JP2011180093A - Fuel remaining quantity detector - Google Patents

Fuel remaining quantity detector Download PDF

Info

Publication number
JP2011180093A
JP2011180093A JP2010047126A JP2010047126A JP2011180093A JP 2011180093 A JP2011180093 A JP 2011180093A JP 2010047126 A JP2010047126 A JP 2010047126A JP 2010047126 A JP2010047126 A JP 2010047126A JP 2011180093 A JP2011180093 A JP 2011180093A
Authority
JP
Japan
Prior art keywords
chamber
fuel
communication chamber
tank
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010047126A
Other languages
Japanese (ja)
Inventor
Isao Miyagawa
功 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010047126A priority Critical patent/JP2011180093A/en
Publication of JP2011180093A publication Critical patent/JP2011180093A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact sized fuel remaining quantity detector with general versatility and high detection precision. <P>SOLUTION: A detecting control unit 40 introduces air from outside of a housing 11 to a communicating chamber 13 after decompressing the communicating chamber 13 by a movable member 16 under the condition where aperture between the communicating chamber 13 and a tank chamber 3 in the housing 11 is blocked with a first valve 30 and aperture between the communicating chamber 13 and the outside of housing 11 is opened up with a second valve 32. Then, under the condition where aperture between the communicating chamber 13 and a tank chamber 3 is opened up with the first valve 30 and aperture between the communicating chamber 13 and the outside of housing 11 is blocked with the second valve 32, pressure of the tank chamber 3 is measured after the communicating chamber 13 is pressurized with the movable member 16. Finally, decompression treatment and pressurization treatment are repeated until the pressure value measured reaches a predetermined threshold value Pth or above, and when the pressure value measured reaches the threshold value Pth or above, the fuel remaining quantity Vf is computed based on the pressure value reaching the threshold value Pth concerned or above. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、燃料タンク内の燃料残量を検出する燃料残量検出装置に関する。   The present invention relates to a fuel remaining amount detection device that detects a remaining fuel amount in a fuel tank.

従来、燃料タンク内のタンク室に連通の連通室を形成するハウジング内にて、可動部材を駆動することにより連通室を加減圧し、当該タンク室の圧力に応じた燃料残量を検出する燃料残量検出装置が知られている。このような燃料残量検出装置によれば、燃料タンクの仕様によって変化するタンク室の圧力に基づくことで、装置要素のサイズを変更することなく燃料残量を検出し得るので、汎用性が高められることになる。   Conventionally, in a housing that forms a communication chamber that communicates with a tank chamber in a fuel tank, the communication chamber is driven to increase or decrease pressure by driving a movable member, and a fuel that detects the remaining amount of fuel according to the pressure in the tank chamber A remaining amount detection device is known. According to such a fuel remaining amount detection device, the remaining amount of fuel can be detected without changing the size of the device elements based on the pressure in the tank chamber that changes depending on the specifications of the fuel tank, so that versatility is improved. Will be.

例えば、特許文献1に従来技術として開示の燃料残量検出装置では、可動部材であるピストンの複数回の往復駆動毎にタンク室の圧力変化幅を測定し、各回の圧力変化幅の平均値に基づいて燃料残量を算出するようにしている。   For example, in the fuel remaining amount detection device disclosed in Patent Document 1 as the prior art, the pressure change width of the tank chamber is measured every time the piston, which is a movable member, is reciprocated a plurality of times, and the average value of the pressure change widths of each time is obtained. Based on this, the remaining fuel amount is calculated.

特開平2−19717号公報Japanese Patent Laid-Open No. 2-19717

しかし、上述した特許文献1の従来技術の場合、燃料残量を精確に検出するには、圧力変化幅の測定精度を高める必要があるが、当該測定精度を高めるには、ピストンの一回の往復駆動によって圧力変化を生むための連通室の容積変化量を大きくしなければならない。ここで、連通室の容積変化量を大きくするには、ピストンの径寸法や駆動量の増大を余儀なくされるので、装置サイズの大型化を招いてしまうのである。   However, in the case of the prior art disclosed in Patent Document 1 described above, in order to accurately detect the remaining fuel amount, it is necessary to increase the measurement accuracy of the pressure change range. The volume change amount of the communication chamber for generating a pressure change by the reciprocating drive must be increased. Here, in order to increase the volume change amount of the communication chamber, the diameter of the piston and the driving amount are inevitably increased, leading to an increase in the device size.

本発明は、このような問題に鑑みてなされたものであって、その目的は、汎用性及び検出精度の高い小型の燃料残量検出装置を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a small fuel remaining amount detection device with high versatility and high detection accuracy.

請求項1に記載の発明は、燃料タンク内のタンク室に連通する連通室を内部に形成するハウジングと、ハウジング内において駆動されることにより連通室を加減圧する可動部材と、連通室及びタンク室の間を開閉する第一開閉弁と、連通室及びハウジング外の間を開閉する第二開閉弁と、可動部材並びに第一及び第二開閉弁を制御してタンク室における燃料残量を検出する検出制御ユニットと、を備え、検出制御ユニットは、第一開閉弁により連通室及びタンク室の間を閉塞し且つ第二開閉弁により連通室及びハウジング外の間を開放した状態下、連通室を可動部材により減圧してハウジング外から連通室へ空気を導入する減圧処理手段と、第一開閉弁により連通室及びタンク室の間を開放し且つ第二開閉弁により連通室及びハウジング外の間を閉塞した状態下、減圧処理手段による減圧処理後の連通室を可動部材により加圧してタンク室の圧力値を測定する加圧処理手段と、加圧処理手段により測定される圧力値が所定の閾値以上となるまで、減圧処理手段による減圧処理及び加圧処理手段による加圧処理を繰り返す繰返処理手段と、加圧処理手段により測定される圧力値が閾値以上となった場合に、当該閾値以上の圧力値に基づいて燃料残量を算出する残量算出手段と、を有することを特徴とする。   According to a first aspect of the present invention, there is provided a housing that internally forms a communication chamber that communicates with a tank chamber in a fuel tank, a movable member that is driven in the housing to pressurize and depressurize the communication chamber, a communication chamber, and a tank The first on-off valve that opens and closes between the chambers, the second on-off valve that opens and closes between the communication chamber and the outside of the housing, the movable member, and the first and second on-off valves are controlled to detect the remaining amount of fuel in the tank chamber A detection control unit that closes the communication chamber and the tank chamber by the first on-off valve and opens the communication chamber and the outside of the housing by the second on-off valve. Pressure reducing means for reducing the pressure by a movable member and introducing air from the outside of the housing to the communication chamber, and the first on-off valve opens the space between the communication chamber and the tank chamber, and the second on-off valve opens the communication chamber and the outside of the housing. In the closed state, the communication chamber after the decompression process by the decompression process unit is pressurized by the movable member to measure the pressure value of the tank chamber, and the pressure value measured by the pressurization process unit is a predetermined value. When the pressure value measured by the pressure treatment means repeats the pressure reduction treatment by the pressure reduction treatment means and the pressure treatment by the pressure treatment means until the pressure value is greater than or equal to the threshold value, And a remaining amount calculating means for calculating the remaining amount of fuel based on the pressure value described above.

このように請求項1に記載の発明によると、ハウジング内部に形成される連通室を当該内部において駆動される可動部材により加圧して、当該連通室に連通する燃料タンク内のタンク室の圧力値を測定し、当該測定結果に基づいて燃料残量を検出(算出)することになる。これによれば、燃料タンクの仕様によって変化するタンク室の圧力値に基づくことで、装置要素のサイズを変更することなく燃料残量を検出し得るので、汎用性を高めることが可能となる。   As described above, according to the first aspect of the present invention, the communication chamber formed in the housing is pressurized by the movable member driven in the housing, and the pressure value of the tank chamber in the fuel tank communicating with the communication chamber is determined. And the remaining amount of fuel is detected (calculated) based on the measurement result. According to this, since the remaining amount of fuel can be detected without changing the size of the device element based on the pressure value of the tank chamber that changes depending on the specifications of the fuel tank, versatility can be improved.

さらに、請求項1に記載の発明によると、第一開閉弁により連通室及びタンク室の間が閉塞且つ第二開閉弁により連通室及びハウジング外の間が開放された状態下では、可動部材により連通室が減圧されてハウジング外から連通室へ空気が導入される。かかる減圧処理時には、ハウジング外に開放された連通室がタンク室に対しては閉塞されるので、当該タンク室の圧力が保持されることとなる。この後、第一開閉弁により連通室及びタンク室の間が開放且つ第二開閉弁により連通室及びハウジング外の間が閉塞された状態下では、空気導入された連通室が可動部材により加圧されてタンク室の圧力値が測定される。かかる加圧処理時には、ハウジング外に対して閉塞された連通室がタンク室に対しては開放されるので、連通室と共に当該タンク室も加圧されることとなる。   Further, according to the first aspect of the present invention, in a state where the communication between the communication chamber and the tank chamber is closed by the first on-off valve and the space between the communication chamber and the outside of the housing is opened by the second on-off valve, the movable member The communication chamber is decompressed and air is introduced from the outside of the housing into the communication chamber. During the decompression process, the communication chamber opened to the outside of the housing is closed with respect to the tank chamber, so that the pressure in the tank chamber is maintained. Thereafter, when the first opening / closing valve opens the communication chamber and the tank chamber and the second opening / closing valve closes the communication chamber and the outside of the housing, the communication chamber introduced with air is pressurized by the movable member. Then, the pressure value in the tank chamber is measured. During the pressurizing process, the communication chamber closed to the outside of the housing is opened to the tank chamber, so that the tank chamber is pressurized together with the communication chamber.

そして、請求項1に記載の発明によると、以上の減圧処理及び加圧処理が繰り返されるので、最終回の加圧処理にて測定される閾値以上の圧力値は、複数回の減圧処理にて導入された空気の量に応じて、増大することとなる。即ち、減圧処理及び加圧処理の一回により可動部材が駆動されて生じる圧力変化は小さくても、それら処理の複数回により可動部材が繰り返し駆動されて生じる圧力変化は大きくなるので、可動部材の寸法や駆動量に拘らず圧力値の測定精度を高めることができる。したがって、閾値以上の圧力値に基づくことによれば、小型の装置サイズであっても、燃料残量を精確に算出し得るのである。   According to the first aspect of the present invention, the pressure reduction process and the pressurization process described above are repeated. Therefore, the pressure value equal to or higher than the threshold value measured in the final pressurization process is determined by a plurality of pressure reduction processes. It will increase depending on the amount of air introduced. That is, even if the pressure change that occurs when the movable member is driven by a single decompression process and pressurization process is small, the pressure change that occurs when the movable member is repeatedly driven by a plurality of these processes increases. Measurement accuracy of the pressure value can be increased regardless of the size and driving amount. Therefore, based on the pressure value equal to or higher than the threshold value, the remaining amount of fuel can be accurately calculated even with a small device size.

しかも、請求項1に記載の発明によると、燃料タンクの仕様に依拠しない決まった閾値を採用しても、当該仕様に応じた回数だけ減圧処理及び加圧処理が繰り返されることで、燃料残量の算出に必要なレベルの圧力値が確実に測定され得る。したがって、減圧処理及び加圧処理を繰り返して燃料残量を算出する検出制御ユニットの構成につき、燃料タンクの仕様に応じて変更する必要はないので、これによっても汎用性を高めることが可能となるのである。   In addition, according to the first aspect of the present invention, even if a fixed threshold value that does not depend on the specifications of the fuel tank is adopted, the decompression process and the pressurization process are repeated a number of times according to the specifications, so that the remaining fuel amount It is possible to reliably measure the pressure value at the level necessary for the calculation of Therefore, it is not necessary to change the configuration of the detection control unit that calculates the fuel remaining amount by repeating the decompression process and the pressurization process in accordance with the specifications of the fuel tank. It is.

請求項2に記載の発明によると、タンク室における空洞部分の容積と、タンク室と連通する部分であって連通室を含む連通部分の容積との和を、燃料残量に応じて変化する空間容積と定義すると共に、閾値以上の圧力値における空間容積と燃料残量との和を、予め定められた全体容積と定義したとき、残量算出手段は、閾値以上の圧力値に相関する空間容積を全体容積から減算することにより、燃料残量を算出する。   According to the second aspect of the present invention, the space in which the sum of the volume of the hollow portion in the tank chamber and the volume of the communication portion that is in communication with the tank chamber and includes the communication chamber varies depending on the remaining amount of fuel. When the sum of the spatial volume and the remaining amount of fuel at a pressure value equal to or greater than a threshold is defined as a predetermined overall volume, the remaining amount calculating means correlates with the pressure value equal to or greater than the threshold. Is subtracted from the total volume to calculate the remaining fuel amount.

このように請求項2に記載の発明によると、タンク室における空洞部分の容積と、タンク室と連通する部分であって連通室を含む連通部分の容積との和として、燃料残量に応じて変化する空間容積は、タンク室の圧力値と相関する。また一方、閾値以上の圧力値の測定時における空間容積と燃料残量との和である全体容積は、予め定められた容積となる。そこで、測定された閾値以上の圧力値に相関する空間容積を全体容積から減算することによれば、当該圧力値に基づいて燃料残量を精確に算出し得るのである。   As described above, according to the second aspect of the present invention, the sum of the volume of the hollow portion in the tank chamber and the volume of the communication portion that communicates with the tank chamber and includes the communication chamber is determined according to the remaining fuel amount. The changing space volume correlates with the pressure value of the tank chamber. On the other hand, the total volume, which is the sum of the space volume and the remaining fuel amount when measuring a pressure value equal to or greater than the threshold value, is a predetermined volume. Therefore, by subtracting the spatial volume correlated with the pressure value above the measured threshold value from the total volume, the remaining amount of fuel can be accurately calculated based on the pressure value.

請求項3に記載の発明によると、第一開閉弁は、可動部材により減圧される連通室の圧力を受けて連通室及びタンク室の間を閉塞する一方、可動部材により加圧される連通室の圧力を受けて連通室及びタンク室の間を開放する逆止弁である。このような逆止弁によれば、減圧処理において可動部材により連通室が減圧されるときには、当該連通室の圧力を受けて連通室及びタンク室の間が機械的且つ自動的に閉塞され得る。また一方、逆止弁によれば、加圧処理において可動部材により連通室が加圧されるときには、当該連通室の圧力を受けて連通室及びタンク室の間が機械的且つ自動的に開放され得る。これらによれば、第二開閉弁の構成を簡素化して、装置サイズの小型化に貢献することができるのである。   According to the third aspect of the present invention, the first on-off valve receives the pressure of the communication chamber depressurized by the movable member and closes the space between the communication chamber and the tank chamber, while the communication chamber is pressurized by the movable member. This is a check valve that opens between the communication chamber and the tank chamber under the pressure of. According to such a check valve, when the communication chamber is decompressed by the movable member in the decompression process, the communication chamber and the tank chamber can be mechanically and automatically closed by receiving the pressure of the communication chamber. On the other hand, according to the check valve, when the communication chamber is pressurized by the movable member in the pressurizing process, the communication chamber and the tank chamber are mechanically and automatically opened by receiving the pressure of the communication chamber. obtain. According to these, it is possible to simplify the configuration of the second on-off valve and contribute to the downsizing of the apparatus size.

本発明の一実施形態による燃料残量検出装置を示す概略構成図である。It is a schematic block diagram which shows the fuel residual amount detection apparatus by one Embodiment of this invention. 本発明の一実施形態による燃料残量検出装置による燃料残量の検出原理について説明するための模式図である。It is a schematic diagram for demonstrating the detection principle of the fuel residual amount by the fuel residual amount detection apparatus by one Embodiment of this invention. 本発明の一実施形態による燃料残量検出装置による燃料残量の検出原理について説明するための模式図である。It is a schematic diagram for demonstrating the detection principle of the fuel residual amount by the fuel residual amount detection apparatus by one Embodiment of this invention. 本発明の一実施形態による燃料残量検出装置による燃料残量の検出原理について説明するための模式図である。It is a schematic diagram for demonstrating the detection principle of the fuel residual amount by the fuel residual amount detection apparatus by one Embodiment of this invention. 本発明の一実施形態による燃料残量検出装置の検出制御ユニット40が実施する検出制御フローについて説明するためのフローチャートである。It is a flowchart for demonstrating the detection control flow which the detection control unit 40 of the fuel residual amount detection apparatus by one Embodiment of this invention implements.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(構成)
図1は、本発明の一実施形態による燃料残量検出装置1の概略構成を示している。燃料残量検出装置1は、車両の内燃機関へ供給する燃料4を貯留する燃料タンク2に搭載され、当該タンク2内の燃料残量Vfを検出する。燃料残量検出装置1は、アキュムレータ10、配管20,22、開閉弁30,32、並びに検出制御ユニット40を備えている。
(Constitution)
FIG. 1 shows a schematic configuration of a remaining fuel amount detection device 1 according to an embodiment of the present invention. The fuel remaining amount detection device 1 is mounted on a fuel tank 2 that stores fuel 4 supplied to an internal combustion engine of a vehicle, and detects a fuel remaining amount Vf in the tank 2. The fuel remaining amount detection device 1 includes an accumulator 10, pipes 20 and 22, on-off valves 30 and 32, and a detection control unit 40.

アキュムレータ10は、ハウジング11及び可動部材16を有している。筒形シリンダ状のハウジング11は第一配管20を介して燃料タンク2に固定されており、外部空間12に対して区画されたシリンダ室としての連通室13を内部に形成する。柱形ピストン状の可動部材16は、ハウジング11内に同軸上に且つ軸方向に摺動可能に挿入されている。可動部材16は、軸方向の往復移動により連通室13を加減圧する。ここで、図2の左方向が可動部材16による連通室13の加圧方向Dpであり、図2の右方向が可動部材16による連通室13の減圧方向Drである。   The accumulator 10 has a housing 11 and a movable member 16. The cylindrical cylinder-shaped housing 11 is fixed to the fuel tank 2 via the first pipe 20, and forms a communication chamber 13 as a cylinder chamber partitioned with respect to the external space 12. The columnar piston-like movable member 16 is inserted into the housing 11 so as to be coaxial and slidable in the axial direction. The movable member 16 pressurizes and depressurizes the communication chamber 13 by reciprocal movement in the axial direction. Here, the left direction in FIG. 2 is the pressurizing direction Dp of the communication chamber 13 by the movable member 16, and the right direction in FIG. 2 is the pressure reducing direction Dr of the communication chamber 13 by the movable member 16.

アキュムレータ10は、さらに駆動源15を有している。本実施形態の駆動源15は、駆動モータ17、ピニオン18及びラック19等から構成されている。駆動モータ17は、検出制御ユニット40の制御回路44(後に詳述)に電気接続される電動モータであり、当該回路44の制御に従って出力軸を回転駆動する。ピニオン18は駆動モータ17の出力軸に連結されており、当該出力軸と共に回転する。ラック19はピニオン18と噛合しており、当該ピニオン18の回転に応じて直線移動する。また、ラック19は可動部材16に連結されており、当該可動部材16と一体に往復移動する。こうした構成の駆動源15によると、検出制御ユニット40により駆動モータ17が制御されて出力軸が回転駆動されるときには、ピニオン18及びラック19の作用により当該出力軸の回転運動が可動部材16の往復直線運動へと変換されることになる。そこで、以下では、駆動モータ17を制御することを、可動部材16を制御することとして説明する。   The accumulator 10 further has a drive source 15. The drive source 15 of the present embodiment includes a drive motor 17, a pinion 18, a rack 19 and the like. The drive motor 17 is an electric motor that is electrically connected to a control circuit 44 (described later in detail) of the detection control unit 40, and rotationally drives the output shaft according to the control of the circuit 44. The pinion 18 is connected to the output shaft of the drive motor 17 and rotates together with the output shaft. The rack 19 meshes with the pinion 18 and moves linearly according to the rotation of the pinion 18. The rack 19 is connected to the movable member 16 and reciprocates integrally with the movable member 16. According to the drive source 15 having such a configuration, when the drive motor 17 is controlled by the detection control unit 40 and the output shaft is rotationally driven, the rotational movement of the output shaft is caused to reciprocate by the movable member 16 by the action of the pinion 18 and the rack 19. It will be converted to linear motion. Therefore, hereinafter, controlling the drive motor 17 will be described as controlling the movable member 16.

ハウジング11よりも小径筒形の第一配管20において、一端部は燃料タンク2に結合されている一方、他端部はハウジング11に結合されている。第一配管20が内部に形成する第一通路21は、燃料タンク2内のタンク室3とハウジング11内の連通室13との間を接続している。第一配管20の中間部には、第一開閉弁30が設置されている。第一開閉弁30は、機械作動式の逆止弁を電磁作動可能に構成したものであり、タンク室3と連通室13との間の差圧に応じて開閉作動する。第一開閉弁30は、非通電状態でタンク室3よりも連通室13が高圧となるのに応じた開作動又は通電による開作動により第一通路21を開放して、タンク室3と連通室13との連通を許容する。また一方、第一開閉弁30は、非通電状態でタンク室3よりも連通室13が低圧となるのに応じた閉作動により第一通路21を閉塞して、タンク室3と連通室13との連通を遮断する。ここで、可動部材16の往復移動により連通室13が加減圧されるのに応じて各室3,13間の差圧は変化することから、以下では、通電状態の切換えにより第一開閉弁30を開閉することだけでなく、可動部材16の制御により第一開閉弁30を開閉することを、第一開閉弁30を制御することとして説明する。   In the first pipe 20 having a smaller diameter than the housing 11, one end is coupled to the fuel tank 2, and the other end is coupled to the housing 11. A first passage 21 formed inside the first pipe 20 connects between the tank chamber 3 in the fuel tank 2 and the communication chamber 13 in the housing 11. A first opening / closing valve 30 is installed at an intermediate portion of the first pipe 20. The first opening / closing valve 30 is configured by electromagnetically actuating a mechanically operated check valve, and opens / closes according to a differential pressure between the tank chamber 3 and the communication chamber 13. The first opening / closing valve 30 opens the first passage 21 by an opening operation or an opening operation by energization in response to the communication chamber 13 having a higher pressure than the tank chamber 3 in a non-energized state, and communicates with the tank chamber 3. Communication with 13 is allowed. On the other hand, the first on-off valve 30 closes the first passage 21 by a closing operation in response to the communication chamber 13 having a lower pressure than the tank chamber 3 in a non-energized state, and the tank chamber 3 and the communication chamber 13 Block communication. Here, since the pressure difference between the chambers 3 and 13 changes as the communication chamber 13 is pressurized and depressurized by the reciprocating movement of the movable member 16, the first on-off valve 30 will be described below by switching the energized state. The opening / closing of the first opening / closing valve 30 by controlling the movable member 16 as well as opening / closing the opening / closing is described as controlling the first opening / closing valve 30.

ハウジング11よりも小径筒形の第二配管22において、一端部はハウジング11に結合されている一方、他端部はハウジング11の外部空間12の大気に対して開放されている。第二配管22が内部に形成する第二通路23は、ハウジング11内の連通室13とハウジング11外の空間12との間を接続している。第二配管22の大気開放側の端部には、第二開閉弁32が設置されている。第二開閉弁32は、検出制御ユニット40の制御回路44に電気接続される電磁作動式のオンオフ弁であり、当該回路44の制御に従って開閉作動する。第二開閉弁32は開作動により第二通路23を開放して、連通室13と外部空間12との連通を許容する。また一方、第二開閉弁32は閉作動により第二通路23を閉塞して、連通室13と外部空間12との連通を遮断する。   In the second pipe 22 having a smaller diameter than the housing 11, one end is coupled to the housing 11, and the other end is open to the atmosphere in the external space 12 of the housing 11. A second passage 23 formed inside the second pipe 22 connects between the communication chamber 13 in the housing 11 and the space 12 outside the housing 11. A second on-off valve 32 is installed at the end of the second pipe 22 on the atmosphere opening side. The second on-off valve 32 is an electromagnetically operated on / off valve that is electrically connected to the control circuit 44 of the detection control unit 40, and opens and closes according to the control of the circuit 44. The second on-off valve 32 opens the second passage 23 by opening operation, and allows communication between the communication chamber 13 and the external space 12. On the other hand, the second opening / closing valve 32 closes the second passage 23 by a closing operation, and blocks communication between the communication chamber 13 and the external space 12.

検出制御ユニット40は、圧力センサ42及び制御回路44を有している。圧力センサ42は、圧力センサ42は、タンク室3に露出する燃料タンク2の天井面に設置されて制御回路44と電気接続される電子式センサであり、当該タンク室3の圧力値を測定して当該回路44へ入力する。制御回路44は、メモリ45を有するマイクロコンピュータを主体に構成されている。制御回路44は、可動部材16及び開閉弁30,32を制御しつつ圧力センサ42により測定されるタンク室3の圧力値に基づくことで、当該タンク室3の燃料残量Vfを検出する。   The detection control unit 40 includes a pressure sensor 42 and a control circuit 44. The pressure sensor 42 is an electronic sensor that is installed on the ceiling surface of the fuel tank 2 exposed in the tank chamber 3 and is electrically connected to the control circuit 44, and measures the pressure value in the tank chamber 3. To the circuit 44. The control circuit 44 is mainly composed of a microcomputer having a memory 45. The control circuit 44 detects the fuel remaining amount Vf of the tank chamber 3 based on the pressure value of the tank chamber 3 measured by the pressure sensor 42 while controlling the movable member 16 and the on-off valves 30 and 32.

(検出原理)
以下では、以上説明した燃料残量検出装置1による燃料残量Vfの検出原理について、図2〜4を参照しつつ説明する。ここで、図2〜4に示すように本実施形態では、燃料タンク2内におけるタンク室3の空洞部分(燃料4を除いた部分)3aの容積V1と、当該タンク室3との連通部分として連通室13及び各通路21,23の合計容積V2との和を、空間容積Vsとして定義する。さらに本実施形態では、かかる空間容積Vsと燃料残量Vfとの和を、全体容積Vtとして定義する。尚、連通室13及び各通路21,23の合計容積V2につき、図2〜4では大容積にて示されているが、これは説明の理解を容易にするためであり、実際には、燃料残量Vfが上限値となるときの空洞部分3aの容積V1よりも十分に小さく設定されている。
(Detection principle)
Below, the detection principle of the fuel remaining amount Vf by the fuel remaining amount detection apparatus 1 demonstrated above is demonstrated, referring FIGS. Here, as shown in FIGS. 2 to 4, in this embodiment, the volume V <b> 1 of the hollow portion (portion excluding the fuel 4) 3 a of the tank chamber 3 in the fuel tank 2 and the communication portion between the tank chamber 3 are used. The sum of the communication chamber 13 and the total volume V2 of the passages 21 and 23 is defined as a space volume Vs. Furthermore, in the present embodiment, the sum of the space volume Vs and the remaining fuel amount Vf is defined as the total volume Vt. The total volume V2 of the communication chamber 13 and the passages 21 and 23 is shown as a large volume in FIGS. 2 to 4, but this is for easy understanding of the description. It is set sufficiently smaller than the volume V1 of the hollow portion 3a when the remaining amount Vf reaches the upper limit value.

図2は、全体容積Vtを予め定めた容積Vt0とする基準位置に可動部材16が定位することで、空間容積Vsが燃料残量Vfに応じた空間容積Vs0となっている状態を示している。この状態から本実施形態では、減圧処理を実行する。具体的には、図3に示すように第二通路23を第二開閉弁32により開放して、可動部材16を基準位置から減圧方向Drへ設定距離Xだけ移動させることで、連通室13を減圧する。このとき、減圧される連通室13と、タンク室3及び外部空間12との間においては、差圧が発生する。その結果、第一通路21が非通電状態の第一開閉弁30により閉塞されてタンク室3の圧力が減圧処理開始前と実質的に同圧に保持されると共に、外部空間12から第二通路23を通じて空気が連通室13へと導入されることになる。   FIG. 2 shows a state in which the space volume Vs becomes the space volume Vs0 corresponding to the fuel remaining amount Vf because the movable member 16 is positioned at a reference position where the total volume Vt is a predetermined volume Vt0. . In this embodiment, the decompression process is executed from this state. Specifically, as shown in FIG. 3, the second passage 23 is opened by the second on-off valve 32, and the movable member 16 is moved from the reference position in the pressure reducing direction Dr by the set distance X, thereby allowing the communication chamber 13 to be opened. Reduce pressure. At this time, a differential pressure is generated between the communication chamber 13 to be decompressed, the tank chamber 3 and the external space 12. As a result, the first passage 21 is closed by the non-energized first on-off valve 30 so that the pressure in the tank chamber 3 is maintained at substantially the same pressure as before the start of the decompression process, and the second passage from the external space 12. Air is introduced into the communication chamber 13 through 23.

こうして基準位置から距離Xの減圧終了位置に可動部材16が達した図3の状態下、後述する加圧処理の開始によって非通電状態の第一開閉弁30が第一通路21を開放すると、連通室13及び各通路21,23の圧力はタンク室3の圧力と実質的に一致することになる。これは、連通室13及び通路21,23の合計容積V2がタンク室3の容積V1よりも十分に小さいことによる。ここで図3に示すように、基準位置から減圧終了位置へ可動部材16が移動することによる連通室13の容積変化量、即ち空間容積Vsの変化量をΔVxとし、第一通路21の開放直後における各部分3,13,21,23の圧力をP0とすると、ボイルの法則に従って下記の式(1)が成立する。尚、本実施形態において燃料残量Vfの検出は、温度変化を実質的に無視可能な時間内で行なわれることから、圧力P0は加圧処理開始前のタンク室3の圧力(図2を参照)と実質的に一致し、またボイルの法則における比例係数は実質的に一定値kとなる。また、空間容積Vsの変化量ΔVxは、予め定められた設定距離Xによって決まる物理量となる。
Vs=Vs0+ΔVx=k/P0 ・・・(1)
When the movable member 16 has reached the decompression end position at the distance X from the reference position in this way, when the first on-off valve 30 in the non-energized state opens the first passage 21 by the start of pressurization processing described later, the communication is established. The pressure in the chamber 13 and the passages 21 and 23 substantially matches the pressure in the tank chamber 3. This is because the total volume V2 of the communication chamber 13 and the passages 21, 23 is sufficiently smaller than the volume V1 of the tank chamber 3. Here, as shown in FIG. 3, the volume change amount of the communication chamber 13 due to the movement of the movable member 16 from the reference position to the decompression end position, that is, the change amount of the space volume Vs is ΔVx, and immediately after the first passage 21 is opened. Assuming that the pressure of each of the portions 3, 13, 21, 23 in P is P0, the following equation (1) is established according to Boyle's law. In the present embodiment, the remaining fuel amount Vf is detected within a time period in which the temperature change can be substantially ignored. Therefore, the pressure P0 is the pressure in the tank chamber 3 before the pressurizing process is started (see FIG. 2). ) And the proportionality coefficient in Boyle's law is substantially a constant value k. Further, the change amount ΔVx of the space volume Vs is a physical quantity determined by a predetermined set distance X.
Vs = Vs0 + ΔVx = k / P0 (1)

続いて本実施形態では、加圧処理を実行する。具体的には、図4に示すように第二通路23を第二開閉弁32により閉塞して、可動部材16を減圧終了位置から加圧方向Dpへ設定距離Xだけ移動させることで、外部空間12に対して密閉された連通室13を加圧する。このとき、連通室13とタンク室3との間において差圧が発生する結果、第一通路21が非通電状態の第一開閉弁30により開放されて、連通室13が圧力P0よりも加圧されることとなる。   Subsequently, in the present embodiment, a pressurizing process is executed. Specifically, as shown in FIG. 4, the second passage 23 is closed by the second opening / closing valve 32, and the movable member 16 is moved from the decompression end position to the pressurizing direction Dp by the set distance X, thereby enabling the external space. The communication chamber 13 sealed against the pressure 12 is pressurized. At this time, a differential pressure is generated between the communication chamber 13 and the tank chamber 3, and as a result, the first passage 21 is opened by the non-energized first on-off valve 30, and the communication chamber 13 is pressurized more than the pressure P0. Will be.

こうして可動部材16が図4の基準位置まで戻されたときには、連通室13及び各通路21,23の圧力がタンク室3の圧力と実質的に一致することとなる。即ち、連通室13と共にタンク室3も、加圧された状態となる。ここで図4に示すように、減圧終了位置から基準位置へ可動部材16が移動することによる各部分3,13,21,23の圧力の増大変化量をΔPxとすると、ボイルの法則に従って下記の式(2)が成立する。
Vs=Vs0=k/(P0+ΔPx) ・・・(2)
Thus, when the movable member 16 is returned to the reference position in FIG. 4, the pressures in the communication chamber 13 and the passages 21 and 23 substantially match the pressure in the tank chamber 3. That is, the tank chamber 3 as well as the communication chamber 13 is in a pressurized state. Here, as shown in FIG. 4, when ΔPx is an increase change amount of the pressure of each of the portions 3, 13, 21, and 23 due to the movement of the movable member 16 from the decompression end position to the reference position, according to Boyle's law, Formula (2) is materialized.
Vs = Vs0 = k / (P0 + ΔPx) (2)

この後、本実施形態では、減圧処理及び加圧処理の組を繰り返す。但し、二回目の減圧処理を実行してから第一通路21を開放した直後における各部分3,13,21,23の圧力は、一回目の加圧処理により可動部材16が基準位置へ戻ったときの圧力(P0+ΔPx)と実質的に一致するので、下記の式(3)が成立することになる。また、二回目の加圧処理により可動部材16が基準位置へ戻ったときの各部分3,13,21,23の圧力は、当該二回目の加圧処理により第一通路21が開放された直後における圧力からΔPxだけ増大変化したものと実質的に一致するので、下記の式(4)が成立することになる。
Vs=Vs0+ΔVx=k/(P0+ΔPx)・・・(3)
Vs=Vs0=k/(P0+2・ΔPx) ・・・(4)
Thereafter, in this embodiment, the combination of the decompression process and the pressurization process is repeated. However, the pressure of each of the portions 3, 13, 21, 23 immediately after opening the first passage 21 after executing the second decompression process has returned the movable member 16 to the reference position by the first pressurization process. Is substantially equal to the pressure (P0 + ΔPx) at that time, the following equation (3) is established. Further, the pressure of each of the portions 3, 13, 21, 23 when the movable member 16 returns to the reference position by the second pressurizing process is immediately after the first passage 21 is opened by the second pressurizing process. Since this is substantially the same as that increased by ΔPx from the pressure at, the following equation (4) is established.
Vs = Vs0 + ΔVx = k / (P0 + ΔPx) (3)
Vs = Vs0 = k / (P0 + 2 · ΔPx) (4)

以上のことから、減圧処理及び加圧処理の組を複数回、繰り返すことによれば、下記の式(5)が成立するのである。尚、式(5)において、ΣΔPxは、減圧処理及び加圧処理の組の実行回数分、加圧処理による圧力変化量ΔPxを合算した値を示している。
Vs=Vs0=k/(P0+ΣΔPx) ・・・(5)
From the above, the following formula (5) is established by repeating the combination of the decompression process and the pressurization process a plurality of times. In the equation (5), ΣΔPx represents a value obtained by adding the pressure change amount ΔPx due to the pressurization process by the number of execution times of the combination of the decompression process and the pressurization process.
Vs = Vs0 = k / (P0 + ΣΔPx) (5)

ここで図2,4に示すように、基準位置における全体容積Vt0及び空間容積Vs0と、燃料残量Vfとの間には、下記の式(6)にて表される相関がある。したがって、この式(6)と共に上述の式(1),(5)を纏めることによれば、下記の式(7)が得られることになる。
Vf=Vt0−Vs0 ・・・(6)
Vf=Vt0−ΔVx・P0/ΣΔPx=Vt0−ΔVx・P0/{(P0+ΣΔPx)−P0} ・・・(7)
Here, as shown in FIGS. 2 and 4, there is a correlation represented by the following equation (6) between the total volume Vt0 and the space volume Vs0 at the reference position and the remaining fuel amount Vf. Therefore, by combining the above equations (1) and (5) together with this equation (6), the following equation (7) is obtained.
Vf = Vt0−Vs0 (6)
Vf = Vt0−ΔVx · P0 / ΣΔPx = Vt0−ΔVx · P0 / {(P0 + ΣΔPx) −P0} (7)

そこで、本実施形態では、一回目の加圧処理の開始前にタンク室3の圧力値P0を初期値として圧力センサ42により測定すると共に、各回の加圧処理の終了時にタンク室3の圧力値(P0+ΣΔPx)を同センサ42により測定する。また、さらに本実施形態では、タンク室3の圧力値(P0+ΣΔPx)が所定の閾値Pth以上となるまで減圧処理及び加圧処理の組を繰り返すことで、当該圧力値の測定精度を高めて、式(7)に従う燃料残量Vfを精確に算出することができるのである。   Therefore, in the present embodiment, the pressure value P0 of the tank chamber 3 is measured as an initial value by the pressure sensor 42 before the start of the first pressurizing process, and the pressure value of the tank chamber 3 at the end of each pressurizing process. The sensor 42 measures (P0 + ΣΔPx). Further, in the present embodiment, the measurement accuracy of the pressure value is increased by repeating the combination of the depressurization process and the pressurization process until the pressure value (P0 + ΣΔPx) of the tank chamber 3 becomes equal to or greater than the predetermined threshold value Pth, The fuel remaining amount Vf according to (7) can be accurately calculated.

(検出制御フロー)
以下では、以上説明した検出原理に基づいて検出制御ユニット40が実施する検出制御フローについて、図5を参照しつつ説明する。尚、この検出制御フローは、メモリ45に記憶のコンピュータプログラムを制御回路44が実行することにより、車両のエンジンスイッチのオンに応じて開始され、当該スイッチのオフに応じて終了する。
(Detection control flow)
Below, the detection control flow which the detection control unit 40 implements based on the detection principle demonstrated above is demonstrated, referring FIG. The detection control flow starts when the control circuit 44 executes a computer program stored in the memory 45, and starts when the engine switch of the vehicle is turned on, and ends when the switch is turned off.

検出制御フローのS100では、可動部材16をハウジング11内の基準位置に定位させて非通電状態の第一開閉弁30により第一通路21を閉塞すると共に、第二開閉弁32により第二通路23を開放する。次にS101では、初期値となるタンク室3の圧力値P0を圧力センサ42により測定し、メモリ45に記憶する。   In S100 of the detection control flow, the movable member 16 is positioned at the reference position in the housing 11, and the first passage 21 is closed by the non-energized first opening / closing valve 30, and the second passage 23 is closed by the second opening / closing valve 32. Is released. Next, in S <b> 101, the pressure value P <b> 0 of the tank chamber 3 that is an initial value is measured by the pressure sensor 42 and stored in the memory 45.

続いてS102では、可動部材16を基準位置から減圧終了位置まで駆動して非通電状態の第一開閉弁30により第一通路21を閉塞すると共に、第二開閉弁32により第二通路23を開放する。これにより、連通室13を減圧して、ハウジング11の外部空間12から空気を当該連通室13へと導入する。   Subsequently, in S102, the movable member 16 is driven from the reference position to the decompression end position, the first passage 21 is closed by the non-energized first opening / closing valve 30, and the second passage 23 is opened by the second opening / closing valve 32. To do. As a result, the communication chamber 13 is decompressed, and air is introduced from the external space 12 of the housing 11 into the communication chamber 13.

また続いてS103では、可動部材16を減圧終了位置から基準位置まで駆動して非通電状態の第一開閉弁30により第一通路21を開放すると共に、第二開閉弁32により第二通路23を閉塞する。これにより、連通室13を外部空間12に対し密閉して、タンク室3と共に加圧する。   In S103, the movable member 16 is driven from the decompression end position to the reference position, the first passage 21 is opened by the non-energized first opening / closing valve 30, and the second passage 23 is opened by the second opening / closing valve 32. Block. As a result, the communication chamber 13 is sealed against the external space 12 and pressurized together with the tank chamber 3.

さらに続いてS104では、可動部材16の停止に伴って非通電の第一開閉弁30により第一通路21が閉塞された状態下、当該通路21を挟んで連通室13と実質的に同圧となっているタンク室3の圧力値(P0+ΣΔPx)につき、圧力センサ42により測定してメモリ45に記憶する。そしてS105では、S104にて測定された圧力値(P0+ΣΔPx)をメモリ45から読み出し、当該圧力値が閾値Pth(例えば50kPa)以上となったか否かを判定する。   Subsequently, in S104, the first passage 21 is closed by the non-energized first opening / closing valve 30 with the stop of the movable member 16, and the pressure in the communication chamber 13 is substantially the same across the passage 21. The pressure value (P0 + ΣΔPx) of the tank chamber 3 is measured by the pressure sensor 42 and stored in the memory 45. In S105, the pressure value (P0 + ΣΔPx) measured in S104 is read from the memory 45, and it is determined whether or not the pressure value is equal to or higher than a threshold value Pth (for example, 50 kPa).

S105により否定判定が下された場合には、S102へと戻って、当該S102及びその後続S103〜S105が繰り返される。一方、S105により肯定判定が下された場合には、S106へと移行する。このS106では、S101及び直前のS104にて測定された圧力値P0及び(P0+ΣΔPx)を読み出し、それらの圧力値と予設定値Vt0,ΔVxとの相関を表す上記式(7)に従って、燃料残量Vfを算出する。   If a negative determination is made in S105, the process returns to S102, and S102 and subsequent S103 to S105 are repeated. On the other hand, when a positive determination is made in S105, the process proceeds to S106. In S106, the pressure values P0 and (P0 + ΣΔPx) measured in S101 and immediately preceding S104 are read, and the fuel remaining amount is determined according to the above equation (7) representing the correlation between these pressure values and the preset values Vt0 and ΔVx. Vf is calculated.

こうして燃料残量Vfを算出した後のS107では、圧力センサ42により測定される圧力値が設定値Pset(例えば5kPa)以下に低下するまで、通電した第一開閉弁32により第一通路21が強制的に開放され且つ第二開閉弁32により第二通路23が開放された状態を維持した後、S101へと戻る。   In S107 after the fuel remaining amount Vf is calculated in this way, the first passage 21 is forced by the energized first opening / closing valve 32 until the pressure value measured by the pressure sensor 42 falls below a set value Pset (for example, 5 kPa). The second passage 23 is opened by the second opening / closing valve 32, and the process returns to S101.

このように本実施形態の燃料残量検出装置1では、ハウジング11内に形成の連通室13を可動部材16により加圧して、当該連通室13に連通する燃料タンク2内のタンク室3の圧力値を測定し、当該測定結果に基づいて燃料残量Vfを検出(算出)している。これによれば、燃料タンク2の仕様によって変化するタンク室3の圧力値に基づくことで、全装置要素のサイズを変更することなく燃料残量Vfを検出し得るので、汎用性が高められることになる。   As described above, in the fuel remaining amount detection device 1 of the present embodiment, the communication chamber 13 formed in the housing 11 is pressurized by the movable member 16 and the pressure of the tank chamber 3 in the fuel tank 2 communicating with the communication chamber 13 is increased. The value is measured, and the remaining fuel amount Vf is detected (calculated) based on the measurement result. According to this, based on the pressure value of the tank chamber 3 that varies depending on the specifications of the fuel tank 2, the remaining fuel level Vf can be detected without changing the size of all the device elements, so that versatility is improved. become.

さらに燃料残量検出装置1では、検出制御フローのS102による減圧処理と、同フローのS103,S104による加圧処理とを繰り返すことにより、最終回の当該加圧処理にて測定される圧力値(P0+ΣΔPx)が所定の閾値Pth以上となる。即ち、減圧処理及び加圧処理の一回により可動部材16が往復移動して生じる圧力変化は小さくても、それら処理の複数回により可動部材16が往復移動を繰り返して生じる圧力変化は大きくなる。したがって、可動部材16の径寸法や移動量を大きくしなくても、圧力値の測定精度を高めることが可能となるので、小型の装置サイズであっても、燃料残量Vfを精確に算出することができるのである。   Further, in the remaining fuel amount detection device 1, the pressure value measured in the final pressurization process is repeated by repeating the decompression process in S102 of the detection control flow and the pressurization process in S103 and S104 of the same flow. P0 + ΣΔPx) is equal to or greater than a predetermined threshold value Pth. That is, even if the pressure change caused by the reciprocating movement of the movable member 16 by a single decompression process and the pressurizing process is small, the pressure change caused by the reciprocating movement of the movable member 16 by a plurality of times of these processes becomes large. Therefore, it is possible to increase the measurement accuracy of the pressure value without increasing the diameter dimension and the movement amount of the movable member 16, and therefore the fuel remaining amount Vf is accurately calculated even with a small device size. It can be done.

しかも、燃料残量検出装置1では、燃料タンク2の仕様に依拠しない決まった閾値Pthを採用しても、当該仕様に応じた回数だけ、減圧処理及び加圧処理が繰り返されて、燃料残量Vfの算出に必要なレベルの圧力値(P0+ΣΔPx)が確実に測定されることになる。したがって、減圧処理及び加圧処理を繰り返して燃料残量Vfを算出する検出制御ユニット40の構成(例えば、検出制御フローを実施するためのメモリ45の記憶内容)につき、燃料タンク2の仕様に応じて変更する必要はないので、これによっても汎用性が高められることとなるのである。   Moreover, in the fuel remaining amount detection device 1, even if a fixed threshold value Pth that does not depend on the specification of the fuel tank 2 is adopted, the decompression process and the pressurization process are repeated as many times as the specification, so that the fuel remaining amount is determined. The pressure value (P0 + ΣΔPx) at a level necessary for calculating Vf is reliably measured. Therefore, the configuration of the detection control unit 40 (for example, the storage contents of the memory 45 for executing the detection control flow) for calculating the fuel remaining amount Vf by repeating the pressure reduction process and the pressure increase process depends on the specifications of the fuel tank 2. This also increases general versatility.

尚、以上説明した実施形態では、S102を実行する検出制御ユニット40が「減圧処理手段」に相当し、S103,S104を実行する検出制御ユニット40が「加圧処理手段」に相当し、S102〜S105を実行する検出制御ユニット40が「繰返処理手段」に相当し、S101,S106を実行する検出制御ユニット40が「残量算出手段」に相当する。   In the embodiment described above, the detection control unit 40 that executes S102 corresponds to “decompression processing means”, and the detection control unit 40 that executes S103 and S104 corresponds to “pressurization processing means”. The detection control unit 40 that executes S105 corresponds to “repetition processing means”, and the detection control unit 40 that executes S101 and S106 corresponds to “remaining amount calculation means”.

(他の実施形態)
さて、ここまで本発明の一実施形態について説明したが、本発明は当該実施形態に限定して解釈されるものではなく、本発明の要旨を逸脱しない範囲内において種々の実施形態に適用可能である。
(Other embodiments)
Although one embodiment of the present invention has been described so far, the present invention is not construed as being limited to the embodiment, and can be applied to various embodiments without departing from the gist of the present invention. is there.

具体的には、第一開閉弁30を、第二開閉弁32に準じた電磁作動式のオンオフ弁等から構成して、制御回路44により直接的に制御可能としてもよい。また、その場合には、検出制御フローのS100,S104で第一通路21を第一開閉弁30により開放して、連通室13に設けた圧力センサ42によりタンク室3の圧力値を間接的に測定してもよい。さらにまた、アキュムレータ10においてピストン状の可動部材16を駆動する駆動源15については、当該可動部材16を往復駆動可能なものであれば、例えばクランク機構を利用したもの等であってもよい。加えて、アキュームレータとしては、ハウジング11内における可動部材16の往復駆動により連通室13の加減圧を実現するもの以外にも、例えばハウジング内における可動部材のスクロール運動により、それらハウジング及び可動部材間の連通室を加減圧するものであってもよい。   Specifically, the first on-off valve 30 may be configured by an electromagnetically operated on / off valve or the like according to the second on-off valve 32 and may be directly controllable by the control circuit 44. In this case, the first passage 21 is opened by the first opening / closing valve 30 in S100 and S104 of the detection control flow, and the pressure value in the tank chamber 3 is indirectly set by the pressure sensor 42 provided in the communication chamber 13. You may measure. Furthermore, the drive source 15 for driving the piston-like movable member 16 in the accumulator 10 may be, for example, one using a crank mechanism as long as the movable member 16 can be driven to reciprocate. In addition, as an accumulator, in addition to the one that realizes pressure increase / decrease of the communication chamber 13 by reciprocating driving of the movable member 16 in the housing 11, for example, by scroll movement of the movable member in the housing, The communication chamber may be pressurized or depressurized.

1 燃料残量検出装置、2 燃料タンク、3 タンク室、3a 空洞部分、4 燃料
10 アキュムレータ、11 ハウジング、12 外部空間、13 連通室、15 駆動源、16 可動部材、17 駆動モータ、18 ピニオン、19 ラック、20 第一配管、21 第一通路、22 第二配管、23 第二通路、30 第一開閉弁、32 第二開閉弁、40 検出制御ユニット(減圧処理手段・加圧処理手段・繰返処理手段・残量算出手段)、42 圧力センサ、44 制御回路、45 メモリ、Dp 加圧方向、Dr 減圧方向、Pth 閾値、Vf 燃料残量
DESCRIPTION OF SYMBOLS 1 Fuel remaining amount detection apparatus, 2 Fuel tank, 3 Tank chamber, 3a Hollow part, 4 Fuel 10 Accumulator, 11 Housing, 12 External space, 13 Communication chamber, 15 Drive source, 16 Movable member, 17 Drive motor, 18 Pinion, 19 rack, 20 1st piping, 21 1st passage, 22 2nd piping, 23 2nd passage, 30 1st on-off valve, 32 2nd on-off valve, 40 detection control unit (decompression processing means / pressurization processing means / repetition) 42 pressure sensor, 44 control circuit, 45 memory, Dp pressurization direction, Dr pressure reduction direction, Pth threshold, Vf Fuel remaining amount

Claims (3)

燃料タンク内のタンク室に連通する連通室を内部に形成するハウジングと、
前記ハウジング内において駆動されることにより前記連通室を加減圧する可動部材と、
前記連通室及び前記タンク室の間を開閉する第一開閉弁と、
前記連通室及び前記ハウジング外の間を開閉する第二開閉弁と、
前記可動部材並びに前記第一及び第二開閉弁を制御して前記タンク室における燃料残量を検出する検出制御ユニットと、
を備え、
前記検出制御ユニットは、
前記第一開閉弁により前記連通室及び前記タンク室の間を閉塞し且つ前記第二開閉弁により前記連通室及び前記燃料ハウジング外の間を開放した状態下、前記連通室を前記可動部材により減圧して前記ハウジング外から前記連通室へ空気を導入する減圧処理手段と、
前記第一開閉弁により前記連通室及び前記タンク室の間を開放し且つ前記第二開閉弁により前記連通室及び前記ハウジング外の間を閉塞した状態下、前記減圧処理手段による減圧処理後の前記連通室を前記可動部材により加圧して前記タンク室の圧力値を測定する加圧処理手段と、
前記加圧処理手段により測定される圧力値が所定の閾値以上となるまで、前記減圧処理手段による減圧処理及び前記加圧処理手段による加圧処理を繰り返す繰返処理手段と、
前記加圧処理手段により測定される圧力値が前記閾値以上となった場合に、当該閾値以上の圧力値に基づいて前記燃料残量を算出する残量算出手段と、
を有することを特徴とする燃料残量検出装置。
A housing that forms a communication chamber communicating with the tank chamber in the fuel tank;
A movable member that pressurizes and depressurizes the communication chamber by being driven in the housing;
A first on-off valve that opens and closes between the communication chamber and the tank chamber;
A second on-off valve that opens and closes between the communication chamber and the outside of the housing;
A detection control unit that controls the movable member and the first and second on-off valves to detect the remaining amount of fuel in the tank chamber;
With
The detection control unit includes:
The communication chamber and the tank chamber are closed by the first opening / closing valve, and the communication chamber and the outside of the fuel housing are opened by the second opening / closing valve, and the communication chamber is decompressed by the movable member. And decompression processing means for introducing air from outside the housing into the communication chamber;
After the decompression processing by the decompression processing means, the first on-off valve opens the communication chamber and the tank chamber and the second on-off valve closes the communication chamber and the outside of the housing. Pressurization processing means for measuring the pressure value of the tank chamber by pressurizing the communication chamber with the movable member;
Repetitive processing means that repeats the decompression process by the decompression process means and the pressurization process by the pressurization process means until the pressure value measured by the pressurization process means becomes a predetermined threshold value or more;
A remaining amount calculating unit that calculates the remaining amount of fuel based on a pressure value that is equal to or greater than the threshold when the pressure value measured by the pressurizing unit is equal to or greater than the threshold;
A fuel remaining amount detecting device characterized by comprising:
前記タンク室における空洞部分の容積と、前記タンク室と連通する部分であって前記連通室を含む連通部分の容積との和を、前記燃料残量に応じて変化する空間容積と定義すると共に、
前記閾値以上の圧力値の測定時における前記空間容積と前記燃料残量との和を、予め定められた全体容積と定義したとき、
前記残量算出手段は、前記閾値以上の圧力値に相関する前記空間容積を前記全体容積から減算することにより、前記燃料残量を算出することを特徴とする請求項1に記載の燃料残量検出装置。
The sum of the volume of the cavity portion in the tank chamber and the volume of the communication portion including the communication chamber, which is a portion communicating with the tank chamber, is defined as a spatial volume that changes according to the remaining fuel amount,
When the sum of the space volume and the fuel remaining amount at the time of measuring a pressure value equal to or greater than the threshold is defined as a predetermined overall volume,
2. The fuel remaining amount calculating unit according to claim 1, wherein the remaining amount calculating unit calculates the remaining fuel amount by subtracting the space volume correlated with a pressure value equal to or greater than the threshold value from the total volume. Detection device.
前記第一開閉弁は、前記可動部材により減圧される前記連通室の圧力を受けて前記連通室及び前記タンク室の間を閉塞する一方、前記可動部材により加圧される前記連通室の圧力を受けて前記連通室及び前記タンク室の間を開放する逆止弁であることを特徴とする請求項1又は2に記載の燃料残量検出装置。   The first on-off valve receives the pressure of the communication chamber that is depressurized by the movable member and closes the space between the communication chamber and the tank chamber, while reducing the pressure of the communication chamber that is pressurized by the movable member. The fuel remaining amount detecting device according to claim 1, wherein the fuel remaining amount detecting device is a check valve that receives and opens between the communication chamber and the tank chamber.
JP2010047126A 2010-03-03 2010-03-03 Fuel remaining quantity detector Pending JP2011180093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047126A JP2011180093A (en) 2010-03-03 2010-03-03 Fuel remaining quantity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047126A JP2011180093A (en) 2010-03-03 2010-03-03 Fuel remaining quantity detector

Publications (1)

Publication Number Publication Date
JP2011180093A true JP2011180093A (en) 2011-09-15

Family

ID=44691730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047126A Pending JP2011180093A (en) 2010-03-03 2010-03-03 Fuel remaining quantity detector

Country Status (1)

Country Link
JP (1) JP2011180093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045264A (en) * 2013-08-28 2015-03-12 三菱自動車工業株式会社 Fuel tank system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200386A (en) * 1985-02-28 1986-09-04 Yamatake Honeywell Co Ltd Electromagnetic pump
JPH03137522A (en) * 1989-10-24 1991-06-12 Yukio Shiraishi Measuring method of volume of stored substance in tank
JPH09280920A (en) * 1996-04-16 1997-10-31 Yazaki Corp Fuel residue measuring apparatus for fuel tank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200386A (en) * 1985-02-28 1986-09-04 Yamatake Honeywell Co Ltd Electromagnetic pump
JPH03137522A (en) * 1989-10-24 1991-06-12 Yukio Shiraishi Measuring method of volume of stored substance in tank
JPH09280920A (en) * 1996-04-16 1997-10-31 Yazaki Corp Fuel residue measuring apparatus for fuel tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045264A (en) * 2013-08-28 2015-03-12 三菱自動車工業株式会社 Fuel tank system

Similar Documents

Publication Publication Date Title
US9394897B2 (en) Apparatus using electronically-controlled valves
JP2011529176A5 (en)
RU2724363C1 (en) Pneumatic control valve for saturation machine
US20110240672A1 (en) Chemical supply system
US20070177998A1 (en) Liquid chemical supply system
JP2006316711A (en) Chemical liquid supply system and chemical liquid supply pump
JP6244723B2 (en) High pressure pump control device
KR20160140923A (en) Method and device for operating a pressure reservoir, in particular for common rail injection systems in automobile engineering
JP5779324B2 (en) Chemical supply system
IT201800004099A1 (en) PISTON PUMP AND RELEVANT CONTROL METHOD
JP6245098B2 (en) Internal pressure fatigue testing machine
JP2011180093A (en) Fuel remaining quantity detector
RU2016140516A (en) INITIALIZATION OF THE DOSING DEVICE FOR INFUSION OF MEDICINES
WO2020250835A1 (en) Diaphragm pump and blood purification apparatus using same
WO2020250839A1 (en) Pressure sensing device and blood purification apparatus using same
CN108700451B (en) Method and apparatus for detecting liquid level in liquid reservoir
US11022156B2 (en) Actuator-operation detecting apparatus
JP5816726B2 (en) Chemical supply system
JP2011016499A (en) Brake device
EP3456963A1 (en) Solenoid current monitoring method and pumping system for detecting a loss of prime condition
CN106687768B (en) Solenoid system and method for detecting travel length
EP3456964A1 (en) Automatic initiation of priming sequence for metering pumps
JP2021506564A5 (en)
JP5989881B2 (en) Chemical supply system
JP6445003B2 (en) A device for filling inflatable objects with a pressure limiting compressor and a sealant container

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120308

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20131010

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304