JP2011180113A - Measurement of film thickness, and measurement of refractive index of diamond-like carbon thin film - Google Patents

Measurement of film thickness, and measurement of refractive index of diamond-like carbon thin film Download PDF

Info

Publication number
JP2011180113A
JP2011180113A JP2010067060A JP2010067060A JP2011180113A JP 2011180113 A JP2011180113 A JP 2011180113A JP 2010067060 A JP2010067060 A JP 2010067060A JP 2010067060 A JP2010067060 A JP 2010067060A JP 2011180113 A JP2011180113 A JP 2011180113A
Authority
JP
Japan
Prior art keywords
refractive index
measurement
film thickness
diamond
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010067060A
Other languages
Japanese (ja)
Inventor
Masahiro Nakatsuka
正大 中塚
Yasukazu Izawa
靖和 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPTO ELECTRONICS LAB Inc
OPTO-ELECTRONICS LABORATORY Inc
Original Assignee
OPTO ELECTRONICS LAB Inc
OPTO-ELECTRONICS LABORATORY Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPTO ELECTRONICS LAB Inc, OPTO-ELECTRONICS LABORATORY Inc filed Critical OPTO ELECTRONICS LAB Inc
Priority to JP2010067060A priority Critical patent/JP2011180113A/en
Publication of JP2011180113A publication Critical patent/JP2011180113A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure, with use of near-infrared light, the film thickness and refractive index of a DLC thin film formed on outer and inner surfaces of a substrate of any shape, such as planar shape, cylindrical shape, and free shape. <P>SOLUTION: A product of film thickness and an refractive index is calculated by the vertically reflected interference spectrum measurement, by using as a light source, the range of wavelengths of near-infrared light, in which a diamond-like carbon thin film containing a graphite component is translucent. Furthermore, the refractive index of an identical point on a sample to be subjected to interference measurement is determined, by using an identical light source, to measure a Brewster's angle that is determined solely by the refractive index of a reflective substance, using slope incidence and reflection measuring gauge. As a result, an accurate film thickness is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、ダイアモンド状カーボン薄膜の膜厚と屈折率とを近赤外線などを用いて同時計測できる装置に関する。  The present invention relates to an apparatus capable of simultaneously measuring the film thickness and refractive index of a diamond-like carbon thin film using near infrared rays.

従来の蒸着薄膜の膜厚計測装置には、1)厚さの判った標準試料からの反射光の色比較判断によるもの、2)一部蒸着しない部分を作成して、生じた段差を機械的に、もしくは顕微鏡等によって測定するもの、3)蒸着部部分を凹型球面研磨し、露出したリング形状の薄膜部を顕微鏡検査で膜厚を測定するもの、4)可視光域の光の反射スペクトルに生じる干渉縞の解析から膜厚と屈折率の積を求めるもの、などがある。  The conventional film thickness measuring device for deposited thin film 1) Based on the color comparison of reflected light from a standard sample with a known thickness, 2) Create a part that is not partially deposited, and mechanically create the resulting step. 3) Measuring the thickness of the exposed ring-shaped thin film by microscopic inspection, 4) In the reflection spectrum of light in the visible light region There is one that obtains the product of the film thickness and the refractive index from analysis of the generated interference fringes.

上記の1)の方法は非接触法であるが、標準試料の膜厚は他に示した方法で前もって計測しておく必要があり、色判断で厚さを推定するものであるから、高い測定精度を期待できない。2)と3)の方法は一種の破壊検査であって、測定対象を一部分壊してしまう方法である。4)の方法は非接触法であるが、使用する光の波長域で透明な物質のみを測定することができる。また、測定結果は膜厚と屈折率の積を与えるものであって、その物質の屈折率は別の方法であらかじめ知っておくか、文献値などを用いるものである。  Although the method 1) is a non-contact method, the film thickness of the standard sample needs to be measured in advance by other methods, and the thickness is estimated by color judgment. I cannot expect accuracy. The methods 2) and 3) are a kind of destructive inspection, and are methods that partially destroy the measurement object. Although the method 4) is a non-contact method, only a transparent substance can be measured in the wavelength range of light used. The measurement result gives the product of the film thickness and the refractive index, and the refractive index of the substance is known in advance by another method, or a literature value or the like is used.

ダイアモンド状カーボン薄膜(DLC膜という)は硬度が高く摩擦係数が低いことで知られ、加工用工具や自動車部品、研磨治工具などに蒸着することで、アルミや樹脂など硬度の低いものはもとより超硬物質でも、被蒸着物質の機械的性能を飛躍的に向上させることができる。蒸着された部品の性能を確定する上で、ダイアモンド状カーボン薄膜の厚さ測定は極めて重要である。  Diamond-like carbon thin film (called DLC film) is known for its high hardness and low coefficient of friction. By depositing it on processing tools, automotive parts, polishing jigs, etc. Even with hard materials, the mechanical performance of the material to be deposited can be dramatically improved. Measurement of the thickness of the diamond-like carbon thin film is extremely important in determining the performance of the deposited components.

ダイアモンド状カーボン薄膜は製造法や利用用途によってその組成はさまざまである。一般的にダイアモンド成分とグラファイト成分が共存しており、求められる薄膜性能によって、その混合率を変化させるものである。ダイアモンドは可視域から赤外域まで広いスペクトルで透明である。しかし、実用されるダイアモンド状カーボン薄膜の多くは黒色を呈している。その光学的吸収はグラファイト成分の存在で強い波長依存性を有している。可視光域(400〜800nm)では不透明であることは知られており、本発明の検討過程で近赤外(1000〜2000nm)では半透明であることが判明した。
上記の可視光域の光源を用いた非接触測定法である干渉測定法では不透明膜を測定することができない。
The composition of diamond-like carbon thin film varies depending on the production method and application. Generally, a diamond component and a graphite component coexist, and the mixing ratio is changed depending on the required thin film performance. Diamond is transparent with a broad spectrum from visible to infrared. However, most of the diamond-like carbon thin films that are practically used are black. The optical absorption has a strong wavelength dependence in the presence of the graphite component. It is known that it is opaque in the visible light region (400 to 800 nm), and in the course of studying the present invention, it was found to be translucent in the near infrared (1000 to 2000 nm).
An opaque film cannot be measured by the interference measurement method which is a non-contact measurement method using a light source in the visible light region.

さらに、ダイアモンド状カーボン薄膜は製造法や利用用途によって成分を調整するため、その屈折率はさまざまの値を持つことは知られている。従って上記の干渉計測法による測定では膜厚と屈折率の積を測定するため、正確な膜厚の計算には正確な屈折率の計測が不可欠である。  Furthermore, since a diamond-like carbon thin film adjusts a component according to a manufacturing method or a use application, it is known that the refractive index has various values. Accordingly, since the product of the film thickness and the refractive index is measured in the measurement using the above-described interferometry, accurate refractive index measurement is indispensable for accurate film thickness calculation.

特開2000−352506号公報JP 2000-352506 A

特開2008−020318号公報JP 2008-020318 A

しかしながら、以上に記述した既存の技術によれば、標準試料との比較で測定する方式では精度が出ず、機械的測定や研削による光学測定では試料を破壊してしまい、非接触法である可視域光源による光学干渉測定ではダイアモンド状カーボン薄膜が光を強く吸収するため、測定できない。またダイアモンド状カーボン薄膜の屈折率は生産ロットや使用用途で大きく異なるために干渉測定法での精度が出ない。
そこで、この発明は、ダイアモンド状カーボン薄膜が透明性を有することが判明した近赤外線領域の光源を用いて干渉測定法で膜厚と屈折率の積を求め、なお、簡便な屈折率測定法によって干渉計測法を適用する同一試料点の屈折率を直接計測して、結果として正確な膜厚を与える装置を提供することを課題とする。
However, according to the existing technology described above, accuracy is not achieved by the method of measuring by comparison with the standard sample, and the sample is destroyed by optical measurement by mechanical measurement or grinding, which is a non-contact method. Optical interference measurement using a range light source cannot measure because the diamond-like carbon thin film absorbs light strongly. Moreover, since the refractive index of the diamond-like carbon thin film varies greatly depending on the production lot and usage, the accuracy in the interferometric method cannot be obtained.
Therefore, the present invention obtains the product of the film thickness and the refractive index by an interferometry method using a light source in the near-infrared region where the diamond-like carbon thin film has been found to have transparency. It is an object of the present invention to provide an apparatus that directly measures the refractive index of the same sample point to which the interferometry method is applied and gives an accurate film thickness as a result.

ダイアモンド状カーボン薄膜は製造法や利用用途によってその組成はさまざまである。一般的にダイアモンド成分とグラファイト成分が共存しており、求められる薄膜性能によってはその混合率を変化させるものである。ダイアモンドは可視域から赤外域まで広いスペクトルで透明である。しかし、ダイアモンド状カーボン薄膜の多くは黒色を呈している。その光学的吸収はグラファイト成分の存在で強い波長依存性を有し、可視光域(400〜800nm)で不透明であることは知られているが、近赤外(1000〜2000nm)で半透明であることが判明した。
上記の非接触測定法である干渉測定法において可視光域の光源を用いることができない。
The composition of diamond-like carbon thin film varies depending on the production method and application. Generally, a diamond component and a graphite component coexist, and the mixing ratio is changed depending on the required thin film performance. Diamond is transparent with a broad spectrum from visible to infrared. However, many diamond-like carbon thin films are black. Its optical absorption has a strong wavelength dependence due to the presence of the graphite component, and is known to be opaque in the visible light range (400 to 800 nm), but is translucent in the near infrared (1000 to 2000 nm). It turned out to be.
A light source in the visible light range cannot be used in the interferometric method that is the non-contact measuring method.

さらに、ダイアモンド状カーボン薄膜は製造法や利用用途によって成分を調整するため、その屈折率はさまざまの値を持つ。従って上記の干渉計測法による測定では膜厚と屈折率の積を測定するため、正確な膜厚の計算には正確な屈折率の計測が不可欠である。  Furthermore, since the diamond-like carbon thin film adjusts components depending on the production method and application, its refractive index has various values. Accordingly, since the product of the film thickness and the refractive index is measured in the measurement using the above-described interferometry, accurate refractive index measurement is indispensable for accurate film thickness calculation.

以上の課題を解決するために、第1発明は、干渉測定法において光源にグラファイト成分でも半透明な波長域の近赤外光を利用することを特徴とする垂直反射光干渉スペクトル計測によって膜厚と屈折率の積を計算できる装置である。
また、第2発明は、干渉測定する対象試料の同一点の屈折率を傾斜入反射測定計で、反射物質の屈折率のみで決まるブリュースター角(入射光のp偏光成分の反射率がゼロとなる角度)を測定することで、屈折率を決定できることを特徴とする屈折率計測装置である。
両者を組み合わせることによりダイアモンド状カーボン薄膜の正確な膜厚を計測することを特徴とする計測装置である。
In order to solve the above-described problems, the first aspect of the present invention provides a film thickness by vertical reflected light interference spectrum measurement characterized in that near-infrared light having a semi-transparent wavelength region is used as a light source in the interferometry method. It is a device that can calculate the product of the refractive index.
In addition, the second invention is a tilted reflectometer that determines the refractive index at the same point of the target sample to be subjected to interference measurement, and the Brewster angle determined only by the refractive index of the reflecting material (the reflectance of the p-polarized component of incident light is zero) The refractive index can be determined by measuring the angle).
It is a measuring apparatus characterized by measuring the exact film thickness of a diamond-like carbon thin film by combining both.

第1発明、または第2発明によれば、グラファイトの混合率によらず近赤外線に対する反射干渉波形が容易に収集でき、膜厚と屈折率の積が簡単に求められる。また同一点の屈折率も測定可能であるので、結果として正確な膜厚が計算できる。  According to the first invention or the second invention, the reflection interference waveform for the near infrared rays can be easily collected regardless of the mixing ratio of graphite, and the product of the film thickness and the refractive index can be easily obtained. In addition, since the refractive index at the same point can also be measured, an accurate film thickness can be calculated as a result.

この第1発明の一実施形態を示す。An embodiment of the first invention is shown. この第1発明と第2発明の一実施形態を示す。An embodiment of the first invention and the second invention is shown. この第1発明と第2発明の一実施例を示す斜視図である。It is a perspective view which shows one Example of this 1st invention and 2nd invention.

この第1発明の一実施形態を、図1に示す。測定対象となるダイアモンド状カーボン薄膜(以下DLC膜という)のつけられた基板1に近赤外域の白色光源2からの近赤外光を直接もしくはレンズ3を通して垂直に照射する。DLC膜の表面およびDLC膜の下部にある基板からの反射光をミラー4で分岐して近赤外分光器で反射光のスペクトル強度を計測する。2種類の反射光は分光器内では干渉を生じ反射スペクトルに強度の山と谷を形成する。スペクトルの隣り合う山と山、山と谷、または谷と谷等の波長間隔はDLC膜の厚さと屈折率の積のみによって決まる。従ってこれらの計測値から膜の厚さと屈折率の積を計算することが可能である。  One embodiment of the first invention is shown in FIG. Near-infrared light from a white light source 2 in the near-infrared region is irradiated directly or vertically through a lens 3 onto a substrate 1 on which a diamond-like carbon thin film (hereinafter referred to as DLC film) to be measured is attached. The reflected light from the surface of the DLC film and the substrate below the DLC film is branched by the mirror 4 and the spectral intensity of the reflected light is measured with a near-infrared spectrometer. The two types of reflected light interfere with each other in the spectroscope and form intensity peaks and valleys in the reflected spectrum. The wavelength interval between adjacent peaks and peaks, peaks and valleys, or valleys and valleys in the spectrum is determined only by the product of the thickness of the DLC film and the refractive index. Therefore, it is possible to calculate the product of the film thickness and the refractive index from these measured values.

この第1発明と第2発明の一実施形態を、図2に示す。測定対象はDLC膜のついた基板1である。近赤外域の白色光源2と同軸型複合光ファイバ3、近赤外分光器4によるDLC膜の膜厚と屈折率の積の値の計測実施形態は図1の説明と同様である。図2には第2発明の実施形態も同時に示されている。白色光源5からの光は光学系保持筒7に納められた偏光板9とレンズ8を通して、試料面の垂直方向から入射角qだけ傾いた方向から試料に照射される。偏光板9は白色光源からの光のうちp偏光成分のみを透過するように設置されている。試料基板からの反射光は反射角qの方向に反射されるが、反射の法則によって試料基板の垂直方向から計った入射角と反射角は等しい角度となる(q=q)。反射光は入射光学系と同様で光学系保持筒7に納められたレンズ8と偏光板9を通って近赤外分光器7に導かれ、p偏光成分の反射光強度が測定される。One embodiment of the first and second inventions is shown in FIG. The measurement target is the substrate 1 with a DLC film. The measurement embodiment of the product of the film thickness and refractive index of the DLC film by the near-infrared white light source 2, the coaxial composite optical fiber 3, and the near-infrared spectrometer 4 is the same as the description of FIG. FIG. 2 also shows an embodiment of the second invention. The light from the white light source 5 is applied to the sample through a polarizing plate 9 and a lens 8 housed in the optical system holding cylinder 7 from a direction inclined by an incident angle q 1 from the vertical direction of the sample surface. The polarizing plate 9 is installed so as to transmit only the p-polarized component of the light from the white light source. The reflected light from the sample substrate is reflected in the direction of the reflection angle q 2 , but the incident angle and the reflection angle measured from the vertical direction of the sample substrate by the law of reflection are equal (q 1 = q 2 ). Similar to the incident optical system, the reflected light is guided to the near-infrared spectrometer 7 through the lens 8 and the polarizing plate 9 housed in the optical system holding cylinder 7, and the reflected light intensity of the p-polarized component is measured.

入射角と反射角を同一に保ちながら変化させることのできる駆動系を用いる。たとえば入射角が45度程度から75度程度まで、たとえば2度ごとに反射光強度(分光器は白色光源のスペクトル範囲のうち分光器の検知器が感度を有する全てのスペクトル範囲を測定することができる)を測定する。測定された反射スペクトルから同じ波長における反射強度の角度依存性をプロットすると、反射光強度が最低を示す角度を求めることができる。その角度はブリュースター角と呼ばれているが、基板上のDLC膜の屈折率のみで決まる数値である。従って反射強度が最低を示す角度の値から屈折率を算出することができる。
データ処理をする波長を変えると、屈折率の波長依存性(屈折率分散という)を求めることもできる。
A drive system that can change the incident angle and the reflection angle while maintaining the same angle is used. For example, the incident light angle is about 45 degrees to about 75 degrees, for example, every 2 degrees, the reflected light intensity (the spectroscope can measure all the spectral ranges in which the spectroscope detector has sensitivity within the spectral range of the white light source. Measure). When the angle dependence of the reflection intensity at the same wavelength is plotted from the measured reflection spectrum, the angle at which the reflected light intensity is lowest can be obtained. The angle is called the Brewster angle and is a numerical value determined only by the refractive index of the DLC film on the substrate. Accordingly, the refractive index can be calculated from the value of the angle at which the reflection intensity is lowest.
When the wavelength for data processing is changed, the wavelength dependency of refractive index (referred to as refractive index dispersion) can also be obtained.

第3図に上記の実施形態を実現した一実施例を示す。DLC膜がついた基板は測定試料台1に載せられる。試料台には試料基板の詳細な位置や方向性を確実にするために試料の位置や角度を調整するための駆動機構がつけられている。膜厚測定用の垂直反射光学系(入出射用複合光ファイバ)は膜厚測定用入射・反射光ファイバ取り付けポート2に挿入することで固定出来る。近赤外光源や近赤外分光器は示されていない。屈折率測定用の光学系は屈折率測定用照射光ファイバ取り付けポート3に取り付けられる。ファイバに接続すべき白色光源は示されていない。反射光強度を測定する受光光学系は屈折率測定用反射受光ファイバ取り付けポート4に取り付けられる。ファイバに接続すべき近赤外分光器は示されていない。それぞれの取り付けポートは入射角可変用駆動台5または受光角可変用駆動台6に固定されている。それぞれの駆動台は同時駆動用モータ7に接続された1本のボールネジ駆動系(図の裏面にあるため見えていない)で駆動できる。  FIG. 3 shows an example of realizing the above embodiment. The substrate with the DLC film is placed on the measurement sample stage 1. The sample stage is provided with a driving mechanism for adjusting the position and angle of the sample in order to ensure the detailed position and directionality of the sample substrate. The vertical reflection optical system (incident / exit composite optical fiber) for film thickness measurement can be fixed by inserting it into the incident / reflected optical fiber mounting port 2 for film thickness measurement. No near infrared light source or near infrared spectrometer is shown. The optical system for refractive index measurement is attached to the irradiation optical fiber attachment port 3 for refractive index measurement. The white light source to be connected to the fiber is not shown. The light receiving optical system for measuring the reflected light intensity is attached to the reflective light receiving fiber attachment port 4 for refractive index measurement. The near infrared spectrometer to be connected to the fiber is not shown. Each mounting port is fixed to the incident angle variable driving base 5 or the light receiving angle variable driving base 6. Each drive base can be driven by a single ball screw drive system (not visible because it is on the back side of the figure) connected to the simultaneous drive motor 7.

DLC膜は加工用工具、自動車部品、研磨治具などの表面に蒸着することにより被蒸着物質の機械的性質を飛躍的に向上させるが、十分にその性能を発揮させるためにはその薄膜厚さを精密かつ迅速に測定する事が非常に重要である。この装置は半自動的に精密、簡単に測定でき作業現場における効率化に大きく貢献できる。  The DLC film dramatically improves the mechanical properties of the material to be deposited by depositing it on the surface of processing tools, automobile parts, polishing jigs, etc. It is very important to measure accurately and quickly. This device can semi-automatically make precise and simple measurement and can greatly contribute to the efficiency improvement at the work site.

Claims (4)

波長域1000nmから2100nmの白色光源を用い、ダイアモンド状カーボン薄膜からの反射光のスペクトル干渉効果を利用して膜厚と屈折率の積を計測し、さらに反射干渉法と同じ試料位置のダイアモンド状カーボン薄膜の屈折率をブリュースター角計測法によって測定することを特徴とする装置。Using a white light source in the wavelength range of 1000 nm to 2100 nm, the product of film thickness and refractive index is measured using the spectral interference effect of the reflected light from the diamond-like carbon thin film, and diamond-like carbon at the same sample position as the reflection interference method An apparatus for measuring a refractive index of a thin film by a Brewster angle measurement method. 波長域800nmから2500nmの広帯域白色光源を利用することを特徴とする請求項1記載の装置。2. The apparatus according to claim 1, wherein a broadband white light source having a wavelength range of 800 nm to 2500 nm is used. 屈折率測定用の光源として可視光域(400nmから700nm)もしくは近赤外光域(700nmから2100nm)の偏光した単色光を利用することを特徴とする請求項1記載の装置。2. The apparatus according to claim 1, wherein polarized monochromatic light in a visible light region (400 nm to 700 nm) or a near infrared light region (700 nm to 2100 nm) is used as a light source for refractive index measurement. 屈折率測定用の光源として可視光域(400nmから700nm)もしくは近赤外光域(700nmから2100nm)の偏光したレーザー光を利用することを特徴とする請求項1記載の装置。2. The apparatus according to claim 1, wherein a polarized laser beam in a visible light region (400 nm to 700 nm) or a near infrared light region (700 nm to 2100 nm) is used as a light source for refractive index measurement.
JP2010067060A 2010-03-03 2010-03-03 Measurement of film thickness, and measurement of refractive index of diamond-like carbon thin film Pending JP2011180113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067060A JP2011180113A (en) 2010-03-03 2010-03-03 Measurement of film thickness, and measurement of refractive index of diamond-like carbon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067060A JP2011180113A (en) 2010-03-03 2010-03-03 Measurement of film thickness, and measurement of refractive index of diamond-like carbon thin film

Publications (1)

Publication Number Publication Date
JP2011180113A true JP2011180113A (en) 2011-09-15

Family

ID=44691749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067060A Pending JP2011180113A (en) 2010-03-03 2010-03-03 Measurement of film thickness, and measurement of refractive index of diamond-like carbon thin film

Country Status (1)

Country Link
JP (1) JP2011180113A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101557932B1 (en) 2013-10-02 2015-10-20 주식회사 포스코 Device for measuring coating weight of phosphate and measuring method using the same
CN106932363A (en) * 2017-03-10 2017-07-07 南京市计量监督检测院 A kind of diamond purity detecting system and method
WO2020261745A1 (en) * 2019-06-26 2020-12-30 株式会社Sumco Semiconductor wafer thickness measurement method and semiconductor wafer thickness measurement system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101557932B1 (en) 2013-10-02 2015-10-20 주식회사 포스코 Device for measuring coating weight of phosphate and measuring method using the same
CN106932363A (en) * 2017-03-10 2017-07-07 南京市计量监督检测院 A kind of diamond purity detecting system and method
WO2020261745A1 (en) * 2019-06-26 2020-12-30 株式会社Sumco Semiconductor wafer thickness measurement method and semiconductor wafer thickness measurement system
JP2021004794A (en) * 2019-06-26 2021-01-14 株式会社Sumco Method and system for measuring thickness of semiconductor wafers

Similar Documents

Publication Publication Date Title
KR100947464B1 (en) Apparatus for measuring thickness
JP4863979B2 (en) Ellipsometry measurement method and apparatus
TWI429896B (en) Ellipsometric metrology tool and method of monitoring a babrication process
KR101815325B1 (en) System for directly measuring the depth of a high aspect ratio etched feature on a wafer
JPS6257936B2 (en)
CN1131741A (en) Optical gap measuring apparatus and method
JP2010066268A5 (en)
JP2007532931A (en) Beam profile composite reflectivity system and method for thin film and critical dimension measurement
US20170254751A1 (en) High-sensitivity metamaterial nano-sensing system with ultra-narrow line width spectral response
US7864318B2 (en) Spectroscopic ellipsometer and ellipsometry
JPH06317408A (en) Determination of characteristic value of transparent layer using polarization analysis method
JP2011180113A (en) Measurement of film thickness, and measurement of refractive index of diamond-like carbon thin film
Bai et al. A new method to measure spectral reflectance and film thickness using a modified chromatic confocal sensor
Seo et al. 3D multi-layered film thickness profile measurements based on photometric type imaging ellipsometry
JP2013088358A (en) Interference type film thickness meter
JP3520379B2 (en) Optical constant measuring method and device
Becker 29‐3: High‐Resolution Scatter Analysis of Anti‐Glare Layer Reflection
TWI475210B (en) Optical detection apparatus
WO2014038601A1 (en) Device for measuring distribution of coating film surface roughness
Schröder et al. Sophisticated light scattering techniques from the VUV to the IR regions
CN103185638B (en) Broadband polarization spectrograph and optical measuring system
RU2660764C2 (en) Sensor based on surface plasmonic resonance with element of plane optics
Zhou et al. Effect of spectral power distribution on the resolution enhancement in surface plasmon resonance
Ota Investigation of the structure of water at hydrophobic and hydrophilic interfaces by angle-resolved TIR Raman spectroscopy
Schröder et al. Using light scattering to investigate damage-relevant imperfections of surfaces, coatings, and bulk materials