JP2011179565A - Gear device - Google Patents

Gear device Download PDF

Info

Publication number
JP2011179565A
JP2011179565A JP2010043211A JP2010043211A JP2011179565A JP 2011179565 A JP2011179565 A JP 2011179565A JP 2010043211 A JP2010043211 A JP 2010043211A JP 2010043211 A JP2010043211 A JP 2010043211A JP 2011179565 A JP2011179565 A JP 2011179565A
Authority
JP
Japan
Prior art keywords
gear
shaft
hub
boss
gear device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010043211A
Other languages
Japanese (ja)
Inventor
Onori Okamoto
大典 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010043211A priority Critical patent/JP2011179565A/en
Publication of JP2011179565A publication Critical patent/JP2011179565A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear device that reduces misalignment between gears by allowing elastic deformation of a gear in a gear warpage direction, while increasing stiffness of the gear in a radial direction. <P>SOLUTION: In the gear device 1, a rim 10 is integrally formed through a hub 11 on an outer peripheral side of a boss 9 fitted to a shaft 4. The device includes gears 5, wherein gear teeth are formed in an outer peripheral surface of the rim 10. As driving power is transmitted by engaging the gears 5 with each other, a warpage is caused in the shaft 4 fitted to the gears 5. An elastic part 11 allowing a relative warpage between the gear teeth and the shaft 4 on the occurrence of warpage in the shaft 4 and a reinforcement member 12 provided in a sidewall surface of the elastic part 11 for increasing the stiffness of the gear 5 in the a radial direction, are provided in at least either the boss 9 or the hub 11. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、歯車装置に関し、特に歯車が動力伝達時に受ける荷重により弾性変形する歯車装置に関するものである。   The present invention relates to a gear device, and more particularly to a gear device that is elastically deformed by a load that the gear receives during power transmission.

歯車装置は、動力を伝達するときに、従動側歯車を回転させる方向に動力を伝達するとともに、その従動側歯車の回転方向とは異なる方向に荷重をかける場合がある。特に、はすば歯車の場合には、従動側歯車の回転方向と垂直な方向すなわち回転軸線方向の荷重(スラスト荷重)と歯車の半径方向の荷重(ラジアル荷重)とが生じる。   When transmitting the power, the gear device transmits the power in the direction in which the driven gear is rotated and may apply a load in a direction different from the rotation direction of the driven gear. In particular, in the case of a helical gear, a load (thrust load) in a direction perpendicular to the rotation direction of the driven gear, that is, a rotation axis direction and a load in the radial direction of the gear (radial load) are generated.

特許文献1には、駆動側歯車のシャフトと従動側歯車のシャフトとが平行でない場合には、通常は、かさ歯車を設けるが、かさ歯車の成形は困難なため、平歯車が反り返る方向に弾性変形できるように、歯車の半径方向での中間部の一部の板厚を薄くした構成の歯車装置が記載されている。   In Patent Document 1, when the shaft of the driving gear and the shaft of the driven gear are not parallel, a bevel gear is usually provided. However, since it is difficult to form a bevel gear, the spur gear is elastic in the direction in which it warps. A gear device having a configuration in which the plate thickness of a part of the intermediate portion in the radial direction of the gear is thinned so as to be deformable is described.

特開2000−249213号公報JP 2000-249213 A

上記特許文献1に記載の歯車装置は、歯車の半径方向での中間部の一部の板厚を薄くすることにより、歯車が反り返ることができ、駆動側歯車のシャフトと従動側歯車のシャフトとが平行でない場合でも、平歯車は噛み合うことができる。しかしながら、平行でないシャフト同士に、上記反り返り方向に弾性可能な平歯車を噛み合わせることは、回転軸からの距離が歯車の軸線方向における一端側とその他端側とで異なる。つまり、歯車の軸線方向における異端側と他端側との端部での速さが異なるので、ミスアライメントによる噛み合い損失が増大する可能性がある。また、特許文献1に記載された装置は、樹脂製のものであって、例えば、車両における動力伝達装置のように大きな伝達荷重が作用する箇所すなわち歯車の半径方向の荷重が大きい箇所に使用される場合には、半径方向の剛性が低いため、歯飛びなどが生じる可能性があり適用することができない。したがって、伝達荷重が大きい箇所に設けられ、かつ回転軸が傾いた場合においても、噛み合い状態を維持することのできる歯車装置については、未だ改善の余地がある。   The gear device described in Patent Literature 1 can reduce the thickness of a part of the intermediate portion in the radial direction of the gear so that the gear can be warped. The shaft of the driving side gear and the shaft of the driven side gear The spur gears can mesh even when are not parallel. However, meshing a spur gear that is elastic in the warping direction with non-parallel shafts differs in the distance from the rotating shaft on one end side and the other end side in the axial direction of the gear. That is, since the speeds at the ends of the different end side and the other end side in the axial direction of the gear are different, there is a possibility that the meshing loss due to misalignment increases. Further, the device described in Patent Document 1 is made of resin, and is used, for example, in a place where a large transmission load acts, that is, in a place where a radial load of the gear is large, like a power transmission device in a vehicle. In this case, since the rigidity in the radial direction is low, there is a possibility that tooth skipping may occur, and it cannot be applied. Therefore, there is still room for improvement with respect to the gear device that is provided at a location where the transmission load is large and can maintain the meshing state even when the rotation shaft is inclined.

この発明は上記の課題に着目してなされたものであり、歯車が反り返る方向には弾性変形ができ、かつ半径方向の剛性を高くすることにより、歯車同士のミスアライメントを低減させることのできる歯車装置を提供することを目的とする。   The present invention has been made by paying attention to the above-mentioned problem, and is a gear that can be elastically deformed in the direction in which the gear warps and can reduce misalignment between the gears by increasing the rigidity in the radial direction. An object is to provide an apparatus.

上記の目的を達成するために、請求項1の発明は、軸に嵌合するボス部の外周側に、ハブ部を介してリム部が一体に形成され、かつそのリム部の外周面に歯が形成されている歯車を備え、該歯車を互いに噛み合わせて動力を伝達することに伴って、該歯車に嵌合している前記軸に撓みが生じる歯車装置において、前記ボス部とハブ部との少なくともいずれか一方に、前記軸が撓んだ際に前記歯と軸との相対的な反り返りを許容する弾性部位と、該弾性部位の側壁面に設けられ、かつ前記歯車の半径方向の剛性を増大させる補強部材とを備えていることを特徴とするものである。   In order to achieve the above object, according to the first aspect of the present invention, a rim portion is integrally formed on the outer peripheral side of a boss portion fitted to a shaft via a hub portion, and teeth are formed on the outer peripheral surface of the rim portion. In the gear device in which the shaft that is engaged with the gear is deflected by transmitting the power by meshing the gears with each other, the boss portion and the hub portion are provided. At least one of the elastic portion that allows a relative curvature between the teeth and the shaft when the shaft is bent, and the rigidity of the gear in the radial direction provided on the side wall surface of the elastic portion. And a reinforcing member for increasing the thickness.

請求項2の発明は、請求項1の発明において、前記弾性部位は、前記ハブ部と前記ボス部との少なくともいずれか一方の板厚を薄くすることにより形成され、前記補強部材が前記ハブ部の板厚を薄くした箇所の全体に嵌め込まれて設けられていることを特徴とする歯車装置である。   According to a second aspect of the present invention, in the first aspect of the invention, the elastic portion is formed by reducing a plate thickness of at least one of the hub portion and the boss portion, and the reinforcing member is the hub portion. The gear device is characterized by being fitted into the entire portion where the plate thickness is reduced.

請求項3の発明は、請求項1の発明において、前記弾性部位は、前記ハブ部と前記ボス部との少なくともいずれか一方の板厚を薄くすることにより形成され、前記補強部材が前記ハブ部の円周方向に一定の間隔を空けて設けられていることを特徴とする歯車装置である。   According to a third aspect of the present invention, in the first aspect of the invention, the elastic portion is formed by reducing a plate thickness of at least one of the hub portion and the boss portion, and the reinforcing member is the hub portion. The gear device is provided with a certain interval in the circumferential direction.

この発明によれば、軸に嵌合するボス部とそのボス部の外周側に設けられたハブ部との少なくともいずれか一方に弾性部位が設けられているので、歯車の動力伝達の際に生じる荷重により軸が撓んだ場合でも、歯車が反り返ることができ、歯車の噛み合い状態を維持することができる。また、その弾性部位の側壁面に歯車の半径方向の剛性を増大させる補強部材が設けられているから、歯車の半径方向の剛性が増大するので、歯車がラジアル荷重を受けた場合でも、半径方向の変形を規制することができる。したがって、歯車のミスアライメントによる噛み合い損失を低減させることができる。   According to the present invention, the elastic part is provided in at least one of the boss part fitted to the shaft and the hub part provided on the outer peripheral side of the boss part. Even when the shaft is bent by a load, the gear can be warped and the meshing state of the gear can be maintained. In addition, since the reinforcing member for increasing the radial rigidity of the gear is provided on the side wall surface of the elastic part, the radial rigidity of the gear is increased, so even when the gear receives a radial load, Can be controlled. Therefore, the meshing loss due to gear misalignment can be reduced.

この発明に係る歯車装置の一例を示す断面図である。It is sectional drawing which shows an example of the gear apparatus which concerns on this invention. この発明に係る歯車装置におけるギヤトレーンの一例を示す概略図である。It is the schematic which shows an example of the gear train in the gear apparatus which concerns on this invention. 第2のシャフトに作用する力を示す模式図である。It is a schematic diagram which shows the force which acts on a 2nd shaft. 第2のシャフトの傾きに従って第2のギアが傾いた状態を示す概略図である。It is the schematic which shows the state which the 2nd gear inclined according to the inclination of a 2nd shaft. 第2のシャフトの傾きを第2のギアが吸収している状態を示す概略図である。It is the schematic which shows the state which the 2nd gear is absorbing the inclination of a 2nd shaft. 第2のギアの形状を示す断面図である。It is sectional drawing which shows the shape of a 2nd gear. この発明に係る歯車装置の他の構成を示す平面図である。It is a top view which shows the other structure of the gear apparatus which concerns on this invention.

つぎに、この発明に係る歯車装置について説明する。図2は、車両における歯車装置1のギアトレーンを模式的に示したものであり、図示しない動力源に連結された第1のシャフト2に嵌合された第1のギア3と、第1のシャフト2と平行に設けられた第2のシャフト4に嵌合された第2のギア5とが噛み合って動力を伝達する。また、第2のシャフト4に嵌合され、かつ第2のギア5の図における左側に設けられた第3のギア6と、第2のシャフト4に平行に設けられた第3のシャフト7に嵌合された第4のギア8とが噛み合って動力を伝達する。そして、第3のシャフト7は、図示しない車軸などを介して車輪と連結されている。   Next, a gear device according to the present invention will be described. FIG. 2 schematically shows a gear train of a gear device 1 in a vehicle, and includes a first gear 3 fitted to a first shaft 2 connected to a power source (not shown), A second gear 5 fitted to a second shaft 4 provided in parallel with the shaft 2 meshes with it to transmit power. Further, a third gear 6 fitted to the second shaft 4 and provided on the left side of the second gear 5 in the drawing and a third shaft 7 provided in parallel to the second shaft 4 are provided. The fitted fourth gear 8 meshes to transmit power. And the 3rd shaft 7 is connected with the wheel via the axle shaft etc. which are not illustrated.

このように構成された歯車装置1のギアトレーンにおいて、特に各ギア3,5,6,8がはすば歯車の場合には、噛み合っているギアがお互いを離す方向に力を作用させるいわゆる分離力を各ギア3,5,6,8が半径方向に受ける。したがって、各ギア3,5,6,8と嵌合している各シャフト2,4,7は図における上下方向に力を受ける。図3には、第2のシャフト4が受ける力を模式的に示してあり、第1のギア3と第2のギア5との動力伝達により、第2のシャフト4に上方向に力Wが作用し、第3のギア6と第4のギア8との動力伝達により、下方向に力Wが作用する。なお、下方向に作用する力Wおよび上方向に作用する力Wの最大値は、それぞれの歯車3,5,6,8に作用させる最大トルクを予め定めることにより求めることができる。そして、第2のシャフト4に下方向に作用する力Wにより、第2のシャフト4の左支持部Aと下方向に作用する力Wの作用点Bとの間における撓み量を次式(1)で、また、作用点Bと第2のシャフト4の右支持部Dとの間における撓み量を次式(2)で求めることができる。 In the gear train of the gear device 1 configured as described above, particularly when each of the gears 3, 5, 6, and 8 is a helical gear, so-called separation in which the gears that are engaged with each other exert a force in the direction of separating them from each other. The gears 3, 5, 6, 8 receive the force in the radial direction. Accordingly, the shafts 2, 4, 7 fitted to the gears 3, 5, 6, 8 receive a force in the vertical direction in the figure. FIG. 3 schematically shows the force received by the second shaft 4, and the force W 2 is applied upward to the second shaft 4 by power transmission between the first gear 3 and the second gear 5. Acts, and the force W 1 acts downward by the power transmission between the third gear 6 and the fourth gear 8. Note that the maximum values of the force W 1 acting downward and the force W 2 acting upward can be determined by predetermining the maximum torque to be applied to the gears 3, 5, 6, 8. Then, by the force W 1 acting downward on the second shaft 4, the following equation deflection amount between the working point B of the force W 1 acting on the left support portion A and the lower direction of the second shaft 4 In (1), the amount of deflection between the point of action B and the right support portion D of the second shaft 4 can be obtained by the following equation (2).

Figure 2011179565
Figure 2011179565

Figure 2011179565
Figure 2011179565

なお、式(1),(2)におけるy'は第2のシャフト4の撓みがない状態すなわち設計値を基準としての撓み量を示し、aは左支持部Aと作用点Bとの距離、bは作用点Bと第2のシャフト4に上方向に作用する力Wの作用点Cとの距離、cは作用点Cと右支持部Dとの距離、Eはヤング率、Iは弾性二次モーメント、lは第2のシャフト4の全長を表し、xは左支持部Aからの任意の距離を表す。 In the equations (1) and (2), y ′ represents the state in which the second shaft 4 is not bent, that is, the amount of deflection based on the design value, a is the distance between the left support A and the action point B, b is the distance between the point C of the force W 2 acting upward to the point B and the second shaft 4, c is the distance between the action point C and the right support portion D, E is Young's modulus, I is the elastic A secondary moment, l represents the total length of the second shaft 4, and x represents an arbitrary distance from the left support A.

また、第2のシャフト4に上方向に作用する力Wにより、左支持部Aと作用点Cとの間における撓み量を次式(3)で、また、作用点Cと右支持部Dとの間における撓み量を次式(4)で求めることができる。 Further, due to the force W 2 acting upward on the second shaft 4, the deflection amount between the left support portion A and the action point C is expressed by the following equation (3), and the action point C and the right support portion D: The amount of deflection between the two can be obtained by the following equation (4).

Figure 2011179565
Figure 2011179565

Figure 2011179565
Figure 2011179565

なお、式(3),(4)におけるy''は第2のシャフト4の撓みがない状態すなわち設計値を基準としての撓み量を示す。   Note that y ″ in the equations (3) and (4) indicates a state in which the second shaft 4 is not bent, that is, a deflection amount with reference to a design value.

さらに、固定端Aおよび固定端Dに働くそれぞれのモーメントによる左支持部Aと右支持部Dとの間の撓み量は次式(5)で求めることができる。   Furthermore, the amount of deflection between the left support portion A and the right support portion D due to the respective moments acting on the fixed end A and the fixed end D can be obtained by the following equation (5).

Figure 2011179565
Figure 2011179565

なお、式(5)におけるy'''は第2のシャフト4の撓みがない状態すなわち設計値を基準としての撓み量を示し、MおよびMは次式(6)および(7)である。 In y '''in Formula (5) shows the bending amount of the basis of the absence state or the design value deflection of the second shaft 4, the M A and M B the following equation (6) and (7) is there.

Figure 2011179565
Figure 2011179565

Figure 2011179565
Figure 2011179565

なお、Mは左支持部Aに働くモーメントを示し、Mは右支持部Dに働くモーメントを示す。以上の式を合計することにより、第2のシャフト4に生じる合力による撓み量を求めることができる。 Incidentally, M A represents a moment acting on the left support section A, M B represents the moment acting on the right support portion D. By summing up the above equations, the amount of deflection due to the resultant force generated in the second shaft 4 can be obtained.

Figure 2011179565
Figure 2011179565

したがって、第2のシャフト4の任意の箇所の撓み量を求めることができるので、図4に示すように、第2のシャフト4の傾きに従って第2のギア5が傾いた場合の第2のギア5の軸線方向における両端座標x,xを上記の式(5)に代入することにより、第2シャフトの半径方向における高さ差を求めることができる。なお、第2のシャフト4の撓み量は微量なので、第2のシャフト4が撓んでいない状態での、第2のギア5の両端座標を近似値としてx,xとする。つまり、次式(9)および(10)を上記の式(5)に代入することにより、それぞれの箇所でのシャフト4の半径方向の撓み量y,yを求めることができる。 Therefore, the amount of deflection at an arbitrary position of the second shaft 4 can be obtained, so that the second gear when the second gear 5 is inclined according to the inclination of the second shaft 4 as shown in FIG. By substituting the two end coordinates x 1 and x 2 in the axial direction of 5 into the above equation (5), the height difference in the radial direction of the second shaft can be obtained. Since the amount of bending of the second shaft 4 is very small, the coordinates of both ends of the second gear 5 when the second shaft 4 is not bent are approximated as x 1 and x 2 . That is, by substituting the following formulas (9) and (10) into the above formula (5), the deflection amounts y 1 and y 2 in the radial direction of the shaft 4 at each location can be obtained.

Figure 2011179565
Figure 2011179565

Figure 2011179565
Figure 2011179565

そして、式(9)、(10)で求められたx,xを上記の式(5)に代入して求められるy,yの差の絶対値すなわち高さ差で第2のシャフト4に上方向に作用する力Wを割った値が、この第2のシャフト4に作用する力W,Wおよび固定端のモーメントの合力により第2のシャフト4が撓む量を吸収するために必要となるバネ定数となる。なお、バネ定数を求める式(11)を以下に示す。 Then, the absolute value of the difference between y 1 and y 2 obtained by substituting x 1 and x 2 obtained by the equations (9) and (10) into the equation (5), that is, the height difference is the second value. The value obtained by dividing the upward force W 2 acting on the shaft 4 is the amount by which the second shaft 4 bends due to the resultant force W 1 , W 2 acting on the second shaft 4 and the moment of the fixed end. This is the spring constant required for absorption. Formula (11) for obtaining the spring constant is shown below.

Figure 2011179565
Figure 2011179565

以上の計算により、第2のシャフト4の撓みを吸収するために必要なバネ定数が求めることができるので、そのバネ定数にあわせて第2のギア5が弾性変形することができる形状を決められる。   As a result of the above calculation, the spring constant required to absorb the deflection of the second shaft 4 can be obtained, and the shape that allows the second gear 5 to be elastically deformed can be determined in accordance with the spring constant. .

つまり、図6に示すように、歯が形成されているリム部10とシャフトに固定されているボス部9との間に位置するハブ部11の板厚を薄くすることにより、歯車の反り返り方向の剛性を下げることができ、その板厚は上記バネ定数に合わせるように形成させればよい。なお、第2のギア5が第2のシャフト4の傾きを吸収している状態を図6に示す。   That is, as shown in FIG. 6, by reducing the plate thickness of the hub portion 11 located between the rim portion 10 where the teeth are formed and the boss portion 9 fixed to the shaft, the direction of the gear warping is reduced. The plate thickness may be formed to match the spring constant. A state where the second gear 5 absorbs the inclination of the second shaft 4 is shown in FIG.

このように構成することにより、シャフトの傾きをギアが吸収することができる。また、シャフトの両端部は固定端であるので図における上下方向に移動することはなく、シャフトの回転軸線は変化することはない。つまり、回転軸線と歯すじとは平行な状態を維持することができる。   With this configuration, the gear can absorb the inclination of the shaft. Further, since both end portions of the shaft are fixed ends, the shaft does not move in the vertical direction in the figure, and the rotation axis of the shaft does not change. That is, the rotation axis and the tooth trace can be maintained in a parallel state.

また、この発明に係る歯車は、伝達力が大きい場合すなわち歯車の半径方向への荷重が大きい場合に歯車が半径方向に撓むことを抑制するものであり、上記の板厚を薄くした箇所に補強部材12が設けられることにより半径方向の剛性を増大させるものである。図1には、その補強部材12を設けた一例を示してあり、上記板厚を薄くした箇所の側壁面に、円環状の補強部材12が焼きばめにより取り付けられている。また、この補強部材12の材料は、歯車の材料よりも剛性の高い材料とすることが好ましい。例えば、歯車の材料が合金鋼(E=200GPa)で補強部材12が超硬合金(E=440〜550GPa)とすることが好ましい。したがって、歯車の半径方向の剛性は、補強部材12により高くすることができる。また、歯車が反り返る方向には、ハブ部11の補強部材12の板厚を含む板厚が薄くなっているので、従来の歯車すなわち板厚が均一な歯車より反り返りやすく、歯車の噛み合い状態はシャフトの傾きに影響され難い。なお、図における補強部材12は、ハブ部11の両壁面に設けられているが、片壁面のみでも良い。   Further, the gear according to the present invention suppresses bending of the gear in the radial direction when the transmission force is large, that is, when the load in the radial direction of the gear is large. By providing the reinforcing member 12, the rigidity in the radial direction is increased. FIG. 1 shows an example in which the reinforcing member 12 is provided. An annular reinforcing member 12 is attached to the side wall surface of the portion where the plate thickness is reduced by shrink fitting. The material of the reinforcing member 12 is preferably a material having higher rigidity than the gear material. For example, it is preferable that the gear material is alloy steel (E = 200 GPa) and the reinforcing member 12 is cemented carbide (E = 440 to 550 GPa). Accordingly, the radial rigidity of the gear can be increased by the reinforcing member 12. Further, since the plate thickness including the plate thickness of the reinforcing member 12 of the hub portion 11 is thinner in the direction in which the gear is warped, the gear is more likely to warp than a conventional gear, that is, a gear with a uniform thickness, and the meshing state of the gear is a shaft. It is hard to be influenced by the inclination of In addition, although the reinforcement member 12 in a figure is provided in the both wall surfaces of the hub part 11, only a single wall surface may be sufficient.

なお、この発明は、歯車の一部の板厚を薄くして歯車が反り返る方向の弾性変形を容易にしつつ、それに伴う半径方向の剛性の低下を補強部材12により補うものであり、上述した構成例に限定されない。つまり、上記補強部材12を図7に示すようにボス部9からリム部10へ向けて円周方向に所定間隔を空けて設けられたリブ13としても良い。   In the present invention, the thickness of a part of the gear is thinned to facilitate elastic deformation in the direction in which the gear is warped, and the reduction in the rigidity in the radial direction is compensated by the reinforcing member 12. It is not limited to examples. That is, the reinforcing member 12 may be ribs 13 provided at predetermined intervals in the circumferential direction from the boss portion 9 toward the rim portion 10 as shown in FIG.

1…歯車装置、 2,4,7…シャフト、 3,5,6,8…ギア、 9…ボス部、10…リム部、11…ハブ部、12…補強部材、13…リブ。   DESCRIPTION OF SYMBOLS 1 ... Gear apparatus, 2, 4, 7 ... Shaft, 3, 5, 6, 8 ... Gear, 9 ... Boss part, 10 ... Rim part, 11 ... Hub part, 12 ... Reinforcement member, 13 ... Rib

Claims (3)

軸に嵌合するボス部の外周側に、ハブ部を介してリム部が一体に形成され、かつそのリム部の外周面に歯が形成されている歯車を備え、
該歯車を互いに噛み合わせて動力を伝達することに伴って、該歯車に嵌合している前記軸に撓みが生じる歯車装置において、
前記ボス部とハブ部との少なくともいずれか一方に、前記軸が撓んだ際に前記歯と軸との相対的な反り返りを許容する弾性部位と、
該弾性部位の側壁面に設けられ、かつ前記歯車の半径方向の剛性を増大させる補強部材と
を備えていることを特徴とする歯車装置。
On the outer peripheral side of the boss part fitted to the shaft, a rim part is integrally formed through a hub part, and a gear having teeth formed on the outer peripheral surface of the rim part,
In the gear device in which the shaft engaged with the gear bends as the gears mesh with each other to transmit power,
An elastic part that allows a relative warp between the teeth and the shaft when the shaft is bent in at least one of the boss portion and the hub portion;
A gear device, comprising: a reinforcing member provided on a side wall surface of the elastic portion and increasing rigidity in a radial direction of the gear.
前記弾性部位は、前記ハブ部と前記ボス部との少なくともいずれか一方の一部の板厚を薄くすることにより形成され、
前記補強部材が前記ハブ部の板厚を薄くした箇所の全体に嵌め込まれて設けられていることを特徴とする請求項1に記載の歯車装置。
The elastic part is formed by reducing the thickness of a part of at least one of the hub part and the boss part,
2. The gear device according to claim 1, wherein the reinforcing member is provided so as to be fitted into an entire portion where the thickness of the hub portion is reduced.
前記弾性部位は、前記ハブ部と前記ボス部との少なくともいずれか一方の一部の板厚を薄くすることにより形成され、
前記補強部材が前記ハブ部の円周方向に一定の間隔を空けて設けられていることを特徴とする請求項1に記載の歯車装置。
The elastic part is formed by reducing the thickness of a part of at least one of the hub part and the boss part,
2. The gear device according to claim 1, wherein the reinforcing members are provided at a predetermined interval in a circumferential direction of the hub portion.
JP2010043211A 2010-02-26 2010-02-26 Gear device Pending JP2011179565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010043211A JP2011179565A (en) 2010-02-26 2010-02-26 Gear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043211A JP2011179565A (en) 2010-02-26 2010-02-26 Gear device

Publications (1)

Publication Number Publication Date
JP2011179565A true JP2011179565A (en) 2011-09-15

Family

ID=44691285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043211A Pending JP2011179565A (en) 2010-02-26 2010-02-26 Gear device

Country Status (1)

Country Link
JP (1) JP2011179565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3282145A1 (en) 2016-08-09 2018-02-14 Toyota Jidosha Kabushiki Kaisha Gear assembly and manufacturing method thereof
CN113404842A (en) * 2021-05-11 2021-09-17 重庆大学 High-order tuning method capable of achieving near-zero fluctuation of gear time-varying meshing stiffness

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3282145A1 (en) 2016-08-09 2018-02-14 Toyota Jidosha Kabushiki Kaisha Gear assembly and manufacturing method thereof
US20180045286A1 (en) * 2016-08-09 2018-02-15 Toyota Jidosha Kabushiki Kaisha Gear assembly and manufacturing method thereof
JP2018025220A (en) * 2016-08-09 2018-02-15 トヨタ自動車株式会社 Gear mechanism and its manufacturing method
CN107701659A (en) * 2016-08-09 2018-02-16 丰田自动车株式会社 Gear mechanism and its manufacture method
KR20180018352A (en) 2016-08-09 2018-02-21 도요타지도샤가부시키가이샤 Gear assembly and manufacturing method thereof
RU2668016C1 (en) * 2016-08-09 2018-09-25 Тойота Дзидося Кабусики Кайся Gear transmission and method for manufacture thereof
KR102031160B1 (en) * 2016-08-09 2019-10-11 도요타지도샤가부시키가이샤 Gear assembly and manufacturing method thereof
CN113404842A (en) * 2021-05-11 2021-09-17 重庆大学 High-order tuning method capable of achieving near-zero fluctuation of gear time-varying meshing stiffness

Similar Documents

Publication Publication Date Title
US7871134B2 (en) Wheel hub comprising axial recesses formed between the holes for lug bolts
JP2008180259A (en) Flat type wave gear device
JP6380424B2 (en) Planetary gear set
TWI650495B (en) Flat harmonic gear unit
JP6218692B2 (en) Dual type wave gear device
JP2011179565A (en) Gear device
JP2009008201A (en) Worm gear device
KR101389887B1 (en) Flexible coupling for power take off shaft
JP2008137562A (en) Wheel for vehicle
WO2017006441A1 (en) Rotation transmission mechanism provided with strain-wave gearing
US20060111218A1 (en) Annular gear
JP2008303968A (en) Gear transmission mechanism
CN105593035A (en) Bicycle tyre
KR102340757B1 (en) screw compressor
JP5405428B2 (en) Automatic transmission parking mechanism
TWI738892B (en) Strain wave gearing
JP6171596B2 (en) Wall panels
CN107002707A (en) Blade unit for Industrial fan
JP4972146B2 (en) Gear transmission case
JP4246083B2 (en) Reduction gear
JP2015182537A (en) propeller shaft guard
JP4277732B2 (en) Gear device for automatically correcting the axial position of the gear
KR101049688B1 (en) Car Drive Plates
JP2011174557A (en) Power transmission device
JP2016093152A (en) Tilling claw mounting structure