged image when the defect is found. Based on the defect image, the defect type is classified by an arithmetic device (not shown). Based on the information on the defect, the user can specify the process in which the defect has occurred and investigate the cause of the defect.

このように、図1に示した構成によれば、ウエハ8の欠陥検出から欠陥分類までの一連の動作が無駄なく高速に、低リスクで実現できる。また、欠陥検査SEMでは、欠陥がない参照画像と検査画像との差をとる比較処理により、欠陥を抽出するため、画像のノイズなどで欠陥でない画素が欠陥として検出される場合がある。そこで、欠陥レビューSEMで欠陥が抽出できない欠陥座標について、欠陥検査SEMで再度検査することも容易にできる。   As described above, according to the configuration shown in FIG. 1, a series of operations from defect detection to defect classification of the wafer 8 can be realized at high speed and with low risk without waste. Further, in the defect inspection SEM, since a defect is extracted by a comparison process that takes a difference between a reference image having no defect and an inspection image, pixels that are not defective may be detected as a defect due to image noise or the like. Therefore, it is possible to easily inspect the defect coordinates that cannot be extracted by the defect review SEM by the defect inspection SEM.

図2は、荷電粒子ビーム装置の概略構成を示す縦断面図であり、欠陥レビューSEMと傾斜像観察用SEMとをひとつの真空容器12に設けたものである。図2の向かって左側の欠陥レビューSEMは、図1に示したものと同様の構成,機能を有している。向かって右側の傾斜像観察用SEMでは、電子源1cから発した電子を第一照射レンズ2cと制限絞り3cで絞り込む。更に、電子ビームの開き角が第二照射レンズ4cで調整され、最終的に対物レンズ7cでウエハ8に結像して、偏向器6cで電子ビームが走査され、検出器5cで走査画像信号を得る。検出器5cに加えて、試料面欠陥の材料を分析するため、X線検出器を用いることもできる。   FIG. 2 is a longitudinal sectional view showing a schematic configuration of the charged particle beam apparatus, in which a defect review SEM and a tilted image observation SEM are provided in one vacuum vessel 12. The defect review SEM on the left side of FIG. 2 has the same configuration and function as those shown in FIG. In the right-side tilt image observation SEM, the electrons emitted from the electron source 1c are narrowed down by the first irradiation lens 2c and the limiting diaphragm 3c. Further, the opening angle of the electron beam is adjusted by the second irradiation lens 4c, and finally the image is formed on the wafer 8 by the objective lens 7c, the electron beam is scanned by the deflector 6c, and the scanning image signal is obtained by the detector 5c. obtain. In addition to the detector 5c, an X-ray detector can be used to analyze the material of the sample surface defect.

検査プロセスでは、はじめに、上のウエハ8は、欠陥レビューSEMの偏向器6aで電子ビームが高速にビーム走査され、得られた欠陥画像により欠陥種が分類され表示される。欠陥レビューを終了したウエハ8は、一軸移動ステージ11上の回転ステージ10の移動により、傾斜像観察用SEMの下に移動される。また、欠陥レビューSEMで得られた欠陥のサイズ,座標,画像のコントラスト等の欠陥情報が傾斜像観察用SEMの図示しない制御装置へ送られる。傾斜像観察用SEMは、ウエハ8に対して傾斜した電子ビームを照射し、欠陥の凹凸解析や成分が分析され、詳細情報を得ることができる。なお、ウエハ8の周辺端部は、剥離等の欠陥が生じ易いので、傾斜像観察用SEMでは、欠陥の傾斜像観察の他、ウエハ8の周辺端部の状態も観察することができる。   In the inspection process, first, the upper wafer 8 is scanned with an electron beam at high speed by the deflector 6a of the defect review SEM, and the defect type is classified and displayed based on the obtained defect image. The wafer 8 that has completed the defect review is moved under the tilted image observation SEM by the movement of the rotary stage 10 on the uniaxial moving stage 11. Further, defect information such as the defect size, coordinates, and image contrast obtained by the defect review SEM is sent to a control device (not shown) of the tilted image observation SEM. The tilted image observation SEM irradiates the wafer 8 with a tilted electron beam, analyzes the defect unevenness and analyzes the components, and obtains detailed information. Since defects such as peeling are likely to occur at the peripheral edge of the wafer 8, the inclined image observation SEM can observe the peripheral edge of the wafer 8 in addition to the observation of the inclined image of the defect.

図3は、荷電粒子ビーム装置の概略構成を示す縦断面図であり、向かって左側に欠陥レビューSEM、右側に集束イオンビーム装置(FIB)をひとつの真空容器12に設けている。欠陥レビューSEMは、図1に示したものと同様の構成,機能を有している。FIBは、イオン源1dから発したイオンを、静電照射レンズ2dとイオン電流制限絞り3dで絞り込む。更に、イオンビームを静電対物レンズ7dでウエハ8に結像させ、偏向器6dで走査し、イオン放出電子検出器5dで画像信号を得る。   FIG. 3 is a longitudinal sectional view showing a schematic configuration of the charged particle beam apparatus. A defect review SEM is provided on the left side and a focused ion beam apparatus (FIB) is provided on one vacuum container 12 on the right side. The defect review SEM has the same configuration and function as those shown in FIG. The FIB narrows ions emitted from the ion source 1d by the electrostatic irradiation lens 2d and the ion current limiting diaphragm 3d. Further, the ion beam is imaged on the wafer 8 by the electrostatic objective lens 7d, scanned by the deflector 6d, and an image signal is obtained by the ion emission electron detector 5d.

検査プロセスでは、回転ステージ10上のウエハ8は、欠陥レビューSEMで得られた欠陥の画像により、欠陥の種類が分類される。欠陥レビューを終了したウエハ8は、一軸移動ステージ11上の回転ステージ10の移動により、FIBの下に移動される。また、欠陥レビューSEMで得られた欠陥のサイズ,座標,画像のコントラスト等の欠陥情報がFIBの図示しない制御装置へ送られる。FIBでは、欠陥の発生部位を切り出して、欠陥部位の三次元の構造やX線分析による観察を行う。   In the inspection process, the type of defect of the wafer 8 on the rotary stage 10 is classified based on the defect image obtained by the defect review SEM. The wafer 8 that has completed the defect review is moved under the FIB by the movement of the rotary stage 10 on the uniaxial moving stage 11. Also, defect information such as defect size, coordinates, and image contrast obtained by the defect review SEM is sent to a control device (not shown) of the FIB. In FIB, a defect occurrence site is cut out and observed by a three-dimensional structure or X-ray analysis of the defect site.

図4は、荷電粒子ビーム装置の概略構成を示す縦断面図であり、欠陥レビューSEMと光学式検査装置とを、ひとつの真空容器12に設けたものである。図4の向かって右側の光学式検査装置では、光源1eから発した光を制限絞り3eと光学顕微鏡14でウエハ8に結像し、光検出器5eで画像信号を得る。欠陥レビューSEMより光学式検査装置の方が拡大倍率が低いので、はじめに光学式検査装置でウエハ8の全面の欠陥検査を行い、検出された欠陥の座標に基づいて、欠陥レビューSEMで欠陥の拡大像を撮像し、詳細な観察を行う。光学式検査装置の構成は、明視野方式と暗視野方式とがあり、暗視野方式では光源としてレーザビームが用いられる。また、パターンが形成される前のウエハ8の欠陥検査では、光学式検査装置と欠陥レビューSEMとが別々の装置の場合には、両装置間の座標の補正精度が低く、光学式検査装置で検出された欠陥を欠陥レビューSEMで再検出するのが困難であるが、本装置では、ひとつの真空容器12に光学式検査装置と欠陥レビューSEMの両方を設け、ステージを共通化しているので、座標の誤差の問題がなくなり、光学式検査装置で検出された欠陥を欠陥レビューSEMで容易に再検出することができる。   FIG. 4 is a longitudinal sectional view showing a schematic configuration of the charged particle beam apparatus, in which a defect review SEM and an optical inspection apparatus are provided in one vacuum vessel 12. In the optical inspection apparatus on the right side of FIG. 4, the light emitted from the light source 1e is imaged on the wafer 8 by the limiting aperture 3e and the optical microscope 14, and an image signal is obtained by the photodetector 5e. Since the optical inspection apparatus has a lower magnification than the defect review SEM, the entire surface of the wafer 8 is first inspected by the optical inspection apparatus, and the defect is enlarged by the defect review SEM based on the coordinates of the detected defect. Take an image and make a detailed observation. The configuration of the optical inspection apparatus includes a bright field method and a dark field method. In the dark field method, a laser beam is used as a light source. In addition, in the defect inspection of the wafer 8 before the pattern is formed, when the optical inspection apparatus and the defect review SEM are separate apparatuses, the correction accuracy of coordinates between the both apparatuses is low, and the optical inspection apparatus Although it is difficult to redetect the detected defect with the defect review SEM, in this apparatus, since both the optical inspection device and the defect review SEM are provided in one vacuum vessel 12, and the stage is shared, The problem of coordinate error is eliminated, and the defect detected by the optical inspection apparatus can be easily redetected by the defect review SEM.

図5は、本発明による荷電粒子ビーム装置の概略構成を示す平面断面図であり、図1に示した構成の平面断面図を一例としており、欠陥レビューSEMの検出器5aと偏向器6a,欠陥検査SEMの検出器5bと偏向器6bとを図示している。真空容器12の内側の平面形状は、短辺がウエハ8の外形に余裕代を加算した寸法とし、長辺が、ウエハ8の外形の2倍に余裕代を加算した寸法とする。ウエハ8は、真空容器の内部を、図示しない一軸移動ステージ11で長手方向へ移動し、図示しない回転ステージ10で回転する。計算機19は、電子ビームの制御と、得られた画像の処理の両方を制御する。計算機19から送られた電子ビームのディジタル偏向データから、偏向制御回路17でディジタル偏向制御データが生成され、偏向駆動回路18でアナログ偏向制御信号へ変換され、偏向器6aまたは偏向器6bへ送られる。また、計算機19は、ステージの制御データをステージ制御回路20へ送り、ステージ制御回路20からステージ駆動信号がステージ駆動回路21へ送られ、図示しない回転ステージ10と図示しない一軸移動ステージ11が駆動される。   FIG. 5 is a plan sectional view showing a schematic configuration of the charged particle beam apparatus according to the present invention. The plan sectional view of the configuration shown in FIG. 1 is taken as an example, and a detector 5a and a deflector 6a of a defect review SEM are shown. The detector 5b and the deflector 6b of the inspection SEM are shown. The planar shape inside the vacuum vessel 12 has a short side with a dimension obtained by adding an allowance to the outer shape of the wafer 8, and a long side with a dimension obtained by adding the allowance to twice the outer shape of the wafer 8. The wafer 8 is moved in the longitudinal direction by a uniaxial moving stage 11 (not shown) inside the vacuum vessel and is rotated by a rotating stage 10 (not shown). The computer 19 controls both the control of the electron beam and the processing of the obtained image. Digital deflection control data is generated by the deflection control circuit 17 from the digital deflection data of the electron beam sent from the computer 19, converted into an analog deflection control signal by the deflection drive circuit 18, and sent to the deflector 6a or deflector 6b. . The computer 19 sends stage control data to the stage control circuit 20, and a stage drive signal is sent from the stage control circuit 20 to the stage drive circuit 21, so that the rotary stage 10 (not shown) and the uniaxial moving stage 11 (not shown) are driven. The

はじめに、欠陥検査SEMでウエハ8の欠陥検出を行い、欠陥検査SEMの検出器5bで検出された信号は、信号処理回路16でアナログ信号からディジタル信号へ変換され、画像処理回路15で画像化され、欠陥のない参照画像と比較されて欠陥検出が行われ、結果のデータが計算機19へ送られ、図示しない記憶装置へ記憶される。次に、ウエハ8が欠陥レビューSEMへ移動し、記憶された欠陥の座標の位置で欠陥を見つけ出すように、ウエハ8が位置決めされる。検出器5aで検出された信号を画像処理回路15で画像化し、欠陥のない参照画像と比較して欠陥を検出する。あるいは、記憶された欠陥検査SEMの画像と比較して欠陥を検出する。ステージの移動時の機械的誤差に起因する欠陥の位置ずれが、画像処理回路15で補正できない場合は、偏向制御回路17で電子ビームの偏向を調整したり、ステージ制御回路20でウエハ8の位置を調整して、補正する。欠陥が検出されたら、欠陥レビューSEMは拡大倍率を変えて、高倍率画像を撮像し、その画像を計算機19の図示しない記憶装置へ記憶する。計算機19はこの高倍率画像から欠陥の寸法,形状等の特徴量を演算し、欠陥を分類する。このステップは、欠陥の数だけ、あるいは指定された条件の数だけ繰り返される。欠陥の位置ずれについては、複数の位置ずれ情報を、計算機19の図示しない記憶装置へウエハ位置歪情報として記憶し、多項式近似やメモリマッピング値の内挿計算等の技術で高精度な補正が可能である。また、計算機19では、欠陥検査SEMの画像取得時の電子ビームの焦点合わせの情報に基づいて、欠陥レビューSEMの電子ビームの焦点合わせの制御を行う。   First, the defect inspection of the wafer 8 is performed by the defect inspection SEM, and the signal detected by the detector 5b of the defect inspection SEM is converted from an analog signal to a digital signal by the signal processing circuit 16 and imaged by the image processing circuit 15. The defect is detected by comparison with a reference image having no defect, and the resulting data is sent to the computer 19 and stored in a storage device (not shown). Next, the wafer 8 is moved to the defect review SEM, and the wafer 8 is positioned so that the defect is found at the position of the coordinates of the stored defect. A signal detected by the detector 5a is imaged by the image processing circuit 15 and compared with a reference image having no defect to detect a defect. Alternatively, the defect is detected by comparing with the stored image of the defect inspection SEM. If the image processing circuit 15 cannot correct the positional deviation of the defect due to a mechanical error during the movement of the stage, the deflection control circuit 17 adjusts the deflection of the electron beam, or the stage control circuit 20 adjusts the position of the wafer 8. Adjust to correct. When a defect is detected, the defect review SEM changes the enlargement magnification, takes a high-magnification image, and stores the image in a storage device (not shown) of the computer 19. The computer 19 calculates feature quantities such as the size and shape of the defect from the high-magnification image, and classifies the defect. This step is repeated for the number of defects or the number of specified conditions. As for the positional deviation of defects, a plurality of positional deviation information is stored as wafer positional distortion information in a storage device (not shown) of the computer 19 and can be corrected with high accuracy by techniques such as polynomial approximation and interpolation calculation of memory mapping values. It is. Further, the computer 19 controls the focusing of the electron beam of the defect review SEM based on the information of the focusing of the electron beam when acquiring the image of the defect inspection SEM.

図1に示した一軸移動ステージ11の移動は、既知の図示しないレーザ干渉計で検知され、回転ステージ10の回転は、既知の図示しない角度スケール読み装置で検知され、位置の振動を含めた位置補正や、回転角補正がステージ制御回路20で行われる。   The movement of the uniaxial moving stage 11 shown in FIG. 1 is detected by a known laser interferometer (not shown), and the rotation of the rotary stage 10 is detected by a known angle scale reading device (not shown), and includes a position vibration. Correction and rotation angle correction are performed by the stage control circuit 20.

なお、図5に示した回路構成は、欠陥検査SEMと欠陥レビューSEMの画像処理回路15,信号処理回路16,偏向制御回路17,偏向駆動回路18を共用としているが、2系統設けることにより、制御アルゴリズムの簡単化と高速化、一方に不具合が生じた場合の代行化をはかることができる。   The circuit configuration shown in FIG. 5 shares the image processing circuit 15, signal processing circuit 16, deflection control circuit 17, and deflection drive circuit 18 of the defect inspection SEM and defect review SEM, but by providing two systems, The control algorithm can be simplified and speeded up, and in the event of a failure, it can be substituted.

図6は、ステージ上のウエハの移動状態を説明する平面図である。距離Lは、2つのSEMのカラムの中心位置の間の距離であり、真空装置12内を一軸移動したときの最も端にウエハ8が位置したときの位置を破線で示している。本発明における回転ステージ系の大きな利点は、小型軽量でかつ厳密な回転対称形にすれば、移動時の運動モーメントによる振動が原理的にない点である。その代わり、図6に示すとおり、観察位置では、座標系の回転が発生する。したがって、正立像とするための処理が必要となる。   FIG. 6 is a plan view for explaining the movement state of the wafer on the stage. The distance L is the distance between the center positions of the two SEM columns, and the position when the wafer 8 is positioned at the extreme end when the uniaxial movement in the vacuum apparatus 12 is indicated by a broken line. A great advantage of the rotary stage system according to the present invention is that, if it is small and light and has a strict rotational symmetry, there is no vibration in principle due to the moment of movement during movement. Instead, as shown in FIG. 6, rotation of the coordinate system occurs at the observation position. Therefore, processing for obtaining an erect image is required.

ウエハ上の直交座標をX,Yとし、極座標をr,θとし、図6で、ウエハ8が観察位置にあるものとする。直交座標(X,Y)と極座標(r,θ)の関係は、下記で与えられる。   It is assumed that the orthogonal coordinates on the wafer are X and Y, the polar coordinates are r and θ, and the wafer 8 is at the observation position in FIG. The relationship between orthogonal coordinates (X, Y) and polar coordinates (r, θ) is given below.

X=rcosθ
Y=rsinθ
ステージ上の基準直交座標(X′,Y′)を基準とした回転系のステージ移動量は、下記で与えられる。
X = r cos θ
Y = rsinθ
The stage movement amount of the rotating system with reference to the reference orthogonal coordinates (X ′, Y ′) on the stage is given as follows.

X′=r
θ′=π−θ
以上の各式を用いて、欠陥の座標の補正が行われる。
X ′ = r
θ ′ = π−θ
Using the above equations, the defect coordinates are corrected.

図7は、ウエハの平面図であり、ウエハの回転を考慮した画像の取り込みの処理の一例を示す。極座標(r,θ)での電子ビームの偏向範囲23で、ウエハ上のパターン22を撮像する。欠陥検査SEMで、パターン22を直交座標(X,Y)で撮像された像は、図7(c)に示す向きであるので、図7(a)に示す欠陥レビューSEMの場合でも、図7(c)に示すような撮像範囲24の正立像を得るためには、画像を下記の大きさだけ回転させる必要がある。   FIG. 7 is a plan view of a wafer and shows an example of an image capturing process in consideration of the rotation of the wafer. The pattern 22 on the wafer is imaged in the deflection range 23 of the electron beam at polar coordinates (r, θ). Since the image obtained by imaging the pattern 22 with the orthogonal coordinates (X, Y) in the defect inspection SEM is in the direction shown in FIG. 7C, even in the case of the defect review SEM shown in FIG. In order to obtain an erect image of the imaging range 24 as shown in (c), it is necessary to rotate the image by the following size.

θ″=π+θ
したがって、図7(b)に示すように、偏向範囲23を撮像範囲24を含むような大きさとして画像を得て、図7(c)に示すように回転させる。画像の回転方法は、電子ビームの走査方向を変える方法と、画像処理で回転させる方法とが可能である。
θ ″ = π + θ
Accordingly, as shown in FIG. 7B, an image is obtained with the deflection range 23 having a size including the imaging range 24, and rotated as shown in FIG. 7C. As the image rotation method, a method of changing the scanning direction of the electron beam and a method of rotating by image processing are possible.

図8は、ウエハ上の観察対象を拡大した平面図と側面図である。SEMで検出された画像は、図8(a)に示すように、観察対象25に陰が生じるので、回転しないXYステージを用いた欠陥検査SEMと欠陥レビューSEM同士では、欠陥に対する検出器のXY平面上の向きを一致させて、陰が同じように生じるように撮像する必要がある。立体的な観察対象で高角度電子を捕らえる場合は、その明暗や陰影方向が回転し、観察対象の凹凸が分類するときの情報として重要な場合があり、その判断を誤らせる可能性があるので、注意が必要である。図8(b)の側面図に示すように、ウエハ8上の撮像範囲24の凸形の観察対象25を、検出器5bで撮像する場合、図8(a)の平面図に示すように、観察対象25に陰が生じた画像が得られる。本発明の構成では、図5に示すように、検出器5aおよび検出器5bの方向が、一点鎖線で示すそれぞれのカラムの中心に一致しているので、それぞれのカラムの間で画像に生じる観察対象の陰の方向が異なることはない。   FIG. 8 is an enlarged plan view and side view of the observation target on the wafer. As shown in FIG. 8A, the image detected by the SEM is shaded on the observation object 25. Therefore, the defect inspection SEM using the non-rotating XY stage and the defect review SEM have a detector XY for defects. It is necessary to match the directions on the plane so that the shadows are generated in the same way. When capturing high-angle electrons in a three-dimensional observation target, the light and darkness and shadow direction rotate, and it may be important as information when the unevenness of the observation target is classified. Caution must be taken. As shown in the side view of FIG. 8B, when the convex observation object 25 in the imaging range 24 on the wafer 8 is imaged by the detector 5b, as shown in the plan view of FIG. An image in which the observation object 25 is shaded is obtained. In the configuration of the present invention, as shown in FIG. 5, since the directions of the detectors 5a and 5b coincide with the centers of the respective columns indicated by the alternate long and short dash line, the observation that occurs in the image between the respective columns. The shadow direction of the subject is not different.

以上述べたように、本発明の実施例によれば、装置の小型化と省スペース,コストダウン,振動抑止と異物低減による高信頼化を可能とし、特に大口径化したウエハの荷電ビーム検査装置に効果が顕著である。   As described above, according to the embodiments of the present invention, it is possible to reduce the size of the apparatus, save space, reduce costs, suppress vibrations, and achieve high reliability by reducing foreign matter, and in particular, a charged beam inspection apparatus for a wafer having a large diameter. The effect is remarkable.

1a,1b,1c 電子源
1d イオン源
1e 光源
2a,2b,2c 第一照射レンズ
2d 静電照射レンズ
3a,3b,3c,3e 制限絞り
3d イオン電流制限絞り
4a,4b,4c 第二照射レンズ
5a,5b,5c 検出器
5d イオン放出電子検出器
5e 光検出器
6a,6b,6c,6d 偏向器
7a,7b,7c 対物レンズ
7d 静電対物レンズ
8 ウエハ
9 駆動系
10 回転ステージ
11 一軸移動ステージ
12 真空容器
13 制御電極
14 光学顕微鏡
15 画像処理回路
16 信号処理回路
17 偏向制御回路
18 偏向駆動回路
19 計算機
20 ステージ制御回路
21 ステージ駆動回路
22 パターン
23 偏向範囲
24 撮像範囲
25 観察対象
1a, 1b, 1c Electron source 1d Ion source 1e Light sources 2a, 2b, 2c First irradiation lens 2d Electrostatic irradiation lenses 3a, 3b, 3c, 3e Limiting aperture 3d Ion current limiting apertures 4a, 4b, 4c Second irradiation lens 5a , 5b, 5c detector 5d ion emission electron detector 5e photodetectors 6a, 6b, 6c, 6d deflectors 7a, 7b, 7c objective lens 7d electrostatic objective lens 8 wafer 9 drive system 10 rotating stage 11 uniaxial moving stage 12 Vacuum container 13 Control electrode 14 Optical microscope 15 Image processing circuit 16 Signal processing circuit 17 Deflection control circuit 18 Deflection drive circuit 19 Computer 20 Stage control circuit 21 Stage drive circuit 22 Pattern 23 Deflection range 24 Imaging range 25 Observation object

Claims (3)

試料を搭載する回転ステージと、
該回転ステージを一軸方向へ移動させる一軸移動ステージと、
該一軸移動ステージを内蔵する真空室と、
前記試料へ光または荷電粒子ビームを照射して前記試料上の欠陥を検出する第一のカラムと、
該第一のカラムで検出された前記欠陥の座標に基づいて前記試料に荷電粒子ビームを照射し該欠陥を再検出する第二のカラムとを備え、
前記欠陥を検出する検出器の検出面の方向は、それぞれのカラムの中心へ向いていることを特徴とする荷電粒子ビーム装置。
A rotating stage on which the sample is mounted;
A single axis moving stage for moving the rotary stage in a single axis direction;
A vacuum chamber containing the uniaxial moving stage;
A first column for detecting defects on the sample by irradiating the sample with light or a charged particle beam;
A second column that re-detects the defect by irradiating the sample with a charged particle beam based on the coordinates of the defect detected in the first column;
The charged particle beam apparatus according to claim 1, wherein the direction of the detection surface of the detector for detecting the defect is directed to the center of each column.
試料を格納する真空容器と、
前記試料へ光または荷電粒子ビームを照射して前記試料を第一検出器からの画像信号に基づき撮像する第一のカラムと、
該第一のカラムで撮像された前記試料の画像に基づいて前記試料に荷電粒子ビームを照
射し第二検出器からの画像信号に基づき前記撮像位置の画像の再撮像あるいは加工を行う第二のカラムとを備えた荷電粒子ビーム装置であって、
前記真空容器内に設けられ、前記試料を載置する回転ステージと、
前記真空容器内に設けられ、当該回転ステージを一軸移動させる一軸移動機構とを備え、
前記第一検出器の検出面の方向は、第一のカラムの中心へ向いており、
前記第二検出器の検出面の方向は、第二のカラムの中心へ向いていることを特徴とする荷電粒子ビーム装置。
A vacuum container for storing the sample;
A first column that irradiates the sample with light or a charged particle beam and images the sample based on an image signal from a first detector;
A second image is obtained by irradiating the sample with a charged particle beam based on the image of the sample imaged in the first column and re-imaging or processing the image at the imaging position based on an image signal from a second detector. A charged particle beam device comprising a column,
A rotary stage provided in the vacuum vessel and on which the sample is placed;
A uniaxial movement mechanism provided in the vacuum vessel and uniaxially moving the rotary stage;
The direction of the detection surface of the first detector is toward the center of the first column,
The charged particle beam device according to claim 1, wherein the direction of the detection surface of the second detector is directed to the center of the second column.
請求項1または請求項2の記載において、
前記試料には、観察対象面に凸形が形成されていることを特徴とする荷電粒子ビーム装置。
In the description of claim 1 or claim 2,
The charged particle beam apparatus according to claim 1, wherein a convex shape is formed on the observation target surface of the sample.
JP2011129745A 2011-06-10 2011-06-10 Charged particle beam equipment Expired - Fee Related JP5548652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129745A JP5548652B2 (en) 2011-06-10 2011-06-10 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129745A JP5548652B2 (en) 2011-06-10 2011-06-10 Charged particle beam equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008047027A Division JP4769828B2 (en) 2008-02-28 2008-02-28 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JP2011180153A true JP2011180153A (en) 2011-09-15
JP5548652B2 JP5548652B2 (en) 2014-07-16

Family

ID=44691765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129745A Expired - Fee Related JP5548652B2 (en) 2011-06-10 2011-06-10 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP5548652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169084A (en) * 2018-11-22 2021-07-23 应用材料公司 Method for critical dimension measurement on a substrate, and apparatus for inspecting and cutting electronic devices on a substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056306A (en) * 1999-08-19 2001-02-27 Jeol Ltd Sample surface inspecting device
JP2007018935A (en) * 2005-07-08 2007-01-25 Hitachi High-Technologies Corp Microscope with probe, and probe contact method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056306A (en) * 1999-08-19 2001-02-27 Jeol Ltd Sample surface inspecting device
JP2007018935A (en) * 2005-07-08 2007-01-25 Hitachi High-Technologies Corp Microscope with probe, and probe contact method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169084A (en) * 2018-11-22 2021-07-23 应用材料公司 Method for critical dimension measurement on a substrate, and apparatus for inspecting and cutting electronic devices on a substrate

Also Published As

Publication number Publication date
JP5548652B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP4769828B2 (en) Charged particle beam equipment
JP6668408B2 (en) System and method for SEM overlay measurement
JP4307470B2 (en) Charged particle beam apparatus, sample processing method, and semiconductor inspection apparatus
JP5059297B2 (en) Electron beam observation device
JP4812484B2 (en) Method and apparatus for reviewing defects with voltage contrast
US7202476B2 (en) Charged-particle beam instrument
US7449690B2 (en) Inspection method and inspection apparatus using charged particle beam
US20060163480A1 (en) Inspection method and apparatus using charged particle beam
US20050194535A1 (en) Sample surface inspection method and inspection system
JP4685599B2 (en) Circuit pattern inspection device
JP5386453B2 (en) Charged particle beam apparatus and sample observation method
JP7094782B2 (en) Electron beam inspection device and electron beam inspection method
JP2007018928A (en) Charged particle beam device
JP2020140961A (en) Multi-Beam Scanning Transmission Charged Particle Microscope
JP5548652B2 (en) Charged particle beam equipment
JP4746659B2 (en) Circuit pattern inspection method
JP7030566B2 (en) Pattern inspection method and pattern inspection equipment
JP4827127B2 (en) Inspection device
JP5103253B2 (en) Charged particle beam equipment
JP2008047523A (en) Charged particle beam device and method for inspecting specimen
KR102655288B1 (en) Multi-beam inspection device with single-beam mode
JP4230899B2 (en) Circuit pattern inspection method
JP2010244740A (en) Review device and review method
JP5302934B2 (en) Sample surface inspection method and inspection apparatus
JP2016143532A (en) Charged particle beam device and defect inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R150 Certificate of patent or registration of utility model

Ref document number: 5548652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees