JP2011180112A - Radioactive composition raw material, radioactive product, and health facility using the same - Google Patents

Radioactive composition raw material, radioactive product, and health facility using the same Download PDF

Info

Publication number
JP2011180112A
JP2011180112A JP2010063265A JP2010063265A JP2011180112A JP 2011180112 A JP2011180112 A JP 2011180112A JP 2010063265 A JP2010063265 A JP 2010063265A JP 2010063265 A JP2010063265 A JP 2010063265A JP 2011180112 A JP2011180112 A JP 2011180112A
Authority
JP
Japan
Prior art keywords
radioactive
radiation
composition
formation
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010063265A
Other languages
Japanese (ja)
Inventor
Yutaka Tsuchiya
豊 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010063265A priority Critical patent/JP2011180112A/en
Publication of JP2011180112A publication Critical patent/JP2011180112A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Medical Bathing And Washing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radioactive composition raw material and a radioactive product, capable of sufficiently generating radiation energy within a range where the radiation dose is permitted in respect of safety, and to provide a health facility using them. <P>SOLUTION: The material includes 5-20 wt.% of metal powder of copper group classified according to the element periodic table, which is added to ore fine powder of a natural radiation nuclide, or a metal layer of them is disposed. The active effect is improved by gas and liquid affected by α rays, β rays and γ rays released from radium. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、放射線を利用して岩盤浴、水の活性、健康施設等に使用する、放射性組成物原材料及び放射性形成物とそれを用いた健康施設に関するものである。  TECHNICAL FIELD The present invention relates to radioactive composition raw materials and radioactive formations used for bedrock baths, water activities, health facilities, etc. using radiation and health facilities using the same.

健康促進のためラドン温泉に入浴することや、ラドンが放出される岩盤上で放射線を利用する設備などがあり、これらの効果を利用した技術が提案されている。  To promote health, bathing in radon hot springs and facilities that use radiation on the rock mass where radon is released have been proposed, and technologies using these effects have been proposed.

特許文献1には、陶板又は陶板素材の表面に30%〜60%(重量)の天然ラジウム微粉末と、接着用泥奨との混合物よりなる放射層を設け、該放射層の表面に被覆率5%〜60%施釉して釉薬に吸収される放射線を可及的に少なくすると共に、ラジウム微粒子の剥離を未然に防止するため高温焼成した、放射層の付着力が大きく、強固に固定した放射性陶板が提案されている。この方法は、放射性微粉末の削減効果が高い点で優れているが、釉薬により放射線量が減少する問題点がある。  In Patent Document 1, a radiation layer made of a mixture of 30% to 60% (by weight) natural radium fine powder and an adhering mud is provided on the surface of a ceramic plate or a ceramic plate material, and the coverage is provided on the surface of the radiation layer. 5% to 60% glazed to absorb as little radiation as possible in the glaze and to prevent the radium fine particles from being peeled off. A ceramic plate has been proposed. This method is excellent in that the effect of reducing radioactive fine powder is high, but there is a problem that the radiation dose is reduced by glaze.

特許文献2には、台の上に複数列にわたり、複数個のジルコン系セラミックスを埋め込んだ構造を有する放射線岩盤浴施設であって、好ましくは、ジルコン系セラミックスの形状が円板状、四角柱状であり、より好ましくは台に埋め込む円板状ジルコン系セラミックス乃至四角柱状ジルコンセラミックスの上部縁が、丸めが施されており、台がコンクリート、大理石などの岩石やタイルで覆ったコンクリートである。そして、好ましくは、台に埋め込むジルコン系セラミックスの列として、2〜10列であり、台に埋め込むジルコン系セラミックスの1列あたりの個数として、5〜20個である放射線岩盤浴施設が提案されている。この方法は、ジルコン系セラミックスの空気に接している面に被覆がないので放射線量が減少しない点で優れているが、多量の放射性物質を必要とする問題点がある。  Patent Document 2 discloses a radiation bedrock facility having a structure in which a plurality of zircon ceramics are embedded in a plurality of rows on a table, and preferably the zircon ceramics are disc-shaped or square columnar. More preferably, the upper edge of the disk-shaped zircon ceramic or the rectangular columnar zircon ceramic embedded in the table is rounded, and the table is concrete covered with rocks or tiles such as concrete or marble. And, preferably, there are proposed 2 to 10 rows of zircon ceramics to be embedded in the table, and 5 to 20 radiation bedrock bath facilities per row of zircon ceramics to be embedded in the table. Yes. This method is excellent in that the radiation dose is not reduced because the surface of the zircon ceramic in contact with air is not covered, but there is a problem that a large amount of radioactive material is required.

特許文献3には、ラジウム鉱石を主たる効能成分とし、シリカ、麦飯石、トルマリンのうち少なくとも一を従たる効能成分とする岩盤浴用の石板と、ケース体の上に金属板で電磁波を遮断した電熱ヒータを配し、この電熱ヒータの上に岩盤浴用の石板を配した岩盤浴用ユニットが提案されている。この石板も空気に接している面に被覆がないので放射線量が減少しない点で優れているが、多量の放射性物質を必要とする問題点がある。また、石板の熱係数が低いため温めるまでに時間がかかる問題点もある。  Patent Document 3 includes a stone plate for a rock bath that uses radium ore as a main active ingredient and at least one of silica, barley stone, and tourmaline, and an electric heat that cuts off electromagnetic waves with a metal plate on the case body. There has been proposed a rock bath unit in which a heater is arranged and a stone plate for a rock bath is arranged on the electric heater. This stone plate is also excellent in that the radiation dose is not reduced because there is no coating on the surface in contact with air, but there is a problem that a large amount of radioactive material is required. Moreover, since the thermal coefficient of a stone board is low, there also exists a problem which takes time to warm up.

特許文献4には、岩盤ユニット板は2a、2b、2cの3枚に分割されてヒーターユニット1の窪みの中に嵌め込まれている。岩盤ユニット板の底面はヒーターユニット1表層部の面状電気ヒーターと面接触しており、温度コントローラー1dにより任意の温度に加温制御される。岩盤ユニット板が適度に加温されると岩盤ユニット板の構成素材であるラジウム鉱石等から遠赤外線の放出、更にはアルファ線、ベータ線、ガンマー線等が微量放出される可搬式簡易ラジウム岩盤浴ベッドが提案されている。この岩盤ユニット板では、鉱石が半没の形で埋め込み配置されているので放射線量が減少しない点で優れているが、見栄えが損なわれる問題点がある。また、石板の熱係数が低いため温めるまでに時間がかかる問題点もある。  In Patent Document 4, the rock unit plate is divided into three pieces of 2a, 2b, and 2c and is fitted into the recess of the heater unit 1. The bottom surface of the bedrock unit plate is in surface contact with the surface electric heater on the surface layer of the heater unit 1 and is heated to an arbitrary temperature by the temperature controller 1d. Portable simple radium bedrock bath that emits far infrared rays from radium ore, which is the material of the bedrock unit plate, and also emits a small amount of alpha rays, beta rays, gamma rays, etc. A bed has been proposed. This bedrock unit board is superior in that the ore is embedded and arranged in a semi-submerged form so that the radiation dose does not decrease, but there is a problem that the appearance is impaired. Moreover, since the thermal coefficient of a stone board is low, there also exists a problem which takes time to warm up.

特許文献5には、温熱放射線浴用陶板100をセラミック原料に炭粉末を混練し、焼成して板状に形成する。また、温熱放射線浴用陶板100の平面に複数の突起部120を設けた温熱放射線浴用陶板及び核温熱放射線浴用陶板の設置ケースが提案されている。この方法は、温熱放射線俗の環境下における正負のイオンバランスを整え、平面に設けた複数の突起部より、指圧効果をより向上させることができる点で優れているが、放射線が有効に利用されていない問題点がある。  In Patent Document 5, a ceramic plate for a thermal radiation bath 100 is formed into a plate shape by kneading carbon powder into a ceramic raw material and firing it. In addition, an installation case of a thermal radiation bath ceramic plate and a nuclear thermal radiation bath ceramic plate in which a plurality of protrusions 120 are provided on the plane of the thermal radiation bath ceramic plate 100 has been proposed. This method is superior in that the positive / negative ion balance in the environment of thermal radiation is adjusted and the acupressure effect can be improved more than the plurality of protrusions provided on the plane, but radiation is effectively used. There is no problem.

特許第3754951号公報  Japanese Patent No. 3754951 特開2006−006507号公報  JP 2006-006507 A 特開2007−006967号公報  JP 2007-006967 A 特開2007−117682号公報  JP 2007-117682 A 実用新案登録第3120715号公報  Utility Model Registration No. 3120715

しかしながら上記従来の技術においては、α線が放出し難い構造となっているため、α線の放射エネルギーを十分に活用できないという課題を有していた。  However, the conventional technology has a structure in which α rays are hard to be emitted, and thus has a problem that the radiation energy of α rays cannot be fully utilized.

また、放射線による負の空気イオン発生は、電離現象を考えれば、同量の正の空気イオンを発生しているはずである。しかし、通常利用されている放射線の量は天然のバックグラウンドと同程度であり、空気イオンの発生量は微量である。もしも大量の空気イオンを発生させようとしたら強い放射線が必要になり危険を伴う、そして放射線量が安全性の面で許容される範囲内では放射エネルギーを十分に発揮できないという課題を有していた。  In addition, the generation of negative air ions due to radiation should generate the same amount of positive air ions in view of the ionization phenomenon. However, the amount of radiation that is normally used is comparable to the natural background, and the amount of air ions generated is very small. If a large amount of air ions are to be generated, strong radiation is required, which is dangerous, and there is a problem that the radiation energy cannot be sufficiently exhibited within the range where the radiation dose is acceptable in terms of safety. .

そこで本発明は、α線を放出する核変換(α壊変)すなわち、ラジウムの同位元素Raがα線を放出しRnのラドンの放射性気体に変換されたとき、ラドンの放射性気体が銅属の金属による反応性を示すこと、γ線の電磁波は波動と粒子の両方の性質をもつ(同様に、粒子も波動の性質をもつ)ことに着目し、放射線量が安全性の面で許容される範囲内において、放射エネルギーを十分に発揮できる放射性組成物原材料及び放射性形成物とそれを用いた健康施設を提供することを課題とする。  Therefore, the present invention relates to nuclear transformation (α decay) that emits α-rays, that is, when radium isotope Ra emits α-rays and is converted into a radioactive gas of radon of Rn, the radioactive gas of radon is a metal of the copper group. Focusing on the fact that the γ-ray electromagnetic wave has both wave and particle properties (similarly, the particle also has wave properties), the radiation dose is acceptable in terms of safety. It is an object of the present invention to provide a radioactive composition raw material and a radioactive formation that can sufficiently exhibit radiant energy, and a health facility using the same.

課題を解決するため、放射性物質を含む天然鉱石と導電体金属との関係を調査した結果、オーストリアのバドガシュタインの廃坑は銀鉱山、銅スクロドフスカ石は銅と珪石と酸化ウランの結晶化した鉱物であり、元素の周期表で分類されたその属の一般名は銅族であり、イオンの反応性や抗菌性や電磁波共振に応用できる物質族として残った。  In order to solve the problem, as a result of investigating the relationship between natural ores containing radioactive materials and conductor metals, the abandoned mine of Badgastein in Austria is a silver mine, and the copper scrodovska stone is a crystallized mineral of copper, silica and uranium oxide The general name of the genus classified in the periodic table of elements is the copper group, and it remained as a substance group applicable to ion reactivity, antibacterial properties, and electromagnetic resonance.

上記の課題を達成するため、請求項1に記載した放射性組成物原材料は、放射線を放出する組成物の原材料合成において、ウラン系列又は、トリウム系列の放射性物質を含む天然鉱石を砂状に粉砕し、放射線量の高い部分を選択したものを補助剤と混ぜ、補助剤と共に1μm〜10μmに加工した鉱石粉末とし、鉱石粉末に元素の周期表で分類された銅族の金属を1μm〜10μmに加工した金属粉末を重量比で5%から20%添加し混合粉末材料とし、混合粉末内の鉱石粉末から放出されるα線、β線、γ線と銅属の金属が放出する金属イオンとの相乗効果を用い活性効果を高めることを特徴としている。  In order to achieve the above object, the radioactive composition raw material according to claim 1 is obtained by pulverizing natural ore containing a uranium series or thorium series radioactive material into sand in the synthesis of the raw material of the composition that emits radiation. A high radiation dose selected part is mixed with an auxiliary agent, and the ore powder is processed to 1 μm to 10 μm together with the auxiliary agent, and the copper group metal classified by the periodic table of elements is processed into the ore powder to 1 μm to 10 μm. 5% to 20% by weight ratio of the resulting metal powder is used as a mixed powder material, and α, β, γ rays emitted from the ore powder in the mixed powder and the metal ions released from the metal of the copper group It is characterized by enhancing the active effect using effects.

この発明に使用する鉱石粉末は、ウラン系列又は、トリウム系列の天然放射線核種の鉱石を粉末化したもので、高エネルギーの電磁波(γ線)や、運動エネルギーをもつ電子(β線)、原子核(α線)や中性子線などの粒子を発生し、それを体内に吸収したり吸気するときに、体内物質中の原子や分子に作用して電離したり熱エネルギーを与える能力を持っている。  The ore powder used in the present invention is a powder of ore of the uranium series or thorium series of natural radionuclides, and is a high energy electromagnetic wave (γ ray), an electron with kinetic energy (β ray), an atomic nucleus ( It generates particles such as alpha rays and neutrons, and when they are absorbed or inhaled into the body, they have the ability to act on atoms and molecules in the body material to ionize and give thermal energy.

そして銅族の金属粉末と混合粉末とすることで、鉱石から放射されるエネルギーにより電離作用や熱エネルギーを得た活性効果が、鉱石微粉末中に添加された元素の周期表で分類された銅族の金属(金(Au)、銀(Ag)銅(Cu))の持つ金属イオンと反応を起こし、放射線量が安全性の面で許容される範囲内においても活性効果を十分に発揮するのである。  And, by making it a mixed powder with copper group metal powder, the active effect obtained by the ionizing action and thermal energy by the energy radiated from the ore is the copper classified by the periodic table of the elements added in the ore fine powder Because it reacts with metal ions of group metals (gold (Au), silver (Ag) copper (Cu)), and the active effect is sufficiently exerted even within the range where the radiation dose is allowed in terms of safety. is there.

請求項2に記載した放射性形成物は、放射線を放出する組成物の形成において、ウラン系列又は、トリウム系列の放射性物質を含む天然鉱石を砂状に粉砕し、放射線量の高い部分を選択したものを補助剤と混ぜ、補助剤と共に1μm〜10μmに加工した鉱石粉末を原材料として用い、陶器、磁器、セラミック材料に重量比で15%から25%を含む混合物として焼成し、5μSv/h〜10μSv/hの放射線量の焼成体を製造し、焼成体の表面や焼成体と焼成体の間に元素の周期表で分類された銅族の金属部位や金属帯を設け、鉱石粉末から放出されるα線、β線、γ線に影響を受けた気体や液体の物質が銅族の金属が放出する金属イオンとの相乗効果により活性効果を高めることを特徴としている。  In the formation of the radiation-emitting composition, the radioactive formation according to claim 2 is obtained by pulverizing natural ore containing radioactive material of uranium series or thorium series into sand and selecting a portion having a high radiation dose. Is mixed with an auxiliary agent, and ore powder processed to 1 μm to 10 μm together with the auxiliary agent is used as a raw material, and it is fired as a mixture containing 15% to 25% by weight in ceramics, porcelain and ceramic materials, and 5 μSv / h to 10 μSv / produced a fired body having a radiation dose of h, and provided with a copper group metal part or metal band classified by the periodic table of elements between the surface of the fired body or between the fired body and the fired body, and released from the ore powder. It is characterized in that the active effect is enhanced by a synergistic effect of a metal ion released from a copper group metal with a gas or liquid substance affected by a ray, β ray or γ ray.

この発明においては、補助剤と共に加工した鉱石粉末だけを用いて焼成体を形成し、焼成体から放出される各種の放射エネルギーと、焼成体の表面や焼成体と焼成体の間に設けた銅族の金属(金(Au)、銀(Ag)銅(Cu))の持つ金属イオンと反応を起こし、放射線量が安全性の面で許容される範囲内においても活性効果を十分に発揮するのである。  In the present invention, a fired body is formed using only the ore powder processed together with the auxiliary agent, and various radiant energy released from the fired body, and the surface of the fired body and the copper provided between the fired body and the fired body. Because it reacts with metal ions of group metals (gold (Au), silver (Ag) copper (Cu)), and the active effect is sufficiently exerted even within the range where the radiation dose is allowed in terms of safety. is there.

請求項3に記載した放射性形成物は、放射線を放出する組成物の形成において、マグネシアセメント系セルフレベリング材を混練、流し込み後、表面を均し自然乾燥させた基礎材上面に、下地調整剤を塗布し、マグネシアセメント系セルフレベリング材に重量比で15%から25%の請求項1の放射性組成物原材料を混合混練、流し込み後、表面を均し自然乾燥させて合体形成し、形成物上面において5μSv/h〜10μSv/hの放射線量とすることを特徴としている。  In the formation of a composition that emits radiation, the radioactive formed material according to claim 3 is prepared by mixing a magnesia cement-based self-leveling material, pouring the surface, leveling the surface, and naturally drying the base material on the upper surface of the base material. After coating, mixing and kneading and pouring the radioactive composition raw material of claim 1 in a weight ratio of 15% to 25% into a magnesia cement-based self-leveling material, the surfaces are leveled and naturally dried to form a coalescence. The radiation dose is 5 μSv / h to 10 μSv / h.

この発明においては、二層構造にすることで放射性組成物原材料の使用量の削減を可能にすると共に、従来のセメントより強度や面粗度の点で有利なマグネシアセメント系セルフレベリング材(商品名:MGレベラー)を用い焼成を省いた形成物で、磁器やセラミック材料による焼成体と遜色のない強度と質感を備えるのである。  In the present invention, the use of the raw material of the radioactive composition can be reduced by adopting a two-layer structure, and a magnesia cement-based self-leveling material (trade name) which is advantageous in terms of strength and surface roughness compared to conventional cement. : An MG leveler), and a fired product made of porcelain or a ceramic material.

請求項4に記載した放射性形成物は、放射線を放出する組成物の形成において、請求項1の放射性組成物原材料を用い、ポリエステル樹脂に重量比で1%から5%を混練し、薄膜のポリエステル樹脂形成物を作り、薄膜のポリエステル樹脂形成物に、ガラス繊維にポリエステル樹脂を浸透させFRP層を形成し硬化させたFRP積層板とし、放射線量5μSv/h〜10μSv/hを確保しポリエステル樹脂層が薄膜でも充分な強度を有することを特徴としている。  According to a fourth aspect of the present invention, there is provided a radioactive formed material, wherein the radioactive composition raw material of the first aspect is used in the formation of a composition that emits radiation, and a polyester resin is kneaded in a weight ratio of 1% to 5%. A resin molded product is made, and an FRP laminate is formed by infiltrating a polyester resin into a thin film polyester resin to form a FRP layer and curing the polyester resin layer, and a radiation dose of 5 μSv / h to 10 μSv / h is secured. Is characterized by sufficient strength even in a thin film.

この発明においては、樹脂形成物が、高強度、軽量、耐候性、電波透過性、電気絶縁性、断熱性に大変優れているため、外層が薄膜のポリエステル樹脂層とすることが可能となり、放射性組成物原材料の使用量を大幅に削減できる。  In this invention, since the resin formed product is very excellent in high strength, light weight, weather resistance, radio wave transmission, electrical insulation, and heat insulation, the outer layer can be a thin polyester resin layer, and the radioactive material The amount of the composition raw material used can be greatly reduced.

請求項5に記載した放射性形成物は、放射線を放出する組成物の形成において、請求項1の放射性組成物原材料を用い、未硬化のプラスチック素材に5%から10%を混練し、成型機により形成し、5μSv/h〜10μSv/hの放射線量とすることを特徴としている。  According to a fifth aspect of the present invention, in the formation of a composition that emits radiation, the radioactive formed material described in claim 5 is prepared by kneading 5% to 10% of an uncured plastic material with the raw material of the radioactive composition of claim 1 and using a molding machine. It is characterized by having a radiation dose of 5 μSv / h to 10 μSv / h.

この発明においては、混合粉末を未硬化のプラスチック素材に混練し、成型機により製造すれば板状の製品やブロック状の製品や複雑な形状の製品が容易に制作でき、強度的にも優れた製品の製造が可能となり、量産効果も期待できる。  In this invention, if the mixed powder is kneaded into an uncured plastic material and manufactured by a molding machine, a plate-like product, a block-like product or a complex-shaped product can be easily produced, and the strength is also excellent. Products can be manufactured, and mass production can be expected.

請求項6に記載した放射性形成物は、放射線を放出する組成物の形成において、請求項1の放射性組成物原材料を用い、同じ質量の混合粉末層を複数形成し、各混合粉末層の距離が電磁波放射線のγ線の波長である0.00124nmに共振関係の最小値や最大値の距離に設定し、γ線の影響を減少させたり、増大させたりすることを特徴としている。  According to a sixth aspect of the present invention, in the formation of the composition that emits radiation, the radioactive formed material according to claim 6 uses the radioactive composition raw material of claim 1 to form a plurality of mixed powder layers having the same mass, and the distance between the mixed powder layers is It is characterized in that the influence of γ rays is reduced or increased by setting the distance of the minimum or maximum resonance relationship to 0.00124 nm which is the wavelength of γ rays of electromagnetic radiation.

この発明においては、混合粉末層が同じ質量の混合粉末層と混合粉末層を複数形成しているため、各混合粉末層の距離が電磁波放射線のγ線の波長である0.00124nmに共振関係の距離や反共振関係の距離に設定される。電磁波放射線は電波や光と同じ電磁波の一種であり、それらにくらべて波長が非常に短いため扱い難い欠点があるが、波長が短いのでエネルギーが非常に大きい利点もある。そこで、γ線の電磁波は波動と粒子の両方の性質をもつ(同様に、粒子も波動の性質をもつ)ことに着目し、共振による増幅効果を用い活性効果を更に高めたり、γ線の影響を避けたい場合には反共振によりγ線の影響を減少させ、放射線量が安全性の面で許容される範囲内において目的に応じた効果を十分に発揮するのである。  In the present invention, since the mixed powder layer forms a plurality of mixed powder layers and mixed powder layers having the same mass, the distance between the mixed powder layers is 0.00124 nm, which is the wavelength of γ rays of electromagnetic radiation. It is set to the distance or the distance of the anti-resonance relationship. Electromagnetic radiation is a kind of electromagnetic waves that are the same as radio waves and light. Compared to these, electromagnetic waves have a very short wavelength and are difficult to handle, but they also have the advantage that the energy is very large because the wavelengths are short. Therefore, paying attention to the fact that γ-ray electromagnetic waves have the properties of both waves and particles (similarly, particles also have the properties of waves). When it is desired to avoid this, the effect of γ rays is reduced by anti-resonance, and the effect according to the purpose is sufficiently exhibited within the range in which the radiation dose is allowed in terms of safety.

請求項7に記載した放射性形成物は、放射線を放出する組成物の形成において、請求項1の放射性組成物原材料を用い、マグネシアセメント系セルフレベリング材に重量比で15%から25%を含む混合物にして、混練、流し込み時に請求項2、請求項4、請求項5、請求項6の放射性形成物をマグネシアセメント系セルフレベリング材表面と同一高さになるように嵌め込み、表面を均し自然乾燥させて正方形又は長方形に形成し、全ての面で5μSv/h〜10μSv/hの放射線量とすることを特徴としている。  A radioactive composition according to claim 7 is a mixture containing 15% to 25% by weight of magnesia cement-based self-leveling material in the formation of a composition that emits radiation, using the radioactive composition raw material of claim 1. Then, during kneading and pouring, the radioactive formed product of claim 2, claim 4, claim 5 and claim 6 is fitted so as to have the same height as the surface of the magnesia cement-based self-leveling material, and the surface is smoothed and naturally dried. It is formed into a square or a rectangle, and the radiation dose is 5 μSv / h to 10 μSv / h on all surfaces.

この発明においては、放射性形成物を収納する台を分割構造とし施工性を改善すると共に、台からも同量の放射線を発生させ効果の安定化を図っている。  In the present invention, the base for storing the radioactive material is divided to improve the workability, and the same amount of radiation is generated from the base to stabilize the effect.

請求項8に記載した健康施設は、人間が収容可能な容積を有する筒状の分割可能な温浴カプセルに、スライド窓を設け、容器内底部に温水を流すパイプを配置し、パイプ上部に請求項7の基礎台付放射性形成物を敷き詰めたことを特徴としている。  The health facility according to claim 8 is provided with a sliding window in a cylindrical splittable warm bath capsule having a volume that can be accommodated by a human, a pipe through which warm water flows is arranged at the bottom of the container, and the upper part of the pipe. It is characterized by laying down 7 radioactive materials with foundations.

この発明においては、温泉地にある岩盤浴を手軽に体験していただく設備として、移動可能な運用形態とするため筒状のカプセル本体を、上下2分割に分離できる構造とし、狭所にも運び入れることを可能にしている。また、カプセル本体を2分割に分離できることにより、温水パイプユニットや請求項7の放射性形成物を搬入後に配置できるため、重量の分散が可能となり、移動による運用が楽にできる。  In this invention, as a facility that allows you to easily experience a bedrock bath in a hot spring resort, the cylindrical capsule body can be separated into two parts, upper and lower, so that it can be moved, and it can be transported to narrow spaces. It is possible to put. Further, since the capsule main body can be separated into two parts, the hot water pipe unit and the radioactive formed product of claim 7 can be arranged after being carried in, so that the weight can be dispersed and the operation by movement can be facilitated.

請求項9に記載した健康施設は、人間が収容可能な容積を有するドーム型又は箱型の密閉された居住空間に、開平扉を設け、居住空間内立ち上がり980mmの位置までの壁面部と底面部とに温水を流すパイプを配置し、請求項1の放射性組成物原材料を用い、モルタルに重量比で15%から25%を含む混合物としたものを混練し、室内空間上壁面部から底面に至るまでの壁面に岩盤のように付着させると共に、底面部の温水を流すパイプ上部に請求項7の基礎台付放射性形成物を敷き詰めたことを特徴としている。  A health facility according to claim 9 is provided with a flat door in a dome-shaped or box-shaped sealed living space having a volume that can be accommodated by a human being, and a wall surface portion and a bottom surface portion up to a position of 980 mm rising in the living space. A pipe for flowing warm water is arranged, and the raw material of the radioactive composition according to claim 1 is used to knead a mixture containing 15% to 25% by weight in a mortar to reach the bottom surface from the upper wall surface of the indoor space. It is characterized in that it is attached to the wall surface up to a wall like a rock, and the radioactive material with a base of claim 7 is laid down on the upper part of the pipe through which hot water flows at the bottom.

この発明においては、坑道浴を手軽に体験していただく設備として、内部雰囲気を坑道に見たてるため、モルタル壁面を岩盤のように形成してる点が請求項8に記載した健康施設と異なるが、温水パイプユニットや請求項7の放射性形成物の施工性は、請求項8同様に良好な物とすることができる。  In this invention, as a facility that allows you to experience mine bathing easily, the mortar wall surface is formed like a rock in order to make the inner atmosphere look like a mine shaft, but the health facility described in claim 8 is different. The workability of the hot water pipe unit and the radioactive formed product of claim 7 can be as good as that of claim 8.

請求項10に記載した放射性形成物は、放射線を放出する組成物の加温体形成において、請求項1の放射性組成物原材料を用い、陶器材料に重量比で15%から25%を含む混合物として、セラミックヒーターの全面を覆い再焼成し、5μSv/h〜10μSv/hの放射線量を確保したことを特徴としている。  The radioactive composition according to claim 10 is a mixture containing 15% to 25% by weight of the earthenware material using the radioactive composition raw material of claim 1 in the formation of a warming body of the composition that emits radiation. The entire surface of the ceramic heater was covered and refired to ensure a radiation dose of 5 μSv / h to 10 μSv / h.

この発明においては、即応性にかける放射性形成物の加温特性を改善する目的として、室内空気をラドンガスを放出しながら加温する用途とラドンを含む水蒸気で湿度を制御する異なった2っの用途に使用することができる。  In the present invention, for the purpose of improving the heating characteristics of the radioactive material subjected to rapid response, the indoor air is heated while releasing radon gas, and the two different uses for controlling the humidity with water vapor containing radon. Can be used for

以上説明したように請求項1の発明によれば、銅族の金属粉末と混合粉末とすることで、鉱石から放射されるエネルギーにより電離作用や熱エネルギーを得た活性効果が、鉱石微粉末中に添加された元素の周期表で分類された銅族の金属(金(Au)、銀(Ag)銅(Cu))の持つ金属イオンと反応を起こし、放射線量が安全性の面で許容される範囲内では放射エネルギーを十分に発揮できないという課題を解決できる。  As described above, according to the invention of claim 1, by using a mixed powder with a copper group metal powder, the activation effect obtained by the ionizing action and the heat energy by the energy radiated from the ore is obtained in the fine ore powder. It reacts with metal ions of copper group metals (gold (Au), silver (Ag), copper (Cu)) classified in the periodic table of the elements added to the element, and the radiation dose is allowed in terms of safety. The problem that the radiant energy cannot be sufficiently exhibited within the range can be solved.

請求項2の発明によれば、焼成体から放出される各種の放射エネルギーと、焼成体の表面や焼成体と焼成体の間に設けた銅族の金属(金(Au)、銀(Ag)銅(Cu))の持つ金属イオンと反応を起こし、放射線量が安全性の面で許容される範囲内では放射エネルギーを十分に発揮できないという課題を解決できる。  According to the invention of claim 2, various radiant energy released from the fired body, and a copper group metal (gold (Au), silver (Ag)) provided on the surface of the fired body or between the fired body and the fired body. It can react with the metal ions of copper (Cu), and can solve the problem that the radiation energy cannot be sufficiently exhibited within a range in which the radiation dose is allowed in terms of safety.

請求項3の発明によれば、二層構造にすることで放射性組成物原材料の使用量の削減を可能にすると共に、焼成工程を経なくても磁器やセラミック材料による焼成体と遜色のない強度と質感を備えることができる。  According to the invention of claim 3, by using a two-layer structure, it is possible to reduce the amount of the raw material used for the radioactive composition, and the strength comparable to that of a fired body made of porcelain or ceramic material without passing through a firing step. And can have a texture.

請求項4の発明によればFRP層が、高強度、軽量、耐候性、電波透過性、電気絶縁性、断熱性に大変優れているため、上層を薄膜のポリエステル樹脂層にでき、放射性組成物原材料の使用量を大幅に削減できる。  According to the invention of claim 4, since the FRP layer is very excellent in high strength, light weight, weather resistance, radio wave transmission, electrical insulation and heat insulation, the upper layer can be a thin polyester resin layer, and the radioactive composition The amount of raw materials used can be greatly reduced.

請求項5の発明によれば、成型機により製造が可能となり、板状の製品やブロック状の製品や複雑な形状の製品が容易に制作でき、量産効果も期待できる。  According to the invention of claim 5, it is possible to manufacture with a molding machine, a plate-like product, a block-like product or a product having a complicated shape can be easily produced, and a mass production effect can be expected.

請求項6の発明によれば、γ線の電磁波は波動と粒子の両方の性質をもつことに着目し、共振関係の最小値や最大値の距離に設定し、γ線の影響を減少させたり、増大させたり設定でき、目的に応じた効果を十分に発揮できる。  According to the invention of claim 6, paying attention to the fact that γ-ray electromagnetic waves have both wave and particle properties, the minimum and maximum distances of the resonance relationship are set to reduce the influence of γ-rays. It can be increased or set, and the effect according to the purpose can be sufficiently exhibited.

請求項7の発明によれば、正方形又は長方形に形成した分割構造とし施工性を改善すると共に、台からも同量の放射線を発生させることにより効果の安定化を図れる。  According to the seventh aspect of the invention, it is possible to improve the workability by using a divided structure formed in a square or a rectangle, and to stabilize the effect by generating the same amount of radiation from the table.

請求項8の発明によれば、カプセル本体を2分割に分離できることにより、温水パイプユニットや請求項7の放射性形成物を搬入後に配置できるため、移動による運用が楽にできる。  According to the invention of claim 8, since the capsule main body can be separated into two parts, the hot water pipe unit and the radioactive formed article of claim 7 can be arranged after being carried in, so that operation by movement can be facilitated.

請求項9の発明によれば、内部雰囲気を坑道に見たてる部分が異なるが、温水パイプユニットや請求項7の放射性形成物の施工性は、請求項8同様に良好な物とすることができる。  According to the ninth aspect of the invention, although the portion of the inner atmosphere seen in the mine is different, the workability of the hot water pipe unit and the radioactive formed article of the seventh aspect may be as good as that of the eighth aspect. it can.

請求項10の発明によれば、陶器材料に放射性組成物原材料を混合して、セラミックヒーターの全面を覆い再焼成しているので、陶器の部分は多孔質で透水性があり、α線の放射エネルギーを十分に活用できないという課題を解決できる。  According to the invention of claim 10, since the raw material of the radioactive composition is mixed with the pottery material and the entire surface of the ceramic heater is covered and refired, the pottery part is porous and water-permeable, and emits alpha rays. The problem that energy cannot be fully utilized can be solved.

以下、本発明の実施形態を図1〜図11を参照して詳細に説明する。図1は本発明の放射性組成物原材料の一部を示す拡大図、図2は陶器焼成による放射性形成物の拡大断面図、図3は磁器、セラミックス焼成による放射性形成物の拡大断面図、図4はマグネシアセメント系セルフレベリング材流し込みによる放射性形成物の拡大断面図、図5はFRP積層板による放射性形成物の拡大断面図、図6は成型機によるハニカム構造の放射性形成物の斜視図、図7(A)は共振作用を得る構造の放射性形成物の上面図と側面図、図7(B)は共振作用を確認するための実験に用いた一例を示す上面図と側面図、図8は基礎台付放射性形成物の断面図、図9は浴用カプセルの斜視図、図10は坑道に見たてた健康施設の断面図、図11はセラミックヒーターを内蔵した放射性形成物の構造図である。  Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 is an enlarged view showing a part of the raw material of the radioactive composition of the present invention, FIG. 2 is an enlarged cross-sectional view of a radioactive formed by firing ceramics, FIG. 3 is an enlarged cross-sectional view of the radioactive formed by firing ceramics and ceramics, FIG. Is an enlarged cross-sectional view of the radioactive material formed by casting magnesia cement-based self-leveling material, FIG. 5 is an enlarged cross-sectional view of the radioactive material formed by FRP laminate, and FIG. 6 is a perspective view of the radioactive material having a honeycomb structure formed by a molding machine. (A) is a top view and a side view of a radioactive formed material having a resonance effect, FIG. 7 (B) is a top view and a side view showing an example used in an experiment for confirming the resonance effect, and FIG. FIG. 9 is a perspective view of a capsule for bathing, FIG. 10 is a sectional view of a health facility as seen in a tunnel, and FIG. 11 is a structural view of a radioactive formation incorporating a ceramic heater.

図1に示す放射性組成物原材料は、放射性物質を含む天然鉱石1と、補助剤のジルコン2(放射性物質を含む)と、アルミナ3と、銅属の金属材料4が1μm〜10μmに加工され混合粉末になっている。  The raw material of the radioactive composition shown in FIG. 1 is a natural ore 1 containing a radioactive substance, an auxiliary zircon 2 (including a radioactive substance), alumina 3 and a copper metal material 4 processed to 1 μm to 10 μm and mixed. It is in powder form.

自然界にはウランやトリウムのような非常に不安定な元素があり、放射線を発しながら崩壊(壊変)し減少する。崩壊により半分に減る半減期は放射性元素のウラン238が45億年、トリウム232では140億年、ラジウム226では1600年ときわめて長期である。  In nature, there are very unstable elements such as uranium and thorium, which decay and decay while emitting radiation. The half-life, which is reduced by half due to the decay, is 4.5 billion years for the radioactive element uranium 238, 14 billion years for thorium 232, and 1600 years for radium 226.

ラジウムもウランやトリウムの崩壊途中の元素で、放射線を発しながらラドン222(半減期は3.8日)に変わり、さらに放射線を発しながらポロニウム210、そして最後に鉛207.2へと変化し、放射性物質が崩壊する過程で発生する放射線やラドンが人体にさまざまな影響をもたらすのである。  Radium is an element in the process of decaying uranium and thorium, changing to radon 222 (half-life is 3.8 days) while emitting radiation, further changing to polonium 210 and finally lead 207.2 while emitting radiation, Radiation and radon generated in the process of decaying radioactive materials have various effects on the human body.

ここで使用される天然鉱石は、現在の混合比率や焼成を適応すると、モナザイト、ジルコンが好適であるが、混合比率を調整すればリン鉱石やチタン鉱石やその他の鉱石に置き換えても良い。  The natural ore used here is preferably monazite or zircon if the current mixing ratio or calcination is adapted, but may be replaced with phosphorus ore, titanium ore or other ores if the mixing ratio is adjusted.

ここで使用される補助剤は、放射線量を調整する増量用途と、好適な焼成体を陶器、磁器、セラミック材料で得るため選択されたもので、他のセラミック材料に置き換えても良い。  The adjuvant used here is selected to increase the radiation dose and to obtain a suitable fired body in ceramic, porcelain or ceramic materials, and may be replaced with other ceramic materials.

ここで使用される銅属の金属は、放射線と金属イオンとの相乗効果と、抗菌作用を得るため選択されたもので、相乗効果を配慮すると原子量から金197、銀107.9銅63.5の順となり、金が最も好適であるが銀や銅を否定するものではない。  The copper group metal used here was selected to obtain a synergistic effect of radiation and metal ions and an antibacterial action, and considering the synergistic effect, from the atomic weight, gold 197, silver 107.9 copper 63.5 In this order, gold is most suitable, but silver and copper are not denied.

図2に示す放射性形成物は、陶器焼成による放射性形成物の拡大断面図で、陶器は多孔質で透水性があり、放射性物質を含む天然鉱石1と、補助剤のジルコン2と、アルミナ3と、銅属の金属材料4が混然一体となった焼成物の中に空洞5を多数形成するため、空気と接触する面は膨大で、特にα線の放出がし易い構造となりラドンの利用効率が高められる。  The radioactive formation shown in FIG. 2 is an enlarged cross-sectional view of the radioactive formation obtained by firing the earthenware. The earthenware is porous and water-permeable, natural ore 1 containing the radioactive material, auxiliary zircon 2, alumina 3, Since a large number of cavities 5 are formed in the fired product in which the copper metal material 4 is mixed together, the surface in contact with the air is enormous, and the structure is particularly easy to emit α-rays. Is increased.

放射性形成物からの放射線を分類すると、α線、β線、γ線があり、α線は放射性物質が崩壊した時に飛び出してくるヘリウムの原子核で紙や皮膚を透過できずイオン化される。β線は紙や皮膚を透過するがアルミニウム箔やガラスを透過できずイオン化される。γ線はアルミニウム箔やガラスを透過するが水やパラフィンを透過できずイオン化される性質を持っている。  The radiation from the radioactive material is classified into α rays, β rays, and γ rays. The α rays are ionized without being able to pass through paper or skin by the helium nuclei that come out when the radioactive material decays. β rays pass through paper and skin, but cannot pass through aluminum foil or glass and are ionized. Gamma rays pass through aluminum foil and glass, but cannot pass through water and paraffin and have the property of being ionized.

図3に示す放射性形成物は、磁器、セラミックス焼成による放射性形成物の拡大断面図で、天然鉱石1と、補助剤のジルコン2と、アルミナ3と、銅属の金属材料4が混然一体となった焼成物において、磁器やセラミックスは透水性がなく、焼成層6をα線が透過できないため、焼成層6表面に接している天然鉱石1と、補助剤のジルコン2以外の内面にある天然鉱石1や補助剤のジルコン2からのラドンの放出は抑制される。  The radioactive formation shown in FIG. 3 is an enlarged cross-sectional view of the radioactive formation by porcelain and ceramic firing, and the natural ore 1, the auxiliary zircon 2, alumina 3, and the copper metal material 4 are mixed together. In the fired product, porcelain and ceramics have no water permeability, and alpha rays cannot pass through the fired layer 6, so natural ore 1 in contact with the surface of the fired layer 6 and natural on the inner surface other than the auxiliary zircon 2. The release of radon from the ore 1 and the auxiliary zircon 2 is suppressed.

図4に示す放射性形成物は、マグネシアセメント系セルフレベリング材流し込みによる放射性形成物の拡大断面図で、表面を均し自然乾燥させた基礎材7上面に放射層を設けているが放射層において、マグネシアセメント系セルフレベリング材の固形化部8は透水性がなく、固形化部8をα線が透過できないため、固形化部8表面に接している天然鉱石1と、補助剤のジルコン2以外の内面にある天然鉱石1や補助剤のジルコン2からのラドンの放出は抑制されるが、二層構造にすることで放射性組成物原材料の使用量の削減を可能としている。  The radioactive formation shown in FIG. 4 is an enlarged cross-sectional view of the radioactive formation by pouring the magnesia cement-based self-leveling material, and the radiation layer is provided on the upper surface of the base material 7 which has been surface-dried and naturally dried. The solidified part 8 of the magnesia cement-based self-leveling material has no water permeability, and α-rays cannot pass through the solidified part 8, so that the natural ore 1 in contact with the surface of the solidified part 8 and the auxiliary zircon 2 are not used. Although the release of radon from the natural ore 1 and the auxiliary agent zircon 2 on the inner surface is suppressed, the use of the raw material of the radioactive composition can be reduced by adopting a two-layer structure.

図5に示す放射性形成物は、FRP積層板による放射性形成物の拡大断面図で、FRP層9が、高強度、軽量、耐候性、電波透過性、電気絶縁性、断熱性に大変優れているため、放射層を薄膜のポリエステル樹脂層10とすることが可能となり、放射性組成物原材料の使用量を大幅に削減できる。  The radioactive formation shown in FIG. 5 is an enlarged cross-sectional view of the radioactive formation by the FRP laminate, and the FRP layer 9 is very excellent in high strength, light weight, weather resistance, radio wave transmission, electrical insulation, and heat insulation. Therefore, the radiation layer can be a thin polyester resin layer 10 and the amount of the radioactive composition raw material used can be greatly reduced.

図6に示す放射性形成物は、成型機によるハニカム構造の放射性形成物の斜視図で、プラスチックの固形化部11は透水性がなく、固形化部11をα線が透過できないため、固形化部11内面にある天然鉱石や補助剤のジルコンからのラドンの放出は抑制されるが、貫通孔12を多数備えたハニカム構造とすることで空気と接触する面は拡大され、貫通孔12からのラドンの放出量が付加される。  The radioactive product shown in FIG. 6 is a perspective view of a honeycomb-structured radioactive product formed by a molding machine. Since the plastic solidification part 11 has no water permeability and α rays cannot pass through the solidification part 11, the solidification part 11 Although the release of radon from natural ore and the auxiliary zircon on the inner surface is suppressed, the honeycomb structure having a large number of through-holes 12 expands the surface in contact with air, and radon from the through-holes 12 Is added.

図7(A)に示す放射性形成物は、共振作用を得る構造の上面図と側面図で、扁平な円柱基台13の上部に帯状の放射層14、15、16の様に複数形成しているため、各放射層の距離が電磁波放射線のγ線の波長である0.00124nmに共振関係の距離や反共振関係の距離に設定され、共振による増幅効果を用い活性効果を更に高めたり、γ線の影響を避けたい場合には反共振によりγ線の影響を減少させ、放射線量が安全性の面で許容される範囲内において目的に応じた効果を十分に発揮するのである。  7A is a top view and a side view of a structure that obtains a resonance action, and a plurality of radioactive formations are formed on top of a flat cylindrical base 13 like strip-shaped radiation layers 14, 15, and 16. Therefore, the distance of each radiation layer is set to 0.00124 nm which is the wavelength of γ rays of electromagnetic radiation, and the distance of resonance relation or anti-resonance relation is set, and the activation effect is further enhanced by using the amplification effect by resonance, When it is desired to avoid the influence of rays, the influence of γ rays is reduced by anti-resonance, and the effect corresponding to the purpose is sufficiently exhibited within a range in which the radiation dose is allowed in terms of safety.

図7(B)に示す放射性形成物は、共振作用を確認するための実験に用いた一例を示す上面図と側面図で、扁平な円柱状の放射層17から7μSv/hの放射線量、504Bq/mのラドン濃度を発生する放射性形成物上部に、帯状の幅25mm銅箔18と銅箔19を50mmの距離を隔てて付着させると6.3μSv/hの放射線量、250Bq/mのラドン濃度となり、銅箔を37mmの距離を隔てて付着させると5.4μSv/hの放射線量、250Bq/mのラドン濃度になった。そして、銅箔を37mmの距離を隔てて付着させた状態で銅箔どうしをショート(導通)させると5.6μSv/hの放射線量となり、銅箔によりα線、β線が抑制されると共に、γ線が共振の影響を受け変化している。この一例では幅の広い導体を使用しているので、α線、β線が大幅に抑制される欠点があり、好適には1mm幅以下の導体を使用するのが望ましい。The radioactive formation shown in FIG. 7B is a top view and a side view showing an example used in an experiment for confirming the resonance action, and the radiation dose of 7 μSv / h from the flat cylindrical radiation layer 17 is 504 Bq. When a strip-shaped 25 mm wide copper foil 18 and a copper foil 19 are attached at a distance of 50 mm on top of a radioactive product that generates a radon concentration of / m 3 , a radiation dose of 6.3 μSv / h, 250 Bq / m 3 Radon concentration was reached, and when copper foil was deposited at a distance of 37 mm, the radiation dose was 5.4 μSv / h and the radon concentration was 250 Bq / m 3 . And, when the copper foils are made to adhere to each other at a distance of 37 mm, the copper foils are short-circuited (conducted), and the radiation dose becomes 5.6 μSv / h. The copper foil suppresses α rays and β rays, Gamma rays are affected by resonance and change. In this example, since a wide conductor is used, there is a disadvantage that α rays and β rays are greatly suppressed, and it is preferable to use a conductor having a width of 1 mm or less.

図8に示す放射性形成物は、基礎台付放射性形成物の断面図で、図5、図6、図7の放射性形成物20を収納する台21を分割構造とし施工性を改善すると共に、台21からも同量の放射線を発生させ効果の安定化を図っている。  The radioactive formation shown in FIG. 8 is a cross-sectional view of the radioactive formation with a base, and the base 21 for housing the radioactive formation 20 of FIGS. The same amount of radiation is also generated from 21 to stabilize the effect.

図9に示す健康施設は、浴用カプセルの斜視図で、移動可能な運用形態とするため筒状のカプセル本体22を、上箱23と下箱24に分離できる構造とし、狭所にも運び入れることを可能にしている。また、カプセル本体22を2分割に分離できることにより、温水パイプユニット25や請求項7の放射性形成物26を搬入後に配置できるため、重量の分散が可能となり、移動による運用が楽にできる。  The health facility shown in FIG. 9 is a perspective view of a capsule for bathing, and has a structure in which the cylindrical capsule body 22 can be separated into an upper box 23 and a lower box 24 so as to be movable, and it is carried into a narrow space. Making it possible. Further, since the capsule main body 22 can be separated into two parts, the hot water pipe unit 25 and the radioactive formed body 26 of claim 7 can be arranged after being carried in, so that the weight can be dispersed and the operation by movement can be facilitated.

図10に示す健康施設は、坑道に見たてた健康施設の断面図で、内部雰囲気を坑道に見たてるため、モルタル壁面27を岩盤のように形成してる点が、請求項8に記載した健康施設と異なるが、温水パイプユニット25や請求項7の放射性形成物26の施工性は、請求項8同様に良好な物とすることができる。  The health facility shown in FIG. 10 is a sectional view of a health facility as seen in a mine shaft, and the mortar wall surface 27 is formed like a rock in order to see the internal atmosphere in a mine shaft. Although it is different from the health facility, the workability of the hot water pipe unit 25 and the radioactive formed body 26 of claim 7 can be made as good as that of claim 8.

図11に示す放射性形成物は、給電用リード線28付のセラミックヒーター29を内蔵した放射性形成物の構造図で、即応性にかける放射性形成物の加温特性を改善する目的とした加温体であり、陶器材料に放射性組成物原材料を混合して、セラミックヒーター29の全面を覆い再焼成物30としているので、室内空気にラドンガスを放出しながら加温する用途とラドンを含む水蒸気で湿度を制御する異なった2っの用途に使用することができる。  The radioactive material shown in FIG. 11 is a structural diagram of a radioactive material having a built-in ceramic heater 29 with a power supply lead wire 28, and is a heating element for the purpose of improving the heating characteristics of the radioactive material subjected to rapid response. Since the raw material of the radioactive composition is mixed with the ceramic material and the entire surface of the ceramic heater 29 is covered to form a re-baked product 30, the humidity is reduced by using steam that contains radon and the application of heating while releasing radon gas into the room air. It can be used for two different applications to control.

本発明の放射性組成物原材料の一部を示す拡大図である。It is an enlarged view which shows a part of radioactive raw material of this invention. 本発明の陶器焼成による放射性形成物の拡大断面図である。It is an expanded sectional view of the radioactive formation by the earthenware baking of this invention. 本発明の磁器、セラミックス焼成による放射性形成物の拡大断面図である。It is an expanded sectional view of the radioactive formation by the porcelain of this invention and ceramic baking. 本発明のマグネシアセメント系セルフレベリング材流し込みによる放射性形成物の拡大断面図である。It is an expanded sectional view of the radioactive formation by magnesia cement type self-leveling material pouring of the present invention. 本発明のFRP積層板による放射性形成物の拡大断面図である。It is an expanded sectional view of the radioactive formation by the FRP laminated board of this invention. 本発明の成型機によるハニカム構造の放射性形成物の斜視図である。It is a perspective view of the radioactive formation of the honeycomb structure by the molding machine of this invention. 本発明の共振作用を得る構造の放射性形成物の上面図と側面図である。It is the top view and side view of the radioactive formation of the structure which obtains the resonance effect | action of this invention. 本発明の共振作用を確認するための実験に用いた一例を示す上面図と側面図である。It is the upper side figure and side view which show an example used for the experiment for confirming the resonance effect | action of this invention. 本発明の基礎台付放射性形成物の断面図である。It is sectional drawing of the radioactive formation with a base stand of this invention. 本発明の浴用カプセルの斜視図である。It is a perspective view of the capsule for baths of the present invention. 本発明の坑道に見たてた健康施設の断面図である。It is sectional drawing of the health facility seen in the mine shaft of this invention. 本発明のセラミックヒーターを内蔵した放射性形成物の構造図である。It is a structural diagram of the radioactive formation which incorporated the ceramic heater of this invention.

1 天然鉱石
2 ジルコン
3 アルミナ
4 金属材料
5 空洞
6 焼成層
7 基礎材
8 固形化部
9 FRP層
10 ポリエステル樹脂層
11 固形化部
12 貫通孔
13 円柱基台
14 放射層
15 放射層
16 放射層
17 放射層
18 銅箔
19 銅箔
20 放射性形成物
21 台
22 カプセル本体
23 上箱
24 下箱
25 温水パイプユニット
26 放射性形成物
27 モルタル壁面
28 給電用リード線
29 セラミックヒーター
30 再焼成物
DESCRIPTION OF SYMBOLS 1 Natural ore 2 Zircon 3 Alumina 4 Metal material 5 Cavity 6 Firing layer 7 Base material 8 Solidification part 9 FRP layer 10 Polyester resin layer 11 Solidification part 12 Through-hole 13 Cylindrical base 14 Radiation layer 15 Radiation layer 16 Radiation layer 17 Radiation layer 18 Copper foil 19 Copper foil 20 Radioactive product 21 Stand 22 Capsule body 23 Upper box 24 Lower box 25 Hot water pipe unit 26 Radioactive product 27 Mortar wall surface 28 Lead wire 29 for feeding 29 Ceramic heater 30 Re-fired product

Claims (10)

放射線を放出する組成物の原材料合成において、ウラン系列又は、トリウム系列の放射性物質を含む天然鉱石を砂状に粉砕し、放射線量の高い部分を選択したものを補助剤と混ぜ、補助剤と共に1μm〜10μmに加工した鉱石粉末とし、鉱石粉末に元素の周期表で分類された銅族の金属を1μm〜10μmに加工した金属粉末を重量比で5%から20%添加し混合粉末材料とし、混合粉末内の鉱石粉末から放出されるα線、β線、γ線と銅属の金属が放出する金属イオンとの相乗効果を用い活性効果を高めることを特徴とする放射性組成物原材料。  When synthesizing raw materials for compositions that emit radiation, natural ore containing radioactive materials of uranium series or thorium series is crushed into sand, and a portion with a high radiation dose selected is mixed with an auxiliary agent, and 1 μm together with the auxiliary agent. Ore powder processed to 10μm, and 5% to 20% by weight of metal powder processed from 1μm to 10μm of copper group metals classified in the periodic table of elements is added to the ore powder to form a mixed powder material, and mixed A radioactive composition raw material characterized in that the active effect is enhanced by using a synergistic effect of α-rays, β-rays, γ-rays released from ore powder in the powder and metal ions released from a copper metal. 放射線を放出する組成物の形成において、ウラン系列又は、トリウム系列の放射性物質を含む天然鉱石を砂状に粉砕し、放射線量の高い部分を選択したものを補助剤と混ぜ、補助剤と共に1μm〜10μmに加工した鉱石粉末を原材料として用い、陶器、磁器、セラミック材料に重量比で15%から25%を含む混合物として焼成し、5μSv/h〜10μSv/hの放射線量の焼成体を製造し、焼成体の表面や焼成体と焼成体の間に元素の周期表で分類された銅族の金属部位や金属帯を設け、鉱石粉末から放出されるα線、β線、γ線に影響を受けた気体や液体の物質が銅族の金属が放出する金属イオンとの相乗効果により活性効果を高めることを特徴とする放射性形成物。  In the formation of a composition that emits radiation, natural ore containing a uranium series or thorium series radioactive material is crushed into a sand state, and a part having a high radiation dose selected is mixed with an auxiliary agent. Using ore powder processed to 10 μm as a raw material, it is fired as a mixture containing 15% to 25% by weight in ceramics, porcelain, and ceramic material to produce a fired body with a radiation dose of 5 μSv / h to 10 μSv / h, A copper group metal part or metal band classified by the periodic table of the elements is provided between the surface of the fired body or between the fired body and the fired body, and is affected by the α, β, and γ rays emitted from the ore powder. A radioactive material characterized in that the active effect is enhanced by a synergistic effect of a gas or liquid substance with a metal ion released from a copper group metal. 放射線を放出する組成物の形成において、マグネシアセメント系セルフレベリング材を混練、流し込み後、表面を均し自然乾燥させた基礎材上面に、下地調整剤を塗布し、マグネシアセメント系セルフレベリング材に重量比で15%から25%の請求項1の放射性組成物原材料を混合混練、流し込み後、表面を均し自然乾燥させて合体形成し、形成物上面において、5μSv/h〜10μSv/hの放射線量とすることを特徴とする放射性形成物。  In forming a composition that emits radiation, kneading and pouring magnesia cement-based self-leveling material, and then applying a ground conditioner on the top surface of the base material that has been surface-dried and air-dried, the weight of magnesia cement-based self-leveling material The raw material of the radioactive composition according to claim 1 having a ratio of 15% to 25% is mixed, kneaded and poured, and then the surfaces are leveled and naturally dried to form a coalescence. A radioactive formation characterized by that. 放射線を放出する組成物の形成において、請求項1の放射性組成物原材料を用い、ポリエステル樹脂に重量比で1%から5%を混練し、薄膜のポリエステル樹脂形成物を作り、薄膜のポリエステル樹脂形成物に、ガラス繊維にポリエステル樹脂を浸透させFRP層を形成し硬化させたFRP積層板とし、放射線量5μSv/h〜10μSv/hを確保しポリエステル樹脂層が薄膜でも充分な強度を有することを特徴とする放射性形成物。  In the formation of a composition that emits radiation, the raw material of the radioactive composition according to claim 1 is used, and a polyester resin is kneaded at a weight ratio of 1% to 5% to form a thin film polyester resin formation. FRP laminated board in which a polyester resin is infiltrated into glass fiber to form an FRP layer and cured, and a radiation dose of 5 μSv / h to 10 μSv / h is secured, and the polyester resin layer has sufficient strength even in a thin film Radioactive formations. 放射線を放出する組成物の形成において、請求項1の放射性組成物原材料を用い、未硬化のプラスチック素材に5%から10%を混練し、成型機により形成し、5μSv/h〜10μSv/hの放射線量とすることを特徴とする放射性形成物。  In the formation of a composition that emits radiation, the raw material of the composition of claim 1 is used, and 5% to 10% is kneaded with an uncured plastic material, and is formed by a molding machine, and 5 μSv / h to 10 μSv / h. Radioactive formation characterized by radiation dose. 放射線を放出する組成物の形成において、請求項1の放射性組成物原材料を用い、同じ質量の混合粉末層を複数形成し、各混合粉末層の距離が電磁波放射線のγ線の波長である0.00124nmに共振関係の最小値や最大値の距離に設定し、γ線の影響を減少させたり、増大させたりすることを特徴とする放射性形成物。  In the formation of a composition that emits radiation, a plurality of mixed powder layers having the same mass are formed using the radioactive composition raw material of claim 1, and the distance between the mixed powder layers is the wavelength of γ rays of electromagnetic radiation. A radioactive formation characterized in that the minimum or maximum distance of the resonance relationship is set to 00124 nm to reduce or increase the influence of γ rays. 放射線を放出する組成物の形成において、請求項1の放射性組成物原材料を用い、マグネシアセメント系セルフレベリング材に重量比で15%から25%を含む混合物にして、混練、流し込み時に請求項2、請求項4、請求項5、請求項6の放射性形成物をマグネシアセメント系セルフレベリング材表面と同一高さになるように嵌め込み、表面を均し自然乾燥させて正方形又は長方形に形成し、全ての面で5μSv/h〜10μSv/hの放射線量とすることを特徴とする基礎台付放射性形成物。  In the formation of a composition that emits radiation, the radioactive composition raw material of claim 1 is used to make a mixture containing 15% to 25% by weight of magnesia cement-based self-leveling material, and kneading and pouring at the time of pouring, The radioactive material of claim 4, claim 5, and claim 6 is fitted so as to be the same height as the surface of the magnesia cement-based self-leveling material, and the surface is smoothed and naturally dried to form a square or rectangle. Radiation formation with a base, characterized by having a radiation dose of 5 μSv / h to 10 μSv / h on the surface. 人間が収容可能な容積を有する筒状の分割可能な温浴カプセルに、スライド窓を設け、容器内底部に温水を流すパイプを配置し、パイプ上部に請求項7の基礎台付放射性形成物を敷き詰めたことを特徴とする健康施設。  A cylindrical splittable warm bath capsule having a volume that can be accommodated by a human being is provided with a sliding window, a pipe through which warm water flows is placed at the bottom of the container, and the radioactive material with a foundation base according to claim 7 is laid on the top of the pipe. A health facility characterized by that. 人間が収容可能な容積を有するドーム型又は箱型の密閉された居住空間に、開平扉を設け、居住空間内立ち上がり980mmの位置までの壁面部と底面部とに温水を流すパイプを配置し、請求項1の放射性組成物原材料を用い、モルタルに重量比で15から25%を含む混合物としたものを混練し、室内空間上壁面部から底面に至るまでの壁面に岩盤のように付着させると共に、底面部の温水を流すパイプ上部に請求項7の基礎台付放射性形成物を敷き詰めたことを特徴とする健康施設。  In a dome-shaped or box-shaped sealed living space having a volume that can be accommodated by humans, a flat door is provided, and pipes for flowing warm water are arranged on the wall surface and bottom surface up to a position of 980 mm rising in the living space, Using the radioactive composition raw material according to claim 1, a mixture containing 15 to 25% by weight in a mortar is kneaded and adhered to the wall surface from the upper wall surface to the bottom of the indoor space like a rock. A health facility characterized by laying the radioactive material with a base of claim 7 on the upper part of the pipe through which hot water flows at the bottom. 放射線を放出する組成物の加温体形成において、請求項1の放射性組成物原材料を用い、陶器材料に重量比で15から25%を含む混合物として、セラミックヒーターの全面を覆い再焼成し、5μSv/h〜10μSv/hの放射線量を確保したことを特徴とする請求項8、請求項9に用いる放射性形成物。  In the formation of a heating element of a composition that emits radiation, the entire surface of the ceramic heater is covered and refired as a mixture containing 15 to 25% by weight of the earthenware material using the radioactive composition raw material of claim 1 and 5 μSv The radioactive formation used for Claim 8 and Claim 9 which ensured the radiation dose of / h-10microSv / h.
JP2010063265A 2010-03-01 2010-03-01 Radioactive composition raw material, radioactive product, and health facility using the same Pending JP2011180112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063265A JP2011180112A (en) 2010-03-01 2010-03-01 Radioactive composition raw material, radioactive product, and health facility using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063265A JP2011180112A (en) 2010-03-01 2010-03-01 Radioactive composition raw material, radioactive product, and health facility using the same

Publications (1)

Publication Number Publication Date
JP2011180112A true JP2011180112A (en) 2011-09-15

Family

ID=44691748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063265A Pending JP2011180112A (en) 2010-03-01 2010-03-01 Radioactive composition raw material, radioactive product, and health facility using the same

Country Status (1)

Country Link
JP (1) JP2011180112A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2499312C1 (en) * 2012-08-10 2013-11-20 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Radionuclide radiation source for gamma-ray flaw detection
RU2555749C1 (en) * 2014-03-24 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный университет" Method of sealing ionising radiation source and apparatus therefor
JP5825585B1 (en) * 2014-10-07 2015-12-02 土屋 豊 Manufacturing method of health equipment using natural radioactive ore
JP5881029B1 (en) * 2015-08-21 2016-03-09 土屋 豊 Manufacturing method of radioactive formation and manufacturing method of health facility
JP2018102494A (en) * 2016-12-26 2018-07-05 光由 濱須 Radon gas generating unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041604A (en) * 2002-07-16 2004-02-12 Vifaamu:Kk Bioactive ray radiation bathroom and panel building material for interior wall surface
WO2006077635A1 (en) * 2005-01-19 2006-07-27 W.F.N Co., Ltd. Substance activating apparatus
JP2010121608A (en) * 2008-11-17 2010-06-03 Aporia:Kk Flammability improving composition material and composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041604A (en) * 2002-07-16 2004-02-12 Vifaamu:Kk Bioactive ray radiation bathroom and panel building material for interior wall surface
WO2006077635A1 (en) * 2005-01-19 2006-07-27 W.F.N Co., Ltd. Substance activating apparatus
JP2010121608A (en) * 2008-11-17 2010-06-03 Aporia:Kk Flammability improving composition material and composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2499312C1 (en) * 2012-08-10 2013-11-20 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Radionuclide radiation source for gamma-ray flaw detection
RU2555749C1 (en) * 2014-03-24 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный университет" Method of sealing ionising radiation source and apparatus therefor
JP5825585B1 (en) * 2014-10-07 2015-12-02 土屋 豊 Manufacturing method of health equipment using natural radioactive ore
JP2016073598A (en) * 2014-10-07 2016-05-12 土屋 豊 Manufacturing method of health appliance using natural radioactive ore
JP5881029B1 (en) * 2015-08-21 2016-03-09 土屋 豊 Manufacturing method of radioactive formation and manufacturing method of health facility
JP2017040634A (en) * 2015-08-21 2017-02-23 土屋 豊 Method for producing radioactive formed product and method for producing health facility
JP2018102494A (en) * 2016-12-26 2018-07-05 光由 濱須 Radon gas generating unit

Similar Documents

Publication Publication Date Title
JP2011180112A (en) Radioactive composition raw material, radioactive product, and health facility using the same
CN108706877B (en) A kind of preparation process inducing anion glaze, ceramic tile and ceramic tile
CN107251157A (en) Radiant shielding material
Gijbels et al. Radon immobilization potential of alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum
KR102241430B1 (en) Method for preparing film and film with excellent radon blocking effect
CN108658488A (en) A kind of radiation protection thermal insulation board and preparation method thereof
Scott et al. Magnesium-based cements for Martian construction
CN205935385U (en) Assembled solar energy temperature regulation composite wall panel
CN107500677A (en) A kind of gamma ray shielding composite and preparation method thereof
Mutuk et al. Shielding behaviors and analysis of mechanical treatment of cements containing nanosized powders
Gupta et al. Reduction and structural modification of zirconolite on He+ ion irradiation
JP5881029B1 (en) Manufacturing method of radioactive formation and manufacturing method of health facility
KR100237363B1 (en) Plaster for architecture and that manufacturing process with the main material of yellow soil
CN105392755A (en) Brick, tile, floorboard, ceiling panel, and roofing material, and method for manufacturing same
KR100819857B1 (en) Ondol using schist-filling and schist-mortar, and its constructing method
JP3165596U (en) Composite energy generating tile
CN102298981A (en) Protective material and method for eliminating radiation of building material
JPH11335157A (en) Production of infrared rays irradiation material
JPH11287899A (en) Material for radiation source and method for manufacturing of radiation source body
WO2015055883A1 (en) Modular structural panel and production method thereof
KR101511517B1 (en) Clay brick and method for manufacturing the same
Fazeli Efficient absorption of laser light by nano-porous materials with well-controlled structure
KR100744153B1 (en) A method and shield ware for water vein noxious
JP2004161587A (en) Radioactive ceramic board and its production method
KR101433167B1 (en) Charcoal panel for absorbing electromagnetic wave and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140129

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150219